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1 INTRODUCTION

W Ith the technological advances on Web, cloud com-
puting, and mobile Internet, electronic commerce (e-

commerce) becomes increasingly popular in recent years.
It is estimated that in 2015, the retail e-commerce sales
worldwide amounted to $1.67 trillion [1], and in China,
11.1% of the retail sales were on the Internet [2].

For enabling large volume of online transactions and
providing countrywide or even worldwide services, lead-
ing e-commerce providers such as Amazon and Alibaba
have built large and complicated systems. In e-commerce,
service availability and system’s performance are critical to
providers, as it is estimated that for a leading e-commerce
Website like Amazon, one second of service latency is worth
tens of thousands of US dollars [3]. However, there have
been few substantive studies on large-scale e-commerce
systems in real world. In this paper, we focus on Tmall [4]
and JD [5], which are the top-two most popular e-commerce
websites in China, and investigate their systems with a mea-
surement approach. We analyze the workloads upon Tmall
and JD that are collected from our campus network, and
investigate behaviors and performances of the e-commerce
infrastructures with passive and active measurements. In
particular, we characterize the flash crowd [6] in the Double-
11 Shopping Day [7], which is the biggest online shopping
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festival in the world, and evaluate the e-commerce systems’
performances under the flash crowd.

As far as we know, this work is the first measurement
study on large-scale e-commerce systems in real world. We
find that the Double-11 Shopping Day impose a massive
workload on e-commerce systems; it is challenging for the
systems to accommodate the service requests during the
flash crowd; and users have poor service experiences. Based
on the observations from measurement, we have insightful
discussions on improving large-scale e-commerce systems
under massive flash crowd. The main contributions of this
paper are summarized as follows.

• We introduce effective methodologies that combine
passive and active measurements to study Tmall
and JD’s large-scale e-commerce systems, including
the content delivery networks (CDNs) and the clouds.
In particular, we have developed methodologies for
identifying and correlating network traffics with var-
ious e-commerce workloads (e.g., product browsing,
shopping cart operations, checkouts, etc.). To over-
come shortages of PlanetLab nodes and open recur-
sive local DNS (LDNS) servers in China, which are
widely used in previous studies [8] [9], we propose
to employ VPN servers as measurement vantage
points, and have developed a suite of techniques that
enable us to accurately evaluate performances of e-
commerce CDNs and clouds.

• We present the first characterization study on the e-
commerce workload, in particular, the massive flash
crowd in the Double-11 Shopping Day. Our study
covers several features, including usage patterns and
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shopping behaviors. For example, we find that there
exists a Zipf-like popularity among the products,
most of the shopping cart operations are read-only
queries, the Double-11 Shopping Day attracts many
users, who are more willing to buy than usual, and
the rush buying behaviors at the very beginning of
the shopping festival impose a massive flash crowd
on the e-commerce systems.

• We investigate the behaviors and performances of
the e-commerce infrastructures, including the CDNs
and the clouds. We find that both Tmall and JD have
decent CDN throughputs, but the throughputs de-
grade significantly under the Double-11 flash crowd,
despite that several efforts, such as expanding CDN
footprint and capacity-based client mapping, have
been made to accommodate the massive content
requests. We observe that Tmall’s e-commerce CDN
adopts a proactive bandwidth throttling to provide
low but guaranteed throughputs under the Double-
11 flash crowd, while JD still follows the best-effort
way. As for the e-commerce clouds, both Tmall and
JD do not have sufficient capacities during the busy
hours, and users suffer extraordinarily long latencies
during their e-commerce transactions.

• Finally, we discuss the implications of the observa-
tions from our measurement study. We argue that for
an e-commerce CDN to serve a massive flash crowd
as the one in the Double-11 Day, the design choices
of utilizing massive data centers and the DNS-based
client redirection are preferred. We also show that by
incorporating assistances from clients, considerable
flash crowd workload on both e-commerce CDN and
cloud can be offloaded.

The remainder part of this paper is organized as the
following: Section 2 discusses the related work. Section 3
presents an overview on Tmall and JD. We describe our
measurement methodology in Section 4. Section 5 character-
izes the e-commerce workload. We evaluate performances
of the e-commerce infrastructures in Section 6. Section 7 dis-
cusses the implications for improving e-commerce systems.
Finally, we conclude this paper and discuss the future work
in Section 8.

2 RELATED WORK

E-commerce has dramatically changed people’s daily life.
There are many studies on the behaviors/mis-behaviors of
buyers and sellers in the cyber marketplace (e.g., [10] and
[11]), however, few substantive works focus on e-commerce
infrastructures. In this paper, we present a measurement
study on the large-scale e-commerce systems of Tmall
and JD, the top-two most popular e-commerce websites in
China.

There have been a rich literature on measuring and
evaluating commercial CDNs. Huang et al. [8] evaluate two
representative commercial CDNs: Akamai and Limelight,
and show that their different design philosophies lead to
different performances. Triukose et al. [12] carry out a mea-
surement study on Akamai, and estimate the performance
of a more consolidated CDN deployment. Wendell et al. [6]
analyze the sudden spikes of CDN traffics on an open CDN

and discuss the implications. Adhikari et al. [13] unveil the
architecture of YouTube’s video CDN in details. He and
Tian [14] [15] reveal the tradeoff between energy and traffic
costs of a video CDN, and propose a capacity provisioning
algorithm for optimizing the overall cost. Adhikari et al.
[9] study the CDN selection problem in Netflix and Hulu,
and present a CDN selection strategy that can significantly
increase users’ available bandwidth while still conform-
ing to the business constraints. Our work differs from
the previous works in two aspects: First, for overcoming
shortages of PlanetLab nodes and open recursive local DNS
(LDNS) servers, which are widely used in previous works,
we propose to use VPN servers as vantage points in our
CDN measurement, and have developed novel techniques
for evaluating CDN performance with VPN server vantage
points. Second, we focus on a special event, namely the
Double-11 Online Shopping Festival, study and evaluate
the CDNs under the event’s massive flash crowd. As far
as we know, such a massive flash crowd has not been
thoroughly investigated in previous works. We also point
out the preferred design choices for an e-commerce CDN.

For evaluating cloud services, Li et al. [16] compare a
number of public cloud service providers, and develop a
tool called CloudCmp to benchmark their performances.
Nasiriani et al. [17] further investigate the capacity dy-
namism of the Amazon EC2 instances. Bermudez et al.
[18] study Amazon’s Web Service provided by EC2 and
S3 with a passive measurement approach, and show that
there is room for improvement on Amazon’s server selection
strategy. Chen et al. [19] investigate the impact of the front-
end server placement strategies on the performance of a
dynamic content cloud service. Ren et al. [20] investigate
a cloud file system, and propose a benchmarking suite
for evaluating cloud file services. Unlike these works, we
develop novel measurement-based techniques that enable
us to evaluate performances of a real-world cloud database
service persistently and in large scale. With the methodol-
ogy, we are the first to systemically investigate e-commerce
cloud database services under the extreme circumstance of
the Double-11 massive flash crowd.

For improving cloud services, Wang et al. [21] study
a customer-provided cloud platform and propose an in-
stance recommendation mechanism. Niu et al. [22] design
an optimization algorithm to distribute service requests
between private and public clouds. Singh et al. [23] propose
a framework for a cloud to allocate resources for meeting
the service level agreement (SLA). Amiri et al. [24] survey
the workload prediction methodologies, which are critical in
cloud resource management. However, few works focus on
cloud system under massive flash crowd. With the insights
and data obtained from our measurement, in this paper
we discuss preferred CDN design choices, and analyze
the potential benefits brought by incorporating client-side
assistances for an e-commerce system.

3 OVERVIEW

3.1 Background
Tmall.com [4] and JD.com [5] are the top-two most
popular Chinese business-to-consumer (B2C) online retail
websites. Both websites currently host tens of thousands
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Fig. 1. Tmall’s sales growth in 2015’s Double-11 Day, data from [25].

of online stores, and serve hundreds of millions of buyers.
According to Alexa, as of Feb. 2016, Tmall and JD were the
8th and 13th most visited websites in China respectively.

Tmall and JD have very similar website organization.
Each online store on Tmall or JD has a catalog Web page that
lists the items for sale, and each item also has a Web page,
which displays texts, high-resolution images and photos
provided by the seller for describing/advertising the item,
and some item pages even have videos embedded.

Each registered user on Tmall or JD has a virtual shop-
ping cart. When browsing goods online, a user can add an
item into his shopping cart by clicking the “add to shopping
cart” button on the item page. On the shopping cart page,
a user can sort out the items he has previously added, and
select some of them to remove from the shopping cart; the
user can also select some items he intends to buy, click the
“check out” button for the bill, and pay for them online.

Both Tmall and JD hold several cyber shopping festivals,
among them, the Double-11 Online Shopping Day [7], which
is on Nov. 11 each year, is the biggest and most well-known
one. It is reported that in 2015’s Double-11 Day, only Tmall
alone had sales at US$ 8.7 billion [25], which is greater than
the online sales in 2015’s Thanksgiving Day, Black Friday,
and Cyber Monday combined [26]. Fig. 1 shows how the
Tmall sales grew in 2015’s Double-11 Day. Note that the
fastest growth happened in the first hour (i.e., 0:00∼1:00).
As we will see in this paper, this is because a lot of buyers
rush to buy at the very beginning of the day, in case that the
products they are interested in are sold out very soon.

The large volume of online transactions in the Double-
11 Day impose a massive workload on the e-commerce
infrastructures, and in particular, the rush buying behaviors
at the very beginning of the day incur a flash crowd of
service requests. Clearly, under the explosive growth of
the workload, it is very challenging for Tmall and JD to
ensure their services’ availabilities and guarantee the users’
experiences. In fact, in each year’s Double-11 Day, there are
complaints on the accessibilities of the e-commerce services.
In this paper, we will systematically investigate Tmall and
JD’s e-commerce systems under the Double-11 flash crowd.

3.2 Architecture Overview

Tmall and JD provide most of their services on Web.
Roughly speaking, the e-commerce services can be catego-
rized into two kinds: the content service and the cloud service.
As shown in Fig. 2, the content service is provided with
CDN. Both Tmall and JD build their dedicated CDNs for
distributing e-commerce contents, such as static Web pages,
javascripts, and high-resolution images. The e-commerce

Fig. 2. E-commerce system architecture.

CDN consists of many content servers that are deployed at
various locations and ISP networks.

Both Tmall and JD run their private e-commerce clouds,
which provide services such as search engine, recommen-
dation, shopping cart, billing, etc. As shown in Fig. 2, an
e-commerce cloud is composed of at least one cloud data
center and many front-end Web servers. The cloud data cen-
ter maintains elastic computing/database/storage capaci-
ties for all back-end jobs, such as handling users’ database
reads/writes/queries regarding their shopping carts, main-
taining sales and inventory databases, executing ranking
and recommendation algorithms, etc. The front-end servers
proxy between end users and the cloud data center. More
specifically, a front-end server receives a user’s service re-
quest in HTTP or JSON, processes and forwards it to the
cloud data center; when a response is returned from the
data center, the front-end server generates a dynamic Web
page containing the service response and sends it back to
the user.

To provide nationwide services in China, both Tmall
and JD employ DNS redirection [8] to assign content and
front-end servers to users. For example, when a user from
our campus network wants to access his shopping cart
on Tmall, his DNS query for the name “cart.tmall.com”
is firstly resolved to the Canonical Name (CNAME)
“cart.tmall.com.danuoyi.tbcache.com”, where the suffix
“danuoyi.tbcache.com” indicates that the name is managed
by Alibaba’s DNS system, then by resolving the CNAME,
a front-end server at the address “121.194.7.253” is assigned
to handle the user’s operation requests on his shopping cart.

4 MEASUREMENT METHODOLOGY

In this section, we describe our methodologies in the mea-
surement study on Tmall and JD’s e-commerce systems.

4.1 Passive Measurement Methodology

For the passive measurements on Tmall and JD, we collect
traffics of the two e-commerce websites at the gateway of
our university campus network, which connects tens of
thousands of computers from offices, laboratories, student
dormitories, etc.

We employ a high-performance network traffic analyzer
named iProbe [27] to collect the e-commerce traffics. For
each HTTP flow, iProbe keeps a record in the log file
that contains the fields such as HTTP method and URL,
source/destination addresses and ports, flow size in terms
of Bytes and packets in both directions, etc. With iProbe, we
have collected two datasets:
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TABLE 1
URLs and methods for requesting some e-commerce services on JD from PC and smartphone.

PC Web browser Smartphone app.
Login passport.jd.com/loginservice.aspx?string (get HTML) jpns.m.jd.com/client.action (post JSON)
Search search.jd.com/Search?string (get HTML) search.m.jd.com/client.action (post JSON)
Shopping cart Add: cart.jd.com/gate.action?string (get HTML) cart.m.jd.com (post JSON)

Remove: cart.jd.com/removeSkuFromCart.action (post JSON)
Query: cart.jd.com/cart (get HTML)

Checkout trade.jd.com/shopping/order/submitOrder.action (post JSON) order.m.jd.com/client.action (post JSON)

• One dataset contains all the HTTP flows associated
with Tmall and JD in a week between 00:00 Mar. 1,
2016 and 23:59 Mar. 7, 2016. The dataset covers five
weekdays and two weekends on Mar. 5 and Mar. 6.
In the remainder part of this paper, we refer to this
dataset as WEEK.

• We also collect in 2015’s Double-11 Online Shopping
Day from 00:00 to 23:59 on Nov. 11, 2015. We refer to
this dataset as D11.

For each HTTP flow recorded by iProbe, we look up its
domain name to decide which e-commerce service the flow
is about. For example, Table 1 lists the methods and URLs
that are used for requesting some JD e-commerce services
from different user devices.

Our datasets only contain the HTTP flows between
campus users and e-commerce servers, thus we do not
capture all the Tmall’s e-commerce traffics, as Tmall pro-
vides services on both HTTP and HTTPS simultaneously.
But fortunately for JD, we have captured all its e-commerce
traffics, since JD provides all its services over non-encrypted
HTTP connections, although it encrypts some data pieces
such as user passwords in JSON.

4.2 Active Measurement Methodology

4.2.1 VPN Server Vantage Point

In addition to the passive measurements, we also actively
probe Tmall and JD’s e-commerce infrastructures from a
number of vantage points. Previous studies employ Plan-
etLab nodes or open recursive local DNS (LDNS) servers as
the measurement vantage points [8] [9], however, as there
are few PlanetLab nodes on the Chinese Internet [28] and
the LDNS servers are usually not open in China, we employ
a commercial virtual private network (VPN) service named
“517VPN”1, and use its numerous VPN servers, which are
widely distributed in China, as our vantage points.

In our active measurement, after establishing a Layer
2 Tunneling Protocol (L2TP) connection between our mea-
surement computer in the campus network and a remote
VPN server, we run our probing programs to request vari-
ous e-commerce services through the tunnel. On behalf of
the measurement computer, the VPN server resolves the
services’ domain names from its local DNS server, and sends
the service requests to the content or front-end servers that
are assigned to it by the e-commerce DNS system.

1. http://www.517vpn.cn/

Fig. 3. Methodology for measuring the CDN throughput.

4.2.2 Probing E-Commerce CDN

We have developed a suite of techniques for evaluating e-
commerce CDN and cloud from the VPN server vantage
points. For evaluating the e-commerce CDNs, we focus
on the image distribution service, as images are the most
requested e-commerce content. In our measurement, we
maintain URLs of a collection of over 100 high-resolution
images, whose sizes are between 500 and 600 kB. The im-
ages are on Tmall and JD’s item pages. After connecting
to a VPN server, we employ the tool cURL [29] to request
and download the images from the content server that is
assigned to our vantage point, and record the download
throughput as thcURL =

simg

tdl
, where simg is the image size,

and tdl is the download time.
To bypass any transparent Web caches, we ap-

ply the methodology used in [12] by appending
a random string to the image URL. For example,
for downloading an image from Tmall’s CDN at
“http://img.alicdn.com/· · ·/xx.png”, we actually request
an URL like “http://img.alicdn.com/· · ·/xx.png?rand str”
with cURL, where “rand str” is a random string that
changes each time.

We want to point out that thcURL reported by cURL is
indeed the minimum of the throughput thV PN between our
measurement computer and the VPN server it connects to,
and the throughput thCDN between the VPN server and the
content server, i.e.,

thcURL = min{thV PN , thCDN}

To obtain thCDN , we need to identify the cases that thcURL

is constraint by thCDN by estimating thV PN and comparing
it with thcURL.

For estimating thV PN , we set up a Web server in our
campus network, which hosts the same high-resolution
image files whose URLs on Tmall and JD are collected for
probing their content servers. As demonstrated in Fig. 3,
we run cURL on our measurement computer, which is also
in the campus network, download the image files from the
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campus server via the remote VPN server, and measure the
download throughput as th′

cURL. Obviously in this case

th′
cURL = min{thV PN , thV PN} = thV PN

In our measurement, each time we probe Tmall or JD’s
content server and obtain the throughput thcURL, we also
estimate the throughput th′

cURL by downloading the same
image files from the campus server at the same time. We
compare thcURL with th′

cURL: If they are close to each
other, we simply ignore the result, as in this case, thcURL is
constraint by thV PN ; but when thcURL is much smaller than
th′

cURL, we can infer that the measured throughput thcURL

is actually constraint by the throughput thCDN between the
VPN server vantage point and the content server, i.e.,

thCDN = thcURL, if thcURL ≪ th′
cURL (1)

Fortunately on most VPN servers, we have thcURL ≪
thV PN . This is reasonable as we will see in Section 6.2, the
throughput bottleneck is at the content server, on which our
image downloading request is competing the server’s band-
width with many other clients; moreover, the e-commerce
CDN may proactively throttle the per-flow bandwidth, so
as to ensure the service availability to as many users as
possible.

4.2.3 Probing E-Commerce Cloud
We consider the shopping cart service, which is essentially a
cloud database service, as an example to evaluate Tmall and
JD’s e-commerce clouds. We select the shopping cart service
for two reasons: First, it is the most requested e-commerce
cloud service by users; Second, the service demands timely
responses, that is, the e-commerce system will always seek
to respond a user’s shopping cart operation request im-
mediately, and if extraordinarily long latencies have been
detected, it’s a good indication that the e-commerce cloud is
overloaded.

Motivated by the above observation, we have developed
a probing program, which mimics a user’s shopping cart
operations by constructing the corresponding URLs and
JSON data as demonstrated in Table 1 to add items, remove
items, and query shopping carts on Tmall and JD. Fifteen
buyer accounts on each website from volunteers are em-
ployed in our study. In each probe, after connecting to a
VPN server, the probing program first clears the shopping
cart, then it adds a number of random items into the cart,
after the clearing and adding, the probing program queries
the shopping cart and measures the latency between the
time ti of issuing the query request and the time tr that the
response is received, as

lquery = tr − ti

Note that lquery includes the round trip time (RTT) rtt1
between our measurement computer and the VPN server,
the RTT rtt2 between the VPN server and the front-end
server, and the time lcloud for the e-commerce cloud to pro-
cess the query request and return the response. Therefore,
after each probe, we measure (rtt1 + rtt2) by pinging the
front-end server through the VPN server, and calculate the
cloud’s query response latency lcloud as

lcloud = lquery − (rtt1 + rtt2) (2)

5 CHARACTERIZING E-COMMERCE WORKLOAD

In this section, we analyze and characterize the e-commerce
workload from out collected datasets.

5.1 General Usage Pattern

We first study the overall e-commerce traffics. Fig. 4(a)
presents the Tmall and JD flows in the WEEK dataset from
Mar. 1 to Mar. 7, 2016 on an hourly basis, and in Fig. 4(b),
we present the e-commerce flows in every 10 minutes on
a normal weekday of Mar. 3. From the figures we can see
that the e-commerce workloads exhibit a strong diurnal pat-
tern, and there are more flows observed during weekdays
than weekends. By examining Fig. 4(b), which presents the
usages of the two e-commerce websites on a weekday, we
observe that more e-commerce workloads happen during
the working hours, suggesting that unlike online social
network and video streaming websites, which are visited
by users more frequently in their spare time (e.g., evenings,
weekends) [30] [31], campus users are more likely to visit the
e-commerce websites during breaks in their working hours.

In Fig. 4(c), we present the e-commerce flows of Tmall
and JD in the 24 hours of 2015’s Double-11 Shopping Day
(Nov. 11, 2015). By comparing Fig. 4(c) with Fig. 4(b),
one can see that for both e-commerce websites, there are
much more traffics in the Double-11 Day than in a normal
weekday. This is reasonable as many users visit Tmall and
JD in the Double-11 Day because of the promotions. Fig. 4(c)
also shows that the traffic peaks for both websites appear at
0:00, then drop quickly within the next a few hours, which
conforms to the sales growth in Fig. 1. The observation can
be explained with the fact that many campus users stay up
late on the night of Nov. 10, so that they can rush to buy as
soon as the discounted prices became effective at the very
beginning of the shopping festival.

From Fig. 4, one can see that Tmall and JD’s workloads
fluctuate very similar to each other. In fact, the Pearson
correlations between Tmall and JD’s workloads in Fig. 4(a)-
(c) are as high as 0.9871, 0.9792, and 0.9498 respectively.
The high correlations suggest that the two websites provide
very similar services, and are accessed by campus users in
almost a same way.

We also compare the campus traffic data with the public
available Double-11 sales data in [32], and find that the
four sales peaks, which happen in 0:00∼1:00, 8:00∼11:00,
15:00∼17:00, and 20:00∼22:00, all have their corresponding
traffic peaks in Fig. 4. By comparing the campus traffic with
the general sales data, we can see that our captured traffic
can present the general e-commerce behaviors very well.

5.2 PC and Smartphone Usage Patterns

In addition to web browsers, both Tmall and JD have
developed smartphone applications to enable users to shop
with their smartphones. We are interested to know whether
users with different devices access e-commerce services
differently.

The WEEK and D11 datasets captured by iProbe do not
contain any user device information. However, as demon-
strated in Table 1, when requesting some services, PC and
smartphone users employ different methods and URLs,
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Fig. 4. Tmall and JD’s traffics (a) in a week, (b) in a normal weekday, and (c) in the Double-11 Day.
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Fig. 5. Three types of JD service requests initialized from PC and
smartphone (a) in a week and (b) in the Double 11 Day.

which enable us to identify their devices. In our analysis,
we select three JD e-commerce cloud services, namely the
login service, the shopping cart service, and the checkout
service, and differentiate the requests initialized from PC
and smartphone respectively.

In Fig. 5(a), we present the PC and smartphone requests
in the WEEK dataset. We can see that in general, the campus
users prefer smartphone to PC, which conforms to the fact
that smartphone replaces PC to become the major Internet
access device in recent years. It is also observed that smart-
phones are heavily used in the evening and night, as the
requests from smartphones keep increasing and reach to a
peak around mid-night, while the PC usage declines since
early evening.

We also compare the PC and smartphone usages on the
Double 11 Day in Fig. 5(b). From the figure we can see that
there are more PC usages during the regular hours (i.e.,
morning, afternoon, and evening) than smartphone, as it
is convenient for users to use PC at their workplaces and
dorms to access the e-commerce websites. But during the
other time, smartphones are used more heavily. The most
obvious discrepancy between PC and smartphone usages
happens at late evening, as we can see that PC usage
starts to decline after 22:00, while usage from smartphones
begins to rise and reaches to the second highest peak of the
day, suggesting that many users switch to smartphones to
continue to access e-commerce websites at that time.

TABLE 2
Comparison of service requests in WEEK and D11 datasets.

WEEK D11
Browse an item 15, 631 16, 854
Shopping cart query/adding/removing 22, 633 38, 826
Checkout 1, 214 2, 015
Add an item to shopping cart 5, 368 8, 754
Items added / items browsed 0.343 0.519

5.3 Shopping Behavior

As in a conventional supermarket, there are a few steps for
a user to complete a purchase on Tmall or JD. First, a user
learns details of the products from their item pages; and if
interested, he clicks the “add to shopping cart” button on the
item page to add the item into his virtual shopping cart; the
user can examine and organize his shopping cart by adding
and removing items; finally, if the user decides to buy some
items, he can select them from the shopping cart, click the
“check out” button for the bill, and pay for them online.

In this subsection, we investigate the campus users’
shopping behaviors, in particular, we focus on the item
browsing, shopping cart query/adding/removing, and
checkouts that correspond to the major online shopping
steps. Since iProbe doesn’t record the JSON data exchanged
within a flow, we limit our scope to the requests issued from
PC Web browsers on JD, as the requests can be identified
with their URLs (Table 1).

In Table 2, we list the item browsing, shopping cart
query/adding/removing, and checkout requests in the
WEEK and D11 datasets. From the table one can see that
for all the services, there are more requests in a single
day of the Double-11 Day than in a week. As a user can
only browse one item and add one item to his shopping
cart per request, we also list the numbers of the shopping
cart adding requests, and compute the ratios between the
items added to shopping carts and the items browsed in
the two datasets. We find that in the WEEK dataset, the
ratio is 0.343, but in the D11 dataset, it is increased to 0.519,
suggesting that users are more willing to buy in the Double-
11 Shopping Day than usual.

We then study the item browsing activity. Fig. 6 presents
the frequencies of the items browsed by campus users in
the WEEK and D11 datasets. We find that in both datasets,
the item popularity follows a Zipf-like distribution with
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Fig. 6. Frequencies of items being browsed in (a) WEEK and (b) D11
datasets.

exponent about 0.6. We then examine the top-10 most
browsed items, and find that in the WEEK dataset, seven
of the top-10 most popular items are smartphones, and
the other three are food/fruit, which fit campus users’
consumption habits. On the other hand, the top-10 most
popular items on the Double-11 Shopping Day are more
diverse: besides smartphones, the 3rd to 6th most browsed
items are high-end liquors, while such items are rarely
browsed in the WEEK dataset. Further investigation shows
that these liquors have big price reductions in the Shopping
Festival. The discrepancy implies that the promotions of the
Double-11 Shopping Day significantly influence the campus
users’ shopping behaviors.

In Fig. 7, we decompose the shopping cart operations,
namely, adding, removing, query, and checkout, and present
numbers of each type of the requests in every 10 minutes in
the D11 dataset. From the figure we find that as many as
66.9% of the shopping cart operations are queries, while the
checkouts, which are critical to both users and e-commerce
providers, account for only 4.7% of the total requests. We
explain the frequent shopping cart queries with two reasons:
First, e-commerce users frequently compare new items they
are browsing with the ones they have added in their shop-
ping carts; Second, they frequently check whether the items
in their shopping carts are still available to buy, as in both
Tmall and JD, when an item is sold out, it will be marked as
“unavailable” in the cart.

By further examining Fig. 7, we find that 8.8% and 14.9%
of the shopping cart adding and checkout operations hap-
pen within the first hour (i.e., 0:00∼1:00) of the Double-11
Day. The observation suggests that a lot of users make their
purchase decisions at the very beginning of the shopping
festival, which also explains the rapid sales growth in Fig.
1. Clearly, such a rush buying behavior will impose a flash
crowd of service requests on the e-commerce systems.

5.4 Summary

We summarize our results on characterizing the e-commerce
workload as the following:

• Workload characteristic: Campus users are more likely
to visit the e-commerce websites in their work
breaks; PC and smartphone users access e-commerce
services differently; and there exists a Zipf-like pop-
ularity among the shopping items.

• Massive flash crowd: Promotions of the Double-11
Shopping Day attracts many users, who have more
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Fig. 7. Shopping cart adding, removing, query and checkout requests
on JD per 10 min. in D11 dataset.

diverse interests and are more willing to buy than
usual; most of the shopping cart operations are read-
only queries; and the rush buying behavior at the
very beginning of the shopping festival impose a
massive workload on the e-commerce systems.

6 EVALUATING E-COMMERCE INFRASTRUCTURE

In this section, we examine Tmall and JD’s e-commerce
infrastructures, including the CDNs and the clouds, and
evaluate their performances under various circumstances,
in particular, the massive flash crowd in the Double-11
Shopping Day.

6.1 E-Commerce Infrastructure Discovery

We first discover Tmall and JD’s e-commerce infrastructures
with active measurements. In our study, we employ 241
VPN servers from “517VPN”, which are distributed in 152
cities of 27 provinces and 40 autonomous systems (ASes) in
China, as our vantage points. For discovering the content
and front-end servers that are assigned to each vantage
point, we connect to the remote VPN servers, resolve the
domain names corresponding to various e-commerce ser-
vices, and collect the IP addresses returned from the vantage
points’ LDNS servers.

We perform the server discovery on Mar. 3, 2016, and
have collected 101 and 24 image content server IPv4 ad-
dresses for Tmall and JD respectively. Although JD has
fewer content server addresses, we find that all its addresses
are gateway addresses (i.e., the addresses in the form of
a.b.c.1), suggesting that these addresses may bind to
reverse proxies, each representing a cluster of real content
servers.

We then geo-locate the content servers with the method-
ology proposed in [28], and looks up the ASes they belong
to [33]. We cluster the content servers that are in a same AS
and a same city as a CDN node. As a result, for Tmall we
have clustered 52 CDN nodes, which are in 40 cities and 21
ASes; while for JD, the content servers are clustered into 21
nodes distributed in 16 cities and 14 ASes.

We also collect and geo-locate the front-end servers. For
JD, we find that all the front-end servers are located in Bei-
jing. While for Tmall’s shopping cart and checkout services,
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Fig. 9. Percentages of the image traffics from the top-5 CDN nodes in
(a) a normal weekday and (b) the Double-11 Day.

the front-end servers are co-locate with the content servers,
but for the other services, all the front-end servers are in
AS37963, the AS in Hangzhou operated by Alibaba. The
geo-locations of the front-end servers suggest that, Tmall’s
e-commerce cloud data center is at Hangzhou, while JD’s
data center is located in Beijing.

Note that we do not claim to have discovered all the in-
frastructures for Tmall and JD, but consider our findings as
a snapshot of their e-commerce systems. In fact, e-commerce
infrastructure evolves over time, as we will see in the fol-
lowing subsection, for accommodating the massive service
requests in the Double-11 Day, JD had greatly expanded
its e-commerce CDN footprint, while Tmall announces that
it operated two cloud data centers instead of one during
2015’s Double-11 Shopping Day [34].

6.2 Evaluating E-Commerce CDN

6.2.1 Passive Measurement

We employ the WEEK and D11 datasets to identify all the
CDN nodes of JD that satisfy campus users’ image requests.
Fig. 8 compares the CDN nodes that we have encountered
in every 10 minutes, in 2015’s Double-11 Shopping Day
and an ordinary weekday of Mar. 3, 2016, for 24 hours.
We can see that more CDN nodes are employed in the
Double-11 Day than usual. Moreover, the CDN nodes we
have encountered in the D11 dataset greatly exceed the total
number of the nodes that we have discovered in Section
6.1, suggesting that JD has greatly expanded its e-commerce
CDN footprint, for accommodating the explosive growth of
the content requests in the shopping festival.
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Fig. 10. Tmall and JD’s CDN throughputs thCDN collected from 160
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Fig. 11. (a) Tmall and (b) JD’s CDN throughputs thCDN collected from
Lanzhou, AS4134 in a normal weekday for 24 hours.

We then identify the top-5 CDN nodes that contribute
most image traffics in Nov. 11, 2015 and Mar. 3, 2016, and
present the ratio of the traffics from each node in 10-minute
intervals in Fig. 9 respectively. From the figures we can see
that in both days, about 70% of the traffics are from the
CDN node at Beijing, AS4538, probably because the node
is in a same AS as our campus network. However, it is
interesting to find that during the Double-11 Day, 4.2% of
the image traffics are from the node Los Angeles, AS15133,
and the AS belongs to EdgeCast, a commercial CDN in
North America. The observation implies that unlike the
distance and latency-based mappings that are observed in
previous studies [35] [36] [37], during the Double-11 Day,
JD’s e-commerce CDN adopts a capacity-based mapping by
redirecting clients to the CDN nodes that have spare capaci-
ties. Under such policy, spare oversea servers are scheduled
to satisfy the domestic content requests.

6.2.2 Active Measurement
CDN performance in usual time
We employ the methodology as described in Section 4.2 to
actively probe Tmall and JD’s e-commerce CDNs. From each
VPN server vantage point, we randomly select five high-
resolution images from our collection, and use Equation
(1) to estimate the throughput thCDN between the VPN
server and the CDN content server. The measurement was
performed in the afternoon of Mar. 3, 2016.

In Fig. 10, we present Tmall and JD’s CDN throughputs
collected from 160 VPN server vantage points. The VPN
servers are distributed in 104 cities and 32 ASes in China,
and from each VPN server, we have thcURL ≪ th′

cURL
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Fig. 12. Tmall and JD’s CDN throughputs thCDN collected from 41
vantage points under the Double-11 flash crowd.

for both e-commerce websites, ensuring that the collected
throughput is indeed the throughput between the VPN
server and the content server, i.e., thCDN = thcURL. From
the figure we can see that both CDNs have decent perfor-
mances: Tmall achieves an averaged CDN throughput of
302.14 kB/s and JD has 223.87 kB/s. We also find that on
many vantage points, Tmall has a higher throughput than
JD, probably because it has more CDN nodes that are more
proximate to our vantage points, as observed in Section 6.1.

We then select one VPN server, which is located in the
city of Lanzhou, AS4134, and continuously probe the e-
commerce CDNs for 24 hours starting from 13:00, Mar. 3,
2016. The results are presented in Fig. 11. Note that in the
figures we differentiate the CDN nodes that are assigned
to our vantage point, and mark them with different labels.
From the figures we can see that the CDN throughputs
thCDN vary significantly within the 24 hours, and exhibit
a strong diurnal pattern that is opposite to the workload
pattern in Fig. 4. In addition, although the CDNs assign
different content servers to our vantage point in different
hours, however, we believe that the bandwidth competition
at the content server is the major reason of the throughput
variances, as one can see from the figure, the throughputs
from a same CDN node also vary significantly in the peak
and off-peak hours.

CDN performance under Double-11 flash crowd
We probe Tmall and JD’s e-commerce CDNs since 0:00, Nov.
11, 2015, the very beginning of 2015’s Double-11 Shopping
Day. We employ 41 VPN servers, which are distributed in
37 cities and 13 ASes in China, as our vantage points. Fig.
12 presents the throughputs thCDN of the two CDNs that
we have collected from different vantage points. Comparing
with Fig. 10, we can see that both CDNs have much lower
throughputs, suggesting that the content servers were over-
whelmed by the massive content requests. Moreover, we
find that the performance of Tmall’s CDN is much more
stable than JD, as the throughputs from different Tmall CDN
nodes range between 8∼20 kB/s, which is quite stable; on
the other hand, the JD CDN’s throughputs vary greatly from
a few B/s to hundreds of kB/s, and from 16 of the 41
vantage points, the measured throughputs are lower than
1 kB/s. The observation suggests that during the peak hours
of the Double-11 Shopping Day, Tmall enforces a proactive
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Fig. 13. Tmall and JD’s CDN throughputs thCDN collected from (a)
Shanghai, AS4134, and (b) Mianyang, AS38283, during the Double-11
flash crowd.

per-flow bandwidth throttling on its content servers, so as
to guarantee a low but stable throughout for ensuring the
service availability; on the other hand, JD still follows the
best-effort way to provide content service under the Double-
11 flash crowd.

To better justify our point, we select two vantage points,
one is in Shanghai, AS4134 and the other is in the city
of Mianyang, AS38283. From the two vantage points we
continuously probe Tmall and JD’s e-commerce CDNs every
30 seconds, from 22:00, Nov. 10 to 4:00, Nov. 11, 2015,
which covers the Double-11 flash crowd. We present the
results in Fig. 13. Note that the y-axle is in log scale. From
the figures we can see that on the two vantage points,
the throughputs thCDN of Tmall’s e-commerce CDN are
quite stable between 10∼20 kB/s, confirming that Tmall
has enforced a proactive bandwidth throttling to provide
low but guaranteed throughput. On the other hand, the JD
CDN’s throughputs thCDN observed from the two vantage
points differ greatly: from the Shanghai vantage point, JD
has a much higher throughput than Tmall, as there are a few
JD CDN nodes located nearby; while from Mianyang, which
is far away from most of JD’s CDN nodes, the throughput
we have observed barely exceeds 1 kB/s after 0:00. The
observation confirms our analysis that under the Double-
11 flash crowd, Tmall enforces a proactive bandwidth throt-
tling on its CDN to provide a guaranteed service, while JD
still provides the service in a best-effort way.

6.3 Evaluating E-Commerce Cloud
In this section, we evaluate Tmall and JD’s e-commerce
clouds. We focus on the shopping cart service, which is
essentially a cloud database service, and apply Equation
(2) to estimate the latency lcloud between the time that the
e-commerce cloud receives a shopping cart query request
and it returns the response through the front-end server.
Since the shopping cart service is a real-time service, when
extraordinarily long latencies have been detected, it is a
good indication that the e-commerce cloud is overloaded.

Cloud performance in usual time
In our first measurement study, we connect to two VPN
servers, which are located in Shanghai, AS4812 and Wuhan,
AS4134, as our vantage points. We continuously probe
Tmall and JD’s shopping cart services every 5 minutes for
24 hours from Mar. 10 to Mar. 11, 2016, and plot the query
response latencies lcloud in Fig. 14. From the figures we can
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TABLE 3
Summaries of the shopping cart query response latencies.

Tmall JD
Vantage point Shanghai, AS4812 Wuhan, AS4134 Shanghai, AS4812 Wuhan, AS4134
Baseline latency lbase(ms) 178.46 174.21 108.11 94.48
Mean/std. latencies of lcloud in Double-11 Day (ms) 484.96/482.16 440.67/342.45 600.38/510.85 611.63/440.37
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Fig. 14. Shopping cart query response latencies lcloud on Tmall and JD’s e-commerce clouds and their hourly averages collected from Shanghai,
AS4812 and Wuhan, AS4134 in a normal weekday.
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Fig. 15. Shopping cart query response latencies lcloud on Tmall and JD’s e-commerce clouds collected from Shanghai, AS4812 and Wuhan,
AS4134 during the Double-11 flash crowd.

see that in the night and early morning hours, both clouds
have small and stable latencies, but during the daytime and
evening hours, a lot of long response latencies are detected.
We also plot the hourly averages of lcloud in the figures
for better demonstrating the differences. Our observation
suggests that, both Tmall and JD’s e-commerce clouds are
overloaded during the busy hours, and the cloud database
systems queue our shopping cart queries without process-
ing them immediately, resulting in the long latencies; on
the other hand, in the off-peak hours, the cloud system can
process most of our probing queries without delay, so we
have short and stable latencies as in Fig. 14. In the following,
we refer to the latency required for the e-commerce cloud to
respond the query when it is not overloaded as a baseline
latency of the shopping cart service, denoted as lbase.

To estimate lbase, we employ the measurement results
collected from the two vantage points between 0:00 and
7:00, filter out the outliers by removing a few samples that
are over twice of the median, and calculate the mean as the
baseline latency. Table 3 lists the baseline latencies for Tmall
and JD from the two vantage points, we can see that for each
e-commerce website, the estimations from different vantage
points are very close, suggesting that they are estimated
correctly.

Cloud performance under Double-11 flash crowd
We repeat the measurement experiments on Tmall and JD’s
shopping cart services between 22:00 Nov. 10 and 4:00 Nov.
11, 2015, which covers the Double-11 flash crowd. Fig. 15
presents the latencies lcloud collected from the Shanghai
and Wuhan vantage points, and compares them with the
baseline ones. From the figures we can see that, under the
Double-11 flash crowd, a lot of extraordinarily long latencies
have been detected, and the latencies vary significantly.
Table 3 lists the mean shopping cart query latencies and its
standard variances, which are of several times longer than
lbase.

Our observation suggests that both Tmall and JD have
difficulties in guaranteeing the quality in their e-commerce
cloud services, as it is very common for users to suffer
extraordinarily long transaction latencies. We believe that
the problem arises because the private e-commerce clouds
of Tmall and JD do not have sufficient capacities, especially
during the peak hours of the Double-11 Day.

6.4 Summary
We summarize our major results on evaluating Tmall and
JD’s e-commerce infrastructures as the following:

• E-commerce CDN: Both Tmall and JD’s e-commerce
CDNs have decent throughputs, but the perfor-
mances degrade significantly under the Double-11
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flash crowd, despite that the providers have ex-
panded the e-commerce CDN footprint and em-
ployed a capacity-based client mapping policy;
Tmall’s e-commerce CDN adopts a proactive per-
flow bandwidth throttling to provide low but guar-
anteed throughput, while JD still provides content
service in a best-effort way.

• E-commerce cloud: Both Tmall and JD’s private e-
commerce clouds do not have sufficient capacities
to guarantee the service quality in busy hours, and
users suffer extraordinarily long latencies in their e-
commerce transactions.

7 IMPLICATIONS

In this section, we discuss the implications from observa-
tions of our measurement study.We analyze the e-commerce
CDN design choices, and show that utilizing massive data
centers and employing DNS-based redirection are preferred
over their counterparts. We also investigate the benefits
of incorporating client-side assistances in offloading work-
loads from the e-commerce CDN and cloud under flash
crowd.

7.1 E-Commerce CDN Design Choices

7.1.1 Massive data centers vs. numerous small clusters
There have been a long-time debate on the CDN architecture
design [15]. One CDN design philosophy is to enter deep
into the ISPs, with Akamai as a representative example [8]
[38]. In such a CDN, content servers are deployed at point-
of-presences (PoPs) in as many ISPs as possible. By placing
content server clusters deep into the ISP networks, CDN
can deliver contents from the servers that are proximate
to users, thus provides good content delivery performances
regarding latency and throughput. The other design philos-
ophy, with Limelight [8] and Google [39] as examples, is to
bring ISPs to home. That is, a CDN build limited number of
massive data centers at a few key locations that are close
to many transit and eyeball ISPs’ PoPs, and connects to
them at these locations. The CDN design philosophy is mo-
tivated from the recent observations that majority of inter-
domain traffics on today’s Internet flow directly between
large content providers and consumer networks, and the
global Internet becomes flatter with ISP networks peering
with each other much more densely, due to the reasons such
as the emerging Internet exchange points (IXPs) [40].

Both CDN designs rely on a mapping system to assign
clients to CDN nodes for serving their content requests. As
we have seen in Section 6.2, an e-commerce CDN under
massive flash crowd employs a capacity-based mapping
policy, which assigns clients to CDN nodes that have spare
capacities. Such a mapping policy requires that, the global
load-balancer of the CDN must accurately estimate real-time
capacity of each CDN node, so as to make the “right” assign-
ments. Clearly, when there are errors in the estimations, the
CDN will either overload some CDN nodes, or leave some
other nodes under-utilized.

With the above consideration, we argue that for an e-
commerce CDN under flash crowd, the design choice with
massive data centers is preferred. Note that the benefit

brought by the CDN design with numerous clusters, that
is, to serve clients from proximate servers, no longer exists
under the capacity-based mapping, as under such a policy,
it is common to assign clients to distant servers with spare
capacities. More importantly, with a small number of mas-
sive data centers, the influence of capacity estimation errors
can be considerably reduced, comparing with estimating
capacities of numerous small clusters.

We demonstrate the benefit of massive data centers with
a simple analysis. Suppose a CDN has n clusters of content
servers deployed in a geographical region, with the ith

cluster having a spare capacity of ci(t) at time t. The CDN
makes an capacity estimation as c′i(t) = ci(t)±∆ci(t), where
±∆ci(t) is the estimation error. For all the n clusters, the
sum of the estimation errors should be

∆C(t) =
n∑
i

∆ci(t)

However, when the n small clusters are “merged” into one
massive data center, given the same estimation errors for
the clusters as ±∆ci(t), the aggregated error for the merged
data enter becomes

∆C ′(t) =

√√√√ n∑
i

(∆ci(t))2

Mathematically, ∆C ′(t) is smaller than ∆C(t) as n > 1. For
example, if ∆ci(t) = ∆c(t) for all the clusters, we have

∆C ′(t) =
∆C(t)√

n

In other words, the error for estimating n small clusters is√
n times of the error for estimating one massive data center

of a same overall capacity. From the analysis, we can see that
comparing with a CDN of numerous small clusters, a CDN
that employs a few massive data centers is more robust
against capacity estimation errors, thus can assign clients
to nodes more accurately according to their capacities.

7.1.2 DNS-based redirection vs. anycast redirection
Another CDN design choice is how to redirect clients to
content servers. CDNs such as Akamai employ the DNS-
based redirection by resolving CNAMEs to IP addresses of
content servers based on its mapping policy (e.g., latency-
based or capacity-based mapping) [41]. Some other CDNs
such as Bing apply the anycast redirection [37]. Anycast is a
routing strategy where same IP address is announced from
many locations throughout the Internet. Then BGP routes a
client to one location with the best BGP path to the client.

Obviously for an e-commerce CDN that adopts the
capacity-based mapping policy, it must use the DNS-based
redirection, so as to dynamically change its mapping deci-
sions based on the real-time capacities of the CDN nodes.
If the CDN uses the anycast redirection, clients will always
be redirected to the nodes of the best BGP path, regardless
the nodes’ capacities. For example, with anycast redirection,
a CDN will never redirect domestic content requests to an
oversea CDN node, as we have observed on JD’s CDN in
Section 6.2, since the oversea node has an obvious longer
BGP path.
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Fig. 16. CDN throughput per request achieved with peer-assisted e-
commerce content distribution, under various list length of k.

7.2 Client-side Assistance
As observed in our measurement study, both the e-
commerce CDN and cloud do not have sufficient capacities
for serving the massive workloads in the Double-11 Day,
leading to poor service performances. In this subsection, we
investigate the benefits brought by incorporating assistances
from clients. More specifically, we consider to use peers
to help to distribute the static e-commerce contents, and
use local database to handle the read-only shopping cart
queries. We analytically show that by involving the client-
side assistances, considerable workloads on the e-commerce
CDN and cloud can be offloaded.

7.2.1 Offloading e-commerce CDN workload
We suggest that during massive flash crowd, each e-
commerce client caches large-sized e-commerce contents
such as high-resolution images that it has ever downloaded
in its local storage, and uses the cached replicas to serve
subsequent requests from other clients. An e-commerce
CDN’s content server works as a tracker in the peer-assisted
content distribution by keeping a list L of up to k recent
clients that have downloaded and cached the content. When
a new request for the same content arrives at the server, the
server returns L, and the requesting client contacts the peers
in the list for the content.

With simple analysis, we can derive that with the peer
assistances, the fraction of the content requests that are
served by peers can be expressed as

rCDN =
M∑
i=1

pi × (1− (1− q)
ni) (3)

In the above equation, M is the total number of contents, pi
is the probability of the ith popular content being requested
as shown in Fig. 6, q is the probability that a client is unable
to serve for reasons such as NAT or becoming offline, and
ni is the expected number of the peers that can serve the ith

popular content, calculated as

ni = min{k,N × (1− (1− pi)
s}

where N is the number of the clients covered by the tracker
server and s is the local cache size.

We show the effectiveness of the peer-assist e-commerce
content distribution with numerical results. We assume that
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Fig. 17. Comparison of the baseline latency and the response latencies
with and without local database for shopping cart cloud service.

without peer assistance, each content request has a 15 kB/s
throughput, as we have observed on Tmall’s CDN in Section
6.2.1. With a faction rCDN of content requests as in Equa-
tion (3) being offloaded, the content server’s bandwidth is
shared among the remaining (1 − rCDN ) fraction of the
requests. In Fig. 16, we show the throughput per request
under various list lengths k. With M = 10, 000, N = 1, 000,
s = 20, and q = 0.5. From the figure we can see that
by tracing no more than 5 recent requesting clients, the
e-commerce CDN’s throughput for each request can be
considerably improved to over 60 kB/s.

7.2.2 Offloading e-commerce cloud workload
We then consider improving the e-commerce cloud services,
in particular, the shopping cart service. From Fig. 7 one can
see that among all the shopping cart service requests, 66.9%
are read-only queries, which do not incur any update on
users’ shopping cart data, or the provider’s inventory and
sales database in the e-commerce cloud.

Motivated by the observation, we suggest that e-
commerce client maintains a local database for the shopping
cart service: when a user issues a shopping cart adding, re-
moving, or checkout service request, the request is handled
by the cloud database, and local database synchronizes with
the cloud database immediately; however, local database di-
rectly handles a user’s shopping cart query requests without
involving the cloud. The e-commerce cloud also proactively
updates a client’s local database when an item in the user’s
shopping cart is sold out, or its price has been changed. Note
that comparing with shopping cart queries, such incidents
happen rarely.

As in previous work [22], we model an e-commerce
cloud as an M/M/1 queueing system, whose expected
service response latency can be expressed as

latency =
1

µ− λ
(4)

where µ is the service rate of the e-commerce cloud, and λ
is the arrival rate of the service requests.

We employ our measurement results in Section 6.3 to
estimate the M/M/1 parameters. For estimating the service
rate µ, we use the baseline latency in Table 3 as the time that
M/M/1 serves a request without queueing, i.e., 1

µ = lbase.
For estimating λ, we use the mean latency measured under
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the Double-11 flash crowd in Table 3 (denoted as ld11),
and let 1

λ+µ = ld11. Note that λ is the rate of all types
of shopping cart operations, including adding, removing,
query, and checkout. After applying the local database,
since the shopping cart queries are handled locally, the new
service request arrival rate becomes λ′ ≈ 0.331× λ, and the
cloud’s service response latency is reduced to

latency′ =
1

µ− λ′ (5)

We estimate the M/M/1 parameters with the measure-
ment results collected from Shanghai, AS4812, and compare
the service response latencies for Tmall and JD, with and
without applying the local database strategy respectively in
Fig. 17. We also present the baseline latencies for compari-
son. From the figure we can see that by employing a local
database to handle the read-only queries, service response
latency can be significantly reduced.

We recognize that both the peer-assisted content distri-
bution and the local database introduce additional com-
plexities and management overheads. For example, for
providing content service with peer-cached replicas, the e-
commerce system must ensure the integrity of the cached
replica against malicious content pollution, and preserve
users’ privacies. While for applying the local-database strat-
egy, the e-commerce cloud must trace user’s device for
accessing the e-commerce cloud service, and proactively
synchronizes local databases with the cloud database when
user switches his access device, or uses multiple devices
simultaneously. However, given the poor service qualities
as we have observed during the Double-11 Shopping Day,
which potentially causes huge income loss for e-commerce
provider [3], we believe that such complexities and over-
heads are worthwhile.

8 CONCLUSION

In this paper, we present a measurement study on the
e-commerce systems of Tmall and JD, the top-two most
popular e-commerce websites in China. We analyze the e-
commerce workloads that are collected from our campus
network, and investigate the behaviors and performances of
the e-commerce infrastructures, including the e-commerce
CDNs and clouds, with passive and active measurements.
In particular, we analyze the massive flash crowd of e-
commerce workload in 2015’s Double-11 Shopping Day,
which is the biggest online shopping festival in the world,
and evaluate the e-commerce systems’ performances during
the Double-11 Day’s peak hours.

We discuss implications of the observations from our
measurement study. We analyze that the design choices
of utilizing massive data centers and DNS-based redirec-
tion are preferred for e-commerce CDNs, and by involving
client-side assistances, considerable e-commerce workloads
on both CDN and cloud can be potentially offloaded. Our
study provides insights on the e-commerce workload and
infrastructure, and is valuable in the design and manage-
ment of large-scale e-commerce systems.

For the future work, we seek to collect e-commerce
traffics from more locations by deploying iProbe at a few
ISP point-of-presences (PoPs), and analyze usage patterns

and shopping behaviors of residential users. We also seek
to investigate logs of content and front-end servers from a
commerce CDN that carries e-commerce traffics, infer the
e-commerce service qualities, and identify the bottlenecks.
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