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Abstract—In-band Network Telemetry (INT) and sketching
algorithms are two promising directions for measuring network
traffic in real time. To combine sketch with INT and preserve
their advantages, a representative approach is to use INT to
send a switch sketch in small pieces (called sketchlets) to end-
host for reconstructing an identical sketch. However, in this
paper, we show that when naively selecting buckets to add to
sketchlets, the end-host reconstructed sketch is inaccurate. To
overcome this problem, we present DUNE, an innovative sketch-
INT network measurement system. DUNE incorporates two key
innovations: First, we design a novel scatter sketchlet that is more
efficient in transferring measurement data by allowing a switch to
select individual buckets to add to sketchlets; Second, we propose
lightweight data structures for tracing “freshness” of the sketch
buckets, and present algorithms for smartly selecting buckets
that contain valuable measurement data to send to end-host. We
theoretically prove the effectiveness of our proposed methods,
and implement a prototype on commodity programmable switch.
Results from extensive experiments driven by real-world traffic
suggest that DUNE can substantially improve the measurement
accuracy at a trivial cost.

Index Terms—Network measurement, sketch, In-band Net-
work Telemetry (INT), programmable switch

I. INTRODUCTION

Faults and errors are inevitable in today’s production net-
works, and how to monitor network health in real time is
a critical problem. With the advances of software-defined
networking (SDN) and data plane programmability, a num-
ber of measurement-based solutions have been proposed for
troubleshooting networks in recent years. Among them, one
promising direction is In-band Network Telemetry (INT) [1]–
[7]. In INT, a switch piggybacks network states in packet
header, and sends them to end-host for analysis. The benefit of
INT is its speed, as network states can be collected at line rate.
However, by carrying measurement data, INT consumes extra
bandwidth, thus considerably impacts an INT flow’s goodput
and completion time [4]–[7].

Another promising direction is sketching algorithms [8]–
[16]. In a sketch-based network measurement system, a prob-
abilistic data structure, namely sketch, is maintained by a
switch for aggregating per-flow statistics. Sketch is generally
flexible as it allows a tradeoff between accuracy and memory
usage. However, to send sketches to analyzers, the system
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either demands a dedicated out-of-band channel [8], or has to
compress the sketches (and consequently sacrifices accuracy)
to adapt to the available shared bandwidth [11].

To combine sketch with INT and to preserve their advan-
tages, there are two representative approaches. One approach,
with SketchINT [17] as an example, is to “construct sketch at
end-host”. In such an approach, a network switch piggybacks
measurement data with an INT flow, and when receiving INT
packets, the end-host aggregates the per-packet information
into a group of sketches. The advantage of this approach is
that end-host can maintain novel and complex sketches that are
difficult to be implemented on switch hardwares. However, it
does not avoid the large network overhead of INT, as per-
packet data is directly transferred without being aggregated
within the network.

The other approach, with LightGuardian [18] as an example,
is to “reconstruct sketch at end-host”. In this approach, a
sketch is maintained by a programmable switch for tracing per-
flow traffic statistics. In addition, the switch splits the sketch
structure into many small pieces, called sketchlets, and an INT
flow embeds the sketchlets in its packet headers to transfer to
end-host, where the sketchlets are assembled for reconstructing
a sketch that has an identical structure as the one on the switch.

The “reconstructing sketch at end-host” approach effectively
reduces the INT bandwidth usage, as a sketchlet contains flow-
level statistics rather than per-packet information. However, as
we will see in this paper, the end-host reconstructed sketch is
not as accurate as the switch sketch, for the reason that the two
sketches can not be timely synchronized; and when data in the
reconstructed sketch is invalid or stale, inaccuracy arises.

In this paper, we present DUNE, a sketch-INT network
measurement system. DUNE employs the “reconstructing
sketch at end-host” approach and improves the measurement
accuracy by making two key innovations: First, we propose
a novel sketchlet named scatter sketchlet, which is more
efficient in transferring measurement data to end-host; Second,
we develop lightweight data structures and algorithms for
selecting sketch buckets that contain “fresh” measurement data
to add to sketchlets. We carefully design the data structures and
algorithms under the constraints of the RMT (Reconfigurable
Match-Action Tables) programmable switch architecture [19],
[20], and implement a prototype with a commodity Tofino-
based switch. More specifically, we make the following con-
tributions in this paper:

• We present a novel sketchlet design named scatter sketch-



let, which allows a switch to select individual sketch
buckets to add to sketchlets. We prove in theory that
the scatter sketchlet is more efficient in transferring
measurement data to end-host than the existing approach.

• We design lightweight data structures for tracing “fresh-
ness” of measurement data in sketch buckets, and present
algorithms for selecting buckets that contain valuable
measurement data to send to end-host. We theoretically
prove that our method achieves the desired property in
selecting sketch buckets at frequencies proportional to the
buckets’ update frequencies, therefore better synchronizes
the end-host reconstructed sketch with the switch sketch.

• We realize our proposed data structures and algorithms
on a commodity P4-programmable Tofino switch under
the device’s stringent register access constraints.

• We carry out extensive experiments with DUNE, and find
that the system substantially improves measurement accu-
racy, at a trivial cost on switch’s forwarding performance.

The remainder part of this paper is organized as follows.
We discuss the related works in Sec. II. Sec. III explains
our motivation and gives an overview of the system. Sec. IV
presents the design and analysis of the scatter sketchlet. We
propose the sketch bucket selection algorithms in Sec. V and
describe the prototype implementation in Sec. VI. Sec. VII
presents the experiment results and we conclude in Sec. VIII.

II. RELATED WORK

With the advances of software-defined networking (SDN)
and programmable data plane in recent years, In-band Net-
work Telemetry (INT), which piggybacks measurement data
in packet header, becomes a promising direction for mea-
suring large-scale networks. Over the OpenFlow data plane,
PathDump [3] traces per-packet trajectory and provides a
set of APIs for network debugging. Jeyakumar et al. [1]
propose to allow programmable switches to execute “tiny
packet programs” (TPPs) embedded in packets to collect per-
packet network states. Kim et al. [2] demonstrate that INT can
be realized on P4-programmable data plane. A major concern
of INT is that by carrying measurement data in packet header,
INT consumes extra bandwidth, and its overhead increases
with network size. To reduce the INT overhead, Sheng et
al. [4] present DeltaINT, which reduces the INT overhead
by selectively carrying network states only when their values
change significantly. Tang et al. [21] propose Sel-INT for
maximizing the information gain of INT and minimizing the
bandwidth overheads at same time. Basat et al. [6] present
PINT, which applies various probabilistic techniques to encode
measurement data on multiple packets, so as to reduce the
per-packet INT overhead. Chen et al. [7] propose to optimally
schedule multiple PINT tasks within a fixed INT overhead.

Sketching algorithm is another promising direction. In a
sketch-based measurement system, usually a probabilistic data
structure, namely sketch, is maintained by a switch for aggre-
gating per-packet information. Representative sketches include
bitmap [22], hashing table [23], count-min [24], Bloom filter
[25], and their variants. Many works focus on generalizing and

?

45

...

...

...

...

A'[0][h0(f)]

A'[1][h1(f)]

Time t

Time t+ t

Switch sketch Reconstructed sketch

30

45

...

...

...

...

A[0][h0(f)]

A[1][h1(f)]

50

65

...

...

...

...

A[0][h0(f)]

A[1][h1(f)]

50

45

...

...

...

...

A'[0][h0(f)]

A'[1][h1(f)]

Sketchlet 

indexed 

at h1(f) 

Sketchlet 

indexed 

at h0(f) 

Query(f.size)=30 Query(f.size)=45

Query(f.size)=50 Query(f.size)=45

Fig. 1. An example demonstrating the reasons behind inaccuracy of an end-
host reconstructed sketch compared with the original switch sketch.

optimizing sketches. Yang et al. [11] present a generic sketch
named Elastic sketch that identifies and differentiates large
flows from small ones, and is adaptive to traffic variances.
To adapt to skewed network flows, Yang et al. [12] propose
a novel sketch, namely the Diamond sketch, to dynamically
assign appropriate amount of resources for tracing each flow
on demand. Liu et al. [13] propose a new sketch called
the Slim-Fat (SF) sketch that achieves high accuracy without
sacrificing the update and query speed. Song et al. [26] propose
a tree-based sketch structure named FCM-sketch as a more
accurate and memory-efficient replacement of the count-min
sketch. Zhang et al. [14] design a structure named CocoSketch
that is capable to support partial key queries. Li et al. [16]
present Pyramid Family, a generic framework for flow size
estimation with great flexibility. Huang et al. [10], [15] apply
compressive sensing to recover measurement results from
errors. For optimizing sketch-based systems from a network-
wide perspective, UnivMon [9] dispatches measurement tasks
to sketches hosted on different switches by solving an integer
programming problem; Valerio Bruschi et al. [27] propose to
disaggregate a logically centralized sketch into multiple small
fragments to distribute the computation overhead.

To combine sketch with INT, Yang et al. [17] place a
novel sketch named TowerSketch at network edge to aggregate
per-packet INT information. Zhao et al. [18] design a novel
sketch named SuMax on switch, and divide it into small-
sized sketchlets to send to end-host using INT; on receiving
the sketchlets, the end-host reconstructs a sketch that has an
identical structure as the one on the switch.

III. MOTIVATION AND SYSTEM OVERVIEW

A. Motivation

In this work, we focus on the “reconstructing sketch at
end-host” approach for combining sketch with INT, and aim
to improve its measurement accuracy. Before presenting our
work, we first briefly introduce how sketch and INT are
combined, with LightGuardian [18] as an example.

In LightGuardian, a programmable switch maintains two
instances of a modified count-min sketch, each instance is
composed of w columns and d rows of buckets. One sketch
instance is active and updated by incoming packets, and the



other is idle. The two instances swap periodically. A sketchlet
in LightGuardian is simply a column of the idle sketch instance
containing d buckets as shown in Fig. 2(a). When a switch
receives an INT packet, it randomly selects a column as a
sketchlet, and embeds it into the packet header to send to
end-host. By assembling the received sketchlets, the end-host
reconstructs a sketch of an identical structure for answering
measurement queries.

In this work, we slightly modify the original LightGuardian
design by maintaining only one sketch instance in pro-
grammable switch, and transmits its buckets with sketchlets
in real-time. Note that our modification actually improves
LightGuardian, as in the original design, all the measurement
data in the idle sketch is stale. In the rest part of this paper, we
use the term LightGuardian to refer to this modified version.

We use an example in Fig. 1 to demonstrate why compared
with the original switch sketch, an end-host reconstructed
sketch could be inaccurate. Suppose that the sketch is com-
posed of d = 2 rows, and it traces flow size in bytes or packets.
As shown in the top figure of Fig. 1, at time t, if we estimate
the flow f ’s size with the switch sketch A, the result should be
min{A[0][h0(f)],A[1][h1(f)]} = 30. However, suppose that
by time t, only the column indexed at h1(f) has been sent to
the end-host by the INT flow, then the bucket A′[0][h0(f)] in
the reconstructed sketch A′ is invalid, as it does not contain
any valid measurement data. If we estimate f ’s size with A′,
the result would be min{A′[0][h0(f)],A

′[1][h1(f)]} = 45,
which is overestimated, due to the invalid data in A′[0][h0(f)].

After ∆t seconds, as flow f continues to grow, both
A[0][h0(f)] and A[1][h1(f)] are incremented by 20. Assume
that by t + ∆t, the column indexed at h0(f) has just been
sent to the end-host, but the column at h1(f) has not been
sent during [t, t + ∆t], as demonstrated in the bottom figure
of Fig. 1. At t+∆t, querying flow f with the switch sketch
A returns 50, but querying f with the reconstructed sketch A′

returns 45, which is underestimated, due to the stale data in
A′[1][h1(f)].

From the example in Fig. 1, one can see that errors arise
when the end-host reconstructed sketch contains invalid or
stale data in its buckets. Note that in real-world networks,
a switch may forward thousands of flows, and each packet
updates d buckets in the switch sketch; on the other hand, an
INT flow packet carries at most d buckets from the switch
to the end-host. Since the INT flow’s packet rate is much
smaller than the rate of all the other flows combined, buckets
of a switch sketch are updated much more frequently than
they are synchronized to the end-host. In other words, invalid
or stale data in the reconstructed sketch due to intimely
synchronization is inevitable. Given a fixed INT overhead
(i.e., INT flow packet rate), our question is: how to smartly
select sketch buckets to add to sketchlets, so as to reduce the
measurement errors in the end-host reconstructed sketch?

B. System Overview

In this paper, we present DUNE, a sketch-INT network
measurement system. To overcome the accuracy issue as above

TABLE I
FREQUENTLY USED NOTATIONS

Denotation Meaning
A Switch sketch
A′ End-host reconstructed sketch
B Bitmap
C Cookie
d Num. of sketch/bitmap/Cookie rows
w Num. of sketch/bitmap/Cookie columns
c Sketch bucket size in bits
r Scatter sketchlet’s offset length in bits
b Cookie cell size in bits
N Num. of network flows traced by a switch sketch

... ...

......

... ...

......

A sketchlet A sketchletoffset=0

addr addr

(a) Column sketchlet (b) Scatter sketchlet

sketch sketch

offset=2

Fig. 2. Comparison between column sketchlet and scatter sketchlet.

discussed, we make two key innovations in DUNE: We first
propose a novel sketchlet design named scatter sketchlet. Un-
like the column sketchlet in LightGuardian [18] that contains
an entire sketch column, a scatter sketchlet enables a switch
to select individual sketch buckets from different columns
to add to sketchlets. We further prove in theory that unless
the sketch is extremely crowded, a scatter sketchlet has a
higher efficiency in transferring measurement data to end-host
compared with a column sketchlet.

The second innovation is the methods for selecting sketch
buckets to sketchlets. We design a bitmap data structure that
traces the update status of a sketch bucket, and develop
a bitmap-based algorithm to avoid selecting invalid sketch
buckets. We also design a counter array structure named
Cookie for tracing “freshness” of a sketch bucket, and develop
a Cookie-based algorithm that selects buckets containing valu-
able measurement data. Both methods are carefully designed
under the stringent constraints of the RMT programmable
switch architecture and implemented on a commodity Tofino
switch. Table I lists the frequently used notations in this paper.

IV. SCATTER SKETCHLET

A. Sketchlet Design

Before presenting our sketchlet design, we first describe
how a sketch is realized and a sketchlet is formed in a pro-
grammable switch (e.g., the Tofino switch). A programmable
switch processes packets with a pipeline, which is composed of
a series of match-action unit (MAU) stages. Each MAU stage
has a stage-local memory, and stateful elements such as sketch
buckets are stored as registers in the memory. Currently, a
register can be accessed at most once by a packet in its pipeline
pass, moreover, a register access is limited to one simple read-
update-write operation that must be realized in a small piece
of code called register action. In a sketch-based measurement
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bound number of flows that a scatter sketchlet can achieve a higher bit
efficiency than a column sketchlet. The sketch has d = 2 rows and various
number w of columns, bucket size is c = 64 bits, and the offset length r of
the scatter sketchlet varies from 1 to 8 bits.

system, a d×w sketch is generally realized as d registers, each
containing a row of w buckets, and the d registers are placed
in d different stage-local memories in switch. When an INT
packet enters into the switch’s pipeline, it sequentially accesses
the d registers, and retrieves the bucket at the specified column
index from each register to form a sketchlet.

We propose a novel sketchlet design named scatter sketch-
let. As shown in Fig. 2, for a d × w switch sketch A, a
scatter sketchlet contains d buckets, one from each row. A
scatter sketchlet is addressed as (addr, offset[1 · · · d]), where
addr ∈ {1, · · · , w} is a column index, and offset[1 · · · d] are
d r-bit offsets, where offset[i] indicates the distance between
the column index of the bucket in the ith row of the sketch
and addr. For example, the tuple (addr, offset[i]) points to
the bucket A[i][addr + offset[i]]. Note that scatter sketchlet
doesn’t violate the register access restriction, as one register,
which implements a sketch row, is still accessed at most once
per packet.

On receiving a scatter sketchlet, the end-host updates the
corresponding buckets in the reconstructed sketch A′ accord-
ing to the sketchlet address. After collecting enough sketchlets,
the end-host can either use the locally reconstructed sketches
to answer measurement queries, or send them to the global
analyzing server to perform further analysis.

B. Bit Efficiency

The design of the scatter sketchlet allows its carried bucket
to be selected from a range [addr, (addr + 2r − 1)], which
effectively reduces the chance that an invalid bucket is se-
lected. Consider a w × d sketch tracing a total number of
N network flows, a bucket is invalid only when none of
the N flows is hashed to it, which happens at a probability
of

(
1− 1

w

)N ≈ e−
N
w . The probability that there exists at

least one valid bucket in the range [addr, (addr + 2r − 1)]

is
(
1− e−

N
w ×2r

)
, and among the d buckets in a scatter

sketchlet, averagely
(
1− e−

N
w ×2r

)
×d of them contain valid

measurement data.
Besides the buckets, a sketchlet also needs to carry the

addresses of its contained buckets for the end-host to assemble

them into the reconstructed sketch. For a column sketchlet, its
address is simply the log2 w-bit column index [18], but for a
scatter sketchlet, in addition to the log2 w-bit addr, the address
also contains the d r-bit offsets, so the total address size is
(log2 w + d× r) bits.

We define bit efficiency, which is the ratio between the bits
of valid measurement data in a sketchlet and the total sketchlet
size, to measure the efficiency of a sketchlet design. From the
above analysis, it is easy to see that a scatter sketchlet’s bit
efficiency is

E =

(
1− e−

N
w ×2r

)
× d× c

d× c+ log2 w + d× r
(1)

where c is the size of a sketch bucket in bits. Note that a
column sketchlet’s bit efficiency can be obtained by applying
r = 0 to (1), as column sketchlet can be viewed as a
special case of scatter sketchlet with r = 0. Regarding the bit
efficiencies of the two sketchlet designs, we have the following
result.

Theorem 1. As long as the number of the network flows N
traced by a switch sketch satisfies

N < w × ln

(
d× c+ log2 w

d× r

)
(2)

a scatter sketchlet with r ≥ 1 achieves a higher bit efficiency
than a column sketchlet.

The proof of Theorem 1 is given in [28].
In Fig. 3(a), we present bit efficiencies of the scatter and

column sketchlets as in (1) under various sketch sizes and
scatter sketchlet’s offset lengths. One can see that the scatter
sketchlet has obvious higher bit efficiencies than the column
sketchlet under same conditions. In Fig. 3(b), we plot the upper
bound of the traced flow numbers in (2). We can see that
unless the switch sketch is extremely crowded by tracing much
more flows than its sketch buckets, a scatter sketchlet always
achieves a higher bit efficiency than a column sketchlet.

V. BUCKET SELECTION ALGORITHM

The scatter sketchlet allows a switch to pick a sketch bucket
in a range of [addr, (addr + 2r − 1)] to add to sketchlet,
however, how to identify the buckets that contain valid and
valuable measurement data in the range is still unknown. In
this section, we present methods for selecting sketch buckets.

A. Bitmap Algorithm

The first algorithm we propose is called bitmap algo-
rithm. As its name suggests, the algorithm maintains within
programmable switch a bitmap B, which has same logical
structure as the sketch with d rows and w columns of bits.
Initially, all bits in B are set to 0. As presented in Algorithm
1, the bitmap B is updated on two events:

• When receiving a packet of an ordinary flow f , in
addition to updating the sketch buckets A[i][hi(f)], the
switch also sets all the bits at the same positions in the



Algorithm 1: Bitmap algorithm
Input : A packet of flow f

1 if f is an ordinary flow then
2 for i = 1 · · · d do
3 Update A[i][hi(f)];
4 B[i][hi(f)]← 1;

5 if f is the INT flow then
6 Randomly select addr from {1, · · · , w};
7 for i = 1 · · · d do
8 for j = 0 · · · 2r − 1 do
9 if B[i][addr + j] == 1 then

10 break;

11 B[i][addr + j]← 0;
12 Add A[i][addr + j] to scatter sketchlet;

bitmap as 1, i.e., B[i][hi(f)]← 1, for i = 1, · · · , d (line
1-4).

• When receiving an INT flow packet, the switch randomly
selects addr from {1, · · · , w} (line 6), and from each
row of the bitmap, it finds the first bit in the range
[addr, (addr + 2r − 1)] whose value is 1, adds the
corresponding sketch bucket to the sketchlet, and clears
the bit to 0 (line 7-12).

The bitmap algorithm has two properties: First, it avoids
selecting invalid bucket into a sketchlet, as an invalid bucket’s
corresponding bit in the bitmap is always 0; Second, it will
not select a bucket if it has not been updated since the last
time it was selected into a sketchlet.

B. Cookie Algorithm

Studies show that rate distribution of real-world network
flows is highly skewed, and under such a distribution, one
flow may grow much faster than another [29], [30]. To cope
with such a skewness, we propose an algorithm named Cookie
algorithm, and present it in Algorithm 2. The algorithm
maintains in programmable switch a counter array named
Cookie, which has same logical structure as the sketch with
d rows and w columns of cells. Each Cookie cell is a b-bit
counter (where b is significantly smaller than the bucket size
c), and all the counters are initialized as 0.

Motivated by TCP’s congestion control, the algorithm up-
dates the Cookie cells in an AIMD (additive increase and
multiplicative decrease) manner [31]. More specifically, the
Cookie C is updated on two events:

• Additive increase: When receiving a packet of an or-
dinary flow f , in addition to update the sketch buck-
ets A[i][hi(f)], the switch also increments the counters
C[i][hi(f)] by 1, for i = 1, · · · , d (line 1-4).

• Multiplicative decrease: When receiving an INT
flow packet, the switch randomly selects addr from
{1, · · · , w} (line 6), and for each row in the Cookie, it
compares each cell in the range [addr, (addr + 2r − 1)]
against a threshold (2h − 1) (where h ≤ b). For the first
cell that is no smaller than the threshold, its correspond-

Algorithm 2: Cookie algorithm
Input : A packet of flow f

1 if f is an ordinary flow then
2 for i = 1 · · · d do
3 Update A[i][hi(f)];
4 C[i][hi(f)]← C[i][hi(f)] + 1;

5 if f is the INT flow then
6 PktCnt++; Randomly select addr from {1, · · · , w};
7 for i = 1 · · · d do
8 for j = 0 · · · 2r − 1 do
9 if C[i][addr + j] ≥ (2h − 1) then

10 CellCnt++; break;

11 C[i][addr + j]← C[i][addr+j]
2

;
12 Add A[i][addr + j] to scatter sketchlet;

ing sketch bucket is selected into the sketchlet, and the
cell’s value is halved by right-shifting one bit (line 7-12).

The switch maintains two counters, CellCnt and PktCnt.
CellCnt records the number of the sketch buckets that have
been selected into sketchlets (line 10), and PktCnt is the
number of the INT packets the switch has received (line
6). Periodically, the network’s measurement control plane
computes a ratio CellCnt

d×PktCnt : if the ratio is below a threshold
α, the control plane decreases the parameter h by one as
h = h− 1, which means that the switch will be less selective
in selecting buckets into sketchlets; and if the ratio exceeds
another threshold β, the switch will behave more selective with
h = h + 1. For the Cookie algorithm, we have the following
result.

Theorem 2. The frequency of a sketch bucket being selected
into sketchlets is statistically proportional to the bucket’s
update frequency.

We present the proof of Theorem 2 in [28].
Theorem 2 indicates that the Cookie algorithm is biased

towards fast-growing flows, as when a fast-growing flow
frequently updates its associated buckets in the switch sketch,
the buckets will also be selected into sketchlets frequently.
Clearly, this is a desired property, especially when network
flows follow a highly skewed rate distribution.

VI. IMPLEMENTATION

A. DUNE Switch Prototype

We have implemented a prototype of the DUNE system
on the Edgecore Wedge 100BF Tofino-based programmable
switch. For implementing a DUNE switch, two components
need to be realized: 1) the sketch structure and the action to
access the sketch buckets; 2) the bitmap/Cookie structure and
the action to access the bits/Cookie cells based on Algorithm 1
and 2. For realizing the switch sketch, we consult the method
in LightGuardian [18] and implement a CM sketch composed
of d = 2 rows and w = 215 columns of buckets, and the
bucket size is c = 64 bits. Each sketch row is implemented as



Fig. 4. Implementation of bitmap/Cookie structure on Tofino switch with
r = 3.

a 256 kB-register, and we realize the operation for updating
and retrieving a sketch bucket in one single register action.

Although having same logical structure, however, we can
not use the same method to implement the bitmap and Cookie
structures, because of the following reason: Recall that in
both Algorithm 1 and 2, a sketch bucket is selected from a
range of [addr, (addr + 2r − 1)], and in the worst case, as
many as 2r bits or Cookie cells need to be inspected. If a
row of bitmap/Cookie is implemented as one register, under
the Tofino switch’s register access rule, the operations for
inspecting 2r consecutive bits or Cookie cells must be realized
in one single register action. Unfortunately, with the current
P4 Tofino switch, it is prohibitive to inspect 2r consecutive
bits or Cookie cells within one single register action.

To overcome this problem, in our implementation, we real-
ize a bitmap/Cookie row with 2r registers, where each register
contains w

2r bits/Cookie cells. As shown in Fig. 4, a bit/Cookie
cell at the position of [i][k] (i = 1, · · · , d, k = 1, · · · , w

2r ) in
the jth register corresponds the bit/Cookie cell at the position
of [i][k · 2r + j] in the logical bitmap/Cookie.

For searching in the 2r consecutive bits/Cookie cells in
[addr, (addr+2r−1)], we sequentially access the bits/Cookie
cells indexed at addr

2r in all the 2r registers1. For a bit/Cookie
cell in each register, we check (and update) its value with one
single register action. If a bit/Cookie cell indexed at addr

2r in
the jth register is selected, we modify its value and add the
bucket A[i][addr + j] from the sketch to the sketchlet.

In our implementation on the Tofino switch, we set r =
3, therefore use 8 registers as in Fig. 4 to implement a
bitmap/Cookie row. We have open-sourced our P4 code2.

B. Overhead Analysis

Commodity programmable switches usually have limited
memory capacity, so in the following, we analyze the memory

1In our implementation, addr is randomly selected as multiples of 2r .
2https://github.com/DuneHPCC724/Dune

consumptions of the bitmap and Cookie structures. Since
logically, bitmap and Cookie have an identical structure as the
sketch, their memory consumption are d × w and d × w × b
bits respective. In our prototype implementation with d = 2,
w = 215, and b = 8 bits, a bitmap consumes 8 kB, and a
Cookie requires 64 kB memory. We can see that neither struc-
ture imposes a heavy memory overhead on a programmable
switch.

We then analyze the memory access overhead. Since a
packet of an ordinary network flow is required to update the
sketch buckets as well as the bits/Cookie cells, it accesses
2 × d = 4 registers during its pipeline pass; for an INT flow
packet, it needs to access d+ d× 2r = 18 registers to select
a sketch bucket by inspecting bits/Cookie cells in a range of
[addr, (addr + 2r − 1)]. However, we believe that register
accesses do not cause a problem, because of two reasons: First,
registers in commodity programmable switches are realized
with SRAM, which is very fast with a nanosecond-scale access
time; Second, the INT flow packets, which make more register
accesses, constitute a very small portion of the entire network
traffic on the switch. We will evaluate the impact of the register
accesses in DUNE on a commodity programmable switch’s
forwarding performance in Sec. VII-E.

VII. EVALUATION

We conduct extensive experiments to evaluate DUNE, and
in particular, we examine the following three sketch-INT
network measurement systems.

• DUNE-bitmap: In DUNE-bitmap, we employ the scatter
sketchlet as described in Sec. IV, and use the bitmap
algorithm in Algorithm 1 to select sketch buckets to send
to end-host.

• DUNE-Cookie: The DUNE-Cookie system employs the
scatter sketchlet and applies the Cookie algorithm in
Algorithm 2 to add sketch buckets to sketchlets.

• LightGuardian: As a representative sketch-INT system,
LightGuardian [18] adopts the column sketchlet, and
employs an algorithm named k+chance to select sketch
columns. In k+chance, a programmable sketch maintains
k bit arrays, each containing w bits corresponding to
the w sketch columns. When a column index addr is
randomly selected, the switch sequentially inspects the
bits indexed at addr in each array: If a 0 is encountered,
the switch sets the bit as 1, and adds the sketch column at
addr to the sketchlet; If all the bits have already been set
to 1, the switch randomly selects an other column as the
sketchlet. Ideally with k+chance, all the sketch columns
will be sent to end-host with a fair chance.

We have implemented DUNE-bitmap and DUNE-Cookie
with Tofino switches. We also implement DUNE-bitmap,
DUNE-Cookie, and LightGuardian on bmv2 [32], which is a
P4-programmable software switch. Unless otherwise specified,
in the following experiments, we set the sketch/bitmap/Cookie
size as d = 2 rows and w = 215 columns. A sketch bucket
contains c = 64 bits, the size of a Cookie cell is b = 8 bits, and
the length of a scatter sketchlet’s offset is r = 3 bits. For the
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Fig. 5. Accuracies of (a) cardinality estimations in RE, (b) heavy hitter detections in F1-score, (c) flow size distribution estimations in WMRE, and (d)
entropy estimations in RE with LightGuardian, DUNE-bitmap, and DUNE-Cookie under various INT flow pps.

DUNE-Cookie system, we set the two threshold parameters
as α = 0.5 and β = 1.0. For evaluating LightGuardian, we
employ k = 8 bit arrays as suggested in [18], which means
that the bit arrays used by the k+chance algorithm consume
four times memory compared with DUNE-bitmap, or half of
the memory compared with DUNE-Cookie.

With the above parameter settings, the size of a column
sketchlet is d×c+log2 w = 143 bits, and the size of a scatter
sketchlet is d× c+log2 w+d× r = 149 bits. We can see that
DUNE is still lightweight by increasing LightGuardian’s INT
overhead no more than 4.2%.

We use the public available MAWI packet trace [33] cap-
tured from the WIDE backbone to drive the experiments. The
trace contains 9.6M flows, and we randomly select 6, 000
flows from the top-50K largest flows for each experiment.

A. Measurement Accuracy

1) Measurement tasks and metrics: We first perform a
number of network measurement tasks with the three sketch-
INT systems. The tasks are:

• Cardinality estimation. In this task, we count number
of the distinct flows to estimate the traffic cardinality.

• Heavy hitter detection. This task aims to identify the
top 10% largest flows in the traffic3.

• Flow size distribution estimation. This task aims to
estimate mi, the number of the flows of size i for all
the possible sizes.

• Entropy estimation. This task estimates the entropy of
the traffic, which is defined as

Entropy =
∑
i

(
i× mi

M
× log

mi

M

)
where mi is the flows of size i and M =

∑
i mi.

Note that all the above estimations are conducted on the
sketches reconstructed by different sketch-INT systems on
end-hosts, rather than on the original switch sketches. We use
the following metrics to evaluate the measurement accuracies.

3Neither LightGuardian nor DUNE transmit flow IDs, so in our experiment,
we assume that end-host already has the knowledge of flow IDs obtained from
side channels such as server logs.

• Relative error (RE): We use the relative error, which is
defined as

RE =
|Estimated− Truth|

Truth

to evaluate the cardinality and entropy estimations’ accu-
racies.

• F1-score. For detecting heavy hitters, we use the F1-score
to evaluate the estimation accuracy.

• Weighted mean relative error (WMRE): We compare
the estimated flow size distribution with the ground truth,
and compute WMRE as

WMRE =

∑
i |mi − m̂i|∑
i

(
mi+m̂i

2

)
where mi and m̂i are the estimated and ground-truth
numbers of the flows of size i.

2) Results: We conduct the measurement tasks with the
three sketch-INT systems, and present the results in Fig. 5. In
each experiment, we vary the INT flow’s packets-per-second
(pps), which decides the number of the sketchlets that can be
transferred from the switch sketch to the end-host, from 400
to 1, 200 in the experiments.

Several interesting observations can be made from Fig. 5.
The first observation is that all the Sketch-INT systems have
better performances with the increase of the INT flow’s pps.
This is easy to understand, as a higher pps indicates that
the INT flow can bring more buckets to the end-host for
reconstructing the sketch.

The second observation is that our proposed systems, i.e.,
DUNE-bitmap and DUNE-Cookie, are more accurate in all
the tasks than LightGuardian. This is because compared with
LightGuardian, our proposed scatter sketchlet and bucket se-
lection algorithms enable the DUNE systems to transfer more
valuable measurement data to end-hosts, despite that in the
three systems, end-hosts receive same amount of sketchlets.

The third observation is that DUNE-Cookie outperforms
DUNE-bitmap in most cases. This is because DUNE-Cookie
has the desired property of selecting sketch buckets at frequen-
cies that are proportional to the buckets’ update frequencies,
as stated in Theorem 2. The only exception is the flow size
distribution estimations in Fig. 5(c), in which DUNE-bitmap
outperforms DUNE-Cookie when the INT flow pps is small.



The reason behind is that DUNE-bitmap uniformly selects
sketch buckets of all flows; while DUNE-Cookie is biased
towards the fast-growing flows, and when there are relatively
fewer INT packets, small flows are ignored, which leads to a
distorted estimation on the flow size distribution.

B. Decomposing Measurement Inaccuracy

The evaluation results in Fig. 5 suggest that errors perva-
sively exist in the end-host reconstructed sketch. Errors may
come from two different sources: First, errors could be caused
by hash collisions in the switch sketch, and the erroneous
measurement data is transferred to the end-host in sketchlets.
Second, the measurement data in the switch sketch is error-
free, but the reconstructed sketch at the end-host is not timely
synchronized with the switch sketch, thus is inaccurate because
of the invalid or stale data in the sketch buckets, as we have
seen in Sec. III-A. In the following, we seek to identify and
quantify the two types of the errors.

1) Decomposing methods and metrics: Before presenting
the methods and metrics for decomposing the errors, we first
introduce some notations. Let x = {xf |f ∈ F} be a set of
measurement data on a network state (i.e., flow size) over
a flow set F, and y = {yf |f ∈ F} be another set of
measurement data on the same state over a same flow set F.
We define the Relative Aggregated Error (RAE) for comparing
the measurement data y against x as

RAE(y,x|F) =
∑

f∈F |yf − xf |∑
f∈F xf

(3)

We use the following metrics to quantify the errors from
different sources.

• RAE(nA,n|F): It is the RAE for comparing the mea-
surement data in the switch sketch against the ground
truth, where nA = {nA

f |f ∈ F} is the flow sizes
estimated with the switch sketch A, and n = {nf |f ∈ F}
is the set of the ground-truth flow sizes.

• RAE(nA′ ,n|F): It is the RAE for comparing the mea-
surement data in the end-host reconstructed sketch against
the ground truth, where nA′ = {nA′

f |f ∈ F} is the flow
sizes estimated with the reconstructed sketch A′.

• RAE(nA′ ,nA|F): It is the RAE for comparing the flow
sizes estimated with the end-host reconstructed sketch A′

against the ones estimated with the switch sketch A.
From the above definition, we can see that RAE(nA,n|F)

quantifies the errors caused by hash collisions in the switch
sketch, RAE(nA′ ,nA|F) measures the errors caused by the
invalid and stale data in the end-host reconstructed sketch, and
RAE(nA′ ,n|F) captures the overall errors.

2) Results: We run the three sketch-INT systems to es-
timate the sizes of the flows from the MAWI trace, and
compare RAEs of the different systems in Fig. 6. In particular,
we compare the flow sizes estimated with the switch sketch
against the ground truth, and present RAE(nA,n|F) denoted
as “switch sketch” in Fig. 6(a); we also compare the end-
host sketches reconstructed by different systems against the
ground truth in RAE(nA′ ,n|F) in the figure. In Fig. 6(b),
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Fig. 6. (a) RAE(nA,n|F) of switch sketch and RAE(nA′ ,n|F) of end-
host reconstructed sketches against ground truths by LightGuardian, DUNE-
bitmap, and DUNE-Cookie; (b) RAE(nA′ ,nA|F) of end-host reconstructed
sketches against switch sketches by LightGuardian, DUNE-bitmap, and
DUNE-Cookie under various INT flow pps.

we compare the end-host reconstructed sketches against the
switch sketches, and present RAE(nA′ ,nA|F) of the three
systems.

From Fig. 6, we can make the following observations. First,
the reconstructed sketches at end-hosts contain much more
errors compared with the switch sketch, suggesting that most
of the measurement errors are caused by the invalid and
stale data in the reconstructed sketch. Second, a high INT
flow packet rate can considerably reduce the errors in the
reconstructed sketches, and the DUNE systems benefit more
from a higher INT rate. For example, when the INT flow pps
is increased from 400 to 1, 200, RAE(nA′ ,n|F) are reduced
by 21.8%, 31.8%, and 53.1% for LightGuardian, DUNE-
bitmap, and DUNE-Cookie respectively. Finally, thanks to the
scatter sketchlet and the smart bucket selection algorithms, our
proposed DUNE systems achieve much lower error rates than
LightGuardian. For example, under the 1, 200 INT flow pps,
DUNE-bitmap and DUNE-Cookie reduce LightGuardian’s
RAE(nA′ ,n|F) by as much as 40.4% and 59.4% respectively.

C. Impact of Offset Length r

The design of the scatter sketchlet enables a switch to select
buckets in a range of [addr, (addr + 2r − 1)]. Intuitively, the
larger the offset length r is, with a larger chance a sketch
bucket containing “fresh” measurement data could be selected,
and the higher estimation accuracy the reconstructed sketch
will achieve.

In this experiment, we run different sketch-INT systems
under various offset length r ranging from 2 to 10 bits, and
present RAE(nA′ ,nA|F) of LightGuardian, DUNE-bitmap,
and DUNE-Cookie in Fig. 7. We also plot RAE(nA,n|F)
for comparison. From the figure we can see that increasing the
offset length do reduce the errors in the DUNE systems, but
the reduction is not very significant. For example, for DUNE-
Cookie, by increasing r from 2 to 10 bits, the error reduction is
only 5.6%. Recall that in our Tofino implementation, a packet
accesses up to 2r registers for selecting a sketch bucket. The
result in Fig. 7 suggests that with a small offset length (e.g.,
r = 3), the systems of DUNE-bitmap and DUNE-Cookie can
achieve decent accuracies.
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D. Impact of Cookie Cell Size b

In the DUNE-Cookie system, we employ a Cookie data
structure, which logically has an identical structure as the
switch sketch, to trace “freshness” of the measurement data in
sketch buckets. In this experiment, we investigate the impact of
the Cookie cell size by varying b from 4 to 12 bits, and present
RAE(nA′ ,nA|F) of the DUNE-Cookie system in Fig. 8. We
also plot DUNE-bitmap’s RAE(nA′ ,nA|F) for comparison.

From Fig. 8, we can see that by increasing the Cookie cell
size, better accuracies can be achieved by DUNE-Cookie. In
particular, when b exceeds 9 bits, the errors are considerably
reduced. This is because with the MAWI traffic trace, which
has a skewness factor around 1.4, most fast-growing flows
can be accurately identified by the Cookie algorithm when
a Cookie cell is capable to trace up to 29 = 512 updates.
Our observation suggests that a tradeoff is allowed between
memory consumption and measurement accuracy: For hard-
ware switches that lack memory resources, a small Cookie
cell size can ensure a reasonable accuracy, while in software
switches like OVS [34], we can pursue a higher accuracy at a
cost of a larger memory usage.

E. Forwarding Performance

As analyzed in Sec. VI, in a DUNE switch, a regular
flow’s packet accesses 2×d registers, and an INT flow packet
accesses d+d×2r registers respectively during their pipeline
passes. In this section, we evaluate the impact of the register
accesses to a switch’s packet forwarding performance.

We apply the parameters in Sec. VI to implement a
DUNE switch on an Edgecore Wedge 100BF Tofino-based
programmable switch, and set up a simple testbed composed
of two end-hosts and one Tofino-based DUNE switch, where
the switch forwards packets sent from the source host to
the destination. To evaluate the DUNE switch’s forwarding
performance, we send an INT flow composed of 50, 000
packets back-to-back to the switch, and measure the flow’s
completion time (FCT) between the moments when the first
packet is sent out and the last packet arrives the destination.

In addition to the INT flow, we also send a background traffic
varying from 0 to 950Mbit/s to the switch. Note that packets
from both the INT flow and the background traffic access
registers when they enter into the switch’s pipeline.

To make a comparison, we run switch.p4 [35], a baseline
L2/L3 switch implementation on another Tofino switch. We
send the same background traffic to the switch, and measure
a 50, 000-packet flow’s FCT. Note that in the baseline switch,
a packet does not access any registers. We present the FCTs
of the INT flow forwarded by the DUNE switch as well as
the FCTs of the 50,000-packet flow forwarded by the baseline
switch in Fig. 9. We can see that the INT flow has an FCT
slightly longer than the baseline due to register accesses: When
there is no background traffic load, the DUNE switch prolongs
the FCT by 2.93%; and under the 950Mbit/s background
traffic load, the FCT is prolonged by 7.63%. The experiment
results suggest that register accesses introduced by DUNE
only slightly impact a commodity programmable switch’s
forwarding performance, and a DUNE switch is practical to
handle real-world network traffic.

VIII. CONCLUSION

In this paper, we presented DUNE, a lightweight and ac-
curate sketch-INT network measurement system. We revealed
the errors caused by the invalid and stale measurement data in
the end-host reconstructed sketch, and to combat the errors, we
made two key innovations: First, we designed a novel scatter
sketchlet that allows a switch to select individual buckets
to add to sketchlets; Second, we developed data structures
for tracing “freshness” of sketch buckets, and proposed algo-
rithms for smartly selecting buckets to send to end-host. We
theoretically proved that our proposed methods have higher
efficiency in transferring measurement data, and better adapt
to skewed network traffic. We implemented DUNE on a
commodity Tofino-based switch under the device’s stringent
constraints. We extensively evaluated our proposed system
with experiments driven by real-world traffic, and showed that
DUNE can significantly improve the measurement accuracy,
at a trivial cost on switch’s forwarding performance.
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