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Abstract

In recent years, peer-to-peer networks and application-level overlays without dedi-
cated infrastructure have been widely proposed to provide on-demand media services
on the Internet. However, the scalability issue, which is caused by the asynchronism
and the sparsity of the online peers, is a major problem for deploying P2P-based
MoD systems, especially when the media server’s capacity is limited. In this paper,
we propose a novel probabilistic caching mechanism for P2P-based MoD systems.
Theoretical analysis is presented to show that by engaging our proposed mecha-
nism with a flexible system parameter, better scalability could be achieved by a
MoD system with less workload imposed on the server, and the service capacity
of the MoD system could be tradeoff with the peers’ gossip cost. We verify these
properties with simulation experiments. Moreover, we show by simulation results
that our proposed caching mechanism could improve the quality of the streaming
service conceived by peers when the capacity of the server is limited, but will not
cause notable performance degradation under highly lossy network environments,
compared with the conventional continuous caching mechanism.
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1 Introduction

With the deployment of broadband techniques, peer-to-peer (P2P) based sys-
tems have been widely proposed to provide the media-on-demand service
(MoD) on the Internet in recent years. The basic idea of a P2P-based MoD
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Fig. 1. A typical P2P-based MoD system

system is to allow the peers accessing the same media object to share the me-
dia data cached in their buffers with each other, thus reducing the workload
imposed on the media server of the system. Typically, for a P2P-based MoD
system, an index overlay and a data overlay will be formed by the online peers,
as demonstrated in Fig. 1.

The index overlay of a P2P-based MoD system is usually formed by all the
online peers, and serves for managing the information such as the peers’ mem-
berships and their current playback offsets. With an index overlay, incidents
such as peer joining, peer departure and VCR operations (e.g., pause, fast-
forward, rewind, ...etc) could be handled in a distributed fashion efficiently.
Usually some well designed structures and dedicated algorithms (e.g., trees,
DHTs) are engaged for constructing and maintaining this overlay. While for
the data overlay of a P2P-based MoD system, it is formed by the peers which
are actually exchanging media data. As a peer would be able to cache in its
buffer only limited media content, a data overlay connection could only be
setup between two peers when there is media data exchange. In the data over-
lay, peers could use “push” or “gossip + pull” mechanisms to distribute and
obtain the media data. Note that unlike the global structured index overlay,
in the data overlay, only a few peers with media data exchanging could have
links among themselves, and a cluster is formed by these peers. Usually several
disconnected clusters may be formed among all the online peers, as shown in
Fig. 1.

In a P2P-based MoD system, the streaming media object is split into seg-
ments, which is the smallest playable media content unit, and peers will use
the segments as the unit for requesting and caching the media data. Typi-
cally, a peer in the P2P-based MoD system will try to pre-fetch and cache
some segments which are immediately before its current playback offset in
case of network jitters, where the available bandwidth might decrease unpre-
dictably. As these pre-fetched segments are cached some time before their

2



playback deadlines, the peer could ensure the quality of the streaming service
under an unstable network environment to some degree. After a segment is
played, the peer could either discard it immediately, or keep it in its buffer
for some time. When requesting a segment, the peer will first try to obtain
it from some other peers which have cached this segment in their buffers; if
failed, it will then request the segment from the server. Obviously in such a
peer-assisted mechanism, in order to improve the system’s service capacity,
it is essential to increase the “hit ratio” of the segment requests among the
peers, especially when the server’s service capacity is limited. In this paper,
we present a novel data overlay for P2P-based MoD systems, in particular, we
propose a probabilistic caching mechanism for peers to request and discard
the segments. We evaluate our proposed mechanism via extensive theoretical
analysis as well as simulation experiments, and show that by engaging our
proposed mechanism, the following favorable properties could be achieved:

• Scalability: We find that the main performance bottleneck for a P2P-based
MoD system is in the media server of the system, and is caused by the
asynchronism and the sparsity of the online peers. Without enlarging the
peers’ buffering space, we show that our proposed caching mechanism could
reduce the workload imposed on the server notably, or improve the quality
of the streaming service conceived by peers considerably when the server’s
capacity is limited, thus improving the system’s scalability.

• Flexibility: We provide means for system designers to make tradeoffs be-
tween the system’s scalability and the peers’ gossip cost in a P2P-based
MoD system. Specifically, by varying the buffering space partition, a P2P-
based MoD system could trade better scalability with larger peer gossip cost
under the situation of sparse online peers or weak media server; or it could
reduce the gossip cost of the peers at the price of sacrificing the system’s
scalability by imposing more workload on the server of the system.

We also study the performance of the proposed caching mechanism under a
lossy network environment, and show that our approach will not cause serious
performance degradation, even when not all the buffering space is allocated
for pre-fetching; moreover, when the loss rates of the network links are ex-
tremely high, our mechanism works even better than the conventional contin-
uous caching mechanism, which is usually considered to be more robust under
the lossy network environment.

For the remainder of this paper, we discuss the related work in Section 2;
we introduce our proposed caching mechanism in Section 3; and in Section
4, theoretical analysis on the system’s performance is given; we present and
discuss our simulation results in Section 5; and finally we conclude this paper
and discuss the future work in Section 6.

3



2 Related Work

With the advance of P2P technologies, many services which are traditionally
provided with a client-server architecture are successfully migrated to P2P net-
works. For example, file swarming systems such as BitTorrent [2] are widely
used on today’s Internet, and have become the major source of the network
traffic [19] [20]; and P2P multicast systems such as ESM [3] [4] and Cool-
Streaming [21] are successfully deployed to provide live media services without
the deployment of an IP-multicast infrastructure. In recent years, many works
[1] [5] [6] [7] [10] [11] [13] have been proposed on providing on-demand media
streaming services with P2P approaches.

For data overlays of the P2P-based MoD systems, oStream [1] uses a spanning
tree algorithm for peers to construct an overlay for media streaming. Designs
of tree-like overlays could also be found in P2Cast [5] and P2VoD [6]: which
differ in their caching strategies and failure recovery mechanisms. To make
the system robust and to balance the workload, CoopNet [7] proposes to use
a multiple tree overlay to distribute the MDC encoded media data. A tree-
assisted mesh overlay is presented in [11], in which mesh links will be formed
when the parent-child relationship could not be set up. In [8], a segment
scheduling algorithm is proposed when network coding techniques [16] [17]
are engaged for the on-demand media distribution. In [9], the authors aim
to support the on-demand video viewing functionality based on file swarming
systems, and a probabilistic pre-fetching technique which has some similarity
to our approach is proposed. However, the key difference between our work
and [9] is that in our solution, peers are only caching very limited content in
their memories, while peers in the system proposed in [9] actually download the
entire video file on their hard disks. Moreover, we present a theoretical analysis
in our work to enable a more insightful understanding on the probabilistic
caching mechanism.

Besides data overlays, many index overlays have also been proposed recently
for managing the MoD system. oStream [1] uses a set of centralized servers
to record the peers’ playback information. Pure distributed solutions such as
DHT algorithms, which are widely used in file sharing applications, are also
adopted for index overlay construction. In OBN [10], the finger table of Chord
[22] is used for peers to maintain links to their neighbors on the overlay; and
in [12], CAN [23] is adopted to organize the peers in a proxy-assisted on-
demand streaming system. For supporting specific MoD operations such as
jump, fast forward and rewind, some dedicated structures are proposed, such
as the AVL tree [11] and the Skip List [13], the former is featured with non-
sequential accesses and the latter supports the VCR-operations very well. And
recently an overlay construction algorithm based on AVL tree is proposed in
[8] for improving the searching efficiency by not involving all the peers on the
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overlay.

To understand the performance of the P2P-based MoD systems, analytical
performance evaluation is an effective way. A stochastic process model is pro-
posed in [14], which shows that the service capacity of peer-assisted MoD
systems will start to scale after the transition time; and in [1], a modeling
framework is used to study the bandwidth required on the server and the over-
head engaged under different MoD system designs. In this paper, we adopt
the modeling framework in [1] to analyze our proposed caching mechanism.

3 Probabilistic Caching Mechanism

3.1 The Caching Problem

Before describing the caching problem in P2P-based MoD systems, we first
look at the size of the media objects and the buffering space size of the clients
in a MoD system. With today’s multimedia techniques, multimedia objects in-
tegrating audio and video are getting larger in order to have better audio/video
effects. For example, a two-hour movie encoded with a CBR (Constant Bit
Rate) playback rate of 512 bps will have a size of 450 MB. Obviously, in an
on-demand media application, it is impractical for today’s personal computer
with a typical sized memory (e.g., 512 MB) to cache the entire media object
such as a movie in its memory. On the other hand, to cope with network
jitters, where the future available bandwidth decreases unpredictably, many
media streaming systems use a fixed length client buffer to pre-fetch and cache
the media content ahead of their playback deadlines. For example, Windows
Media Player allows a pre-fetching buffer up to 60 seconds, while Real Player
uses a buffer with a default size of 30 seconds. Obviously, these pre-fetching
buffers are relatively small compared with the computer’s entire memory: for
example, it takes less than 4 MB for caching 60 seconds of a 512 bps encoded
video object, and caching 5 minutes of the video content requires 18.75 MB,
which is a reasonable cost for today’s personal computers. In summary, we
believe that under today’s multimedia techniques and with today’s personal
computers, peers are incapable of caching an entire media object or a large
portion of it with their buffers, but they should be able to cache the media
content which is more than just enough to handle network jitters.

With limited sized buffers, which segments a peer should cache is problematic.
Following we investigate the caching problem formally. Suppose in a P2P-
based MoD system, a media object is divided into M segments, indexed as 0
to M − 1. Suppose at a time, there are N online peers accessing this object,
and each peer has a buffer of B segments, and for a particular segment i
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(0 ≤ i < M), we assume that it is cached on Ci different peers at the time.
Now consider that a peer requests segment i, as it does not know on which
peer this segment is cached, it just requests it blindly by sending its request
to another peer with a probability p. Then for segment i, the probability that
the request is answered by a peer caching it is 1 − (1 − p)Ci , and in this case,
the request is successful. For all the M segments, our purpose is to maximize
the probability of the successful segment requests among the online peers as∑M−1

i=0 (1 − (1 − p)Ci) given the buffering space B and the peer population N ,
or we seek to

minimize
∑M−1

i=0 (1 − p)Ci

s.t.
∑M−1

i=0 Cj ≤ N × B

It is not difficult to find that this optimization problem has a solution of
Ci = N×B

M
, which means the segments should be cached evenly among the

online peers. However, evenly caching the segments is impractical to implement
in a P2P-based MoD system for two reasons: 1) It is hard for peers to know
the global segment caching information, as segments are cached and discarded
by peers very frequently all the time, thus, a peer can only make its decisions
based on local information; 2) another purpose for peers to cache segments in
their buffers is to cope with network jitters, which means peers must cache
certain number of segments continuously ahead of their playback deadlines;
as peers are asynchronous when accessing the media object, from a global
view, their cached segments for network jitters are randomized instead of well
organized to optimize the global segment availability. In summary, segments
are unlikely to be cached evenly among all the online peers in P2P-based MoD
systems.

On the other hand, we consider the situation that peers use a simple continuous
caching scheme which is widely engaged in many systems to pre-fetch and
cache the segments. Specifically, we suppose that each peer caches B segments
which are immediately ahead of its current playback offset. For a particular
segment, the probability that it is cached by one peer is B

M
, and the probability

that it is not cached by any of the total N online peers is P = 1−(1− B
M

)N . In
other words, given the peers’ buffering space of size B, to achieve a segment
availability among the online peers as P , the required number of the peers
simultaneously online is

N = log(1− B
M

)(1 − P ) (1)

Fig. 2 shows the relationship between the segment availability P among the
online peers and the required peer number N , according to Equation (1). From
the figure, it is observed that a lot of peers are required to be online simulta-
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Fig. 2. Relationship between segment availability and required number of online
peers, under the continuous caching scheme

neously for the system to maintain a high segment availability. For example,
when peers have a 4-minute buffer and the media object is two hours long, to
have a segment availability of 0.98, more than 100 peers should be kept online
at any time. Note that under this situation, the total buffering space on all the
online peers (more than 400 minutes) is much larger than the entire media ob-
ject, meaning that if there is a practical evenly caching mechanism, the entire
media objects could be served by the online peers completely. Moreover, we
can see from the figure that when the target segment availability approaches
one, the number of the online peers required increases rapidly to infinity. Ob-
viously for a MoD system, it is hard to maintain too many peers online for
just one media object, especially when this object is not very popular. When a
segment request can not be answered by any online peer, the server will have
to take the workload by providing the segment to the requesting peer. Clearly,
under this continuous caching scheme, a server with limited service capacity
is likely to become a bottleneck of the system.

In conclusion, we find that the optimized solution of evenly caching the seg-
ments can not be practically implemented in P2P-based MoD systems due to
peers’ asynchronous behaviors and their incapability of having a global view;
meanwhile, with the continuous caching scheme, the poor segment availability
of the MoD system caused by the sparsity of the online peers will make the
server a performance bottleneck, when its service capacity is limited. Based
on this observation, we believe that a caching mechanism, between the ex-
tremes of evenly caching and continuous caching, which are practical to be
implemented, could improve the system’s segment availability and relieve the
server’s workload, and eventually improve the MoD system’s performance ef-
fectively.
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Fig. 3. Demonstration of the probabilistic caching scheme

3.2 The Probabilistic Caching Mechanism

In P2P-based MoD systems, peers cache segments for two reasons: First, seg-
ments which are immediately before a peer’s playback offset are usually pre-
fetched and cached by the peer to handle unpredictable network jitters; second,
a peer could use the segments cached in its buffer to serve other peers which
are requesting them. And we can see from Fig. 2 that by only caching enough
segments (e.g. 2 minutes) for the first usage will cause a poor system wide
segment availability, and from the discussion in the previous section, we find
that it is also possible for peers to cache segments which are more than just
enough against network jitters. Based on this observation, we propose a novel
probabilistic caching mechanism for P2P-based MoD systems. Our simple idea
is to let peers request and cache the segments probabilistically and coopera-
tively to improve the system’s service capacity, while keeping enough segments
pre-fetched before their playback offsets against network jitters. Our proposed
caching mechanism is composed of a probabilistic caching scheme which de-
termines the amount and the location of the segments cached, and a segment
requesting and discarding algorithm. We will introduce them separately in the
following sections.

3.2.1 The Caching Scheme

We demonstrate the probabilistic caching scheme in Fig. 3. In this scheme,
we divide a peer’s buffering space into two parts: a primary buffer with a size
of BP segments and a secondary buffering space with a size of BS segments.
The former is basically designed for handling network jitters, while the lat-
ter helps to improve the system’s service capacity. Suppose a peer’s current
playback offset is at O, then for its primary buffer, its range is [O,O + W1),
meaning that the peer pre-fetches and caches the segments within this range
continuously. Obviously, W1 segments will be cached in the primary buffer and
BP = W1. As the objective for the primary buffer is to handle the network
jitter, its size should be just enough for this purpose. For the remaining buffer-
ing space, it is allocated in a number of secondary buffers. We further divide
the secondary buffering space into a series of forward secondary buffers and
a series of backward secondary buffers. Counting from the peer’s playback
offset, we call these buffers as the 1st, 2nd, ..., forward/backward secondary
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Table 1
Example Caching Scheme

Buffer Cached / Range

Primary Buffer 120 / 120

1st Forward/Backward Secondary Buffer 45 / 90

2nd Forward/Backward Secondary Buffer 23 / 90

3rd Forward/Backward Secondary Buffer 12 / 90

4th Forward/Backward Secondary Buffer 6 / 90

5th Forward/Backward Secondary Buffer 3 / 90

6th Forward/Backward Secondary Buffer 1 / 90

buffers respectively. As demonstrated in Fig. 3, the forward secondary buffer
is composed of the 1st forward secondary buffer caching segments in the range
of [O + W1, O + W1 + W2), the 2nd forward secondary buffer caching segments
in the range of [O + W1 + W2, O + W1 + 2W2), ... etc. For the ith forward
secondary buffer with the range of [O + W1 + (i − 1)W2, O + W1 + iW2), the
peer will cache a portion of ρi segments in this range, here ρ is a system pa-
rameter named caching ratio with a positive value smaller than one. For the
backward secondary buffer, we have a similar scheme, in which the peer caches
a portion of ρi segments in the range of the (O− iW2, O− (i−1)W2] for its ith

backward secondary buffer. Note that in the practical implementation, for the
ith forward/backward secondary buffering range, actually a number of dρiW2e
segments are cached, and the number of the secondary buffers is constrained
by the total secondary buffering space BS. For the choice of the secondary
buffer length W2, we let W2 =

⌈
BS(1−ρ)

2ρ

⌉
, so as to make 2

∑∞
i=1 ρiW2 ≈ BS.

The number of the secondary buffers n is determined by the equation of
2

∑n
i=1 dρiW2e = BS. For example, suppose the total buffering space is 5 min-

utes (300 seconds), and each segment is a one-second content. If the primary
buffer has BP = 120 seconds, secondary buffering space is BS = 180, and the
caching ratio is ρ = 0.5, then the specific caching scheme is summarized in
Table 1.

From Table 1, we can see that under the caching scheme, 45 of 90 segments
should be cached in the first forward/backward secondary buffer; and 23 of
90 segments should be cached for the second forward/backward secondary
buffer; and so on. The total secondary buffering space is used up with six for-
ward/backward secondary buffers. From this example we can see that under
the probabilistic caching scheme, although segments of 300 seconds are actu-
ally cached, a peer’s buffer will cache segments within a range of 1, 200 seconds,
and the chance of a segment being cached is determined by its distance to the
peer’s playback offset. On the other hand, as the secondary buffering space
is limited, a peer will only have a few forward/backward secondary buffers.
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Therefore it will only need to be concerned with the system wide segment
caching information within it’s caching range, which is usually much smaller
than the entire media object, and could avoid the communication cost caused
by obtaining the segment caching information on a large caching range.

3.2.2 Segment Requesting and Discarding Algorithm

With the probabilistic caching scheme, we could describe the algorithm for
peers to request and discard their segments. Our simple idea is that peers
should request the least available segments and discard the most available
ones. Before describing the algorithm formally, we first discuss the relationship
among peers determined by their caching ranges.

In our probabilistic caching scheme, as a peer will cache the segments in its
secondary buffers probabilistically, for a forward/backward secondary buffer,
we use W ′

2 = n × W2 for the range that the secondary buffers cover on the
segment index in one direction. For example, for the caching scheme described
in Table 1, the range for the forward/backward secondary buffer is 6×90 = 540
seconds, as there are six secondary buffers and each covers 90 seconds. For any
two peers, if one peer’s entire caching range is overlapping with another peer’s
caching range, then they are neighbors to each other. Formally, for peer PA

with a playback offset at OA, if peer PB’s playback offset OB is within the
range of (OA − W1 − 2W ′

2, OA + W1 + 2W ′
2), then PA and PB are neighbors.

Note that with this definition, the neighboring relationship between any two
peers is bidirectional.

We assume an efficient index overlay (e.g., Skip List [13]) is available for peers
to discover and maintain their neighboring peers, and for each peer, it manages
to keep a set of its neighboring peers in the set of Neighbor Set. Note that
as all the peers have the same playback rate, the neighboring relationship
between any two peers will not get changed unless one of them departs or
performs some VCR-operations such as pause, fast forward, etc. Thus, it is
inexpensive for the index overlay to maintain the neighboring relationships
among the online peers. For each peer, it obtains its local caching information
by exchanging gossips periodically with its neighbors, specifically, it will send a
gossip message indicating the segments cached in its buffers to all its neighbors,
and will receive the gossip messages from all its neighbors periodically. For
constructing the gossip message, the bit-map scheme used in CoolStreaming
[21] or a Bloom filter [24] could be engaged. After having a complete view on
all the segments cached by its neighbors on its concerned range, which is the
caching range of the primary buffer plus all the forward/backward secondary
buffers, the peer will request and discard segments following the procedure
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Segment Requesting and Discarding Algorithm (Neighbor_Set) 

1. sends gossips to all the neighboring peers in Neighbor_Set; 

2. receives gossips from all the neighboring peers in Neighbor_Set; 

3. for each missing segment s in primary buffer 

4.   if (s is cached by a neighboring peer PN) 

5.     requests s from PN; 

6.   if (s is not cached by any neighboring peer) 

7.     requests s from server; 

8. for the ith forward secondary buffer 

9.   while (the segment cached < �ρiW2�) and (segment available to request) 

10.     requests the segment least cached by all the neighboring peers; 

11. for the ith backward secondary buffer 

12.   while (the segment cached > �ρiW2�)  

13.     discards the segment most cached by all the neighboring peers; 

 

 

Fig. 4. Segment Requesting and Discarding algorithm for the probabilistic caching
mechanism

below:

• The peer will request all the missing segments in its primary buffer from
the neighboring peers which are caching them; if a segment is unavailable
on the neighbors, it is requested from the server;

• For the ith forward secondary buffer, if the number of the actually cached
segments are smaller than the regulated number dρiW2e of the probabilistic
caching scheme, the peer will request the segments which are least cached
by its neighbors from a neighboring peer caching it, until it caches exactly
dρiW2e segments for this forward secondary buffer; however, if there is not
enough segments to be requested for satisfying the number of dρiW2e, the
peer will not request from the server, but will just go to the (i+1)th forward
secondary buffer;

• For the ith backward secondary buffer, if the number of the actually cached
segments are larger than the regulated number dρiW2e of the probabilistic
caching scheme, the peer will discard the segments which are most cached
by its neighbors, until it caches exactly dρiW2e segments for this backward
secondary buffer.

Fig. 4 presents the Segment Requesting and Discarding algorithm in pseudo-
code.
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4 Performance Analysis

4.1 Analytical Methodology

We extend the analytical model in [1] to study the performance of the MoD
system with our proposed probabilistic caching mechanism. Especially, we are
interested in the workload imposed on the server of the system, as the server is
usually the performance bottleneck of the entire system. The analytical model
is presented in the following.

We consider that under a P2P-based MoD system, for a particular random
segment x, how frequently it must be served by the server. As in [1], we use
X for the events that x is being requested, and denote its requesting rate
as ΛX . We use Z for the events that x is served by the server. Obviously,
{Z} ⊆ {X}. We further use a random variable w to denote the interval length
between two consecutive events in {X}, and use τ to denote the average length
of the intervals between two consecutive events in {Z}. We let E[τ |x] be the
conditional expectation of τ given x. If a media object contains T segments
as [0, T ], then the total workload on the server could be calculated as

B =

T∫
0

dx

E[τ |x]

We assume that peers request the media object following a Poisson process
with an arrival rate of λ, and for a peer request, on average its session is of
the length S. We further assume that each segment in the media object is
requested with an equal chance. Then, the arrival rate for the events in {X}
could be expressed as ΛX = λS

T
. With the Poisson process assumption, for

w, the interval length between two consecutive events in {X}, its conditional
distribution function is

Fw(t|x) = Pr(w ≤ t) = 1 − e−tΛx

and its conditional density function is

fw(t|x) = Λxe
−tΛx

With w’s density function, it is easy to show that for a particular length W ,
the length expectation of all the intervals between two consecutive events in
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{X} with their length no longer than W could be expressed as

Ew≤W (w|x) =

∫ W
0 tfw(t|x)

Pr(w ≤ W )
(2)

and the length expectation for all the intervals longer than W could be ex-
pressed as

Ew>W (w|x) =

∫ ∞
W tfw(t|x)

Pr(w > W )
(3)

We now consider E[τ |x], which is the length expectation of the intervals be-
tween two consecutive events in {Z}, under the probabilistic caching mecha-
nism. For the segment x, when it is first requested from the server, it must
be cached in the requesting peer’s primary buffer, as there is no replica of
it among the online peers. After being cached on the requesting peer, it will
be discarded at some position of the peer’s backward secondary buffers. If we
assume that each segment is discarded with an equal chance, then it will be
discarded at the 1st backward secondary buffer with a probability of (1 − ρ),
it will be discarded at the 2nd backward secondary buffer with a probability
of ρ(1 − ρ), ..., and it will be discarded at the ith backward secondary buffer
with a probability of ρi−1(1− ρ). If we assume that a segment is discarded at
the center of a backward secondary buffer, then on average, the segment will
stay in a peer’s backward secondary buffer for a time of

W ′′
2 =

∞∑
i=1

ρi−1(1 − ρ)(
2i − 1

2
)W2 =

W2

1 − ρ
− W2

2

after it is played. Similarly, the time that the segment will stay in a peer’s
forward secondary buffer is also W ′′

2 , as it could be requested in different
forward secondary buffers with different probabilities.

Summarizing all the discussions, we can see that if x is requested by a peer
from the server, on average it will stay for a time of W1 + W ′′

2 in the peer’s
buffer, and if it is requested from another online peer, it will stay for a time of
W1 + 2W ′′

2 . If we view the series of the requests that x is first requested by a
peer from the server, and is passed from the caching peer to the next requesting
peer repeatedly, until the time that x is lost among all the online peers and
must be served by the server again, as a request chain. Then, the interval
between the first two requests of the chain should be no longer than W1 +W ′′

2 ,
and if the chain is broken immediately after the first request, the interval
between the last two consecutive requests of the chain should be longer than
W1 + W ′′

2 ; while for the case that the chain is successfully prolonged after the
first request, then the intervals between any two following consecutive requests
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which successfully prolong the chain should not be longer than W1+2W ′′
2 , and

the interval between the last two consecutive requests should be longer than
W1 + 2W ′′

2 so as to break the chain. Applying Equation (2) and Equation (3),
we have

E1 = Ew≤W1+W ′′
2
(w|x) =

∫ W1+W ′′
2

0 tfw(t|x)

Pr(w ≤ W1 + W ′′
2 )

E2 = Ew>W1+W ′′
2
(w|x) =

∫ ∞
W1+W ′′

2
tfw(t|x)

Pr(w > W1 + W ′′
2 )

E3 = Ew≤W1+2W ′′
2
(w|x) =

∫ W1+2W ′′
2

0 tfw(t|x)

Pr(w ≤ W1 + 2W ′′
2 )

E4 = Ew>W1+2W ′′
2
(w|x) =

∫ ∞
W1+2W ′′

2
tfw(t|x)

Pr(w > W1 + 2W ′′
2 )

for the expectations of different intervals’ lengths.

Let P1 = Pr(w ≤ W1 + W ′′
2 ) and P2 = Pr(w ≤ W1 + 2W ′′

2 ), then we could
obtain the length of the chain, which is also the length expectation of the
intervals between two consecutive requests of x from the server, E[τ |x], as

E[τ |x] = (1 − P1)E2 + P1

∞∑
i=1

P i−1
2 (1 − P2)(E1 + (i − 1)E3 + E4)

and the workload on the server could be expressed as

B(λ) =

T∫
0

dx

E[τ |x]
=

λS

eλS(W1+2W ′′
2 )/T − eλSW ′′

2 /T + 1
(4)

It is also important to investigate the gossip cost engaged in our probabilistic
caching mechanism. As neighboring peers exchange gossip messages on their
segment caching information with each other regularly, the cost incurred for a
peer should be proportional to the number of its neighboring peers. According
to the neighboring condition, for a peer with the playback offset O, another
peer with its playback offset in the range of (O−W1−2W ′

2, O+W1+2W ′
2) will

be its neighbor, then there are on average λ(2W1+4W ′
2)S/T neighboring peers

for it. If any two peers exchange gossip messages periodically, then the gossip
cost for a peer in the MoD system with the probabilistic caching mechanism
per gossip period is

O(λ) =
λ(2W1 + 4W ′

2)S

T
(5)
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Fig. 5. Analytical results on server’s workload and with varying peer arrival rates
under different segment caching schemes

4.2 Analytical Results and Discussions

We numerically study the MoD system’s performance based on the analysis
in this section. Fig. 5 presents the server’s workload (in the unit of num. of
segments served per second) calculated by Equation (4) under different peer
arrival rate λ (in the unit of num. of peers arrived per second). The media
object has 7, 200 segments, and for each peer, its buffer size is 300 segments.
If the segment is one second playable content, then the media object is two
hours long and a peer could cache 5 minutes of content in its buffer. We use
“a : b” to denote a caching scheme, in which the size of the primary buffer
is a segments and the total size of all the secondary buffers is b segments.
For example “300 : 0” is the continuous caching scheme. And for the schemes
with b > 0, we set the caching ratio ρ as 0.5, then the scheme denoted as
“120 : 180” is actually the scheme we have described in Table 1. The average
session length of peers to access the media object is 1, 187 seconds. The values
of the system parameters are listed in Table 2.

From the figure we can see that clearly all the probabilistic caching schemes
impose less workload on the server, and the more buffering space is allocated
for the secondary buffers, the less workload the server will have, and conse-
quently the better scalability could be achieved by the MoD system. Moreover,
it is observed that all the curves have a peak regarding the server’s workload,
and after the peak, the server’s burden will decrease with the increasing of the
peers’ arriving rate, meaning that the MoD system starts to scale and benefit
from more users accessing the on-demand media object. We call the arrival
rate that the system reaches its peak as the system’s turning point. From the
figure, we can see that with more buffering space allocated for the secondary
buffers, the MoD system’s turning point appears at a lower peer arrival rate,
meaning that the system could start to scale at a lower threshold.

Fig. 6 presents the gossip cost (in the unit of num. of gossip messages per gossip
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Table 2
Parameter values for numerical study

Parameter Value

T 7200

S 1187

ρ 0.5

W1,W2,W ′
2,W

′′
2 300, 0, 0, 0 (for scheme 300:0)

240, 30, 150, 45 (for scheme 240:60)

180, 60, 360, 90 (for scheme 180:120)

120, 90, 540, 135 (for scheme 120:180)

60, 120, 840, 180 (for scheme 60:240)
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Fig. 6. Gossip cost per peer with varying peer arrival rates under different segment
caching schemes

interval, we assume that the gossip interval is 30 seconds) engaged by each
peer in different caching schemes according to Equation (5). Note that even
under the continuous caching scheme of “300 : 0”, there is still some gossip
cost, as peers need to know the segments which are actually cached instead
of supposed to be cached on their neighboring peers. Together with Fig. 5,
we can see that to achieve a better scalability, i.e., less workload imposed on
the server, the peers in the MoD system must maintain and communicate
with more neighboring peers, at a higher gossip cost. Moreover, the analytical
results in Fig. 5 and Fig. 6 show that by caching segments probabilistically, we
provide a means to tradeoff the system’s performance with the peers’ gossip
cost in designing P2P-based MoD systems.

Besides varying the buffering space partition “a : b”, another tunable pa-
rameter in the probabilistic caching mechanism is the caching ratio ρ, which
determines the portions of the segments cached in the secondary buffering
ranges. In the following study, we consider the caching schemes with a fixed
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Fig. 7. Analytical results on server’s workload and with varying peer arrival rates
under different caching ratios
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Fig. 8. Gossip cost per peer with varying peer arrival rates under different caching
ratios

buffering space partition of “180 : 120”, but with different values of ρ as 0.2,
0.5 and 0.8. The workload imposed on the server and the gossip cost for each
peer are presented in Fig. 7 and Fig. 8 respectively. From the figures we can
see that with a smaller value of ρ, a better scalability could be achieved at the
price of a larger gossip cost, as the peers under the probabilistic caching mech-
anism have a relatively larger buffering range on the segment index by having
more secondary buffers; while with a larger valued ρ, the system works with
a smaller peer gossip cost but imposing heavier workload on the server, for
the reason that the peers cache the segments on a relatively smaller buffering
range. For example, when ρ = 0.2, there are as many as 46 forward/backward
secondary buffers on each direction; and with ρ = 0.8, each peer has only
one forward secondary buffer and one backward secondary buffer. To avoid
complexity, in this paper we fix the value of ρ as 0.5, and make the buffering
space partition “a : b” as the only means to trade off the service capacity with
the gossip cost in a P2P-based MoD system.
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5 Performance Evaluation

In this section, we use simulation-based experiments to evaluate the proposed
probabilistic caching mechanism for P2P-based MoD systems. A time-driven
simulator is developed for this purpose. The simulator operates in discrete
intervals of time, where each interval is of the length equal to the time that
one segment is played. We call the intervals the simulation seconds (referred
to seconds for briefness). In our experiments, the media object served by the
MoD system is CBR-encoded, and is of the length equal to 7, 200 seconds (i.e.,
7, 200 segments). We allow each peer to have a buffering space of 300 seconds
(i.e., 300 segments). In our simulator, a peer will try to play the segment at its
individual playback offset in each second, if the segment is missing, a segment
loss event is recorded for this peer, and the peer will play the next segment
in the next second. Every 30 seconds, a peer will gossip with its neighboring
peers, and requests/discards the segments following the algorithm presented
in Fig. 4.

For the peers’ behaviors, we assume that peers enter the MoD system and
access the media object following a Poisson process, and their beginning off-
sets are uniformly randomized between 0 and 7, 200 on the segment index. For
the lengths of the sessions, we assume that each peer will access the media
object for a random period of time, and the session lengths follow a Pareto
distribution reported in [15]. We generate a synthetic trace for the events of
peer joinings and departures under the assumed models, and use the trace as
the input to the simulator. The average session length for a peer to access
the media derived from the trace is approximately 1, 187 seconds. We do not
explicitly simulate the VCR jumps as it could be viewed as a departure fol-
lowed by a rejoining of the peer. Finally, as mentioned in previous sections,
we assume an efficient index overlay (e.g., Skip List [13]) is available for peers
to discover and maintain their neighboring peers.

5.1 Experimental Results

Fig. 9(a) presents the workload of the server for the simulated MoD system
with different caching schemes engaged and under varying peer arrival rates.
We also use the denotation of “a : b” for different caching schemes as in
the previous section. It could be observed that the simulated results in the
figure has the same trends with the analytical results in Fig. 5, with the
following features: 1) The probabilistic caching schemes impose less workload
on the server, and the more buffering space is allocated for the secondary
buffers, the less workload the server will have; 2) with more buffering space
allocated for the secondary buffers, the MoD system’s turning point appears
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Fig. 9. Simulation results on server’s workload with varying peer arrival rates under
different segment caching schemes
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Fig. 10. Simulation results on gossip cost per peer with varying peer arrival rates
under different segment caching schemes

at a lower peer arrival rate. However, we find that the simulation results in
Fig. 9(a) are obviously better than the analytical ones in Fig. 5, with less
workload on the server observed. We believe this could be explained as in
our analysis, we do not consider the fact that peers tend to request the least
available segments and discard the most available ones, but simply assume
that all the segments are cached with an equal chance. To validate our point,
we run the simulation again under the same settings, but this time the peers
request and discard segments just randomly. The experimental outputs are
plotted in Fig. 9(b). From the figure, we can see that the benefits brought by
simply expanding peers’ caching range are very limited, while the algorithm
of requesting/discarding the least/most available segments is essential in our
caching mechanism for P2P-Based MoD systems.

Fig. 10 presents the numbers of the gossip messages a peer sends out per 30
seconds with different caching schemes. We can see that the simulation re-
sults on the gossip cost are very close to the analytical results in Fig. 6. In
conclusion, we have verified our analysis in the previous section and have illus-
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Fig. 11. Segment missing ratio with varying server’s capacities under different seg-
ment caching schemes
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Fig. 12. Segment missing ratio with varying link loss rates under different segment
caching schemes

trated improved performance regarding the server’s workload and the system’s
scalability, and we have also demonstrated the inherent tradeoff between the
system’s performance and the peers’ gossip cost via simulation.

In previous experiments we assume that the capacity of the server in the MoD
system is unlimited, however, usually a MoD server could only serve a lim-
ited number of requests simultaneously. In this experiment, we investigate the
quality of the service received by peers when the server’s capacity is limited
in the simulated MoD system. We assume that a server could only upload
a limited number of segments per second, and measure the segment missing
ratio, which is defined as the ratio of the segments which are missed on their
playback deadlines, compared with all the segments requested. As we let the
peers’ uploading/downloading capacities to be unlimited in the system, the
only reason that a segment is missed lies in the fact that it is not cached among
the online peers, and the server is not able to serve it as its service capacity is
fulfilled. Fig. 11 presents the segment missing ratios of the peers in the MoD
system under different caching schemes with varying capacities of the server,
which is denoted as the number of the segments it could upload per second.
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The peers’ arrival rate is fixed as 0.03/sec. It is observed from the figure that
a considerable portion of the segments requested are missing due to the very
limited service capacity of the server, but with the increase of the server’s
capacity, the missing ratio decreases rapidly under any caching scheme. More-
over, we find that for the caching schemes allocating some buffering space for
probabilistic caching, the segment missing ratios are lower than the continuous
scheme of “300 : 0 ”, and the more space is allocated for probabilistic caching,
the lower segment missing ratio could be achieved.

Our last experiment focuses on the performance of the simulated MoD system
when the underlying network is lossy. As we have discussed before, contin-
uously pre-fetching and caching segments before a peer’s playback offset is
an effective way to handle unpredictable network jitters, thus the “300 : 0”
scheme using all the buffering space as the primary buffer is expected to have
a better performance than the schemes with secondary buffers and caching
segments probabilistically. On the other hand, by caching segments in the
forward secondary buffers, a peer is allowed to request segments with an in-
creasing probability from the furthest forward secondary buffer to its primary
buffer, and has relatively more chances to request one segment if it is lost in
the previous downloading. In this way, probabilistic caching schemes should
perform better than a continuous one under lossy network environments. To
study how the two different factors influence the MoD system, in our experi-
ment, we deploy the MoD system on a simulated network topology created by
the GT-ITM transit-stub model [25]. We deploy the server and all the peers on
stub domains, and vary the loss rate of the links to simulate a lossy network
environment. We present the results in Fig. 12. It is interesting to see from
the figure that the continuous caching scheme behaves differently compared
to the probabilistic schemes: when the link loss rate is low, the continuous
scheme outperforms all the probabilistic schemes, but it has a higher segment
missing ratio than the probabilistic caching schemes when the loss rate is high
enough. Our observation indicates that when the network is not very lossy,
the continuous scheme is better regarding the segment missing ratio due to its
larger primary buffer, but when the link loss rate is high enough to overwhelm
the benefit caused by pre-fetching in the primary buffer, some probabilistic
schemes perform better because peers have more chances to download a seg-
ment which was unsuccessful in its previous request. Moreover, we can find
that there is no obvious performance gap between the “300 : 0” scheme and the
“240 : 60” or the “180 : 120” schemes even under low link loss rates, indicating
that by engaging a probabilistic caching scheme with a proper buffering space
partition, there is just trivial performance degradation regarding the segment
missing ratio under lossy network environments for P2P-based MoD systems.
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5.2 Discussions

The experimental results indicate that our proposed caching mechanism for
P2P-based MoD systems could reduce the server’s workload, thus improving
the system scalability greatly, at the cost of the gossip communication among
the peers. However, we believe that the gossiping cost is trivial for the following
reasons: 1) a peer only exchanges gossip messages with its neighboring peers,
which is much fewer than the total online peers; 2) a gossip message is much
smaller in size compared with a media segment, and for the secondary buffers,
delay is tolerable as the segments requested in them are not very urgent.
For example, suppose we use one bit for the existence of a segment in a peer’s
buffer, then under our simulation setting, the gossip message could be as small
as 300bits, which is sent out every 30 seconds.

Another related issue is the selfish behaviors under the P2P-based MoD appli-
cations: a selfish peer may avoid uploading the cached media data by declaring
in its gossip messages with very few segments cached. However, it is easy to
detect those peers which are frequently declaring obviously fewer segments
than they are supposed to cache according to the caching scheme, and other
peers may choose not to upload to these selfish lying peers any more. Another
possible selfish behavior is that a selfish peer simply does not upload the re-
quested segments, although it has declared to hold them in its gossip message.
To combat this behavior, we propose that a peer will keep a record of the suc-
cessful/failed segment requests for each of its neighboring peers. If the ratio
between the two numbers for a neighboring peer is lower than a threshold,
this neighboring peer may be believed as selfish and other peers may choose
not to upload segments to it any more.

6 Conclusion and Future Work

Peer-assisted application-level overlay is a promising direction to deploy the
interactive on-demand media services on the Internet. However, the scalability
of the P2P-based MoD systems are usually constrained by the bottleneck on
the server, due to the asynchronism and the sparsity of the online peers access-
ing the same media object. To improve the system’s scalability, we propose a
novel probabilistic caching mechanism for MoD systems on P2P networks in
this paper. We show via theoretical analysis as well as experimental studies
that without enlarging the buffering space on clients, the MoD system with
our proposed caching mechanism imposes less workload on the server, thus
having a better scalability compared with the system engaging the conven-
tional continuous caching mechanism. Moreover, by adjusting the buffering
space partition, we provide means for people to tradeoff the scalability of the
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system with the peers’ gossip cost, thus making the mechanism flexible under
various application contexts. We also show that by engaging our proposed
caching mechanism, a higher quality of service could be conceived by peers
when the server’s capacity is limited, and our proposed caching mechanism
will not degrade the service quality under lossy network environments.

For future work, as we have discussed in Section 5.2, a mechanism is necessary
to be integrated into the P2P-based MoD systems against selfish peers. Fur-
thermore, our proposed probabilistic caching mechanism could be improved
from the following aspects: First, recall that when the server’s service capac-
ity is limited, usually it is not able to upload all the segments requested by
the peers, thus it is necessary for the server to have a scheduling mechanism
for determining which request should be responded with priority. Generally
speaking, the server should upload the segments which are likely to be for-
warded among the peers for the most times, in order to lower the server’s
workload. Another direction is to investigate the feasibility of incorporating
the network coding technique with our caching mechanism. Although with
network coding, higher throughput is expected, other issues arise, such as the
segment deadline problem and the malicious block problem addressed in [8]
and [18] respectively. Finally, we plan to validate the proposed probabilistic
caching mechanism under real-world deployments.
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