
1

Exploiting Path Diversity for Thwarting

Pollution Attacks in Named Data Networking
Haoran Guo, Student Member, IEEE, Xiaodong Wang, Kun Chang, and Ye Tian, Member, IEEE

Abstract—With information becoming a first-class citizen on
the Internet, Information-centric Networking (ICN) is considered
as a promising direction for the future Internet. Named Data
Networking (NDN) is a prominent example of emerging ICN ar-
chitectures. Unfortunately, NDN is vulnerable to various attacks
targeting its in-network caching mechanism. In this paper, we
focus on the false-locality pollution attack, in which an adversary
repeatedly requests a number of unpopular data objects to waste
the precious cache space on the NDN router and to reduce normal
users’ hit ratios. With simulation experiments, we show that such
an attack can cause considerable damage to the NDN network.
To detect and mitigate such an attack, we introduce an algorithm
that exploits the diversity of the Interest traversing paths within
an ISP’s point-of-presence (PoP) network. We also propose
inexpensive methodologies based on the probabilistic counting
and Bloom filter techniques to implement the algorithm on an
NDN router. The experimental results indicate that our proposed
algorithm is effective in thwarting false-locality pollution. We also
experiment with strategies that the adversary may utilize against
our anti-pollution algorithm and demonstrate that such strategies
are either ineffective or impractical in the real world.

Index Terms—Future Internet architecture, cache pollution
attack, network security

I. INTRODUCTION

W Ith information becoming a first-class citizen on the In-

ternet, various Information-centric Networking (ICN)

architectures have been proposed [1]. Among them, Named

Data Networking (NDN) [2] [3] is a prominent instance that

has attracted growing interest from academic and industrial

research communities in recent years.

In contrast to the current Internet, which is based on

addresses, the main building blocks of NDN are named data

objects, and NDN changes the semantics of network services

from delivering the packet to a given destination address to

fetching the object identified by a given name [3]. To enable

this, the NDN architecture’s thin-waist layer provides the

universal functionalities of routing, forwarding, and (optional)

caching of the named data objects on network nodes. More

specifically, each data object under NDN has a URL-like name

that is globally unique. When a router receives an object-

requesting message (named Interest in NDN), it queries its

Pending Interest Table (PIT) for the pending Interests for the

same data. If there are pending Interests, the newly arrived

Interest is aggregated with them; otherwise, the router looks

up its Forwarding Information Base (FIB) using the object’s

The authors are with the Anhui Key Laboratory on High Performance Com-
puting and Application, School of Computer Science and Technology, Univer-
sity of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
E-mail: {hrguo, qsmywxd, curtis}@mail.ustc.edu.cn, yetian@ustc.edu.cn.

Corresponding author: Ye Tian (yetian@ustc.edu.cn)

name and forwards the request to the appropriate interfaces

toward the content servers that serve the data. The pending

Interests are kept in the PIT until the corresponding data object

(in NDN’s Data message) traverses the node along the reverse

path or times out. However, when the router has already cached

the object in its local Content Store, it can directly respond to

the Interest with its cached replica.

NDN employs an in-network caching mechanism, where

a router may cache any traversing data objects and use

them to satisfy future requests. However, decades of Internet

experience suggests that such a networked cache system

is vulnerable under poisoning and pollution attacks. In a

poisoning attack, the adversary may exploit a large number

of compromised hosts (zombies) and poison the network

by injecting fake objects into the cache. For example, DNS

spoofing [4] is an attack that poisons caches on local DNS

servers. In a pollution attack, the adversary injects irrelevant

but legitimate objects to waste precious cache resources to

reduce users’ hit ratios and satisfaction levels. A well-known

example is the pollution attack launched by the music industry

against peer-to-peer file sharing systems [5].

There are primarily two types of cache pollution attacks:

locality-disruption pollution and false-locality pollution [6].

In locality-disruption pollution, an attacker requests a large

number of unpopular objects to weaken the content locality

in the cache; in contrast, a false-locality pollution attacker

repeatedly requests a few unpopular objects to build false

localities, thus misleading the system to cache these objects

and waste precious cache space.

As a future Internet architecture, NDN is expected to be

resilient against existing and potential attacks by design;

however, unfortunately, NDN is vulnerable to various types

of attacks targeting its in-network caching mechanism [7]

[8]. In recent years, people have begun to examine potential

poisoning and pollution threats and enhance the architecture

in different ways [9] [10] [11]. In this paper, we focus on

the false-locality pollution attack. We exploit the diversity

of the Interest traversing paths within an ISP’s point-of-

presence (PoP) network and present an algorithm for detecting

and mitigating the pollution. More specifically, we make the

following contributions in this paper:

• We propose a unified model to profile an attacker’s

strategy for polluting an NDN network. We show with

simulation experiments that, by carefully selecting his

strategy parameter, a false-locality pollution attacker can

cause considerable damage with limited resources on the

NDN network.

2

• We analyze ISPs’ PoP networks with real-world Internet

measurement datasets and show that, for popular data

objects, there exist diverse Interest traversing paths within

an NDN PoP network.

• We design an algorithm that exploits the diversity of the

Interest traversing paths within a PoP for detecting and

mitigating the pollution. We theoretically analyze the ra-

tionale of the algorithm and present two approaches based

on the probabilistic counting and Bloom filter techniques

to implement the algorithm on an NDN backbone router.

• We evaluate our proposed anti-pollution algorithm with

simulation experiments. We show that the algorithm is

effective in thwarting a pollution attack without incurring

significant overhead. Moreover, we experiment on two

strategies that the adversary may take against the anti-

pollution algorithm and find that they are either inef-

fective or impractical. We also discuss the issue of how

to decide the algorithm parameters when the adversary’s

strategy is unknown.

The remainder part of this paper is organized as follows.

Section II surveys and discusses the related works. We analyze

the NDN PoP network in Section IV. In Section V, we describe

and analyze our proposed anti-pollution algorithm and evaluate

it’s performance in Section VI. Finally, we conclude this paper

in Section VII.

II. RELATED WORK

As a promising future Internet architecture, NDN [2] [3] has

attracted considerable attention from academia and industry

and has rapidly become a hot topic in the network research

community in recent years. Although NDN seeks to provide

data security with its built-in primitives (i.e., cryptographically

signing data objects by producer), the architecture might be

vulnerable to various attacks. For example, So et al. [12]

consider a hash flooding denial-of-service (DoS) attack in

which an attacker maliciously introduces hash collisions to

degrade an NDN router’s performance. Virgilio et al. [13]

show that the PIT component in an NDN router is vulnerable

to a distributed DoS (DDoS) attack that seeks to exhaust the

PIT’s memory with forged Interests.

As an architecture with in-network caches, NDN is threat-

ened by cache poisoning and pollution attacks. Mauri et al.

[14] consider a case in which an attacker exploits NDN to

gather a massive amount of storage for malicious contents.

Ghali et al. [8] analyze the root cases of content poisoning

attacks in NDN networks. Li et al. [9] propose a lightweight

mechanism for integrity verification and access control against

poisoning attacks on NDN networks. Xie et al. [10] study the

locality-disruption pollution attack and propose a mechanism

named CacheShield to make the NDN network more robust

by increasing the attack cost. Conti et al. [11] show that

proactive approaches, such as CacheShield, are not effective

and propose to passively detect the locality-disruption attack

by sampling and comparing the Interest distributions on the

NDN router. Karami et al. [15] propose to detect locality-

disruption and false-locality pollution attacks with an artificial

neural network named ANFIS. However, there are several

drawbacks to the method. First, the neural network must be

trained in advance given that the attacker’s polluting behaviors

are already known. Second, the neural network contains five

layers of over thirty adaptive nodes, with each node performing

considerable computations, and the neural network is driven

with detailed statistics of the cached data objects such as the

mean and variance of the access frequencies in a number of

recent intervals. Considering the heavy computation overhead

of the neural network, such a method is impractical for

implementation as an online detecting algorithm for an NDN

router because the router needs to update its Content Store at

line speed.

The work that is perhaps the most similar to ours is [6],

where the authors study locality-disruption and false-locality

attacks against file cache systems in IP networks. The basic

idea for detecting the false-locality pollution is that the system

traces files requested by clients. When a file is requested by

a small set of clients repeatedly, the system is considered as

being exploited by pollution attackers, and the file is evicted.

This solution also suffers from drawbacks. First, under NDN,

clients request named data objects rather than files, and the

former’s granularity is substantially smaller than that of the

latter. There will be considerable overhead for an NDN router

to trace all the requesting clients for each cached data object.

Moreover, in [6], clients are identified with their IP addresses.

However, in both IP and NDN networks, an attacker can

easily forge source addresses on compromised hosts to bypass

the detection. In our proposed anti-pollution algorithm in this

paper, we trace the diversity of the Interest traversing paths

for each cached object, which incurs moderate overhead in the

NDN router, and the path information is generated by routers

hop by hop along the path. Thus, it is difficult to forge the

information on compromised hosts.

III. POLLUTION ATTACKS IN NDN

In this section, we develop a unified model to profile a pollu-

tion attacker’s attacking strategy and examine the effectiveness

of the attack in NDN networks. As in previous works [6]

[10] [11] [15], we assume that an attacker has the knowledge

of some unpopular contents on the Internet. The unpopular

contents could be news reports from many years ago, mailing

list achieves from many years ago, web pages from websites

that rank low on Alexa, user-generated videos that have few

clicks on YouTube, etc. Note that it is infeasible to prevent

pollution by maintaining a complete list of unpopular contents

on the Internet.

A. Threat model and attack strategy

We consider a pollution attack whereby an adversary com-

promises one or multiple hosts in an NDN network and uses

them to request a set P of unpopular objects. The attack seeks

to inject these objects in P into the NDN router’s Content

Store and reduce the normal users’ hit ratios.

We employ two parameters to profile the attacker’s strategy.

The first parameter is the attacker’s attacking power, which

determines how many Interest messages he is capable of

sending toward the NDN router. We use the ratio between

3

����

���� ����
���� ����

���� ����

���	

����� ����

�������

Fig. 1. PoP topology of network in simulation.

the malicious Interest messages sent out by the attacker and

the Interests sent by all the clients to describe the attacking

power and refer to it as the attacker’s power ratio, denoted as

γ.

The second parameter is the data object set P that the

attacker exploits for pollution. We use the term range ratio

θ, which is the ratio between P’s cardinality and the router’s

cache space C, to describe the attacker’s object selection

range, i.e., θ = |P|
C

. Moreover, for each individual data object

in P , the attacker may select unpopular objects to maximize

the pollution effectiveness. On the other hand, the attacker

may request some moderately popular contents, which are not

popular enough to be cached by the router but which continue

to be requested by normal users, to make the requests more

difficult to distinguish from normal users’ requests. We use the

accumulative popularity ρ of the objects in P to describe the

attacker’s choices, i.e., ρ =
∑

e∈P p(e), where p(e) is object

e’s popularity.

Note that by modeling the pollution strategy as {γ, θ, ρ}, we

can describe a wide range of attacking behaviors. For example,

given a limited power ratio constraint γ, if an attacker has a

large θ value, in other words, he requests a large number of

data objects for polluting the NDN router, this is a locality-

disruption pollution attack because the attacker cannot request

each of the objects in P with sufficient frequency. On the

other hand, if the attacker has a moderate θ, it is easier for

him to build false localities for the objects in P and launch a

false-locality pollution attack. In this paper, we only consider

typical false-locality pollution attacks with θ ≤ 1.

B. Effectiveness of pollution attack

We examine the effectiveness of the false-locality pollu-

tion attack with simulation experiments. Fig. 1 presents the

network topology used in our simulation, where each node

represents an ISP’s point of presence (PoP), and users connect

to routers in these PoPs to request and consume data objects.

For simplicity, in this section, we temporarily assume that each

PoP has only one fully functional NDN router that is directly

connected to users, and all the data objects are originally

served by the content server at PoP1. The network employs

the “leave a copy everywhere” (LCE) strategy to place data

replicas at all the downstream routers on cache hits [2], and

each NDN router applies the “least frequently used” (LFU)

��� ��� ��� ��� ����
�

���

���

���

���

���

���

�� !

"
#$
%&
$#
'

()* +, -.!*

/),,-0�)1 +00+23!*

45!*+,,

Fig. 2. Instantaneous hit ratios before and after the pollution attack is launched
at time 500 for γ = 10% and θ = 0.6.

policy for evicting cached replicas. We choose LFU because

LFU is more vulnerable to false-locality pollution attacks [6];

thus, with LFU, the pollution damage and the effectiveness

of our proposed algorithm for thwarting the pollution will be

more pronounced.

We simulate a content catalog with one million data objects

and use the Mandelbrot-Zipf (MZipf) distribution, which is

widely observed for web and peer-to-peer traffics [16] [17],

to model data object popularity. More specifically, under the

MZipf model, for the kth most-popular object, its probability

of being requested is

p(k) =
1/(k + q)α

∑

i 1/(i+ q)α
(1)

where α (α > 0) is the model’s skewness factor, which de-

termines how fast the popularity decays as the rank increases,

and q (q > 0) is referred to as the plateau factor. If we plot

an MZipf mass distribution curve under a log-log scale, the

higher the value of α is, the steeper the distribution curve will

be; the higher the value of q is, the more flattened the head of

the curve will be. In the following experiments, we always set

α = 0.8 and q = 10. The NDN router’s cache space is fixed

as 0.1% of the entire content catalog.

We first consider an attacker with only one compromised

host in PoP7. The attacker has an attacking capacity of

γ = 10% and sets his range ratio as θ = 0.6. We assume

that the attacker only requests the least popular objects in the

content catalog to maximize the pollution effectiveness. Fig. 2

presents the instantaneous hit ratios achieved by normal users

before and after the attack is launched at time 500; we also plot

the attacker’s hit ratio and the overall hit ratio after time 500
in the figure. We can see that, with only 10% of the Interests

being malicious (i.e., γ = 10%), the normal users’ averaged

hit ratios degrade from 8.47% to 6.56%. Note that such a

reduction leads to considerable traffic on backbone networks.

For example, suppose that the clients in PoP7 request contents

at a rate of 100 Gbps. Such a hit ratio reduction suggests that

the NDN router in PoP7 needs to download approximately

2 TB of additional data on a daily basis, which is a non-

trivial overhead. From the figure, we also find that the attacker

has a very high hit ratio, indicating that he has successfully

built false localities for the unpopular objects in the set P .

4

6 678 679 67: 67; <
6

676=

67<

67<=

678

678=

67>

67>=

θ

?
@
A
@
B
C
D@
EF
G

γ H >I

γ H =I

γ H JI

γ H <6I

(a) Damage ratio

K KLM KLN KLO KLP Q
K

KLM

KLN

KLO

KLP

Q

θ

R
SS
T
U
V
W
XY
Z
[
\S
XT
S\
]

γ ^ _`

γ ^ a`

γ ^ b`

γ ^ QK`

(b) Attacker’s hit ratio

c cde cdf cdg cdh i
j

ic

ij

ec

ej

kc

kj

fc

fj

θ

l
m
no
m
p
qr
s
m
tu
v

γ w kx

γ w jx

γ w yx

γ w icx

(c) Percentage of the polluted cache space

Fig. 3. (a) Damage ratio, (b) attacker’s hit ratio, and (c) percentage of the polluted cache space in the NDN router under various γ and θ settings.

Finally, we observe that the overall hit ratio perceived by

the router in PoP7 is even slightly increased after the attack

is launched. The observation suggests that, unlike locality-

disruption pollution [10] [11], false-locality pollution does not

necessarily reduce the overall hit ratio and thus is difficult to

detect.

In the next experiment, we explore the attacker’s pollution

strategy by varying the power ratio γ from 3% to 10% and the

range ratio θ from 0.1 to 1.0. We use the damage ratio metric,

which is defined as
(hrn−hra)

hrn
, where hrn and hra denote the

normal users’ hit ratios in the absence/presence of pollution,

to measure the pollution effectiveness [6]. Fig. 3(a) plots the

damage ratios under various power and range ratio settings.

From the figure, we can see that, under a given attacking power

constraint, the attacker needs to carefully select his range ratio,

i.e., the number of objects in P , to effectively pollute the NDN

router. For example, given a 3% power ratio constraint, the

attacker achieves the highest damage ratio under a range ratio

of θ = 0.2. In other words, the attacker needs to select a set

P of unpopular objects such that P’s cardinality is equivalent

to 20% of the router’s cache space to achieve the highest

pollution effectiveness. The attacker will not obtain a better

result by putting more or fewer unpopular objects in P .

We explain the balance in selecting the range ratio θ as

follows: If the set P is too small, even though all the objects

in P have been successfully injected into the NDN router’s

Content Store, the attacker still cannot occupy excessive cache

space, leading to a suboptimal damage ratio. On the other

hand, if P is too large, the attacker cannot request each object

in P with sufficient frequency with limited attacking power

and thus will face difficulties in keeping them in the Content

Store.

To support this point, in Fig. 3(b) and (c), we plot the

attacker’s hit ratios and percentages of the NDN router’s

cache space polluted by the attacker under various power and

range ratio settings. The pollution percentage is obtained by

calculating the product of the range ratio θ and the attacker’s

hit ratio. From the two figures, we can see that the highest hit

ratio of the attacker does not lead to the highest damage ratio,

and the attacker needs to balance the number and hit ratios of

the objects in P to maximize the pollution effectiveness.

TABLE I
STRUCTURAL FEATURES OF FOUR REPRESENTATIVE SPRINT POPS

PoP New York Dallas Chicago Atlanta

Backbone routers 8 4 7 4
Access routers 100 97 241 67
Router-level links 111 200 393 109
Topology depth 10 8 9 6

IV. THE NDN POP NETWORK

In our previous study, we assumed that each PoP has only

one router, which obviously over-simplifies the network struc-

ture in NDN PoPs. Before discussing methodologies against

pollution attacks, in this section, we first examine the PoPs in

real-world ISP networks and consider the following question:

what will the PoPs look like under NDN?

We employ the large-scale topology measurement dataset of

Rocketfuel [18] to study the real-world PoPs. Usually, there

are two types of routers within a PoP, namely, the backbone

router, which connects to backbone routers of other PoPs

over the ISP’s long-distant backbone links, and the access

router that interconnects backbone routers and clients. A PoP

is usually characterized by a complex network structure with

dozens or even hundreds of routers, and there are substantially

more access routers than backbone routers. As an example, in

Table I, we list the backbone and access routers, router-level

links, as well as the depths of the network topology (which

is defined as the longest loop-free path between a backbone

router and an edge access router) for four representative Sprint

PoPs in Rocketfuel. We can see that all the PoPs have many

routers and router-level links; however, there are relatively few

backbone routers in the PoP networks.

We also employ a recent Internet topological measurement

study of ChinaNet [19] to examine the PoP networks. Fig. 4(a)

compares the backbone routers’ IP addresses and all router

addresses discovered in the 308 ChinaNet PoPs1, and Fig.

4(b) presents the topology depths of these PoP networks. The

figures confirm our observation that 1) a PoP network has a

complex internal structure with many routers and router-level

links and that 2) there are much fewer backbone routers that

1The ChinaNet dataset in [19] does not provide the alias resolution results;
therefore, here, we present router IP addresses instead of routers for the PoPs.

5

z{
|

z{
}

z{
~

z{
�

z{
�{

{��

{��

{��

{��

z

���� �� ������ ��������� �� ���

�
�
�

�������� �������

��� �������

(a)

� � � ¡ ¢�
�

��

��

 �

¡�

¢��

¢��

£¤¥¤¦¤§¨ ©ª¥«¬

®̄
°±
²³
±³
´

(b)

Fig. 4. (a) Backbone addresses and all router addresses and (b) topology
depths of the 308 ChinaNet PoPs.

are at higher positions of the network hierarchy compared to

access routers.

In light of the real-world PoP networks, we conjecture that

a future NDN PoP will also be composed of a few backbone

routers and a large number of access routers interconnecting

the backbone routers and user clients. Furthermore, we assume

that the backbone routers have much larger caching capacities

than do the access routers and are responsible for most of the

cache hits within the PoP; in addition, some access routers may

operate under a “forwarding-only” mode, that is, the routers

only forward Interest and Data messages and do not cache

any data objects because they are not equipped with Content

Stores.

We justify our assumption on NDN PoPs with the follow-

ing observations: First, various studies [20] [21] report that

universal caching (i.e., caching on every router) is far from

the optimal cache deployment strategy and should not be

automatically assumed. Second, recent studies [22] [23] show

that it is beneficial to allocate cache space on nodes that are

at the core of the network. Summarizing these observations,

we believe that large Content Stores should be deployed on

backbone routers, which indeed serve as “hubs” of the PoP

network.

Placing high-performance caches on backbone routers also

conforms with current PoP network architecture design princi-

ple [24]. In current PoP design, backbone routers provide high-

performance switching over long-haul backbone networks,

whereas access routers achieve relatively low performances

but provide other features such as diversity of interfaces for

supporting a wide range of access technologies and redundant

paths for network reliability. Because the performance benefit

of in-network caching in NDN is to avoid transmitting data

redundantly over long-distant backbone links, it is reasonable

to place the large-volume high-speed Content Stores on back-

bone routers rather than on access routers.

Note that,in the above-described NDN PoP network, an

Interest is unlikely to hit on its first-hop access router and is

more likely to traverse a router-level path to hit on a backbone

router in the PoP. In the next section, we will exploit the

diversity of these paths to detect a pollution attack.

V. ANTI-POLLUTION METHODOLOGY

In this section, we present our methodology for detecting

and mitigating false-locality pollution attacks under NDN. We

first present our basic idea and analyze its rationale; then,

we describe our proposed anti-pollution algorithm in detail.

Finally, we discuss how to implement the algorithm in an NDN

backbone router.

A. Basic idea

We exploit the following observation to detect the false-

locality pollution attack: A data object that is truly popular will

be requested by many normal users at many different locations,

and the Interests requesting this object will traverse many

different router-level paths between the requesting clients and

the backbone routers within the PoP. On the other hand,

for an unpopular object that is exploited by an attacker for

cache pollution (i.e., an object in P), most of its requests are

sent by the compromised hosts under the adversary’s control.

Although the compromised hosts may issue as many Interest

messages as the ones sent out by normal users for a popular

object, they are few in number and thus are unlikely to be as

widely located in the network as the normal users. Therefore,

the malicious Interest messages are unlikely to traverse as

many different paths as the messages requesting a truly popular

object.

Based on this observation, our basic idea for thwarting a

false-locality pollution attack is as follows: For a data object

that is cached by a backbone router, we expect to see the

Interest messages requesting this object traverse many different

router-level paths within the PoP. If we do not observe such

a path diversity, it is very likely that the cached object is not

truly popular and is exploited by an adversary for polluting

the NDN network; thus, it should be evicted from the Content

Store.

There may be two concerns regarding our basic idea. First,

the compromised hosts might be as widely located in the

network as normal users. However, we believe that this is

unlikely to occur because the chance of an adversary infecting

a host is very low. For example, it is reported that Code

Red, one of the largest and fastest Internet worms, can infect

360, 000 hosts among 232 IP addresses. The infection chance,

which is 8.4 × 10−5, is extremely low [25]. In other words,

even with an infection capacity as high as that of Code Red,

an adversary can on average compromise only one host in

a network with nearly 12, 000 IP addresses, which is much

larger than most PoP networks’ address spaces.

The other concern is the geographical locality of the pop-

ular objects. Specifically, some popular objects may only be

requested by users from one or a few locations and are not

popular across the network. Geographical locality is observed

between different countries and continents, where users have

different languages and culture backgrounds, but is rarely

observed within culturally homogeneous regions [26] [27]. For

a PoP network that serves a limited geographical region (e.g.,

a university campus or a residential area), users tend to have

highly homogeneous preferences and always prefer the same

popular contents. For example, a recent measurement study

[27] on YouTube shows that the popular videos requested

by users in one residential network are also popular in other

residential networks. Because an NDN backbone router only

6

µ ¶µµ ·µµµ ·¶µµ ¸µµµ
µ

·µµ

¸µµ

¹µµ

ºµµ

¶µµ

»µµ

¼½¾ ¾½¿ÀÁ

Â
Ã
ÄÅ
Æ
Ç
È
ÉÊ
Ë
ÄÌ
Ã
Í
È
ÌÆ
È
Î

Ï Ð ºµµ

Ï Ð ¶µµ

Ï Ð »µµ

Fig. 5. Average number of distinct paths traversed by n Interest messages
given M total paths within a PoP.

caches the very popular data objects, we believe that there is no

geographical locality for these objects within a PoP network.

B. Analysis

We present a simple analysis to understand the relationship

between a data object’s popularity and the diversity of the

paths its Interest messages traverse. Suppose that, within a

PoP network, there are M distinct paths between the clients

and a backbone router and that, for a popular data object, the

probability that an Interest message traverses the ith path to

reach the backbone router is pi (
∑M

i=1 pi = 1). Then, our

question is as follows: Given that a cached object o has been

hit n times, how many distinct paths should be traversed by

the n Interest messages to reach the backbone router?

The problem is a “balls into bins” problem [28]. Consider

one specific path, say, path i; the probability that none of the n
Interests traverses it is (1− pi)

n. If we use a random variable

xi to denote whether this path has been traversed by any of

the n Interests (xi = 1) or not (xi = 0), xi follows a Bernoulli

distribution:

Pr (xi = 0) = (1− pi)
n

Pr (xi = 1) = 1− (1− pi)
n

Among all M distinct paths, the n Interest messages traverse

X paths, where X =
∑M

i=1 xi, and it is clear that

m = E[X] = M −
M
∑

i=1

(1− pi)
n

(2)

Furthermore, for the special case that each path is traversed

with equal probability, i.e., pi =
1
M

, X is indeed a Binomial

random variable with distribution

Pr(X = k) =

(

M

k

)

(1− q)kqM−k

where q =
(

1− 1
M

)n
, and we have

m = E[X] = M −M

(

1− 1

M

)n

(3)

In Fig. 5, we apply Eq. (3) to calculate the distinct paths

being traversed by n Interests and plot the numerical relation-

ship under different M total paths within a PoP. We can see

ÑÒÓÑÔÕÖÔÕ×ØÕØ

ÙÚÛÜÝ

ÙÚÞßÝÛàáßâãäá

åå

åå

æçèéêéëè

ìíîï ðñòóôõíîðóñ

ö÷Õ

øùúØÕÖ

ûüýþÿ��

ûüýþÿ��

������� ���	�

Fig. 6. Demonstration of processing an incoming Interest by a backbone
router.

that the more popular an object is, the more distinct paths its

Interests traverse.

C. The anti-pollution algorithm

After analyzing the basic idea, in this section, we describe

our proposed algorithm for thwarting false-locality pollution

attacks in detail.

We first augment NDN’s Interest message to enable it to

record the path it has traversed from the client to the backbone

router. Specifically, when an NDN router receives an Interest,

before processing it with the Content Store or FIB, the router

first appends the address or alias of its interface on which

the Interest is received for the message. When all the routers

along the Interest traversing path append their interfaces, upon

reaching the backbone router, the Interest message should

be carrying the path information as an array of the router

interfaces along the path. Unlike address-based detection [6],

which can be bypassed with forged addresses, it is difficult

for an attacker to forge the path information on compromised

hosts. Note that path information is generated on routers hop

by hop, and the clients are connecting to edge access routers

as their first hop. Therefore, the Interest messages received

by an edge router from a client should not carry any path

information. If an edge access router receives an Interest

message with path information from a client-facing interface,

it is clear that the path information is forged, and the router

should discard the Interest without further process.

With path information piggybacked on Interest messages,

we propose to allow the backbone router to trace paths in its

Content Store. Specifically, for each cached data object, say,

object o, we associate it with a counter o.hit, which records

how many times o has been hit since the last time o was

examined against pollution. We also associate object o with a

data structure named PathTracker, which traces the number of

distinct paths traversed by the Interest messages requesting

o within the PoP. We will describe the methodologies for

constructing, updating, and querying PathTracker in the next

section.

We demonstrate the procedure for processing an incoming

Interest message in Fig. 6: When an Interest requesting object

o reaches and hits on the backbone router, the router incre-

ments o.hit and updates the associated o.PathT racker with

the carried path information. When queried, o.PathT racker
returns the number of the distinct paths as o.pathe. Note that,

by knowing o.hit and assuming o to be truly popular, we can

also calculate o.patht, the expected number of distinct paths

7

Algorithm 1 Path update

1: procedure UPDATE(Interest(o)) ⊲ Interest(o) is an Interest
message requesting object o and hits on the backbone router

2: if Interest(o).path != null then
3: o.hit ++;
4: Update o.PathTracker with the path information pig-

gybacked on Interest(o);
5: end if
6: Process Interest(o) with Content Store;
7: end procedure

Algorithm 2 Anti-pollution algorithm

1: procedure DETECT POLLUTION

2: for each cached object o in Content Store do
3: if o.hit ≥ η then
4: Query o.pathe from o.PathTracker with Eq. (5) or

Eq. (6) and calculate o.patht using Eq. (2);
5: Calculate the ratios of o.rt and o.re with Eq. (4);
6: if o.re > ξ × o.rt then
7: Decide that o is exploited for pollution and evict;
8: else
9: Clear o.hit and o.PathTracker;

10: end if
11: end if
12: end for
13: end procedure

traversed by o’s Interests, by applying Eq. (2). Algorithm 1

formally describes the procedure for updating path information

on an NDN router.

With the queried and calculated distinct paths of o.pathe

and o.patht, our pollution detection algorithm is very simple.

For each cached object o, if o has been hit more than η times,

i.e., o.hit ≥ η, where η (η > 0) is a threshold parameter, we

compare the two ratios between the Interest traversing paths

and the hit times using o.patht and o.pathe as

rt =
o.hit

o.patht

re =
o.hit

o.pathe

(4)

Suppose that o is exploited by a pollution attacker, which

means that o is only requested by compromised hosts. The

number of paths actually traversed by its Interests o.pathe

should be smaller than that of o.patht; therefore, we have re >
rt. If re is sufficiently large such that re > ξ×rt, where ξ (ξ >
0) is another threshold, we can decide that o is an exploited

object and evict it from the Content Store. Otherwise, o is

considered as truly popular, and we clear its associated o.hit
and o.PathT racker so that the object will be examined once

again after it has accumulated η hits. Algorithm 2 presents the

formal description of the anti-pollution algorithm.

One concern for the algorithm is that the path information

carried by the Interest messages may expose the internal

structure of the PoP network. To protect such information,

on cache miss, the border router may choose to remove the

path information when forwarding an Interest out of a PoP or

AS.

Another concern is the processing and network overheads

caused by carrying path information with Interest messages.

���� ��������

���� �����������
��

� � � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

 !

 "

 #

 $

%& '()*�+

,*-*(� '()*�
./0��*

��������

��1234�5

Fig. 7. Demonstration of path update for PCSA-based PathTracker.

We believe that the processing overhead incurred by appending

interface information is acceptable for NDN routers because

routers on IP networks have been performing similar oper-

ations for decades. For example, an IP router must extract,

modify, and write back the time-to-live (TTL) field and re-

calculate the checksum for every IP packet it forwards at line

speed. Concerning network overhead, suppose that appending

a router interface requires 20 bytes, which is sufficient for

router interface aliases [29] because the average router-level

hop counts between any two addresses on the Internet is 15
[30]. Even for an Interest message that traverses the entire

Internet, the average overhead is only 300 bytes. Compared

with a Data message of several megabytes, such overhead

is trivial. Furthermore, because the path information may be

restricted within a PoP or AS network, which means that the

router-level paths will be much shorter, the overhead can be

further reduced.

D. PathTracker implementation

Our proposed anti-pollution algorithm requires that each

cached data object be associated with a data structure named

PathTracker, which traces the distinct paths traversed by the

Interest messages for this object within the PoP. In this

section, we discuss how to implement such a data structure

on an NDN backbone router. We have three requirements

for PathTracker: First, it should be memory-inexpensive and

not consume an excessive amount of memory space on the

router. Second, its operations of updating a path and querying

path diversity should be computational inexpensive and easy

to implement. Finally, it should be sufficiently accurate to

differentiate between a truly popular data object and an object

that is exploited as pollution based on their path diversities.

1) Implementation with PCSA: We first consider imple-

menting PathTracker using the probabilistic counting with

stochastic averaging (PCSA) technique, which is a technique

for estimating cardinalities of large sets [31] [32].

As demonstrated in Fig. 7, a PCSA-based PathTracker

maintains bitmaps composed of 2b buckets B0, ..., B2b , where

each bucket has (h − b) bits initialized as zero. When an

Interest carrying its path information hits on the router, we

employ a hash function Hp(·) to calculate a h-bit hash value

from the path and take the first b bits to decide which bucket

to update. The chosen bucket is updated as follows: we count

8

the longest sequence of ‘0’s in the remaining (h − b) bits of

the hash value from the most significant bit. If there are k
consecutive ‘0’s, we set the bucket’s (k+1)th bit as ‘1’. Fig.

7 demonstrates an example in which b = 2 and there are four

‘0’s leading the remaining (h− b)-bit hash value. In this case,

we select the 2nd bucket B1 and update B1[4] as ‘1’.

To query the distinct paths traced by a PCSA-based Path-

Tracker, for each bucket Bi, we use zi to denote the position of

the most significant ‘0’ in the bucket and let z̄ be the average

of zis for all the buckets. According to [32], the number of

the distinct paths can be estimated as

pathe = 2b × 2z̄ × 0.79402 (5)

For analyzing the memory overhead, consider an h-bit hash

function. We have 2b buckets, each with (h−b) bits. Therefore,

the bitmap consumes 2b × (h − b) bits. For example, if we

employ a 32-bit hash function and use the first b = 3 bits to

select the bucket, the PathTracker consumes 232 bits, which

is a trivial overhead compared with a typical data object

of several megabytes. The PCSA-based PathTracker is also

computational inexpensive, with only one hash calculation

being required per update.

2) Implementation with Bloom filter: We also consider

implementing PathTracker with a Bloom filter (BF). A BF-

based PathTracker is implemented as an array b[1, ...,m] of

m cells, with each cell being a bit initialized as zero. Unlike

the conventional Bloom filter, which employs multiple hash

functions for membership tracing, we employ only one hash

function Hb(·) to determine the mapping between paths carried

by Interest messages and BF cells. More specifically, to update

a path, we compute an h-bit hash value Hb(path) and update

the cell b[Hb(path)] as ‘1’.

For querying the distinct paths traced by a BF-based Path-

Tracker, we apply the following formula:

pathe =
ln
(

1− t
m

)

ln
(

1− 1
m

) (6)

where m is the Bloom filter size and t is the number of ‘1’s

in the Bloom filter [33].

The BF-based PathTracker is computational inexpensive,

with only one hash calculation being required per update.

For memory overhead, note that, given the maximum number

of items n traced by a Bloom filter, the Bloom filter should

have at least m = n
ln 2 cells for minimizing the false positive

probability [34]. Thus, a BF-based PathTracker with 232 bits

is able to trace up to 160 distinct paths without incurring

significant errors, which should be sufficient to differentiate

between a truly popular object and an exploited object based

on their path diversities.

Both the PCSA-based and BF-based counting techniques

have their limitations. PCSA’s average error of 1.3/
√
2b sug-

gests that it would not be sufficiently accurate with a small b,
whereas Eq. (5) suggests that, when b is large, this technique

will be inaccurate for tracing a small number of items. On

the other hand, with a fixed size, a Bloom filter will produce

more false positive errors when tracing more items. In Section

VI, we will systematically evaluate our proposed anti-pollution

algorithm with the two PathTracker implementations.

6789:;<= >;?@=>

A88=BB >;?@=>

CD

CE CF CG

CH CI CJ CK CL CM CED CEE CEF

N;>O7P ?B=>

Q;OR>;OSB=T U;B@

Fig. 8. Demonstration of a k-ary tree PoP network.

VI. EVALUATION

A. Experimental setup

We conduct simulation experiments to evaluate effectiveness

of our proposed anti-pollution algorithm. As in Section III, we

simulate a content catalog of one million data objects with the

MZipf popularity model. We employ the PoP-level topology in

Fig. 1 and apply the LCE cache placement strategy and LFU

eviction strategy. However, unlike the previous experiments,

for each PoP, we simulate its router-level topology as a k-ary

tree, where only the root node of the tree is a fully functional

NDN backbone router, and all the other nodes are forwarding-

only access routers. Specifically, the access router processes

Interest and Data messages with its FIB and PIT components

but does not cache any data object. Each access router in the k-

ary tree has one upward interface and k downward interfaces.

A router’s upward interface is connected to a downward

interface of its parent router, and each of an edge access

router’s downward interfaces is connected to a client subnet.

Note that, within our PoP network, each client subnet has a

distinct path to reach the backbone router. An exemplary PoP

network is presented in Fig. 8. Note that, although it is very

simple, the k-ary tree PoP network captures our observations

and analysis on real-world ISP PoPs in Section IV.

As in today’s Internet, we allow NDN backbone and access

routers to have aliases on their interfaces. In our simula-

tion, we consult Sprint’s router naming convention [29] and

denote a backbone router’s interface alias in the form of

sl-city-bb-0-n and an access router’s interface alias as

sl-city-gw-m-n, where city is the city code, e.g., “ny”

or “la”; m is the router ID; and n is the index of the router’s

interface. The path information carried by an Interest message

is a concatenation of the interface aliases along the path. For

example, in Fig. 8, the path from a subnet connecting router

r7 to the backbone router r0 could be “sl-ny-gw-7-2 →
sl-ny-gw-2-1 → sl-ny-bb-0-3”.

In our simulation, for each PoP, we simulate a k-ary tree

PoP network with k = 8 and depth d = 3; thus, the network

has kd = 512 client subnets (and router-level paths) and 73
routers. We assume that truly popular objects are requested

by clients in each subnet with equal probability. To trace

the path diversity, we employ the PCSA-based or BF-based

PathTracker in the backbone router r0. For the PCSA-based

PathTracker, we use a 32-bit hash function Hp(·) and let b = 3;

thus, the data structure consumes 232 bits. For the BF-based

PathTracker, we also employ a 232-bit Bloom filter so that

9

V WV XV YV ZV [V \VV

XV

ZV

\V

]V

WVV

^_`a bc defgehig jkglf

m
no
onp
qr

st_uv jbj_ukt bwxyig
z{jubegyd bwxyig
z|_kgebh }Y~

(a) PCSA-based PathTracker

� �� �� �� �� �� ���

��

��

��

��

��

��

��

��

���� �� �������� �����

�
��
���
��

���� ������� �¡¢£��
¤¥�����£� �¡¢£��
¤¦������ §�¨

(b) BF-based PathTracker

Fig. 9. Path diversities traced by PCSA- and BF-based PathTracker under
pollution attack.

the two implementations have identical memory overhead. In

the following, we refer to the anti-pollution algorithm with

PCSA-based and BF-based PathTracker implementations as

the PCSA-based and BF-based algorithms, respectively.

B. Pollution thwarting

We consider a case wherein an adversary controls a number

of compromised hosts in 5 different client subnets in PoP7

and uses them to launch a pollution attack. The attacker has a

power ratio of γ = 10%, sets his range ratio as θ = 0.6, and

requests a set P of the least popular objects in the content

catalog to pollute the NDN network. From Section III, we

know that such an attack is quite effective, with an average

damage ratio as high as 0.262.

1) Tracing path diversity: We first examine the path diversi-

ties traced by PathTracker. Specifically, we allow the incoming

Interests to update the PCSA-based or BF-based PathTracker

associated with each cached object by running Algorithm 1;

however, we do not execute Algorithm 2 to detect and evict

the object replicas that are injected by the attacker.

In Fig. 9(a) and (b), we plot the hit times and the distinct

Interest traversing paths traced by the PCSA-based and BF-

based PathTracker for all the cached objects at time 300. Each

plot in the figure represents a cached object, and we also apply

Eq. (3) to compute the expected number of Interest traversing

paths and plot the curves on the figures.

We make the following observations from the figures: First,

it is feasible to use the ratio between hit times and distinct

paths to differentiate a truly popular object from an exploited

unpopular object. As one can see in the figures, when a truly

popular data object is constantly requested by clients from

different subnets, many different paths are traversed by the

Interests. In contrast, for an exploited object, because most

of its Interest messages are issued by compromised hosts in

the 5 subnets, we do not observe such a proportional increase

in the number of traversed paths. Our second observation is

that, when tracing a few to dozens of paths, the BF-based

PathTracker is more accurate than the PCSA-based algorithm

because the latter tends to over-estimate the paths when there

are few hits and under-estimate them when the cached object

has many hits.

2) Mitigating pollution attack: We then apply the anti-

pollution algorithm in Algorithm 2 to detect and evict the

objects that are exploited by the pollution attacker. To evaluate

the effectiveness of the pollution mitigation, we compare

©ª« ©ª¬ ©ª ®
¯ª¯°

¯ª©

¯ª©°

¯ª®

¯ª®°

¯ª±

ξ

²
³́
³µ
¶
·³̧
¹º

»¼ ½¾¿¾À¿
ÁÂÃÄÅ η Æ ©°

(a) Damage ratio

ÇÈÉ ÇÈÊ ÇÈË ÌÍ

ÍÈÍÎ

ÍÈÇ

ÍÈÇÎ

ÍÈÌ

ÍÈÌÎ

ÏÐ
ÑÒ
Ó
ÔÕ
ÒÖ
×ÖØ
Ó
ÙÐ
×ÖÕ

ÇÈÉ ÇÈÊ ÇÈË Ì Í

ÍÈÌ

ÍÈÉ

ÍÈÊ

ÍÈË

Ç

ξ

ÏÐ
ÑÒÓ
ÚÓ
ÛÐ
×ÖØ
Ó
ÙÐ
×ÖÕ

ÜÝÞßà áàâÝãäåà æÝãäç

ÜÝÞßà èçßäãäåà æÝãäç

(b) Error ratio

Fig. 10. Damage ratios and error ratios of the PCSA-based anti-pollution
algorithm with η = 15 and various ξ values.

é éêë ì ìêë í
îêîë

îêé

îêéë

îêì

îêìë

îêí

ξ

ï
ðñ
ðò
ó
ôð
õö÷ øù úûüûýü

þÿ� η 	 éë

(a) Damage ratio

� ��� � ��� � ���
�

����

���

����

���

��
�

�
�

�
���
�
��
��

� ��� � ��� � ���
�

���

���

���

���

�

ξ

��
�

�
��
��
���
�
��
��

����� ���� �!� "� ��

����� #�$� �!� "� ��

(b) Error ratio

Fig. 11. Damage ratios and error ratios of the BF-based anti-pollution
algorithm with η = 15 and various ξ values.

the damage ratios on PoP7’s backbone router with/without

the algorithm. We also calculate the false positive and false

negative error ratios of the eviction decisions made by the

algorithm. The false positive error ratio is defined as

rfp =
truly popular objects that are mistakenly evicted

all evicted objects

and the false negative ratio is

rfn =
objects in P that are missed by the algorithm

all the objects in P examined by the algorithm

Recall that our proposed algorithm has two thresholds, η
and ξ, and a cached object o will be considered as exploited

only when o.hit ≥ η and o.re > ξ×o.rt. Note that the smaller

the threshold η is, the more frequently the algorithm examines

the cached objects. However, when η is too small, it would be

difficult to find a feasible value of ξ to accurately differentiate

the truly popular objects from the exploited objects because

there are few samples. Therefore, in the following experiments,

we first select a value for the threshold η; then, we vary ξ to

explore the feasible parameter settings. We refer to a setting of

η and ξ as feasible only when both error ratios of rfp and rfn
are close to zero, and under a feasible setting, the algorithm

should achieve a good performance in mitigating the pollution.

We first employ the PCSA-based PathTracker and execute

our proposed anti-pollution algorithm with various η and ξ
settings. The results are presented in Fig. 10. In Fig. 10(a),

we let η = 15 and plot the damage ratios under different

ξ values. We also plot the damage ratio without the anti-

pollution algorithm (the “no detect” curve) for comparison.

In Fig. 10(b), we present the false positive and false negative

ratios of the algorithm under various ξ values. From Fig. 10(a),

we can see that our proposed algorithm with PCSA-based

10

%& %' (&
&

&)&(

&)&*

&)&+

&)&,

&)%

&)%(

&)%*

η

-
.
/
.
0
1
2.
34
5

67

89:;

Fig. 12. The lowest damage ratios achieved by the PCSA- and BF-based
algorithms under different η settings.

PathTracker can effectively detect and mitigate the pollution;

a damage ratio as low as 0.089 can be achieved compared

with the damage ratio of 0.262 obtained without the anti-

pollution algorithm. Furthermore, by comparing Fig. 10(a) and

(b), we find that, to achieve the best performance, the value

of ξ must be selected carefully: if ξ is too large, the anti-

pollution algorithm makes false negative errors by missing

the objects in the set P ; on the other hand, when ξ is too

small, the algorithm will mistakenly evict some objects that

are truly popular due to the estimation errors introduced by

the PCSA-based PathTracker.

In Fig. 11(a) and (b), we plot the damage ratios and the

detection error ratios of the BF-based anti-pollution algorithm.

We also set η = 15 and vary ξ to search for the best

performance. We can see that the BF-based anti-pollution

algorithm is also effective according to the resulting very low

damage ratios. Moreover, by comparing Fig. 11 with Fig. 10,

we find that, with the BF-based PathTracker, the anti-pollution

algorithm is more robust in a wider range of feasible ξ than is

the PCSA-based algorithm. Such robustness can be explained

with the improved accuracy of the BF-based PathTracker over

the PCSA-based algorithm, as observed in Fig. 9.

Finally, we directly compare the PCSA-based and BF-based

anti-pollution algorithms in Fig. 12. In the experiment, we

let η = 10, 15, and 20 when running the PCSA- and BF-

based algorithms. For each η, we explore different ξ values

but only plot the lowest damage ratio that can be achieved

by the algorithm. Note that, under η = 10, we are unable

to find a feasible ξ for the PCSA-based algorithm due to

the inaccuracies of the PCSA-based PathTracker. From Fig.

12, we can see that, for both algorithms, when η increases,

the achieved damage ratios increase because the algorithms

examine the cached objects less frequently. In addition, we find

that, under equal η values, the damage ratios achieved by the

PCSA-based algorithm are always slightly higher than the BF-

based ratios. This is because, even under the optimal parameter

setting, the PCSA-based algorithm still makes a few false

positive/negative errors, whereas the BF-based PathTracker

does not make errors under the same circumstance.

In summary, we draw the following conclusions:

• Both the PCSA-based and BF-based anti-pollution algo-

< <=<> <=? <=?> <=@ <=@>
<=<>

<=?

<=?>

<=@

<=@>

<=A

B
CDEEF

G
H
I
H
J
K
LH
MN
O

PQR ξS@=>R η S?>

TU VWXWYX

ZVV[W\\]^_\WVR ζS@=>

Fig. 13. Damage ratios when applying the BF-based algorithm and address-
based method and no pollution detection under address spoofing.

rithms are effective in thwarting the false-locality pollu-

tion attack.

• The BF-based algorithm is more robust and achieves

a better performance than the PCSA-based algorithm

thanks to the higher accuracy of the BF-based Path-

Tracker.

C. Resilience against address spoofing

In our proposed anti-pollution algorithm, we exploit the

Interest traversing paths for detecting pollution attacks. As

analyzed in Section V-C, unlike IP addresses, the path in-

formation is appended to the Interest by routers hop by hop

along the path; thus, it is very difficult for an attacker to forge

compromised hosts.

In this section, we compare our proposed anti-pollution

algorithm with the address-based pollution detection method

in [6]. Although [6] addresses a pollution attack against file

cache systems in IP networks, its idea can by applied to

NDN networks. In the address-based method, the cache system

monitors the data objects that have high hit ratios and records

the source IP addresses of the clients requesting these objects.

When an object is observed to be requested by only a small

set of IPs or when the ratio between the number of unique

IPs and the number of requests for this object is lower than a

threshold ζ, the object is considered as injected by an attacker

and becomes evicted from the cache.

We apply the same settings as in Section VI-A to evaluate

the address-based method. We assume that each client subnet

contains 200 clients with different IP addresses. The clients

request the data objects according to the MZip model, and the

attacker controls compromised hosts in 5 subnets. However,

unlike [6], we assume that the attacker is capable of forging

the source IP address on a compromised host with a proba-

bility Pspoof . We evaluate the address-based approach under

varying Pspoof and compare with our proposed anti-pollution

algorithm (with the BF-based PathTracker). Fig. 13 presents

the comparison results. From the figure, we can see that

our proposed algorithm can always detect a pollution attack

regardless of the address spoofing; however, under the address-

based approach, the higher the spoofing probability is, the

less effective the algorithm is in detecting the pollution. The

11

TABLE II
HASH CALCULATIONS IN NDN ROUTER COMPONENTS

FIB PIT Content Store PathTracker

Hash per Interest 2.17 4 1 1

TABLE III
COMPUTATION OVERHEADS AND DAMAGE RATIOS OF NDN BACKBONE

ROUTER WITH/WITHOUT PATHTRACKER UNDER NO POLLUTION AND

HEAVILY POLLUTED SCENARIOS

No pollution Heavily polluted
Hash per Interest Damage ratio Hash per Interest

w. PathTracker 6.759 0.077 6.705
w/o. PathTracker 6.670 0.255 6.431

observation suggests that, unlike the address-based method,

our proposed algorithm is resilient against address spoofing.

D. Computation overhead on backbone router

Our previous analysis of PathTracker shows that it is

computational inexpensive when introducing only one hash

calculation per Interest message. In this section, we exper-

imentally evaluate the computation overheads of the NDN

backbone router with and without the PathTracker component.

Note that how to implement an NDN router remains an

open problem [35]; therefore, in our evaluation, we refer to

the recent progress on NDN router implementations. More

specifically, we assume that FIB is implemented as in [36],

PIT is implemented as in [37], and the Content Store is

implemented as in [35]. In all these components, the only

expensive operations are the hash calculations on the Bloom

filter and/or the hash table data structures. In Table II, we list

the hash calculations per Interest message for each component.

Note that, for FIB, the number of required hash calculations

is derived from the empirical length distribution of the name

prefixes [36], and PIT is implemented as a d-left hash table

with d = 4 [37].

We examine an NDN backbone router’s computation over-

head under two scenarios: 1) the PoP network is heavily

polluted by an attacker controlling compromised hosts in 5
different client subnets, with the attacker’s strategy parameters

set as γ = 10% and θ = 0.6, and 2) the PoP network

has not been attacked. Table III lists the number of hash

calculations per Interest message on the NDN backbone router

with and without PathTracker. From the table, we can see that,

under both scenarios, incorporating PathTracker only slightly

increases the router’s overhead but significantly reduces the

damage ratio when the network is under attack. The ob-

servation is easy to understand because PathTracker incurs

significantly fewer hash calculations than do FIB and PIT;

furthermore, the PathTracker component is only updated when

the Interest hits the Content Store.

E. Attacker’s strategies against pollution detection

In this section, we consider the strategies that a false-locality

pollution attacker may employ against the our proposed anti-

pollution algorithm.

1) Requesting moderately popular objects: One strategy an

adversary may employ is to request moderately popular data

objects instead of unpopular objects. The moderately popular

objects are those that are not sufficiently popular to be cached

by the NDN router but remain requested by normal users. By

requesting moderately popular objects, the malicious Interest

messages are mixed up with the Interests from normal users

and thus are more difficult to detect.

We first examine the pollution effectiveness by requesting

moderately popular objects. We allow the attacker to control

compromised hosts in 5 subnets in PoP7, set his range ratio

θ as 0.6, and vary his power ratio γ from 3% to 10%.

Fig. 14 presents the damage ratios when P is composed of

the least popular and moderately popular objects. Note that,

under the two cases, the accumulative popularity ρ differs

significantly. From the figure, we can see that, comparing with

unpopular objects, requesting moderately popular contents

leads to a significant reduction in the damage ratio because

the objects injected by the attacker into the Content Store are

also requested by normal users.

In Fig. 15, we set the attacker’s power ratio as γ = 10%
and employ the BF-based PathTracker to trace path diversities

of the truly popular objects and the exploited objects in the

Content Store at time 300. Comparing Fig. 15 with Fig. 9(b),

we can see that, by requesting the moderately popular objects,

the attacker can substantially increase the path diversities for

the objects in P ; for example, although the compromised hosts

exist in only 5 subnets, the BF-based PathTracker has traced as

many as 17 different paths traversed by the Interest messages

requesting an exploited object. The increased path diversity

is not difficult to understand because, in addition to the

compromised hosts, the exploited objects are also requested

by normal users from other subnets within the PoP.

Finally, we employ the BF-based anti-pollution algorithm

to detect the attack. To address the increased path diversities

of the malicious Interests, we set the threshold parameter η
as 25 to allow the PathTracker to trace more paths before

making the eviction decisions. Fig. 16 presents the damage

ratios achieved under various ξ values, and we also plot the

damage ratio without the pollution detection in the figure. Note

that when ξ is too small, the false positive errors made by the

algorithm (i.e., mistakenly evicting truly popular objects) lead

to a damage ratio that is even higher than without the pollution

detection. Comparing Fig. 16 with Fig. 11(a), we can see that

the anti-pollution algorithm can reduce the damage ratio to

as low as the case in which unpopular objects are requested;

in other words, the strategy of requesting moderate popular

objects does not work against our proposed anti-pollution

algorithm. We explain this observation with the fact that,

although the exploited objects are cached in the Content Store

longer under a higher threshold η, they are less “harmful” in

polluting the NDN network than are the unpopular objects.

2) Compromising more subnets: The adversary may em-

ploy a more direct way of increasing the path diversities of

the exploited data objects by compromising hosts from more

client subnets. In this section, we consider the cases that the

attacker is capable to control compromised hosts in 15 and 25
subnets. The attacker applies the same pollution strategy of

12

` a b c de d`
e

efeg

efd

efdg

ef`

ef`g

efh

γ ijk

l
m
n
m
o
p
qm
rs
t

uvwxy z{z|}w~� ρ � efeeedah

�{�v~wyv z{z|}w~� ρ � efedg�bc

Fig. 14. Damage ratios when an attacker requests
the least popular and moderately popular data ob-
jects with various power ratios.

� �� �� �� ��
�

��

��

��

��

���

���� �� �������� �����

�
��
��
�
�
�

� �¡¢ ����¡� �£¤¥��

¦§�¡���¥� �£¤¥��

¦¨������ ©ª«

Fig. 15. Path diversities of the truly popular
objects and the moderately popular objects that are
exploited by the attacker.

¬ ¬® ¯ ¯®
°°¯

°°±

°°²

°°³

°¬

°¬¯

°¬±

°¬²

°¬³

ξ

´
µ
¶
µ
·
¸
¹µ
º»
¼

½¾ ¿ÀÁÀÂÁ

ÃÄÅ η Æ ¯®

Fig. 16. Damage ratios of the BF-based anti-
pollution algorithm with η = 25 and various ξ
values.

Ç ÇÈÉ Ê ÊÈÉ
ËÈÇ

ËÈÇÉ

ËÈÊ

ËÈÊÉ

ËÈÌ

ËÈÌÉ

ξ

Í
ÎÏ
ÎÐ
Ñ
ÒÎ
ÓÔÕ

Ö× ØÙÚÙÛÚ

ÜÝÞ η ß ÌË

(a) Compromising 15 subnets

à àáâ àáã àáä àáå â âáâ

æáàä

æáàå

æáâ

æáââ

æáâã

æáâä

æáâå

æáç

ξ

è
éê
éë
ì
íé
îïð

ñò óôõôöõ

÷øù η ú ûæ

(b) Compromising 25 subnets

Fig. 17. Damage ratios of the BF-based anti-pollution algorithm when there
are (a) 15 and (b) 25 compromised subnets in the PoP network.

γ = 10% and θ = 0.6 and requests the least popular objects

in the content catalog as in the previous experiments.

We employ the BF-based anti-pollution algorithm and set

η as 30 and 50 for the cases in which the malicious Interests

are from 15 and 25 subnets, respectively. Fig. 17(a) and (b)

present the damage ratios obtained by the algorithm under the

above two cases, respectively. We can see that the BF-based

algorithm still can significant reduce the damage ratios. By

studying Fig. 17 and Fig. 12(c), we find that, with a greater

number of compromised subnets, our anti-pollution algorithm

becomes less effective because we must employ a larger η
to address the increased path diversities of the malicious

Interests, causing the algorithm to examine the cached objects

less frequently.

Our observation suggests that, if an attacker can compro-

mise hosts in many client subnets within a PoP, he can indeed

improve the resilience of the attack against our anti-pollution

algorithm. However, we believe such a strategy is impractical

in practice. Recall that the chance of infecting one host by

Code Red, one of the largest and fastest Internet worms, is

only 8.4×10−5 [25]. If we assume that each client subnet has

a /24 IP address space, the probability of compromising any

host in a subnet is as low as 2.15×10−2; therefore, it is almost

infeasible for an adversary to compromise many subnets within

a PoP simultaneously.

In summary, we conclude the following:

• The strategy of requesting moderately popular objects is

not effective against our anti-pollution algorithm because

the moderately popular objects are less harmful than the

unpopular ones when polluting an NDN network.

ü ý þü þý ÿü ÿý �ü
þü

þý

ÿü

ÿý

�ü

���� �� ��	
���
 �
�	
�����

�
��
��
�
�
�
��
��
�
�
�
��
�η

�

� !��
�� �"#��

$��!% ��!�� �"#��

Fig. 18. Inferring the algorithm parameters.

• A pollution attacker can improve the resilience of their

attack against our anti-pollution algorithm by compromis-

ing more subnets; however, such a strategy is impractical

because it is very difficult for the attacker to simultane-

ously compromise many subnets within a PoP network

in practice.

F. Discussion

Finally, we discuss how to determine the two threshold

parameters of η and ξ for our algorithm. In general, the

parameter depends on the path diversities of the malicious

Interests sent by the pollution attacker, which further depend

on the attacker’s strategy, i.e., how many hosts and subnets are

compromised, how frequently to request an exploited object,

etc.. Usually, such information is unavailable to network

administrators.

To overcome this problem, we suggest to choose a few η
thresholds arbitrarily and employ the BF-based PathTracker

to trace the path diversities of the cached objects under these

thresholds. When there exists a pollution attack and η is

sufficiently large, the two types of data objects are expected to

exhibit different degrees of path diversities. For example, Fig.

18 presents the path diversities for the cases of η = 15, 20,

and 25 under the moderate-popularity pollution attack. When

η = 25, we observe two clusters formed by the two types of

data objects far apart on the graph and can easily determine

the feasible η and ξ values. Furthermore, clustering machine

13

learning algorithms, such as k-means, can be employed as

an offline algorithm to make the procedure more automated.

VII. CONCLUSION

In this paper, we focus on the threat of false-locality

pollution attacks in NDN networks. We present a unified

model to profile an attacker’s strategy in polluting an NDN

network and show that, with limited resources, a pollution

attacker can cause considerable damage to the NDN network.

Based on our analysis on real-world PoP networks, we present

an anti-pollution algorithm that exploits the diversity of the

Interest traversing paths within an NDN PoP and propose two

methodologies based on the probabilistic counting and Bloom

filter techniques to implement the algorithm on NDN backbone

routers. Our proposed algorithm is lightweight in terms of the

memory and computation overheads and is resilient against

forged Interest messages. Simulation experiments suggest that

our proposed anti-pollution algorithm is effective in thwarting

a false-locality pollution attack, and the strategies that an

adversary may take against our algorithm are either ineffective

or impractical in the real world.

Future work includes implementing the anti-pollution algo-

rithm on the NDN testbed [38] based on protocol oblivious

forwarding (POF) [39] SDN technology and evaluating the

algorithm in real-world deployments.

ACKNOWLEDGMENT

This work was supported by the National Natural Science

Foundation of China (Grant No. 61202405), the sub task of

Strategic Priority Research Program of the Chinese Academy

of Sciences (Grant No. XDA06011201), and the Anhui Provin-

cial Natural Science Foundation (Grant No. 1608085MF126).

REFERENCES

[1] G. Xylomenos, C. Ververidis, and et al., “A survey of information-
centric networking research,” IEEE Communications Surveys & Tuto-

rials, vol. 16, no. 2, pp. 1024–1049, 2013.
[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.

Briggs, and R. L. Braynard, “Networking named content,” in Proc. of
CoNEXT’09, Rome, Italy, Dec. 2009.

[3] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, and et al., “Named data
networking,” ACM SICOMM Computer Communication Review, vol. 44,
no. 3, pp. 66–73, 2014.

[4] F. Guo, J. Chen, and T. cker Chiueh, “Spoof detection for preventing
DoS attacks against DNS servers,” in Proc. of ICDCS’06, Jul., Lisboa,
Lisboa 2006.

[5] J. Liang, R. Kumar, Y. Xi, and K. W. Ross, “Pollution in P2P file sharing
systems,” in Proc. of IEEE INFOCOM’05, 2005, Miami, FL, USA, Mar.
2005.

[6] L. Deng, Y. Gao, Y. Chen, and A. Kuzmanovic, “Pollution attacks and
defenses for Internet caching systems,” Computer Networks, vol. 52,
no. 5, pp. 935–956, 2008.

[7] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “Dos & ddos in named
data networking,” in Proc. of ICCCN’13, Nassau, Bahamas, Aug. 2013.

[8] C. Ghali, G. Tsudik, and E. Uzun, “Network-layer trust in named-data
networking,” ACM SICOMM Computer Communication Review, vol. 44,
no. 5, pp. 13–19, 2014.

[9] Q. Li, X. Zhang, Q. Zheng, R. Sandhu, and X. Fu, “LIVE: Lightweight
integrity verification and content access control for named data network-
ing,” IEEE Transactions on Information Forensics and Security, vol. 10,
no. 2, pp. 308–320, 2015.

[10] M. Xie, I. Widjaja, and H. Wang, “Enhancing cache robustness for
content-centric networking,” in Proc. of IEEE INFOCOM’12, Orlando,
FL, USA, Mar. 2012.

[11] M. Conti, P. Gasti, and M. Teoli, “A lightweight mechanism for detection
of cache pollution attacks in Named Data Networking,” Computer
Networks, vol. 57, no. 16, pp. 3178–3191, 2013.

[12] W. So, A. Narayanan, and D. Oran, “Named data networking on a
router: Fast and DoS-resistant forwarding with hash tables,” in Proc.

of ACM/IEEE Symposium on Architectures for Networking and Com-
munications Systems (ANCS’13), San Jose, CA, USA, May 2013.

[13] M. Virgilio, G. Marchetto, and R. Sisto, “PIT overload analysis in
content centric networks,” in Proc. of ACM SIGCOMM Workshop on

Information-Centric Networking (ICN’13), San Jose, CA, USA, Aug.
2013.

[14] G. Mauri, R. Raspadori, M. Gerla, and G. Verticale, “Exploiting informa-
tion centric networking to build an attacker-controlled content delivery
network,” in Proc. of Mediterranean Ad Hoc Networking Workshop,
Vilamoura, Portugal, Jun. 2015.

[15] A. Karami and M. Guerrero-Zapata, “An ANFIS-based cache replace-
ment method for mitigating cache pollution attacks in Named Data
Networking,” Computer Networks, vol. 80, pp. 51–65, 2015.

[16] K. Ali and M. Scarr, “Robust methodologies for modeling web click
distributions,” in Proc. of WWW’07, Banff, Alberta, Canada, May 2007.

[17] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial
caching for peer-to-peer systems,” IEEE/ACM Trans. on Networking,
vol. 16, no. 6, pp. 1447–1460, 2008.

[18] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with rocketfuel,” IEEE/ACM Trans. on Networking, vol. 12,
no. 1, pp. 2–16, 2004.

[19] Y. Tian, R. Dey, Y. Liu, and K. W. Ross, “Topology mapping and ge-
olocating for China’s Internet,” IEEE Trans. on Parallel and Distributed

Systems, vol. 24, no. 9, pp. 1908–1917, 2013.

[20] S. K. Fayazbakhsh, Y. Lin, and et al., “Less pain, most of the gain:
incrementally deployable ICN,” in Proc. of ACM SIGCOMM’13, Hong
Kong, China, Aug. 2013.

[21] Y. Wang, “Caching, routing and congestion control in a future
Information-Centric Internet,” Ph.D. dissertation, North Carolina State
University, Raleigh, NC, USA, Nov. 2013.

[22] D. Rossi and G. Rossini, “On sizing CCN content stores by exploiting
topological information,” in Proc. of IEEE INFOCOM Workshop on

Emerging Design Choices in Name-Oriented Networking (NOMEN’12),
Orlando, FL, USA, Mar. 2012.

[23] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Optimal cache allo-
cation for content-centric networking,” in Proc. of ICNP’13, Gottingen,
Germany, Oct. 2013.

[24] “Internet service provider networks: Simplifying pop architectures,”
http://www.force10networks.com/whitepapers/pdf/App service providers.pdf,
last accessed 8 Jan. 2016.

[25] C. C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and early
warning for internet worms,” in Proc. of ACM Conference on Computer
and Communication Security (CCS’03), Washington DC, USA, Oct.
2003.

[26] Q. Huang, K. Birman, and et al., “An analysis of facebook photo
caching,” in Proc. of SOSP’13, Farmington, PA, USA, Nov. 2013.

[27] S. Traverso, M. Ahmed, and et al., “Unravelling the impact of temporal
and geographical locality in content caching systems,” IEEE Transac-

tions on Multimedia, vol. 17, no. 10, pp. 1839–1854, 2015.

[28] M. Raab and A. Steger, “‘Balls into Bins’ - a simple and tight analysis,”
in Proc. of Second International Workshop on Randomization and
Approximation Techniques in Computer Science, 1998.

[29] “Sprintlink naming conventions,” https://www.sprint.net/index.php?p=
faq namingconvention, last accessed 8 Jan. 2016.

[30] E. Katz-Bassett, H. V. Madhyastha, and et al., “Reverse traceroute,” in
Proc. of USENIX NSDI’10, Boston, MA, USA, Mar. 2010.

[31] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” Journal of Computer and System Sciences, vol. 31,
no. 2, pp. 182–209, 1985.

[32] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” in
Proc. of European Symposium on Algorithms (ESA’03), LNCS 2832,
Budapest, Hungary, Sep. 2003.

[33] O. Papapetrou, W. Siberski, and W. Nejdl, “Cardinality estimation and
dynamic length adaptation for Bloom filters,” Distributed and Parallel

Databases, vol. 28, no. 2, pp. 119–156, 2010.

[34] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of Bloom filters for distributed systems,” IEEE Communications Surveys
& Tutorials, vol. 14, no. 1, pp. 131–155, 2012.

[35] D. Perino and M. Varvello, “A reality check for content centric network-
ing,” in Proc. of ACM SIGCOMM Workshop on Information-Centric

Networking (ICN’11), Toronto, Ontario, Canada, Aug. 2011.

14

[36] Y. Wang, B. Xu, and et al., “Fast name lookup for named data
networking,” in Proc. of IEEE/ACM IWQoS’14, Hong Kong, China, May
2014.

[37] H. Yuan and P. Crowley, “Scalable pending interest table design:
From principles to practice,” in Proc. of IEEE INFOCOM’14, Toronto,
Canada, Apr. 2014.

[38] Z. Wang, L. Wang, and et al., “An architecture of content-centric
networking over protocol-oblivious forwarding,” in Proc. of IEEE Globe-

com’15, San Diego, CA, USA, Dec. 2015.
[39] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn

through a future-proof forwarding plane,” in Proc. of SIGCOMM

HotSDN Workshop (HotSDN’13), Hong Kong, China, Aug. 2013.

Haoran Guo received the bachelor’s degree in
computer science from the Southwest Jiaotong Uni-
versity in June 2014. He is a master candidate in
the School of Computer Science and Technology,
University of Science and Technology of China. He
is working on the performance and security issues
of the future Internet architectures and systems. He
is a student member of the IEEE.

Xiaodong Wang received the bachelor’s degree in
computer science from the Nanjing University of
Aeronautics and Astronautics in June 2015. He is
currently pursuing the master’s degree in the School
of Computer Science and Technology, University
of Science and Technology of China. His research
focus is the future Internet architecture.

Kun Chang received the bachelor’s degree in com-
puter science from the Hunan University in June
2015. He is a master candidate in the School of
Computer Science and Technology, University of
Science and Technology of China. His research
interest is focused on the named data networking
future Internet.

Ye Tian received the bachelor’s degree in electronic
engineering and the master’s degree in computer
science from the University of Science and Tech-
nology of China (USTC), in July 2001 and 2004,
respectively. He received the PhD degree from the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong in December
2007. He is an associate professor in the School
of Computer Science and Technology, USTC. He
joined USTC in August 2008. His research inter-
ests include future Internet, Internet measurement,

software-defined networking, and peer-to-peer networks. He is a member of
the IEEE and ACM, and a senior member of the China Computer Federation.
He is currently serving as a young associated editor for Springer Frontiers of

Computer Science Journal.

