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Abstract—RTMFP is a protocol developed by Adobe for
multimedia delivery under both client-server and peer-to-peer
paradigms. Currently, major Internet video service providers
such as PPTV and iQIYI have already built their web-based
video streaming systems with RTMFP. In such a system, user
only needs to install a Flash Player plug-in on his web browser,
and can stream videos in a peer-assisted way.

Despite its wide usage, RTMFP has received little attention
from the measurement community. In this paper, we select
PPTV as an example, and study the RTMFP video stream-
ing technology with a measurement approach. We reveal the
architecture of PPTV’s RTMFP streaming system, and show
that comparing with proprietary P2P networks, the RTMFP
network has a different content distribution policy, and exhibits
different features on peers’ streaming behaviors, potential system
bottleneck, and network dynamics. We also study RTMFP’s video
transmission, and find that the protocol’s selective retransmission
scheme can effectively overcome packet losses and improve
the video playback quality; however, the TCP-like congestion
control mechanism of RTMFP does not lead to fairness between
RTMFP and TCP traffics, due to the mismatch between the
inherited pull-based video segment distribution model of the
P2P streaming application and the protocol’s built-in congestion
control mechanism. Our work provides insights on the RTMFP-
based video streaming technology, and is helpful for people to
construct better peer-assist video systems with RTMFP.

Index Terms—Peer-assisted video streaming, RTMFP protocol,
network measurement

I. INTRODUCTION

Over the last decade, video has become more and more

prevalent on web. It is reported that online video constituted

50% of the web traffic in 2013 [1], and Cisco estimates that

by the year 2018, 84% of the web traffic will be video [2].

To enable user to stream videos on web, Internet video

service providers such as YouTube [3] and Netflix [4] adopt a

browser-server (B/S) architecture, where user employs Sliv-

erlight or Flash Player browser plug-in to stream videos

from dedicated CDN servers through HTTP or DASH [5]. In

addition to the B/S architecture, many providers seek to enable

peer-assisted video streaming on web. The conventional way

is to develop a browser plug-in that integrates the provider’s

proprietary P2P streaming protocol, and ask user to install the

plug-in before streaming. Examples of such systems include
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TABLE I
ARCHITECTURES AND STREAMING PROTOCOLS OF POPULAR VIDEO

SERVICE PROVIDERS IN CHINA

Service provider Architecture Streaming protocol

Youku CDN HTTP
CNTV P2P UDP based proprietary protocol
Tudou CDN HTTP
PPTV CDN + P2P HTTP + RTMFP
iQIYI CDN + P2P HTTP + RTMFP
Sohu TV CDN + P2P HTTP + RTMFP

CNTV and Xunlei Kankan [6]. A problem of this approach

is that users may not be willing to install many different

proprietary plug-ins from different providers.

Since 2008, Adobe starts to develop the Secure Real-Time

Media Flow Protocol (RTMFP) [7], which delivers multimedia

content under both browser-server and peer-to-peer (P2P)

paradigms, in Flash Player and its other products such as

Adobe Integrated Runtime (AIR) and Adobe Media Server.

The benefit of RTMFP over provider’s proprietary protocol is

obvious, as a user only needs to install the Flash Player plug-

in, which already exists on 98% of the PCs that connect to

the Internet [8], and can stream videos from various service

providers as long as these providers build their streaming

systems with RTMFP. Nowadays RTMFP has been widely

employed by many major video service providers, as we can

see in Table I, which lists the architecture and streaming

protocol design choices of the six most popular video sites

in China, that providers like PPTV1, iQIYI, and Sohu TV all

use RTMFP to provide their online video streaming services

on a large scale.

Despite its wide usage, RTMFP protocol and RTMFP-based

video systems have received relatively little attention from the

measurement community. In this work we select PPTV, which

provides web-based live and on-demand video streaming ser-

vices with RTMFP, as an example, and study how RTMFP

enables peer-assisted video streaming with a measurement

approach. Our objectives in this paper are twofold:

• A system-wide measurement study on PPTV’s

RTMFP-based video streaming system. We seek to un-

cover the architecture of PPTV’s RTMFP video streaming

system, analyze the merits and pitfalls of the RTMFP

networks that deliver live and on-demand video contents.

• A packet-level measurement study on the RTMFP

protocol. We seek to investigate the data transmission of

the RTMFP protocol under the context of peer-assisted

1Formerly known as PPLive.
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video streaming, and study how the protocol handles

packet losses and network congestions.

Unlike the previous measurement studies that focus on

proprietary P2P streaming systems with a black-box approach

(e.g., [9] and [10]), in this paper, we consider the general-

purpose RTMFP protocol and present a gray-box methodology

by reverse-engineering Adobe Flash Player. We focus on both

the system and the protocol-level issues of the RTMFP-based

streaming technology, and make the following contributions in

this paper:.

• We present a methodology for studying RTMFP networks

by reverse-engineering Adobe Flash Player with a hook

DLL, and develop a measurement testbed for investigat-

ing RTMFP video streaming systems.

• We uncover the architecture of PPTV’s RTMFP-based

video streaming system and analyze the system’s behav-

iors and performances. We find that the RTMFP network

for live video streaming works as an auxiliary network

for reducing the CDN’s workload; there is considerable

overhead on the centralized RTMFP introduction service,

making it a potential system bottleneck; and the RTMFP

network is more dynamic than its proprietary P2P net-

work counterpart. We also find that RTMFP suffices to

support a VoD service, but CDN has a significant meaning

in reducing the seeking delays.

• We investigate the video transmission of the RTMFP

protocol, and find that RTMFP’s selective retransmis-

sion scheme is effective to overcome packet losses

and improve the playback quality under lossy network

conditions. However, the TCP-like congestion control

mechanism of RTMFP does not lead to fairness between

RTMFP and TCP traffics, due to the mismatch between

the inherited pull-based video segment distribution model

of the P2P streaming application and RTMFP’s built-in

congestion control mechanism.

Note that we are not claiming our study presents the general

behaviors of RTMFP video streaming systems, as RTMFP only

provides the server-player and player-player communication

channels, while a video service provider is free to implement

its policies within the server-side and player-side applications

upon the protocol stack. However, as the first measurement

study on RTMFP protocol and PPTV, a large RTMFP-based

video streaming system in real world, we provide insights that

are valuable for people to construct better peer-assist video

streaming systems with RTMFP.

The remainder part of this paper is organized as follows.

In Section II, we briefly introduce the RTMFP protocol and

RTMFP networking systems in general. We describe our

methodology for measuring RTMFP networks in Section III.

In Section IV, we investigate PPTV’s RTMFP-based video

streaming system. We present our study on RTMFP’s video

transmission in Section V. Section VI discusses the related

work and we conclude this paper in Section VII.

II. OVERVIEW OF RTMFP NETWORKING

A. A Brief Introduction on RTMFP Protocol

The Secure Real-Time Media Flow Protocol (RTMFP) [7] is

a protocol suite developed by Adobe for enabling multimedia

content delivery under both client-server and peer-to-peer

paradigms. RTMFP was originally a proprietary protocol, and

was later opened up and published as IETF RFC 70162 in

2013. In this section, we briefly introduce the key concepts

and operations in RTMFP.

1) Session: Unlike the TCP-based RTMP protocol [11],

RTMFP packets are carried in UDP. An RTMFP packet

contains zero or multiple chunks, which is the smallest data

unit in the protocol.

In RTMFP, two endpoints (e.g., Flash Player instance or

RTMFP-capable server) communicate to each other within

a session. To set up a session, one endpoint, say endpoint

A, initializes a handshake by sending an IHello chunk to

the other endpoint B; on receiving IHello, if B agrees the

session, it returns an RHello chunk; then A and B each

compute half of the session key and exchange the IIKeying and

RIKeying chunks to complete the handshake. After establishing

the session, the two endpoints can setup one or multiple flows

and use the userData and Ack chunks to transmit the user data.

An endpoint can also send a Ping chunk to elicit a PingReply

chunk from the other party, so as to check liveness of the

session and estimate the latency.

In addition to ordinary endpoint, RTMFP also defines a spe-

cial endpoint called redirector. On receiving an IHello chunk,

instead of replying with RHello, a redirector returns with a

Redirect chunk that contains a list of candidate endpoints with

their addresses, and the IHello-sending endpoint selects one or

multiple candidates from the list and initializes sessions with

them.

In RTMFP, all chunks are encrypted when transmitted on the

Internet. The chunks for session handshake are encrypted with

the default session key specified by the application specific

Cryptography Profile, while after the session is established,

chunks such as userData and Ack are encrypted with the per-

session key that is negotiated by the two endpoints during the

handshake.

2) Flow: An RTMFP session may contain zero or multiple

unidirectional flows. A flow can be viewed as a sequence

of userData and Ack chunks transmitted between a sender

and a receiver. For enabling a reliable and orderly chunk

transmission, each userData chunk in an RTMFP flow is

assigned with a continuously increasing sequence number

(SN). RTMFP defines two types of Ack chunks, namely

rangeAck and bitmapAck, and a receiver can use either of them

to acknowledge the userData chunks that it has received and

to indicate the lost chunks explicitly.

In RTMFP, a sender does not necessarily resend all the

lost chunks, but employs a selective retransmission scheme.

More specifically, for each flow the sender maintains a variable

named forward sequence number (FSN), and only sends (or

resends) any chunk with its SN larger than FSN in the flow. To

2However, the RFC is not an IETF Internet Standards Track specification,
but for information purpose only.
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Fig. 1. Demonstration of selectively retransmitting lost RTMFP userData
chunks.

inform the receiver of FSN, the sender specifies a field in its

userData chunk named fsnOffset, whose value is the difference

between the chunk’s SN and the current FSN value. An

example of RTMFP’s selective retransmission is demonstrated

in Fig. 1: when the sender receives a rangeAck chunk from the

receiver with “cumulativeAck = 12; holesMinusOne = 1,

receivedMinusOne = 1” in its payload, it infers that

a “hole” of holesMinusOne + 1 = 1 + 1 = 2 user-

Data chunks with their SNs starting from 13 are lost, and

receivedMinusOne+ 1 = 1 + 1 = 2 userData chunks after

the hole with their SNs starting from 15 are properly received;

however, since the sender’s FSN value is 13 at the moment

that the rangeAck is received, it only retransmits chunk 14,

and “move on” with new userData chunks. Obviously, such

a selective retransmission makes RTMFP very suitable for

applications that require timely content delivery.

All the flows in a same RTMFP session share a same

congestion control status. RFC 7016 states that RTMFP’s

congestion control is implemented in a TCP-compatible way.

That is, an RTMFP sender maintains a transmission budget,

which is the amount of the user data that is allowed to be

outstanding, or in flight, and the sender follows the congestion

control and avoidance algorithms that are in accordance with

RFC 5681 [12] to increase and decrease its transmission

budget in the flow.

B. Networking RTMFP Flash Player Instances

A typical RTMFP networking system is composed of a

number of Flash Player instances and at least one RTMFP-

capable server that is connected by these players. The servers

provide services such as rendezvous and peer introduction,

but they do not get involved in the content distribution.

With the server’s assistance, a player maintains and updates

its neighbors, and exchanges multimedia data by directly

connecting to them with RTMFP channels [13].

The RTMFP protocol stack in Flash Player and RTMFP-

capable server only provides server-player and player-player

communication channels. To provide an Internet service with

RTMFP, the service provider need to develop its own server-

side and player-side applications. A developer can use Adobe’s

ActionScript 3.0 programming language [14] to develop the

player-side application. The ActionScript code is usually com-

piled as a shock wave flash (SWF) file and runs on Flash

Player instances. For the server-side application, it can be
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Fig. 2. Measurement testbed.

developed with Adobe’s server-side ActionScript language, or

be developed independently (e.g., the OpenRTMFP project

[15]). Note that by developing the server-side and player-

side applications, the service provider actually defines its own

policies and strategies in running the P2P network.

III. MEASUREMENT METHODOLOGY

We seek to understand PPTV’s RTMFP video streaming

system as well as the RTMFP protocol with a measurement

study. Although RTMFP is described in RFC 7016, however,

we are facing an obstacle that all the RTMFP chunks are

encrypted before transmitted on the Internet, thus it is very dif-

ficult to identify and analyze the RTMFP traffic. To overcome

this problem, we refer an open-sourced Flash Player reverse

engineering project [16], and develop a hook dynamic link

library (DLL) to parse the RTMFP chunks that are transmitted

and received by Flash Player. More specifically, after being

injected into a Flash Player instance, the hook DLL dumps

all the incoming chunks after the decryption as well as all the

outgoing chunks before the encryption, and we refer RFC 7016

to parse the dumped RTMFP chunks and print the results in

a plain text log file. Table II lists the parsing results for some

RTMFP chunks as example.

With the hook DLL, we carry out the measurement as the

following: For a live or on-demand video content, we obtain

the URL of the content’s SWF file created by the service

provider. The SWF file contains the compiled player-side

ActionScript code. After opening the SWF file’s URL with

the hooked Flash Player, the player follows the instructions

of the ActionScript code to contact PPTV’s RTMFP servers,

join and start to stream from the RTMFP network; the injected

hook DLL then parses all the incoming and outgoing RTMFP

chunks and prints them in plain texts.

We build a measurement testbed around the hooked Flash

Player as demonstrated in Fig. 2. For emulating various

network conditions, we install NEWT [17], a software-based

network emulator, on the computer that runs the measurement.

NEWT is able to emulate a variety of network attributes,

such as random packet loss and available bandwidth, on port,

protocol, and direction basis. In addition to parsing RTMFP

chunks, we also use Wireshark to capture packet-level traces.
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TABLE II
EXEMPLARY RTMFP CHUNK PARSING RESULTS

Chunk Plain text parsing result

IHello IHello: {edpType =0x0f; endpointDiscriminator: ‘. . . ’; tag: ‘. . . ’}
RHello RHello: {tagLength = 16; tagEcho: ‘. . . ’; cookie: ‘. . . ’; cert: ‘. . . ’}
Redirect Redirect: {tagLength = 16; tagEcho: ‘. . . ’; redirectCnt = 1; redirectDst1: 58.45.9.100:1913}
userData userData: {flowID = 2; sequenceNumber = 1144; fsnOffset = 120; Data: [...]}
rangeAck rangeAck: {flowID = 2; bufAvail = 261120; cumulativeAck = 1528; holesMinusOne = 8, receivedMinusOne = 98}

Note that Wireshark captures both RTMFP and non-RTMFP

traffics, including the HTTP video streaming traffic from CDN.

For evaluating the video playback quality, we install Fraps

[18], a software that is capable to benchmark the Frames Per

Second (FPS) of the video rendered by the Flash Player (in

full-screen mode). We run the measurement testbed in our

campus network, which has good network connectivities to

all the major ISPs in China.

We want to stress that it is not easy to obtain the URL of

the SWF file and play it in our hooked Flash Player, as many

video service providers take great efforts to protect their SWF

files from being located and played on Flash Player instances

that aren’t embedded in their web pages. Fortunately, after

analyzing the complicated interactions between browser and

web server, we are able to locate and execute the SWF files

from PPTV with our measurement testbed.

IV. MEASURING PPTV’S RTMFP VIDEO STREAMING

SYSTEM

In this section, we seek to understand PPTV’s RTMFP-

based video streaming system, in particular, we are interested

in the system’s architecture, behaviors of the Flash Player

instances as peers, and the policies enforced by the system.

Note that in addition to the web-based video streaming, PPTV

also runs a proprietary P2P network that allows users to stream

videos with the proprietary clients [9][19].

A. System Architecture and Deployment

We analyze the chunk parsing results collected by

our measurement testbed to uncover PPTV’s RTMFP-

based video streaming system. As illustrated in Fig. 3,

when loading the SWF file containing the compiled Ac-

tionScript code from PPTV’s website, the Flash Player

first contacts the provider’s RTMFP rendezvous service at

rtmfp://fppcert.pptv.com:1935 by resolving the

name fppcert.pptv.com and sending an IHello chunk

to the server that binds the name on UDP port 1935 (step 1).

On receiving IHello, the rendezvous server responds with a

Redirect chunk containing the address of a PPTV’s RTMFP

introduction server (step 2). The player then shakes hands

with the introduction server by exchanging IHello, RHello,

IIKeying, and RIKeying chunks (step 3). After establishing

a session with the introduction server, the player sends an

IHello chunk, probably indicating the video information in the

tag field (step 4), and on receiving such an IHello chunk, the

introduction server returns with a Redirect chunk containing

a list of peers that are currently streaming the same video on

the RTMFP network (step 5). The player then selects peers
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Fig. 3. Demonstration of the major steps in RTMFP video streaming.

from the list, shakes hands with, and streams video data from

them (step 6). Note that the player can repeat step 4-6 anytime

when it needs to contact more peers.

We employ VPN servers from various ISPs and locations to

probe PPTV’s RTMFP rendezvous and introduction servers,

and find that PPTV places its servers at two locations: one

is in China Unicom in Shanghai, and the other is in China

Telecom in Hangzhou. We find that the DNS lookup of

fppcert.pptv.com from Unicom is always resolved to

the Shanghai Unicom rendezvous server, while requests from

other ISPs are resolved to the Hangzhou Telecom server.

However, when answering IHello chunks, the rendezvous

server does not necessarily return the introduction server at

the same location, but dynamically assign players to Shanghai

or Hangzhou servers, probably for load-balancing reason.

Note that in addition to joining the RTMFP network, the

Flash Player also contacts the global load-balancing mecha-

nism of PPTV’s CDN network, and is directed to appropriate

CDN servers for streaming the video at the same time [20].

B. Live Video Streaming with RTMFP

PPTV provides both live and on-demand video streaming

services on web with its RTMFP-CDN hybrid system. In

this subsection, we first study PPTV’s RTMFP network that

delivers live video content.

1) Peer streaming behaviors: In our first experiment3, we

launch the hooked Flash Player to stream “Jiangsu TV”, a

popular TV channel in China, from PPTV’s website, and

decompose the captured traffic into the HTTP download traffic

from the CDN, as well as the RTMFP upload and download

traffics.

We present a typical decomposition result of one-hour

streaming traffic in Fig. 4. From the figure one can see that

3Unless stated otherwise, all the experiments in this paper were conducted
between 20:00 and 22:00, and each experiment was repeated at least five
times, while we select the most representative result to present.
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Fig. 4. Traffic decomposition of campus peer in
live video streaming.
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during the intervals of 210 ∼ 840 second, 2, 130 ∼ 2, 580
second, and 3, 330 ∼ 3, 450 second, the player streams the

video mostly from the CDN, and uploads to peers on the

RTMFP network at very high data rates. We refer to these

intervals as the distributor mode of the player, as during

these intervals, the player distributes the video content from

the CDN to peers on the RTMFP network. For the other

time of the measurement, the player downloads mostly from

peers on the RTMFP network, but uploads little to them. We

refer to these intervals as the player’s consumer mode, as the

player consumes the content that is distributed by other peers,

especially the ones under their distributor mode.

To better understand the behavioral discrepancy of the two

modes, for each RTMFP peer encountered by our player, we

plot the averaged upload and download data rates between the

peer and our player in Fig. 5. In the figure, each plot represents

a peer encountered by our player under its distributor or

consumer mode, and the plot’s x- and y-coordinates are the

download and upload data rates respectively. From the figure,

we can see that under its distributor and consumer modes,

the player uploads and downloads alternately in the RTMFP

network, which is very different from the previous observation

on proprietary P2P IPTV systems that peers upload and

download simultaneously [10].

From Fig. 4, we can see that for a peer to contribute in the

RTMFP network, it must meet two conditions: 1) it should

have sufficient upload bandwidth; and 2) it should have plenty

of video data obtained from the CDN that is “fresh” to other

peers on the RTMFP network. In the following experiments,

we study the player’s streaming behaviors under the cases that

either condition is unsatisfied.

We first consider the case that a peer has limited uploading

capacity. We employ NEWT to limited the upload bandwidth

of our measurement testbed to 800kbit/s, and use the hooked

Flash Player to stream Jiangsu TV. Note that 800 kbit/s is a

typical upload data rate for the ADSL2+ access technology

[21]. Fig. 6 presents a representative one-hour streaming traffic

decomposition. From the figure we can see that our player

makes efforts to stream from its neighbors on the RTMFP

network during the three short intervals of 720 ∼ 840 second,

1, 200 ∼ 1, 320 second, and 1, 920 ∼ 2, 100 second, but

resorts to the CDN for streaming the video eventually. We

observe that in all the repeated experiments, the player was

always degraded to a CDN-only player.

In the second case, we employ NEWT to restrict the HTTP

download data rate to 1 kbit/s after streaming a TV channel

with our hooked player. By restricting the HTTP traffic, the

player works under a “pure” P2P mode without being able

to stream from the CDN servers. We present a typical traffic

decomposition in Fig. 7. From the figure, we can see that the

player can still stream from the RTMFP network after being

prevented from the CDN for a while. However, as we can see

from Fig. 8, which plots the playback FPS captured by Fraps,

that after losing its uploading neighbors at the 660th second,

the player can no longer stream from the RTMFP network and

stops to play.

Our observations on the measurement experiments show

that unlike the conventional P2P systems, which seek to
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Fig. 12. Traffic decomposition of campus peer in
on-demand video streaming.

provide video service to as many peers as possible, for PPTV’s

web-based live video streaming service, the RTMFP network

is not a replacement of the CDN infrastructure, but works

as an auxiliary network for helping distributing the video

content and reducing the CDN’s workload. Any peer that fails

to contribute to the RTMFP network and mitigate the CDN

workload can not benefit from the RTMFP network.
2) Overhead on RTMFP server: As described in Section

IV-A, the only way for a peer to renew its neighbor set

in PPTV’s RTMFP network is to contact the introduction

server for new candidates. In the following, we investigate

the overhead of the introduction service.

In Fig. 9, we present the numbers of the Redirect chunks

that our player has received from PPTV’s RTMFP introduction

server per minute, for the two measurement experiments that

the player has limited upload bandwidth or is prevented from

the CDN as in Fig. 6 and Fig. 7 respectively. From the figures

we can see that the player contacts the introduction server

quite often, as on average, 10.5 and 18.4 Redirect chunks were

received by our player per minute. Moreover, by comparing the

two figures with Fig. 6 and Fig. 7, we find that when our player

stops to stream from the RTMFP network or stops to stream

from anywhere, it can still obtain new candidate peers from

the introduction sever; and by analyzing the parsing log files,

we find that our player is able to complete handshakes and

set up sessions with the candidate peers all the time, despite

that all its neighboring peers refuse to upload video data to

our player.

From the measurement we can see that the overhead

on the RTMFP introduction server is non-trivial, and the

server indiscriminately provides the service to all the peers.

Our observation suggests that for PPTV’s RTMFP-based live

streaming system, its centralized introduction service could be

a potential system bottleneck, and a possible way to alleviate

it is to differentiated the peers and only provide service to the

ones that actually contribute to the RTMFP network.
3) Network dynamics: A major concern for providing video

service with a P2P network is the network dynamics, as a

contributing peer may abruptly leave the network anytime.

In RTMFP, a player can send the Ping chunks to check the

liveness of its neighbors. In Fig. 10, we plot the numbers of the

Ping and PingReply chunks that are sent out and received by

our player, for the live video streaming experiment in Fig. 4.

From the figure we find that among the 7, 179 Ping chunks sent

out by our player, as many as 1, 058 do not elicit a PingReply

chunk from the other end of the session, the non-reply ratio

is close to 15%. The observation suggests that the RTMFP

network, which is composed of Flash Player plug-in instances,

may be quite dynamic.

To further investigate the dynamics of the RTMFP network,

we continuously stream Jiangsu TV for 24 hours with our mea-

surement testbed, and measure the durations of the sessions

established between our player and other RTMFP peers. We

only consider the sessions with essential video transmission by

filtering out those that have less than 10 userData chunks larger

than 1500 Bytes. We also run PPTV’s proprietary client to

stream the same TV channel at the same time, and employ the

methodology in [9] to measure the session lengths in PPTV’s

proprietary P2P network.

We present and compare the distributions of the session

lengths in the two networks in Fig. 11. From the figure one

can see that the RTMFP sessions with an averaged session

length of 14.75 minutes are much shorter than those in the

proprietary P2P network, which have a mean session length as

long as 46.37 minutes. However, the median session lengths,

which are 7.85 minutes for the RTMFP network and 7.39
minutes for the proprietary P2P network, are close to each

other.

After carefully examining the sessions, we find that the

most significant difference between the two networks are the

presence/absence of the long sessions. The longest session we

have observed on the RTMFP network lasted less than 2 hours,

and such lengths are reasonable for people’s TV watching

behavior. However, on the proprietary P2P network, we have

recorded many sessions that are extraordinary long, for ex-

ample, there are 56 sessions longer than 8 hours, constituting

0.73% of all the sessions we have collected. Obviously, the

absence of the extraordinary long sessions makes the RTMFP

network more dynamic than the proprietary P2P network.

Our observation also explains the many Redirect chunks as

observed in Fig. 9, as a player needs to contact the introduction

service frequently to maintain its neighbor set under the highly

dynamic network.

We explain the difference on the session lengths between

the RTMFP and the proprietary P2P networks as the following.

PPTV clients (and most of other proprietary P2P IPTV clients)

nowadays run a background service process with the player
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TABLE III
EMULATED NETWORK ATTRIBUTES AND FINDINGS ON PPTV’S RTMFP

VIDEO SYSTEM.

Emulated network attribute Findings

None
Player streams live video from CDN
and RTMFP network alternately.

Restrict the upload bandwidth
to 800 kbit/s

Player no longer streams live video
content from the RTMFP network
and is degraded to a CDN-only player.

Restrict the HTTP download
bandwidth to 1kbit/s

Player no longer streams live video
content from the RTMFP network
and stops to play.

by default. After the client’s player window is closed, the

service process is still running as a peer in the proprietary

P2P network and distributes the video data all the tim. These

background processes explain the extraordinary long sessions

we have observed. However, there is no such a background

service process for the RTMFP Flash Player, and the RTMFP

session lengths are simply the users’ TV channel watching

time.

C. On-Demand Video Streaming with RTMFP

We also examine the on-demand video streaming service

provided by PPTV with RTMFP. Since unpopular contents

are mostly served by CDN, we focus only on popular contents

by streaming a popular TV drama in our experiment. Fig. 12

presents a typical traffic decomposition result. From the figure

we can see that the player downloads from the CDN only at

the beginning of the streaming, while for most of time, it relies

on the RTMFP network to receive the service.

We further examine PPTV’s RTMFP network for on-

demand streaming by restricting the testbed’s upload band-

width and HTTP traffic, and find that PPTV does not enforce

a player to contribute to the RTMFP network as in live video

streaming. The player simply downloads from all the available

sources in an aggressive way.

Although in VoD service, a Flash Player can download most

of the video data from the RTMFP network, however, CDN

has a significant meaning in reducing the seeking delays, i.e.,

the delay between the time that a user seeks to a position and

the time that the playback starts. To show this, we employ

NEWT to prevent and allow the HTTP traffic from the CDN,

and measure the seeking delays under the two conditions

respectively. We find that when the CDN is prevented, the

averaged seeking delay is over one minute, but when the

CDN is available, there is nearly no obvious delay after the

seeking. The difference is easy to understand, as without

the CDN, a seeking player needs to contact the RTMFP

introduction server and establish sessions with the new peers

before streaming the video data; however, by maintaining a

persistent HTTP connection to a CDN server, the player can

download immediately after the seeking.

D. Summary

We outline our findings on PPTV’s RTMFP video streaming

system in Table III and summarize the observations as the

following:

• System architecture: PPTV’s employs an RTMFP-CDN

hybrid system to provide live and on-demand video

streaming services; the RTMFP network is composed of

rendezvous servers, introduction servers, and many Flash

Player instances as peers on the RTMFP P2P network.

• Content distribution policy: PPTV’s RTMFP network for

live video streaming works as an auxiliary network for

reducing the CDN’s workload, where a peer is enforced

to contribute to the RTMFP network by streaming from

the CDN and from the RTMFP network in the distributor

and consumer modes alternately.

• System bottleneck: PPTV provides the introduction ser-

vice in a centralized manner to all the peers indis-

criminately, and there are considerable overheads on the

introduction servers due to the network dynamics, making

the service a potential system bottleneck.

• Network dynamics: PPTV’s RTMFP network for live

video streaming is more dynamic than its proprietary

P2P network counterpart, due to the absence of the

extraordinary long sessions caused by the background

service processes of the proprietary P2P clients.

• VoD service: PPTV’s RTMFP network for on-demand

video streaming service is able to support the service

alone; however, CDN has a significant meaning in re-

ducing the seeking delays in the VoD service.

V. MEASURING RTMFP VIDEO TRANSMISSION

In this section, we examine the data transmission of the

RTMFP protocol under the context of peer-assisted video

streaming. In particular, we focus on how the protocol handles

packet losses and congestions. We find that comparing with

HTTP/TCP, RTMFP is very suitable for video streaming under

a lossy network condition, thanks to its selective retrans-

mission scheme; however, for peer-assisted video streaming,

the TCP-like congestion control mechanism does not lead

to fairness between RTMFP and TCP traffics, due to the

mismatch between the P2P streaming application’s inherited

pull-based video segment distribution model and RTMFP’s

built-in congestion control mechanism.

A. Lossy Network and Selective Retransmission

Most user devices nowadays access the Internet with wire-

less technologies, however, wireless channels including Wi-

Fi, 3G, and 4G are inherently unreliable, and many fac-

tors, such as transmission distance, competing traffic, relative

sender/receiver speed, base-station handoff, etc., can cause

high loss probabilities. For example, a measurement study

[22] shows that in the classroom environment, a Wi-Fi loss

probability as high as 11.5% is observed between a sender and

a receiver 40 feet apart; and a recent study [23] reports that

on high-speed trains, a TCP receiver over an HSPA+ channel

(3.75G) experiences high loss rates all the time.

As a video streaming protocol, RTMFP incorporates a

selective retransmission scheme as introduced in Section II

to handle chunk losses, that is, an RTMFP sender does not

necessarily retransmit all the lost chunks, but only resends

the ones with their sequence numbers larger than its FSN.
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Fig. 13. FPS of RTMFP-only player under the 0.01
lossy downlink.
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Fig. 14. FPS of CDN-only player under the 0.01
lossy downlink.
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Fig. 15. FPS of RTMFP-only and CDN-only Flash
players under the 0.1 lossy downlink.
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TCP for live video streaming under the 0.1 lossy
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lost and ignored userData chunks within the flow
under the 0.1 lossy downlink.

TABLE IV
STREAMING SMOOTHNESS OF RTMFP AND HTTP STREAMING UNDER

LOSSY DOWNLINKS WITH 0.01 AND 0.1 RANDOM LOSS PROBABILITIES

Loss prob. = 0.01 Buffering incidents Total buffering time (%)

RTMFP-only 0 0 second (0.0%)
CDN only 27 175 seconds (9.7%)

Loss prob. = 0.1 Buffering incidents Total buffering time (%)

RTMFP-only 1 4 seconds (0.2%)
CDN only 64 1, 405 seconds (78.1%)

In this subsection, we examine the effectiveness of such a

selective retransmission scheme for video streaming under

lossy network conditions.

In our first measurement experiment, we use the hooked

Flash Player to stream Jiangsu TV from PPTV. After 5 minutes

of the streaming, we employ NEWT to prevent the HTTP

traffic so that the player can only stream from the RTMFP

network, and we emulate a lossy downlink with a moderate

packet-level loss probability of 0.01. To compare RTMFP

with the HTTP streaming over TCP, we perform another

experiment, in which we also emulate a 0.01 lossy downlink,

but this time we prevent the UDP traffic to force the player

to stream from the CDN only. The experiments last over 30

minutes4, and we use Fraps to capture FPS of the live video

played by the Flash Player when it is prevented from the CDN

and from the RTMFP network respectively.

4Since the player will eventually lose the streaming service after being
prevented from the CDN, we repeat the experiment several times until finding
a case that the streaming lasted for over 30 minutes.

We present the FPS of the RTMFP-only and the CDN-only

players in Fig. 13 and Fig. 14 respectively. From the figures we

can see that under the lossy downlink, the CDN-only player

can not maintain a smooth video playback at about 25 FPS

due to the packet losses, on the other hand, the RTMFP-

only player is almost not influenced. We also count all the

“buffering” incidents manually and summing up the intervals

of these incidents in the first 30 minutes of the streaming.

Table IV presents the results. We can see that under the lossy

downlink, the CDN-only player has suffered as many as 27

buffering incidents with a total buffering time of 175 seconds;

on the other hand, the RTMFP-only player has not experienced

any buffering incident at all. Our observation suggests that, as

a transmission protocol dedicated to multimedia distribution,

RTMFP handles packet losses much better than HTTP/TCP.

As high loss rates are widely observed in wireless networks

[22][23], we also emulate a lossy downlink with a packet-level

loss probability as high as 0.1, and repeat the experiments. We

present the FPS of the RTMFP-only and the CDN-only players

in Fig. 15, and summarize all the buffering incidents of the

two players in Table IV. We can see that even under a high

loss probability, the RTMFP-only player still manages to play

smoothly, while the CDN-only player barely plays with 78.1%
of the time buffering.

The better performance of RTMFP is easy to understand, as

in HTTP streaming, the receiver’s TCP protocol stack always

waits for the lost segments to be retransmitted by the sender

until timeout, but in RTMFP, the receiver can ignore some of

the lost chunks as the sender increases its FSN, thus is able to
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render more video frames in time. To show this, we calculate

the retransmission ratios for both protocols at the receiver side

in the 0.1 lossy downlink experiment. The retransmission ratio

is defined as the ratio between the retransmitted packets our

player has received and its total received packets. For TCP-

based HTTP streaming, we consider a received TCP segment

as retransmitted if the segment’s sequence number appears in

no less than three duplicated ACKs [12]. While for RTMFP, as

introduced in Section II, we first identify all the lost userData

chunks by parsing the “holes” in the rangAck chunks that are

sent out by our player, then we consider any received userData

chunk with its SN falling in a hole of a previous rangeAck

chunk as retransmitted.

In Fig. 16, we plot and compare the retransmission ratios of

the two protocols in every 10-second interval. From the figure

we can see that, for most of the time, the TCP-based HTTP

streaming has a higher retransmission ratio than RTMFP,

which confirms our analysis that an RTMFP sender selectively

retransmits lost chunks while TCP seeks to resend all the lost

segments.

To obtain more insights on RTMFP’s selective retrans-

mission scheme, we study the incoming flow that transmits

most video data in the experiment. The flow is between peer

218.76.58.70:49522 as the sender and our player as the

receiver. Fig. 17 plots how the sender’s SN and FSN increase

over time, and the inset figure shows the SN and FSN in a

20-second interval. From the figure we can see that the Flash

Player’s RTMFP protocol stack increases a sender’s FSN in

a very simple way: the FSN remains unchanged as long as

the difference between SN and FSN (i.e., fsnOffset) does not

exceed 127, but when the difference reaches 127, in the next

userData chunk, the sender increases FSN to be equal to SN

again.

In Fig. 18, we present the accumulative numbers of the

userData chunks that are lost, lost but retransmitted, lost and

ignored by the sender in the flow over time. Among the 2, 669
lost chunks, only 100 of them are ignored by the RTMFP

sender. The “ignoring ratio” is 3.75%. However, as we have

seen in Fig. 15 and Table IV, by ignoring such a small

portion of the lost chunks, RTMFP can provide a much better

video streaming experience than HTTP under lossy network

conditions.

B. TCP-like Congestion Control Reconsidered

It is well recognized that P2P traffics are unfriendly to the

traditional TCP-based applications such as FTP and HTTP,

and some people believe that if a TCP-compatible congestion

control mechanism is enforced on P2P flows, the P2P traffic

will be more fair to TCP [7][24][25]. However, we consider

that under peer-assisted video streaming, such a belief is in

doubt. Taking RTMFP as an example, RTMFP is employed

for transmitting video segments, which are small in size, and

P2P networks such as PPTV usually apply a BitTorrent-like

pull-based model to distribute the segments among the peers

dynamically [26]. Consider an unidirectional RTMFP flow.

The flow transmits data only when the P2P network schedules

the receiver peer to fetch a video segment from the sender

peer, but remains idle for the rest of time. Under such a pull-

based segment distribution model, an RTMFP flow transmits

video segments in an intermittent way, which is very different

from TCP flow that transmits bulk data continuously and

aggressively (e.g., FTP).

Motivated by the above observation, in this subsection,

we seek to examine RTMFP’s congestion control mechanism,

which according to its specification, follows RFC 5681 [12]

and is supposed to be TCP-compatible. Note that in this

paper we do not intend to testify whether RTMFP is strictly

equivalent to TCP, as there are various versions and mech-

anisms in behind [27][28][29][30]. We also do not assume

that the RTMFP implementation strictly conforms to RFC

7016, although Adobe is both the specifier and the imple-

menter of the protocol. We only make the assumption that the

RTMFP protocol stack mimics the general TCP behaviors by

maintaining a congestion window, growing and backing off

on the events of acknowledgements and losses, and we seek

to answer the following question: under the context of peer-

assisted video streaming, will the TCP-like congestion control

mechanism of RTMFP as implemented in Flash Player lead

to fairness between RTMFP and TCP traffics?

1) Competing TCP for bandwidth: We first carry out two

experiments to evaluate fairness between RTMFP and TCP by

investigating how much bandwidth one protocol can steal from

the other. In both experiments, we prevent our measurement

testbed from PPTV’s CDN network, and restrict the testbed’s

available download bandwidth to 500kbit/s with NEWT. For

the first experiment, we initially employ the hooked Flash

Player to stream a popular TV drama from PPTV’s VoD

service via RTMFP; we wait until the RTMFP flows grab

most of the available bandwidth, then introduce a TCP flow

by downloading an Ubuntu Linux image from a server of

Baidu’s cyberlocker service5 through HTTP on the measuring

computer. We study how much bandwidth the TCP flow can

steal from the existing RTMFP flows by comparing the data

rates achieved by the two protocols, and present a representa-

tive experiment result in Fig. 19. From the figure we can see

that the newly arrived TCP flow takes most of the available

bandwidth from the existing RTMFP flows.

We then experiment the opposite case of RTMFP stealing

bandwidth from TCP. We first download the Ubuntu image

from the cyberlocker server and wait for the TCP flow to

take all the 500kbit/s available bandwidth, then we introduce

RTMFP flows by launching the hooked Flash Player to stream

a popular TV drama from PPTV’s RTMFP network for VoD

service. A representative experiment result can be found in

Fig. 20. We can see that except for the first few seconds after

the introduction of RTMFP, the TCP flow still takes most of

the available download bandwidth all the time, while the Flash

Player does not have enough bandwidth to stream the video.

Besides the bandwidth stealing, we also carry out an exper-

iment to enable the two protocols to compete for bandwidth

directly. In the experiment, we initially stream from PPTV’s

VoD service and download the Ubuntu image at the same time,

when both protocols’ traffic become stable, we employ NEWT

5http://pan.baidu.com/
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Fig. 19. Bandwidth stolen by TCP from RTMFP.
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Fig. 20. Bandwidth stolen by RTMFP from TCP.
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Fig. 21. Throughputs of TCP and RTMFP flows.
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Fig. 22. Unacknowledged data of RTMFP flow
during segment transmission.
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Fig. 23. Unacknowledged data of RTMFP flow
during entire measurement.
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Fig. 24. RTMFP flow throughput that corresponds
to video segment transmissions.

to restrict the testbed’s download bandwidth to 500kbit/s, and

observe how the two protocols compete. We have identified

five RTMFP flows that constitute most of the protocol’s traffic,

and compare their throughputs with the TCP flow in Fig. 21.

One can see that after the bandwidth restriction, the TCP

flow achieves a much higher throughput than any individual

RTMFP flow all the time.

To filter out the influence of the round trip time (RTT) on the

congestion control algorithms, for all the three experiments,

we measure the RTTs between our testbed and the cyberlocker

server as well as the ones between our player and the five

peers that contribute most RTMFP traffics. We estimate that

the testbed–server RTT is about 16ms, while the testbed–peer

RTTs vary between 8∼33ms. The measured RTTs suggest

that both the cyberlocker CDN and the RTMFP network

schedules nearby sources, and their RTTs are comparable.

Overall, by summarizing the observations from Fig. 19–

21, we can see that under the application context of peer-

assisted video streaming, RTMFP is suppressed by TCP when

competing for limited bandwidth, despite that RTMFP adopts

a TCP-like congestion control mechanism.

2) Interpreting the TCP aggressiveness: To understand the

aggressiveness of TCP over RTMFP, we compute and analyze

the unacknowledged (unacked) data in RTMFP flow, as the

unacked data can be considered as a good approximation of

sender’s congestion control window (cwnd) [31]. More specif-

ically, in our experiment, we employ the hooked Flash Player

to stream a hot TV drama from PPTV without restricting the

testbed’s bandwidth, so that the player can upload to other

RTMFP peers as fast as possible. We select the most significant

uploading flow, and compute its unacked data as sum of the

payloads of the continuous userData chunks that are sent out

but not yet acknowledged. The unacked data is computed

on each event of sending a userData chunk or receiving a

rangeAck chunk.

Fig. 22 demonstrates how the unacked data varies over time

within a very short interval of about 20 seconds. From the

figure we can see that when the player is actively transmitting

video data, the unacked data varies in a very similar way as a

TCP flow [31]. However, when look at the unacked data over

a long period of time as in Fig. 23, which covers the entire

measurement, we find that significant unacked data exists in

only six intervals. In other words, the RTMFP flow under study

only transmits video data actively in the six intervals, but is

idle for the rest of time, which constitutes 70% of the entire

measurement.

In Fig. 24 we plot the data that is sent out by our player

through the RTMFP flow under study. The figure confirms

our analysis that the flow only transmits in six intervals,

moreover, we find that in each interval, approximately a same

amount of video data is transmitted. Fig. 23 and Fig. 24

suggest that as in most peer-assisted video streaming systems,

in PPTV’s RTMFP network, video is divided into segments

and is distributed with a BitTorrent-like pull-based model. In

such a model, a peer makes decisions to fetch different video

segments from different neighbors, and the decision is made

dynamically based on the factors such as playback deadline,

segment availability, and neighbors’ bandwidths. Note such a

pull-based segment distribution model is the de-facto approach

in many P2P IPTV systems (e.g., [19], [10], and [32]). From
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TABLE V
EMULATED NETWORK ATTRIBUTES AND FINDINGS ON RTMFP DATA

TRANSMISSION.

Emulated network attribute Findings

Downlink of loss
probability of 0.1

RTMFP-only player plays smoothly,
while CDN-only player loses frames.

Downlink of loss
probability of 0.01

RTMFP-only player plays smoothly,
while CDN-only player can not play.

Restrict the download
bandwidth to 500 kbit/s
and introduce a TCP flow

RTMFP flows are overwhelmed by
TCP flow and the player can not play.

Fig. 24, we can estimate that the averaged segment size in

PPTV’s RTMFP network is about 3.8MB, which is typical

for a P2P VoD service [19].

We explain the aggressiveness of TCP over RTMFP as

observed in Fig. 19–21 with the pull-based segment distri-

bution. That is, each time a receiver fetches a video segment

from a sender through an RTMFP flow, the flow’s congestion

window grows from zero, and after the segment transmission is

completed, the flow becomes idle and the congestion window

drops to zero, until the next time the receiver schedules to fetch

a new segment from the sender through the flow again. On

the other hand, in a TCP flow for bulk data transmission (e.g.,

downloading a Linux image), the sender aggressively transmits

TCP segments until congestion is encountered, thus the flow

can maintain a large congestion window all the time. In our

bandwidth competing experiments, each time an RTMFP flow

has completed transmitting a segment and becomes idle with

a zero-sized congestion window, the flow’s bandwidth will be

taken by the TCP flow aggressively, therefore it is very difficult

for an RTMFP flow or even multiple flows to compete with

one single TCP flow, as we have observed in Fig. 19–21.

Note that although the TCP-like congestion control is a

built-in mechanism of the RTMFP protocol stack in Flash

Player, the pull-based segment distribution model is imple-

mented by PPTV as an application-specific strategy in the

player-side SWF file. When combining RTMFP with the video

segment distribution model that is designed without consider-

ing the transmission protocol’s congestion control, as in many

UDP-based proprietary P2P streaming systems, we can see

that new unfairness arises between TCP and RTMFP traffics.

Our observation suggests that to achieve TCP-fairness, a TCP-

like congestion control mechanism of RTMFP is not enough,

the P2P network’s inherited video segment distribution model

should also be re-considered carefully.

C. Summary

We outline our findings on the data transmission of the

RTMFP protocol in Table V and summarize the observations

as the following:

• Selective retransmission: RTMFP employs a selective

retransmission scheme by selectively ignoring a small

portion of the lost chunks without retransmitting them,

and such a scheme is very effective to overcome packet

losses under lossy network conditions and improve the

video playback quality.

• Congestion control: Under the application of peer-

assisted video streaming, RTMFP’s TCP-like congestion

control mechanism does not lead to fairness between

RTMFP and TCP traffics. The unfairness can be ex-

plained with the mismatch between PPTV’s inherited

pull-based segment distribution model and RTMFP’s

TCP-like congestion control mechanism, and we suggest

that to achieve TCP-fairness, the P2P network’s pull-

based video segment distribution model should be re-

considered carefully.

VI. RELATED WORK

Video streaming is the “killer application” of the P2P

network. Many P2P video streaming applications such as

GridCast [33], PPLive [19], and UUSee [32] have emerged

in the last decade, and some of them become very successful

in commerce. In recent years, many efforts have been made

to support peer-assisted video streaming on web: providers

such as CNTV and Xunlei Kankan [6] rely on their own

proprietary protocols and browser plug-ins; while many other

providers employ RTMFP [7] developed by Adobe to provide

the service. Frontier technologies such as HTML5 WebRTC

[34] are also promising for enabling the browser-to-browser

video streaming.

For investigating peer-assisted video streaming systems in

real world, Hei et al. [9] study the performances and user be-

haviors of PPLive’s live video streaming service. Alessandria

et al. [10] investigate the performances of three commercial

IPTV systems under adverse network conditions, and analyze

their peer strategies for coping with packet losses and network

congestions. Traverso et al. [35] experiment and compare

the neighbor filtering strategies based on the open-soured

WineStreamer P2P-TV system. Zhang et al. [6] study the

system architecture and performance of the P2P-CDN hybrid

video streaming system of Xunlei Kankan. Different from

these works that focus on one specific proprietary system,

in this paper we focus on RTMFP, which is developed by

Adobe as a general-purpose peer-assisted streaming protocol

and widely employed by major video service providers, and we

select PPTV as an example to study the RTMFP-based video

streaming technology. In particular, by reverse-engineering

Flash Player, we are capable to perform packet-level studies

on RTMFP, which is generally infeasible on proprietary P2P

streaming protocols. To the best of our knowledge, this is the

first measurement study on RTMFP and RTMFP-based video

streaming systems in real world.

It is well recognized that P2P traffics are unfriendly to the

traditional TCP-based applications such as FTP and HTTP.

To solve this problem, a number of congestion control mech-

anisms for P2P applications have been proposed in recent

years [36][37][25]. In this work, we study the RTMFP protocol

that implements its congestion control mechanism in a TCP-

like way, and show that to achieve TCP-fairness, a TCP-

like congestion control mechanism in P2P protocol is not

enough, the inherited video segment distribution model of P2P

applications should also be re-considered. As far as we know,

this work is the first one to study the TCP-fairness of a peer-

assisted video streaming protocol in real world.
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VII. CONCLUSION

In this paper, we investigate Adobe’s RTMFP protocol and

the RTMFP-based video streaming system of PPTV with a

measurement study. We present a methodology for measuring

the encrypted RTMFP network and study several key issues

of PPTV’s RTMFP networks for live and on-demand video

streaming. We show that comparing with proprietary P2P net-

works, the RTMFP network has different system architecture,

content distribution policy, potential system bottleneck, and

exhibits different degrees of network dynamics.

For data transmission of the RTMFP protocol, we confirm

the effectiveness of the protocol’s selective retransmission

scheme for improving the video playback quality under lossy

network conditions. However, there exists unfairness between

TCP and RTMFP video streaming traffics, despite that RTMFP

implements a TCP-like congestion control mechanism. The

unfairness can be ascribed to the mismatch between the

P2P network’s inherited pull-based segment distribution model

and RTMFP’s built-in congestion control mechanism; and

we suggest that to achieve TCP-fairness, the P2P network’s

segment distribution model should be re-considered.
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