
1

Per-flow Network Measurement with Distributed Sketch
Liyuan Gu, Ye Tian, Member, IEEE, Wei Chen, Zhongxiang Wei,

Cenman Wang, Xinming Zhang, Senior Member, IEEE

Abstract—Sketch-based method has emerged as a promising
direction for per-flow measurement in data center networks.
Usually in such a measurement system, a sketch data structure
is placed as a whole at one switch for counting all passing pack-
ets, but when summarizing measurement results from multiple
switches, the overall accuracy is generally constrained by a few
individual switches with small-sized sketches due to their limited
memory resources. To address this problem, in this paper, we
present Distributed Sketch, a new method for per-flow network
measurement in data center networks. In Distributed Sketch,
each network path is associated with a logical sketch, whose
data structure is collectively maintained by all the switches
along the path; meanwhile, each switch multiplexes its physical
sketch to the constructions of the logical sketches of all the
paths it belongs to. With Distributed Sketch, switches collaborate
to measure network flows, and the network-wide measurement
workload is fairly distributed among all the switches in the
network. We implement Distributed Sketch with P4 on com-
modity hardware programmable switch, and in particular, to
overcome the limitation that hardware switches do not support
float-point computation, we present an optimal approximation
method that involves only integer operations. We also propose an
In-band Network Telemetry (INT) based method for addressing
the challenges in deploying Distributed Sketch in large-scale
data centers. Experiment results and theoretical analysis show
that our proposed method is lightweight regarding measurement
overhead, and by aggregating and making fair uses of resources
from all the switches in the network, Distributed Sketch achieves
a higher measurement accuracy compared with the state-of-the-
art solutions.

Index Terms—Per-flow network measurement, distributed
sketch, programmable switch, network collaboration

I. INTRODUCTION

PER-flow measurement, which aims to estimate the size of
each flow in the network, has a wide range of applications

in data center networks. Examples include counting active
flows [1], finding heavy hitters [2], [3], identifying persistent
flows [4], and detecting heavy changes [5], etc.

In recent years, sketch-based method has become a promis-
ing direction for per-flow measurement [6]–[16]. In such
a system, a probabilistic data structure, namely sketch, is
maintained by switch for aggregating per-flow statistics. Ex-
isting sketches could be roughly divided into two categories:
classical sketches and recently proposed advanced sketches.
Classical sketches such as count-min (CM) [17], CU [18],

This work was supported in part by the National Natural Science Foun-
dation of China (NSFC) under Grants 61672486 and 62072425 and in
part by the Strategic Priority Research Program of the Chinese Academy
of Sciences under Grant XDC02070300. (Corresponding author: Ye Tian
(yetian@ustc.edu.cn).)

The authors are with the Anhui Key Laboratory on High-Performance
Computing, School of Computer Science and Technology, University of
Science and Technology of China, Hefei, Anhui, China, 230026. (email:
{guliyuan1, szcw33, wz199758, wangcenman}@mail.ustc.edu.cn, {yetian,
xinming}@ustc.edu.cn)

and Count [19] associate multiple bucket arrays with hash
functions. When receiving a packet, a switch computes hash
values from the packet’s flow ID, locates a bucket from each
sketch array and updates the bucket value. Although easy
to implement, however, a classical sketch typically requires
a large memory for ensuring its estimating accuracy, as all
its buckets are equal-sized and must be large enough for
accommodating an elephant flow.

On the other hand, traffic in real-world networks is com-
posed of a few elephant flows and a large amount of mice flows
[20], [21]. By exploiting such a fact, a number of advanced
sketches have been proposed in recent years [10]–[16], [22].
Typically, such a sketch uses multiple layers of basic sketch
structures for counting flows of different sizes with different-
sized counters. For example, TowerSketch [15] uses different-
sized counters in different arrays under the property that bits
used in each array stays the same; the Elastic sketch [10]
employs a hash table and a CM sketch to measure elephant
and mice flows respectively, and differentiates the flows with
a voting-based mechanism. For both classical and advanced
sketches, the larger a sketch is, the more accurate it can
estimate with fewer hash collisions. Unfortunately, a commod-
ity hardware programmable switch (e.g., the Barefoot Tofino
switch [23]) usually has limited SRAM memory varying from
a few kB to dozens of MB, which prohibits it to host a large
sketch.

Most existing measurement systems place a sketch data
structure, which could be either a classical or an advanced
sketch, as a whole at one switch for counting all passing
packets, and use multiple switches at strategic positions to
collectively measure the entire network’s traffic. To recover
errors from measurement data, a number of control plane
algorithms have been proposed [22], [24]–[26]. Neverthe-
less, with a few switches hosting small-sized sketches due
to their limited memory resources, the overall measurement
accuracy is constrained, and the control plane algorithms can
only mitigate such inaccuracy. Moreover, since switches work
independently, packets passing multiple switches would be
counted repeatedly, and considerable measurement workload
is redundant.

In this paper, we present Distributed Sketch, a new method
for per-flow network measurement. Rather than placing a
sketch as a whole at one switch, in Distributed Sketch, each
network path is associated with a logical sketch, whose data
structure is collectively maintained by all the switches along
the path. Meanwhile, a switch that is crossed by multiple
paths multiplexes its physical sketch to participate in the
constructions of the logical sketches for all these paths. With
Distributed Sketch, switches collaborate to measure network
flows, and the network-wide measurement workload is fairly

2

distributed among all the switches according to their mem-
ory resources, topological positions, as well as their current
workloads.

Distributed Sketch has the following merits: First, it im-
proves utilizations of the scarce in-switch memory resources,
as in Distributed Sketch, rather than making inaccurate estima-
tions, a switch with limited memory resource can collaborate
with other switches by taking a fair share of the global work-
load, and perform measurement in a distributed and collective
manner. Second, by involving resources from many switches
and allowing them to collaborate, Distributed Sketch is capable
to aggregate more resources for measuring network flows,
therefore provides a higher network-wide accuracy. Third, Dis-
tributed Sketch avoids the redundant measurement workload,
as the workload is exclusively distributed to the collaborating
switches, thus switches can avoid double counting packets
while ensure a complete flow coverage. Fourth, Distributed
Sketch can be easily implemented on hardware programmable
switches, without requiring any additional capability (such
as the support of float-point computation) from commodity
devices. Finally, Distributed Sketch imposes reasonable costs
on switches as well as the measurement control plane, and is
practical to be deployed in a large-scale data center networking
environment. In the design and implementation of Distributed
Sketch, we have made the following key contributions.

• Design: We introduce the concepts of the logical path
sketch and the physical switch sketch as building blocks
of Distributed Sketch, and propose a novel method for
allowing switches to collaboratively construct logical
sketches associated with network paths. In particular, we
establish methods for mapping logical sketch buckets to
physical sketch cells, and develop techniques to improve
the mapping fairness across the switches in the network.

• Implementation: We implement a Distributed Sketch
prototype composed of control and data plane compo-
nents, and realize the data plane on P4-programmable
switches. In particular, to overcome the problem that
existing hardware programmable switches do not sup-
port float-point computation, we develop an approxima-
tion method that involves only integer operations, and
minimize the approximation error. We also discuss the
challenges in deploying Distributed Sketch in large-scale
data center networks, and propose a solution based on
In-band Network Telemetry (INT).

• Analysis and evaluation: We theoretically prove that
Distributed Sketch has a lower error bound than alterna-
tive solutions; and by conducting extensive experiments
driven by real-world traffic traces, we show that Dis-
tributed Sketch achieves a higher measurement accuracy
compared with the state-of-the-art solutions.

To our best knowledge, Distributed Sketch is the first
comprehensive per-flow measurement solution that is based
on splitting sketch structure for aggregating and making fair
use of resources from all the switches across the network,
and is practical to be implemented on commodity hardware
programmable switches and deployed in data center networks.
For the remainder part of this paper, Sec. II discusses the

related works; We present the design and analysis of Dis-
tributed Sketch in Sec. III; Sec. IV describes the system
implementation and discusses the practical deployment issues;
We evaluate Distributed Sketch in Sec. V and conclude this
paper in Sec. VI.

II. RELATED WORK

A. Sketch-based Network Measurement

With the development of Software-defined Networking
(SDN) and data plane programmability, sketch-based method
is considered as a promising direction for fine-grained mea-
surement in data center networks. However, a drawback of the
classical sketches of CM [17], CU [18], and Count [19] is their
low switch memory utilizations. To overcome this problem,
Liu et al. [7] assign sketches to switches by solving an integer
linear programming (ILP) problem under the constraint of
the switches’ available memories. Huang et al. [8] present
SketchVisor, which augments a conventional sketch with a
fast path for tracing large flows. Yang et al. [10] propose a
generic sketch named Elastic sketch that differentiates large
flows from small ones, and is adaptive to traffic variances.
Yang et al. [11] design the Diamond sketch for dynamically
assigning appropriate amount of resources to each flow on
demand. Liu et al. [12] propose a new sketch called the
Slim-Fat (SF) sketch that improves measurement accuracy
without sacrificing the update and query speeds. Zhang et al.
[13] propose the On-Off sketch by modifying and extending
the classical CM sketch to achieve a smaller error and a
higher throughput. Zhang et al. [14] design CocoSketch that is
capable to support partial key queries. Yang et al. [15] propose
a novel sketch named TowerSketch that records flows using
counters of different sizes. Li et al. [16] present Pyramid, a
framework that improves both accuracy and throughput via
counter sharing. However, most existing works require that an
individual switch should host a complete sketch, therefore the
network-wide measurement accuracy is constrained by a few
switches that have limited memory resources.

B. Coordinated Measurement

Some works exploit the fact that network flows pass mul-
tiple switches, and propose methods for coordinating mea-
surement activities on multiple switches or correlating the
measurement results. These works can be generally divided
into three categories.

1) Merging distributedly collected measurement data: In
this category, each switch independently measures passing
packets, and reports measurement data to a centralized ana-
lyzing server. The server merges and correlates the data to
recover errors and improve the estimating accuracy.

To report measurement data, Harris et al. [27] develop a
method that allows an individual switch to choose a ratio to
compress its local sketch. For merging and correlating mea-
surement data, Li et al. [24] employs a coding-based scheme
to encode measurement data at switches and decode data
from multiple switches at the control plane. Basat et al. [26]
propose to sample packets at switches, and develop control
plane algorithms to merge the samples for flow size estimating.

3

However, [26] is difficult to be realized on hardware data
plane, as O(log n) bits are required on a switch for storing
each flow’s sampled packets, where n is the upper bound of
the flow size, but for a hardware switch, it is infeasible to
know n and allocate memory in advance. We stress that the
control plane algorithms for error recovery are orthogonal to
Distributed Sketch, as the latter seeks to improve measurement
accuracy by enabling collaborations among the switches on
data plane.

2) Distributing measurement workload by dividing net-
work flows: To fairly distribute measurement workload to all
switches along a network path, one approach is to equally
divide the flows among the switches, so that each flow is
counted by one and only one switch. For example, Yu et
al. [9] simply divide network flows between ingress and
egress switches. Basat et al. [28] propose that each switch
measures a number of carefully selected flows, and switches
use a random algorithm to avoid double counting without
explicit coordination. A drawback of [28] is that a complete
flow coverage can not be realized due to randomness of the
algorithm, and as a result, the algorithm must run alongside
with a full-coverage measurement system like FlowRadar [24],
which definitely increases the workload and resource usages
on each individual switch.

3) Distributing measurement workload by splitting sketch
structure: Another approach for distributing measurement
workload is to split sketch structure and host parts of the
sketch on multiple switches. In particular, the work that is most
similar to us is DISCO [29], in which the authors propose to
allow each switch on a flow’s forwarding path to store one
or multiple rows of a classical CM sketch, thus distribute the
workload across the switches. However, [29] only considers
one single path, and restricts the collaboration within that path;
in addition, by placing sketch rows on switches arbitrarily,
the measurement workload is distributed in an unbalanced
way. Cornacchia et al. [30] show that even with a simple bus
topology, DISCO can not effectively measure network flows
on different paths, and suggest that sketch parameters should
be configured with an awareness of the traffic characteristic;
unfortunately, such an awareness can not be obtained before
conducting the measurement. Different from previous works,
in this paper, we consider per-flow measurement for the
entire network, and fairly distribute the global measurement
workload to all the switches in the network. As far as we know,
our work is the first comprehensive solution based on splitting
sketch structure for fairly distributing measurement workload
across the network, and is practical to be implemented on
commodity hardware programmable switches and deployed in
large-scale data centers.

III. DESIGN AND ANALYSIS

In this section, we first describe the key concepts in Dis-
tributed Sketch and present its basic design (Sec. III-A); then
we describe how the network-wide measurement workload is
distributed among the switches (Sec. III-B); finally, we analyze
the estimating accuracy theoretically (Sec. III-C). Table I lists
the notations frequently used in this paper.

TABLE I
FREQUENTLY USED NOTATIONS

Notation Meaning
Ap Logical path sketch of path p = (s1, · · · , sl)
Bj Physical switch sketch of switch sj on path p
d Num. of rows in a path sketch or a switch sketch
w Num. of columns in a path sketch
wj Num. of columns in the switch sketch of Bj

αj@p, βj@p Parameters of bucket mapping interval for sj on path p
Bj [i][rij(f)] Switch sketch cell to which Ap[i][hi(f)] is mapped

when applying the interval-based mapping
nj@p Num. of columns in path sketch Ap that are mapped to

sj on path p
Lj@p,Rj@p Parameters of approximation mapping for sj on path p
Bj [i][r

′
ij(f)] Switch sketch cell to which Ap[i][hi(f)] is mapped

when applying the approximation mapping

A. Basic Design

1) Path sketch and switch sketch: Without loss of general-
ity, we define an undirected path p = (s1, · · · , sl) as a fixed
sequence of switches in the network, where s1 and sl are
the switches connecting to the origins and destinations of the
network flows on the path. Given a path p, we envision that
all its switches collectively maintain a logical count-min (CM)
sketch, which is referred to as the path’s path sketch, denoted
as Ap. A path sketch has d rows and w columns of logical
buckets, and all paths in the network have their path sketches
of same structure, i.e., d×w, regardless of their path lengths.

Being a classical CM sketch, a path sketch is associated
with d pair-wise independent hash functions, denoted as hi(·),
i = 1, · · · , d. A hash function takes the flow ID (i.e., the 5-
tuple) as input and computes a hash value in the range of
{1, · · · , w}. Logically, when receiving a packet of flow f , the
path sketch applies hi(·) on f ’s flow ID, locates the d buckets
Ap[i][hi(f)], i = 1, · · · , d, and increments the bucket values.
When querying f , the path sketch returns mini{Ap[i][hi(f)]}
as the estimation. All paths in a network have their path
sketches associated with a same set of hash functions, which
are globally known to all the switches in the network.

A switch s in the network maintains d rows and ws columns
of physical cells, with each cell a b-bit counter. We refer to
the d× ws cell matrix as the switch’s switch sketch, denoted
as Bs. Unlike the logical path sketch, a switch sketch is a
physical data structure in the switch’s SRAM memory. Note
that all the switches in the network have d rows of cells, which
is same to the path sketches, but different switches may have
different ws, i.e., columns of cells, as it depends on a switch’s
available SRAM memory resource.

For a network path p, we aim to construct its path sketch
Ap collectively on the physical switch sketches of B1, · · · ,Bl

along the path. Since Ap is a logical sketch, we set its column
number w sufficiently large. More specifically, we require that
for any path p = (s1, · · · , sl), w ≫ Σl

j=1wj , which means
that on any network path, there should be far more logical
path sketch buckets than the physical sketch cells from all the
switches along the path combined. Note that in Distributed
Sketch, although a path sketch is collectively constructed with
the switch sketches along the path, however, a switch sketch
is not dedicated to one path, but is utilized for constructing

4

path sketches of all the paths it belongs to.
2) Bucket mapping and sketch operation: A switch sj on a

path p maintains two parameters in [0, 1] for the path, denoted
as αj@p and βj@p, with αj@p ≤ βj@p. The two parameters
are used to determine whether a bucket from the path sketch
Ap should be maintained by a cell in sj’s switch sketch Bj .
We refer to the interval between the two parameters as sj’s
bucket mapping interval on path p, denoted as [αj , βj]@p.

For collectively constructing Ap on B1, · · · ,Bl, we require
that the bucket mapping intervals of the switch sketches along
a path are mutually exclusive and collectively cover [0, 1], i.e.,{

[αj , βj]@p ∩ [αk, βk]@p = ∅, ∀j, k ∈ {1, · · · , l}, j ̸= k∪l
j=1[αj , βj]@p = [0, 1]

(1)
Given the conditions in (1), in the following, we describe

how the insert and query operations on the path sketch Ap

can be collaboratively realized by the switch sketches. We
will describe the methods for assigning the bucket mapping
intervals that satisfy (1) to switches in Sec. III-B.

• Insert operation: When a switch sj on the path p
receives a packet of flow f forwarded along the path,
for each hash value hi(f), sj checks if

⌊αj@p · w⌉+ 1 ≤ hi(f) ≤ ⌊βj@p · w⌉ (2)

where ⌊·⌉ returns the nearest integer. If yes, sj computes

rij(f) =

⌊
hi(f)− ⌊αj · w⌉ − 1

⌊βj · w⌉ − ⌊αj · w⌉ − 1
× (wj − 1)

⌉
+ 1 (3)

to map the path sketch bucket Ap[i][hi(f)] to the switch
sketch cell Bj [i][rij(f)], and increments the cell value.
The packet is forwarded to the next hop after sj has
checked all the hash values hi(f), i = 1, · · · , d with
its bucket mapping interval [αj , βj]@p and updated the
corresponding cells.

• Query operation: Switches report their switch sketches
to analyzing servers periodically. When querying a flow
f that is forwarded along the path p, for each logical
path sketch bucket Ap[i][hi(f)], the analyzing server first
locates the switch sj to which Ap[i][hi(f)] is mapped to
with (2), then it applies (3) to find the cell Bj [i][rij(f)]
in sj’s switch sketch. The size of flow f is estimated as
mini{Bj [i][rij(f)]}.

Since the mapping from path sketch buckets to switch
sketch cells are determined by the bucket mapping intervals,
we refer to the above described method as interval-based
mapping. In Fig. 1, we use an example to demonstrate how
the method works. As shown in Fig. 1(a), in a network
composed of five switches, we consider two paths, denoted
as p1 = (s1, s3, s4) and p2 = (s2, s3, s5). For p1, we suppose
that the bucket mapping intervals assigned to s1, s3, and s4
are [α1, β1]@p1 = [0.0, 0.4], [α3, β3]@p1 = [0.4, 0.6], and
[α4, β4]@p1 = [0.6, 1.0]; and the intervals assigned to s2, s3,
and s5 on p2 are [0.0, 0.4], [0.4, 0.6], and [0.6, 1.0] respectively.
Note that since s3 is on two paths, it maintains two bucket
mapping intervals, one for each path, and its switch sketch
B3 is multiplexed to construct both Ap1

(together with B1

s1
s5

B1

B5

Ap1

Ap2

p1: s1--s3--s4, 100k flows

p2: s2--s3--s5, 100k flows

s3
s2

B3

B2

s4

B4

 1@p1 1@p1 3@p1 3@p1 4@p1 4@p1

 2@p2 2@p2 5@p2 3@p2 3@p2 5@p2

Path ID [,]

p1 [0.0, 0.4]

Path ID [,]

p2 [0.0, 0.4]

Path ID [,]

p1 [0.4, 0.6]

p2 [0.4, 0.6]

Path ID [,]

p1 [0.6, 1.0]

Path ID [,]

p2 [0.6, 1.0]

s1

s2

s3

s4

s5

(a)

+1

+1

packet +1

+1

Ap1

B1 B3 B4

h1(f)

h2(f)
path sketch

switch sketches

mapping mapping

(b)

Fig. 1. A demonstrating example of Distributed Sketch and interval-based
mapping.

and B4) and Ap2 (together with B2 and B5) simultaneously.
Obviously, the bucket mapping intervals on both paths satisfy
the conditions in (1).

An insert operation is demonstrated in Fig. 1(b). Suppose
that w = 10 for the path sketch, and s1, s3, and s4 have
w1 = w3 = w4 = 2 columns of physical cells in their switch
sketches. For a network flow f on p1, if h1(f) = 9 and
h2(f) = 5, according to the bucket mapping intervals assigned
to s1, s3, and s4 and by applying the interval-based mapping in
(2) and (3), the logical path sketch bucket Ap1

[1][9] should be
mapped to the physical switch sketch cell B4[1][2] on switch
s4, and Ap1 [2][5] should be mapped to B3[2][1] on s3. The
two switch sketch cells should be incremented each time a
packet of f travels along the path.

When querying the size of flow f , the analyzing server
simply applies the interval-based mapping to locate B4[1][2]
and B3[2][1] that Ap1

[1][9] and Ap1
[2][5] are mapped to, and

returns min{B4[1][2],B3[2][1]} as the estimation.
For the collectively constructed path sketch, we have the

following result.

Theorem 1. For a network flow f on a path p = (s1, · · · , sl)
whose path sketch Ap is constructed by applying the interval-
based mapping under the conditions in (1), each insert or
query operation of f on Ap maps the flow consistently to
d fixed physical switch sketch cells in d different arrays on
B1, · · · ,Bl.

Proof. The proof is contained in the Supplementary Material.

Theorem 1 indicates that functionally, a collectively con-
structed path sketch is equivalent to a conventional CM sketch

5

TABLE II
COMPARISON OF WORKLOAD DISTRIBUTIONS UNDER VARIOUS

MEASUREMENT METHODS FOR NETWORK IN FIG. 1.

s1 s2 s3 s4 s5
Count-at-core 0 0 200k 0 0
Count-at-edge 100k 100k 0 0 0
Count-everywhere 100k 100k 200k 100k 100k
Flow-divide 33.3k 33.3k 66.7k 33.3k 33.3k
Distributed Sketch 40k 40k 40k 40k 40k

placed at one single switch.
3) Workload distribution: The mapping from path sketch

buckets to switch sketch cells decides how a path’s measure-
ment workload is distributed to the switches along the path.
To show this, look at the bucket mapping intervals assigned to
the switches in Fig. 1(a) and suppose that the paths p1 and p2
each has 100k flows. For the 100k flows on p1, by applying
the interval-based mapping, s1, s3, and s4 take measurement
workloads equivalent to counting 40k, 20k, and 40k flows
respectively; and for the 100k flows on p2, 40%, 20%, and
40% of the path’s workload is imposed on s2, s3, and s5
respectively. For the entire network, each switch takes a fair
share of the global workload equivalent to counting 40k flows,
as listed in Table II.

For comparison, we consider the conventional approach that
places a sketch entirely at one switch for counting all passing
packets. In particular, we compare Distributed Sketch with
three typical sketch placement strategies, namely a) count-at-
core, b) count-at-edge, and c) count-everywhere. In the count-
at-core strategy, a sketch is placed at the core switch of s3 to
measure the traffic on the paths of p1 and p2; in the count-
at-edge strategy, sketches are placed at the edge switches of
s1 and s2 to measure the flows on p1 and p2 respectively;
and the count-everywhere strategy places a sketch at every
switch in the network. Inspired by [28], we also consider an
ideal strategy named flow-divide, which evenly partitions the
network flows along a path among the switches. Under the
flow-divide strategy, each switch on paths p1 or p2 measures
a disjoint set of 1/3 flows on the path, and the three switches
collectively cover all the flows on p1 or p2.

Table II lists the measurement workload imposed on each
switch in Fig. 1(a) under various strategies. We can see that
with the conventional approaches, the measurement workload
is distributed in an unbalanced way, as a switch takes ei-
ther no measurement workload, or a much heavier workload
by counting all passing packets without collaborating with
other switches; moreover, under the count-everywhere strategy,
considerable measurement workload is redundant. The flow-
divide strategy avoids redundant measurement workload, but
the global workload is distributed unevenly. On the other hand,
with the bucket mapping intervals as assigned in Fig. 1(a),
the network-wide measurement workload is fairly distributed
among the five switches, and redundant workload is avoided.

B. Assigning Bucket Mapping Intervals

Our study in the previous section suggests that the bucket
mapping intervals assigned to switches should achieve two
objectives: First, the assignment should satisfy the conditions

in (1), i.e., the intervals should be mutually exclusive and
collectively cover [0, 1]; second, the assignment should facili-
tate the global measurement workload to be fairly distributed
to all the switches in the network, as we have seen in Fig.
1 and Table II. In the following, we first present a method
that assigns bucket mapping intervals to switches based on
switches’ memory resources and topological positions, then
we incorporate their measurement workloads to adjust the
assignment.

1) Topology-based interval assignment: In the topology-
based assignment, for each switch s, we first compute its
betweenness centrality σs, which is defined as the number
of the distinct undirect paths crossing s in the network [31].
Note that a switch’s betweenness centrality is static as long
as the topology is unchanged, regardless of the traffic on the
paths.

Then for the switches on a network path p = (s1, · · · , sl),
we compute their bucket mapping intervals on p as

α1@p = 0, βl@p = 1

αj@p =

∑j−1
k=1

1
σk

×wk∑l
k=1

1
σk

×wk
, for j = 2, · · · , l

βj@p =

∑j
k=1

1
σk

×wk∑l
k=1

1
σk

×wk
, for j = 1, · · · , l − 1

(4)

where wk is the number of the columns in sk’s switch sketch
and σk is sk’s betweenness centrality.

The assignment in (4) achieves the above-mentioned ob-
jectives. First, the intervals [αj , βj]@p, j = 1, · · · , l satisfy
the conditions in (1). Second, the length of a switch’s bucket
mapping interval, i.e., (βs@p− αs@p), is proportional to ws

and inversely proportional to σs, which means that a switch
with a larger physical sketch will take more measurement
workload, and a switch on many paths will take less workload
compared with the ones that are crossed by fewer paths.

We use the example in Fig. 1 to demonstrate how to
assign the bucket mapping intervals. Since there are 6 undirect
paths in the network, i.e., (s1, s3, s4), (s2, s3, s5), (s1, s3, s2),
(s4, s3, s5), (s1, s3, s5), and (s2, s3, s4), for the 5 switches,
their betweenness centralities are σ1 = σ2 = σ4 = σ5 = 3,
and σ3 = 6. Suppose w1 = w2 = w3 = w4 = w5 = 2, then
for any 3-hop path in the network, such as p1 and p2 in Fig.
1(a), by applying (4), we assign an interval of [0.4, 0.6] to s3,
and the two intervals of [0.0, 0.4] and [0.6, 1.0] are assigned
to the two edge switches of the path respectively, as shown in
Fig. 1(a).

2) Workload-aware adjustment: The topology-based
method in (4) computes bucket mapping intervals based on
switches’ sketch sizes and betweenness centralities, both are
static properties. However, in real-world networks, traffic is
distributed unevenly and change dynamically [20], [32]. For
example, if the 100k flows on path p2 in Fig. 1(a) complete
soon after the interval assignment and there are only the
100k flows on path p1 left in the network, then the interval
assignment in Fig. 1(b) is no longer optimal, as s1 and s4
each takes a measurement workload of counting 40k flows,
while s3 counts only 20k flows. Obviously in this case, after
the flows on p2 complete, the assignment should be adjusted
to [0, 1

3], [13 ,
2
3], and [23 , 1] on s1, s3, and s4 respectively.

6

From this example, we can see that it is necessary to consider
the switches’ measurement workloads and adjust the mapping
interval assignments dynamically.

We suppose that each switch in the network has two iden-
tical switch sketch instances, when one instance is active, the
other is backup. The switch swaps its two instances in rounds:
after every T seconds, the backup instance becomes active
and measures network flows with a set of bucket mapping
intervals that are newly assigned by the measurement control
plane; while the original active instance becomes backup, and
the switch clears all its cells after reporting the counter values
to the analyzing server.

We propose that each switch continuously monitors number
of the cells in the switch’s active sketch instance that are
occupied with measurement data, and computes an occupation
ratio for the switch as

ρs =
num. of occupied cells on switch s

d× ws

With the occupation ratios, for the switches on a network
path p = (s1, · · · , sl), the measurement control plane assigns
their bucket mapping intervals for the next round as

α1@p = 0, βl@p = 1

αj@p =

∑j−1
k=1

1
σk

×wk× 1

ρ
γ
k∑l

k=1
1

σk
×wk× 1

ρ
γ
k

, for j = 2, · · · , l

βj@p =

∑j
k=1

1
σk

×wk× 1

ρ
γ
k∑l

k=1
1

σk
×wk× 1

ρ
γ
k

, for j = 1, · · · , l − 1

(5)

where ρk is switch sk’s occupation ratio and γ ≥ 0 is a
parameter controlling the aggressiveness of the adjustment.
The assignment in (5) is easy to understand: among all the
switches along a path, the higher occupation ratio a switch
has comparing with the other switches, the smaller bucket
mapping interval (and consequently, a lighter workload) it will
be assigned in the next round.

One requirement for dynamically adjusting the interval as-
signment is that switches should be synchronized to swap their
sketch instances. We believe that this is not an issue, as the
state-of-the-art Precision Time Protocol (PTP) can provide a
nanosecond-scale time synchronization for networked devices
[33]. Even without time synchronization, the controller can
configure switches with new bucket mapping intervals ahead of
time, and instructs all the switches to swap at a same moment.

Another issue is that during a packet’s journey along a
network path, the controller instructs the switches along the
path to swap their sketch instances. In this case, the packet
will be counted by some switch sketch instances before the
swap and by some other instances after the swap. One possible
solution is that when a packet is forwarded by the first-hop
switch, the switch stamps the packet with the current round
number, and when a down-stream switch receives the packet,
it checks the round number, and counts the packet with the
corresponding switch sketch instance, regardless whether the
instance is backup or not. However, although the method
ensures that a packet is counted by switch sketch instances of a
same round, it can not solve the problem completely, as when
a sketch instance becomes backup, the switch starts to send it,
either in pieces [34] or as a whole [10], to analyzing servers. If

data in a switch sketch cell has already been transferred to the
analyzing server, any subsequent updates on it is meaningless.
Nevertheless, the number of the packets impacted by such an
error is up to the flow’s bandwidth delay product (BDP), which
is small because of the short RTTs and shallow switch buffers
in data center networks [35]. For example, with a typical path
RTT of 200 µs [36], for a network flow of 100Mbit/s, its BDP
is less than 2 MTU-sized packets, or in other words, the flow
has at most 2 packets that might pass switch sketch instances
of different rounds and be counted mistakenly.

C. Accuracy Analysis

Intuitively, by aggregating resources from multiple switches,
Distributed Sketch would achieve a higher measurement accu-
racy than the conventional approaches that place a complete
CM sketch at one single switch. In the following, we formally
analyze the measurement accuracy, and without loss of gener-
ality, we consider a network path p = (s1, · · · , sl), on which
a switch sj has d × wj sketch cells. We have the following
result.

Theorem 2. For a network flow f on path p, let nf be
f ’s ground-truth size, and let n̂f be its size estimated by
Distributed Sketch, then for any ε > 0, we have

Pr [n̂f > nf + εN] ≤
(

1

εW

)d

where W =
∑l

j=1 wj and N is the total number of the packets
traveled along the path.

Proof. The proof is contained in the Supplementary Material.

Theorem 2 indicates that under Distributed Sketch, the
measurement accuracy on a network path p directly depends
on the aggregated size of the switch sketches along the path.
If we apply the count-at-core or count-at-edge strategy, then
from Theorem 2, it is easy to see that

Pr [n̂f > nf + εN] ≤
(

1

ε× ws

)d

where ws is the column number of the CM sketch at the core
or edge switch. While with the count-everywhere strategy that
places a CM sketch at each switch along the path, we have

Pr [n̂f > nf + εN] ≤
(

1

ε×maxs∈p{ws}

)d

Since W =
∑l

j=1 wj > maxs∈p{ws} ≥ ws, one can see
that Distributed Sketch has an lower error bound than the
conventional CM placement strategies.

IV. IMPLEMENTATION

In this section, we present the implementation of Distributed
Sketch. In particular, to overcome the problem that hardware
programmable switches do not support float-point computa-
tion [37], [38], we present an approximation method that
involves only integer operations to map logical sketch buckets
to physical sketch cells, while minimizes the approximation

7

error. We also discuss the challenges for practically deploying
Distributed Sketch on large-scale data center networks, and
propose an In-band Network Telemetry (INT) based solution.

A. Approximation Mapping

From Sec. III-A, one can see that for implementing Dis-
tributed Sketch, a programmable switch needs to: a) maintain
a counter array as the switch sketch in its SRAM memory;
b) perform hash computations on each packet’s flow ID; and
c) check whether a logical path sketch bucket is mapped to a
cell in its switch sketch, locate the cell and update its value.
Note that both a) and b) are also required when implementing
a classical CM sketch on a hardware programmable switch
(e.g., the Barefoot Tofino switch), and have been successfully
realized in previous works (e.g., [10] and [39]). However, it is
challenging to realize c), as the interval-based bucket mapping
as described in Sec. III-A2 involves float-point computations in
(2) and (3), while unfortunately, most hardware programmable
switch architectures do not support float-point types [37], [38].
For example, the P4-programmable Portable Switch Archi-
tecture (PSA) [40] allows only integer addition/subtraction
and arithmetic bit-shift equivalent to multiplication/division by
power of 2, and on a programmable switch following the PSA
architecture, such as the Barefoot Tofino switch, it is infeasible
to program (2) and (3), which contain float-point computa-
tions, directly in P4 actions. To overcome this problem, in the
following, we present an approximation method that involves
only integer operations for mapping path sketch buckets to
switch sketch cells.

To restrict the computation to integer operations, we require
that on each switch sj in the network, the number of the
cell columns in its switch sketch should be power of 2, i.e.,
wj = 2mj , where mj ∈ N0 is an integer no smaller than 0.
Moreover, we require that for a network path p = (s1, · · · , sl),
after the approximation mapping, 2nj@p columns in the path
sketch buckets in Ap are mapped to the switch sketch Bj on
sj , where nj@p is an integer no smaller than mj . Clearly, for
B1, · · · ,Bl along the path,

∑l
j=1 2

nj@p = w.
Recall that when applying the interval-based mapping as in

Sec. III-A2, (⌊βj@p·w⌉−⌊αj@p·w⌉+1) columns of the path
sketch Ap are mapped to sj . To compare the approximation
mapping with the interval-based mapping, for each switch, we
compute approximation error as the difference ratio between
the numbers of the path sketch columns that are mapped to a
same switch sj by the two methods, which is defined as

∆j =
|(⌊βj@p · w⌉ − ⌊αj@p · w⌉+ 1)− 2nj@p|

w

where w is the column number of the path sketch.
For the network path p = (s1, · · · , sl), our objective is to

find the approximation mapping that is closest to the bucket
mapping intervals of [αj , βj]@p computed with (4) or (5), in
terms of the aggregated approximation error. To achieve this
goal, we need to find nj@p for each switch sj along the path,

s1 s2 s3 s4 s5

Fig. 2. Comparison between interval-based mapping and approximation
mapping on a 5-hop network path.

such that the aggregated approximation error is minimized.
Formally, the problem is

minimize
∑l

j=1 ∆j

s.t.
∑l

j=1 2
nj@p = w

nj@p ≥ mj = log2 wj

nj@p ∈ N0

(6)

After solving the problem in (6) and having obtained the
solution (n1, · · · , nl)@p, for each switch sj along the path,
the measurement control plane computes two integers as:

Lj@p =
∑j−1

k=1 2
nk@p + 1

Rj@p =
∑j

k=1 2
nk@p

(7)

and use them as well as nj@p to realize the insert and query
operations on Ap with B1, · · · ,Bl as the following.

• Insert operation: When a switch sj on path p receives
a packet of flow f forwarded along the path, sj checks
if

Lj@p ≤ hi(f) ≤ Rj@p (8)

If yes, it computes

r′ij(f) =
hi(f)− Lj@p

2(nj@p−mj)
+ 1 (9)

maps Ap[i][hi(f)] to Bj [i][r
′
ij(f)], and increments the

switch sketch cell Bj [i][r
′
ij(f)], for i = 1, · · · , d.

• Query operation: When querying flow f , the analyzing
server applies (8) and (9) to locate the mapped switch
sketch cells, and returns mini{Bj [i][r

′
ij(f)]} as the esti-

mation.
Note that both (8) and (9) involve only integer operations,

thus can be directly programmed as match+action entries on
hardware programmable switches. Moreover, since the integer
sets of {Lj , Rj}@p, j = 1, · · · , l, are disjoint and collectively
constitute {1, ..., w}, and the computation in (9) is determinis-
tic, similar to Theorem 1, it can be proved that by applying the
approximation mapping method, a path sketch constructed by
the switch sketches along the path is functionally equivalent
to a conventional CM sketch.

In Fig. 2 and Table III, we demonstrate an example of
the approximation mapping. We consider a 5-hop network

8

TABLE III
DETAILS OF INTERVAL-BASED MAPPING AND APPROXIMATION MAPPING ON THE 5-HOP PATH IN FIG. 2.

Switch s1 s2 s3 s4 s5
[αj , βj]@p [0.0, 0.1346] [0.1346, 0.4145] [0.4145, 0.4509] [0.4509, 0.7309] [0.7309, 1.0]
nj@p, Lj@p, Rj@p 13, 1, 8192 14, 8193, 24576 13, 24577, 32768 14, 32769, 49152 14, 49153, 65536
r′ij(f)

hi(f)−1

23
+ 1

hi(f)−8193

23
+ 1

hi(f)−24577

25
+ 1

hi(f)−32769

23
+ 1

hi(f)−49153

23
+ 1

path as p = (s1, s2, s3, s4, s5), where each switch hosts a
switch sketch of different sizes with wj varying between 28

and 211. The path sketch is configured to have w = 216

columns of logical buckets. Suppose that by applying (4)
or (5), the measurement control plane assigns each switch a
bucket mapping interval [α, β], which we present in Fig. 2 and
list in the 2nd row of Table III. By solving the optimization
problem in (6) with [αj , βj]@p as the parameters, we have
obtained nj@p, Lj@p, and Rj@p for each switch, and list
them in the 3rd row of Table III. We also present the 2nj@p

columns of the path sketch Ap that are mapped to each switch
in Fig. 2 for comparison. From the figure we can see that
the mapping decided by the approximation method is very
close to the one decided by the interval-based method. In
the last row of Table III, we derive the formulas based on
(9) with nj@p, Lj@p, and Rj@p as the parameters for each
switch to map path sketch buckets to its switch sketch cells.
We can see that all the formulas involve only hash functions,
integer additions/subtractions, and bit-shift operations, which
are natively supported by nearly all commodity hardware
switches.

For a concrete instance, consider a network flow f on
the 5-hop path in Fig. 2, which has a hash value h1(f) =
26, 876. When applying the interval-based mapping, since
α2@p < h1(f)

w < β2@p, the logical path sketch bucket
Ap[1][26876] should be mapped to the switch sketch cell
B2[1][2016] on s2. But with the approximation mapping, as
L3@p < h1(f) < R3@p, Ap[1][26876] is now mapped to
B3[1][72] on s3 according to the formula of (hi(f)−24577

25 +1)
as listed in Table III.

We recognize that the approximation mapping does not
strictly enforce the bucket mapping intervals as computed with
(4) or (5) on switches, therefore the measurement accuracy
may be slightly impacted as the workload is not distributed
as fairly as under the interval-based mapping. However,
the approximation mapping involves only integer operations,
which makes it feasible to be programmed on hardware
programmable switches. We will evaluate and compare the
two mapping methods in Sec. V.

B. System Prototype

We have implemented a Distributed Sketch system proto-
type as demonstrated in Fig. 3. The system contains both
control plane and data plane components. The measurement
control plane contains the modules for computing betweenness
centrality and solving the integer optimization problem in (6).
More importantly, the control plane maintains two tables, a
path table and a switch table. The path table associates each
flow with a network path that it travels along, and the table

Switch Table ControllerPath Table

Flow ID Path ID

f1 p1

f2 p2... ...

Switch ID Mapping

s@p1 s@p1, s@p1, ns@p1, Ls@p1, Rs@p1

s@p2 s@p2, s@p2, ns@p2, Ls@p2, Rs@p2... ...

Computation

& Optimizer

Match Action

f1 update_SSC (s@p1, s@p1)

f2 update_SSC (s@p2, s@p2)... ...

Match Action

f1 update_SSC (Ls@p1, Rs@p1, ns@p1)

f2 update_SSC (Ls@p2, Rs@p2, ns@p2)... ...

Software switch s Hardware switch s

//action executed on switch s

action update_SSC(,)

for i=1… d do

if check hi(f) with (2)

compute ris(f) with (3);

 update Bs[i][ris(f)];

//action executed on switch s

action update_SSC(L, R, n)

for i=1… d do

if check hi(f) with (8)

compute r is(f) with (9);

 update Bs[i][r is(f)];

runtime protocol
Control plane

Data plane

Fig. 3. System overview of Distributed Sketch.

is updated each time a new flow is planned in the network or
an inactive flow is evicted.

The switch table keeps the parameters for each switch on
a path. More specifically, for switch s on path p, its table
entry contains αs@p, βs@p, ns@p, Ls@p, and Rs@p, in which
αs@p and βs@p are computed by applying (4) or (5), ns@p is
obtained by solving the optimization problem in (6), and Ls@p
and Rs@p are computed with (7). The parameters are used
for software or hardware switches to map logical path sketch
buckets to their switch sketch cells, following the interval-
based mapping or the approximation mapping methods as
described in Sec. III-A2 and Sec. IV-A respectively.

In the data plane, we define a new action namely
update_SSC for locating and updating the switch sketch
cells. As shown in the pseudo code in Fig. 3, the action
is implemented differently on software or hardware pro-
grammable switches. On a software switch, the action checks
each hash value hi(f) with (2), and applies (3) to locate and
update the mapped switch sketch cells; while on a hardware
programmable switch, the action applies (8) and (9), which
involve only integer operations, to locate and update the
mapped switch sketch cells in its SRAM.

The Distributed Sketch system imposes reasonable costs on
both the data plane and the measurement control plane. On
the data plane, a switch s only needs to maintain O(|Fs|)
match+action entries, where Fs is the set of the concurrent
active flows passing s, which is up to a few thousands in a
large data center network and can be easily accommodated
by a commodity programmable switch [35]. On the control
plane, the path table has a size of O(|F| × |P|), and the size
of the switch table is O(|S| × |P|), where F, P, and S are the

9

s1

...

Controller

config

s2

config config

s3 sl

w1, 1, 1

w1, 1, 1

w2, 2, 2

(1, 1, n1, L1, R1)@p

(2, 2, n2, L2, R2)@p

...
(l, l, nl, Ll, Rl)@p

w1, 1, 1

w2, 2, 2

w3, 3, 3

config

Fig. 4. Computing parameters and configuring switches in distributed manner.

sets of the active flows, paths, and switches in the network
respectively. Note that a large-scale data center network may
contain billions of paths [41], which result in a large-sized path
table and switch table. Fortunately, as we will discuss in the
next section, the two tables can be maintained in a distributed
manner.

Our system prototype contains the P4-implementations ver-
ified on bmv2 [42] and the Edgecore Wedge 100BF-32X
Tofino-based hardware switch [23], and we have shared the
code to the community1.

C. Deployment Issues

For practically deploying Distributed Sketch in a large-scale
data center network environment, there are a few challenges.
The first challenge is how to maintain the large-sized path
and switch tables on the measurement control plane. One
naive way is to keep the two tables with a centralized cluster,
however, such an approach requires a dedicated infrastructure
and imposes non-trivial overhead.

We propose to maintain the path and switch tables in a
distributed manner. In particular, we require each switch that
acts as the last hop of a path be responsible for maintaining
the path and switch table entries for that path. Since a
undirect path has two last-hop switches and the measurement
parameters in Distributed Sketch are updated in rounds, the
two last-hop switches can take turns to be in charge, that is,
in even rounds, the switch at one end computes and configures
the parameters for all the switches along the path, and in odd
rounds, the switch at the other end takes the responsibility.

More specifically, consider a path p = (s1, · · · , sl) as
shown in Fig. 4, on which s1 and sl are the last-hop switches
responsible for the current and next rounds respectively. We
employ INT to allow each switch s to insert the its local states
of ws, σs, and ρs, which are the parameters for computing the
mapping intervals in (5), to the INT fields in packet header.
After collecting the local states of all the switches along the
path, both s1 and sl can apply (5), (6), and (7) to compute the
parameters of αs@p, βs@p, ns@p, Ls@p, and Rs@p for each
switch s on the path. Before a new round starts, the responsible
last-hop switch sends the parameters to the network controller,
which uses them to configure all the switches along the path. In
addition, when a switch detects a new path that it is in charge
of, it computes the parameters, and contacts the controller to
configure the switches along the path immediately.

1https://github.com/DpintHPCC416/Distribute

s17

s1

s3

s2

s4

s5

s7

s6

s8

s9

s11

s10

s12

s13

s15

s14

s16

s18 s19 s20

Core

Aggregation

Edge

Fig. 5. FatTree testbed.

TABLE IV
CONFIGURATIONS OF CM, TOWERSKETCH, AND ELASTIC SKETCH

INSTANCES ON SWITCHES OF DIFFERENT MEMORY SIZES.

Sketch columns ws 28 29 210 211 212

Mem. size 2 kB 4kB 8kB 16kB 32kB
CM (buckets) 2×28 2×29 2×210 2×211 2×212

Tower top (buckets) 28 29 210 211 212

Tower bottom (buckets) 29 210 211 212 213

Elastic light (buckets) 2×29 2×210 2×211 2×212 2×213

Elastic heavy (entries) 50 100 200 400 800

An issue of the above approach is that when a new path
appears in the network and some packets start to travel along it
before the path is configured by Distributed Sketch, the packets
will not be counted by any switch sketch. To overcome this
problem, we suggest that each first-hop switch maintains a
stand-alone sketch, which could be either a classical sketch
or an advanced one, and when a network flow is missed by
Distributed Sketch without matching any match+action entry
on the first-hop switch, it is counted by the stand-alone sketch.
Note that since only the packets in a short interval before a
new path is configured by Distributed Sketch are counted, the
stand-alone sketch does not need to maintain large counters,
and could be small in size.

V. EVALUATION

In this section, we evaluate our proposed Distributed Sketch
method with experiments. In particular, we construct a data
center network testbed, apply our proposed method for con-
ducting representative per-flow measurement tasks, and com-
pare it with the state-of-the-art alternative solutions.

A. Experiment Setup and Metrics

We emulate a data center network with a FatTree topology
[43] using Mininet [44]. As shown in Fig. 5, the network is
composed of 20 P4-programmable switches [42], denoted as
s1–s20. Hosts connect to edge switches, and there are a total
number of 112 distinct undirect paths in the network: 8 one-
hop paths connecting hosts in same subnets, 8 3-hop paths
between intra-pod hosts, and 96 5-hop paths connecting inter-
pod hosts.

Switches in the FatTree network have different memory
sizes for hosting sketch data structures. More specifically, in
Distributed Sketch, a switch s is configured to maintain d rows
and ws columns of 32-bit counters in its switch sketch, where
d = 2 and ws is randomly selected from {28, 29, 210, 211, 212}.

10

TABLE V
COMPARISONS OF PER-PACKET MEASUREMENT OVERHEADS ON AN l-HOP

PATH FOR DIFFERENT METHODS.

Mem. accesses Hash calls
Distributed-hardware d l
CM-at-core d 1
CM-at-edge d 1
CM-everywhere d× l l
Tower-at-core d 1
Tower-at-edge d 1
Tower-everywhere d× l l
Elastic-at-core 1 to (1 + d) 1
Elastic-at-edge 1 to (1 + d) 1
Elastic-everywhere l to l × (1 + d) l

We compare Distributed Sketch with the alternative network
measurement strategies as discussed in Sec. III. When apply-
ing these strategies, we choose an instance of the classical
CM sketch [17], or the recently proposed advanced sketches
of TowerSketch [15] or Elastic sketch [10] to place at each in-
dividual switch. Note that similar to our proposed Distributed
Sketch, TowerSketch contains only counters, but Elastic sketch
records flow IDs for elephant flows. For ensuring a fair
comparison, each type of sketch on a switch is constrained by
the switch’s memory size. More specifically, the CM sketch on
switch s has d = 2 rows and ws columns of 32-bit buckets;
a TowerSketch instance on switch s has d = 2 arrays: the
top array contains ws 32-bit buckets, and the bottom array
contains 2 × ws 16-bit counters, as suggested in [15]; for an
Elastic sketch placed on s, its light part is composed of d = 2
rows and 2 × ws columns of 8-bit buckets, which consumes
50% of the switch’s memory, and the heavy part consumes the
other 50% memory with a hash table, where each table entry
is 162 bits2. The detailed configurations of the sketches are
listed in Table IV.

We evaluate and compare the following 12 per-flow mea-
surement methods.

• Distributed-software: In this method, we first obtain the
bucket mapping intervals for each switch in the network
using (4) or (5), then we apply the interval-based mapping
as elaborated in Sec. III-A2 to measure the network flows.
For each path in the network, we set w = 216 for the
logical path sketch.

• Distributed-hardware: In this method, we first apply (4)
or (5) to obtain the bucket mapping intervals for each
switch, then we apply the approximation mapping as
described in Sec. IV-A to perform the measurement. The
other parameters are same as in Distributed-software.

• CM/Tower/Elastic-at-core: In CM-at-core / Tower-at-
core / Elastic-at-core, the core switches of the FatTree
network, i.e., s17, s18, s19, and s20, each hosts an instance
of CM sketch / TowerSketch / Elastic sketch as configured
in Table IV to perform the measurement.

• CM/Tower/Elastic-at-edge: In CM-at-edge / Tower-at-
edge / Elastic-at-edge, a CM sketch / TowerSketch /

2A table entry in the Elastic sketch heavy part contains a 5-tuple flow ID,
two 32-bit counters, and a 1-bit flag. We use 32 bits for an IP address, 16
bits for a TCP/UDP port, and one bit to indicate the protocol, therefore the
total entry size is 162 bits.

Elastic sketch instance is placed at each edge switch in
the FatTree network, i.e., s1, s2, s5, s6, s9, s10, s13, and
s14, for measuring network flows that pass them.

• CM/Tower/Elastic-everywhere: In CM-everywhere /
Tower-everywhere / Elastic-everywhere, each switch in
the FatTree network employs a CM sketch / TowerSketch
/ Elastic sketch instance to measure the network traffic.
If a flow is counted by multiple switches, we take the
minimum as the estimating result.

• CM-flow-divide: Inspired by [28], in CM-flow-divide,
each switch along a k-hop path maintains a CM sketch,
and we assume that each switch ideally selects a disjoint
set of 1/k flows on the path to perform the measurement.

We apply the above 12 methods to perform the following
representative per-flow measurement tasks.

• Flow size estimation: In this task, we estimate a flow’s
size and compare it with the ground truth. We use the
metric of Averaged Relative Error (ARE) to evaluate the
measurement accuracy, which is defined as

ARE =
1

|F|
∑
f∈F

|nf − n̂f |
nf

where nf and n̂f are the ground-truth and estimated sizes
of flow f , and F is the set of the flows in the network.

• Heavy hitter detection: This task seeks to identify the
heavy hitter flows, which are defined as the top 10%
largest flows in F. We use the F1-score to assess the
detecting accuracy.

• Flow size distribution estimation: We use the Weighted
Mean Relative Error (WMRE) to measure the discrep-
ancy between an estimated flow size distribution and the
ground truth as

WMRE =

∑
i |mi − m̂i|∑
i(

|mi+m̂i|
2)

where mi and m̂i are the ground-truth and estimated
numbers of the flows of size i.

We use the publicly available MAWI packet trace [45]
captured from the WIDE backbone to drive our experiments.

B. Measurement Overhead

Before presenting the experiment results, we first analyze
the per-packet measurement overhead of different methods
under the evaluation. We consider a network flow forwarded
along an l-hop path, and examine the overhead including
memory accesses and hash computations needed in handling
each packet, as they are the major components of the measure-
ment overhead [46]. For memory accesses, with our proposed
Distributed-hardware method, all the l switches collectively
access d switch sketch cells per packet; while in CM-at-core,
CM-at-edge, and CM-everywhere, each switch accesses d
CM sketch buckets per packet, therefore for the l-hop path,
the memory accesses are d, d, and d× l respectively.

Tower-at-core, Tower-at-edge, and Tower-everywhere in-
cur same numbers of per-packet memory accesses as the
methods of CM-at-core, CM-at-edge, and CM-everywhere,

11

1 2 3 4 5 6 7 8

x 10
4

10
-1

10
0

10
1

10
2

Num. of flows

A
R

E

CM-at-core

CM-at-edge

CM-everywhere

CM-flow-divide

Distributed-software

Distributed-hardware

(a) Flow size estimation

1 2 3 4 5 6 7 8

x 10
4

0

0.2

0.4

0.6

0.8

1

Num. of flows

F
1
-s

c
o
re

(b) Heavy hitter detection

1 2 3 4 5 6 7 8

x 10
4

0

0.5

1

1.5

2

Num. of flows

W
M

R
E

(c) Flow size distribution estimation

Fig. 6. Measurement accuracies for (a) flow size estimation, (b) heavy hitter detection, and (c) flow size distribution estimation tasks accomplished by
CM-at-core, CM-at-edge, CM-everywhere, CM-flow-divide, Distributed-software, and Distributed-hardware when measuring various numbers of flows.

0

0.5

1

CM-at-core

0

0.5

1

CM-at-edge

0

0.5

1

CM-everywhere

0

0.5

1

CM-flow-divide

O
c
c
u

p
a

ti
o

n
 r

a
ti
o

0

0.5

1

Distributed-software

2 4 6 8 10 12 14 16 18 20
0

0.5

1

Distributed-hardware

Switch index

Fig. 7. Bucket/cell occupation ratios of CM-at-core, CM-at-edge,
CM-everywhere, CM-flow-divide, Distributed-software, and Distributed-
hardware.

as the two sketches only differ in sketch structure and hash
functions, but have same procedure in updating sketch buckets.

Under the Elastic-at-core, Elastic-at-edge, and Elastic-
everywhere schemes, when receiving a packet, each switch
first accesses the hash table in the heavy part of its hosted
Elastic sketch, if missed, it then accesses d buckets in the
light part, therefore the per-packet memory access overhead is
1 or 1 + d on each switch.

For the hash computation overhead, a recent study [46]
suggests that a switch can consolidate multiple hash functions
into one hash call by dividing and reusing the result, therefore
a switch needs to compute only one hash value per packet.
We do not examine CM-flow-divide as it is an ideal method.

Table V summarizes the per-packet memory access and hash
computation overheads of different measurement methods over
an l-hop path. From the table one can see that our pro-
posed Distributed-hardware method does not introduce ex-
tra computation overhead compared with CM/Tower/Elastic-
everywhere; moreover, its memory access overhead is compa-
rable to the approaches that employ only one switch along the
path, i.e., CM/Tower/Elastic-at-core and CM/Tower/Elastic-
at-edge, and is much lighter than CM/Tower/Elastic-

everywhere whose memory access overheads increase with
path length.

C. Experiment Results

We evaluate and compare accuracies of different methods
in accomplishing the measurement tasks. In our experiment,
we select 10, 000 to 80, 000 flows from the MAWI trace and
evenly divide them to the 112 paths in the FatTree network.
Each experiment lasted 10 seconds, and was repeated 15
times. For the methods based on Distributed Sketch, i.e.,
Distributed-software and Distributed-hardware, we apply
(4) to compute the bucket mapping intervals.

1) Comparison with CM-based methods: Fig. 6 presents
ARE, F1-score, and WMRE of the measurement tasks
achieved by the CM-at-core, CM-at-edge, CM-everywhere,
CM-flow-divide, as well as our proposed Distributed-
software and Distributed-hardware methods. From the fig-
ures one can see that CM-everywhere considerably out-
performs CM-at-core and CM-at-edge, CM-flow-divide
also has a good performance, and Distributed-software
and Distributed-hardware are significantly more accurate
than the other solutions. The better performance of CM-
everywhere over CM-at-core and CM-at-edge is easy to
understand, as in CM-everywhere, a network flow is indepen-
dently measured by up to five switches along its forwarding
path, therefore its estimation accuracy is largely decided by the
largest sketch along the path, but in CM-at-core and CM-at-
edge, the CM sketch at the core or edge switch has a random
size, which could be small and inaccurate.

Distributed-software and Distributed-hardware outper-
form CM-everywhere for the reason that they employ all
the cells from the switches along the path, which far ex-
ceed the buckets of the largest CM sketch. Distributed-
software/hardware also outperform the CM-flow-divide
method, despite that the latter employs all the switches in the
network. The reason behind is that CM-flow-divide simply
equal-divides flows among the switches, but does not consider
each switch’s memory resource and topological position, thus
distributes the measurement workload unfairly among the
switches. We find that Distributed-hardware is only slightly
less accurate than Distributed-software, suggesting that the

12

1 2 3 4 5 6 7 8

x 10
4

10
-1

10
0

10
1

10
2

Num. of flows

A
R

E

Tower-at-core

Tower-at-edge

Tower-everywhere

Distributed-software

Distributed-hardware

(a) Flow size estimation

1 2 3 4 5 6 7 8

x 10
4

0

0.2

0.4

0.6

0.8

1

Num. of flows

F
1
-s

c
o
re

(b) Heavy hitter detection

1 2 3 4 5 6 7 8

x 10
4

0

0.5

1

1.5

2

Num. of flows

W
M

R
E

(c) Flow size distribution estimation

Fig. 8. Measurement accuracies for (a) flow size estimation, (b) heavy hitter detection, and (c) flow size distribution estimation tasks accomplished by
Tower-at-core, Tower-at-edge, Tower-everywhere, Distributed-software, and Distributed-hardware when measuring various numbers of flows.

1 2 3 4 5 6 7 8

x 10
4

0

5

10

15

20

25

30

Num. of flows

A
R

E

Elastic-at-core

Elastic-at-edge

Elastic-everywhere

Distributed-software

Distributed-hardware

(a) Flow size estimation

1 2 3 4 5 6 7 8

x 10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Num. of flows

F
1
-s

c
o
re

(b) Heavy hitter detection

1 2 3 4 5 6 7 8

x 10
4

0

0.5

1

1.5

Num. of flows

W
M

R
E

(c) Flow size distribution estimation

Fig. 9. Measurement accuracies for (a) flow size estimation, (b) heavy hitter detection, and (c) flow size distribution estimation tasks accomplished by
Elastic-at-core, Elastic-at-edge, Elastic-everywhere, Distributed-software, and Distributed-hardware when measuring various numbers of flows.

approximation mapping used in Distributed-hardware dis-
patches measurement workload to switches very close to the
interval-based mapping used in Distributed-software.

To further understand the reason behind the better per-
formances of the methods based on Distributed Sketch, in
Fig. 7, we present a switch’s bucket/cell occupation ratio for
all the 20 switches in the FatTree network when measuring
20, 000 flows using different methods. From the figure one
can see that compared with CM-at-core and CM-at-edge,
the Distributed-software and Distributed-hardware methods
distribute the measurement workload to all the switches in
the network; compared with CM-everywhere, the workload
on each switch under Distributed-software or Distributed-
hardware is much lighter; and compared with CM-flow-
divide, the workload distributed by Distributed-software or
Distributed-hardware is more balanced across the switches.
For example, with CM-everywhere, the mean occupation
ratio is 91.91%, and 7 of the 20 switches have their buckets
100% occupied, while under CM-flow-divide, although the
averaged occupation ratio is reduced to 58.88%, however,
4 switches have their bucket occupation ratios exceeding
97%. But with the Distributed-software and Distributed-
hardware methods, the mean occupation ratios are as low
as 50.25% and 54.15%, and none of the switches in the two
methods has an occupation ratio exceeding 65% and 82%
respectively. Obviously, the less the sketches are occupied, and

the more balanced the measurement workload is distributed
among the switches, the higher accuracy we can expect from a
sketch-based measurement solution. Finally, Fig. 7 shows that
the workload distributed by Distributed-software to switches
is more balanced than by Distributed-hardware, as the latter
applies the approximation mapping that does not strictly
enforce the intervals assigned by (4) from the control plane.

2) Comparison with TowerSketch-based methods: We com-
pare Distributed-software and Distributed-hardware with
the methods based on TowerSketch [15], i.e., Tower-at-core,
Tower-at-edge, and Tower-everywhere, and present the re-
sults in Fig. 8. From the figures we can see that the mea-
surement accuracies of Tower-at-core, Tower-at-edge, and
Tower-everywhere are improved comparing the their coun-
terparts using CM sketches as in Fig. 6. This is reasonable,
as TowerSketch is dedicatedly designed for skewed network
traffic as the one in the MAWI trace.

From Fig. 8, we find that our proposed Distributed-
software and Distributed-hardware methods still signifi-
cantly outperform Tower-at-core, Tower-at-edge, and are
more accurate than Tower-everywhere, despite that TowerS-
ketch has more counters than Distributed Sketch on each
individual switch. The reason lies in the following fact:
In Tower-everywhere, the final estimation result is largely
decided by the largest TowerSketch instance along a path,
and according to Table IV, on a 5-hop path, the largest

13

2 4 6 8

x 10
4

0.5

0.6

0.7

0.8

0.9

1

Num. of flows

F
1
-s

c
o
re

Elastic-everywhere (0.8)

Distributed-software (0.8)

Distributed-hardware (0.8)

Elastic-everywhere (1.0)

Distributed-software (1.0)

Distributed-hardware (1.0)

Fig. 10. Comparison of Elastic-everywhere, Distributed-software, and
Distributed-hardware on heavy hitter detections when measuring synthesis
traces with various number of flows.

TowerSketch contains at most 212 + 213 = 12, 288 coun-
ters, while in Distributed-software/hardware, on average
2× (28 + 29 + 210 + 211 + 212) = 15, 872 counters could be
aggregated from a 5-hop path. Since more counters are em-
ployed by Distributed-software/hardware, they can provide
more accurate measurement results.

3) Comparison with Elastic-based methods: We also
compare the measurement accuracies of Elastic-at-core,
Elastic-at-edge, and Elastic-everywhere with our proposed
Distributed-software and Distributed-hardware methods,
and present the results in Fig. 9.

From Fig. 9, we find that our proposed Distributed-
software and Distributed-hardware methods still outper-
form Elastic-at-core and Elastic-at-edge. Only when all the
switches host Elastic sketches, Elastic-everywhere achieves
a higher accuracy, at a cost of a much heavier measurement
overhead as we have analyzed in Sec. V-B.

We reveal the reason behind the higher accuracy of Elastic-
everywhere over Distributed-software/hardware as the fol-
lowing: In Elastic-everywhere, it is very likely that the largest
Elastic sketch along a 5-hop path contains 2× 213 = 16, 384
8-bit counters in its light part, and 1, 600 32-bit counters in
its heavy part according to Table IV; while in Distributed-
software/hardware, 15, 872 32-bit counters can be aggregated
from a 5-hop path on average. In other words, for most paths in
the FatTree network, the largest Elastic sketch along a path has
more counters than the ones aggregated from all the switches
along the 5-hop path in Distributed-software/hardware. As
long as the 8-bit counters in the Elastic sketch light part do
not overflow (which is indeed the case as our experiments
last only 10 seconds), Elastic-everywhere achieves a higher
measurement accuracy.

D. Outperforming Elastic-everywhere
Our investigation shows that Elastic-everywhere outper-

forms Distributed-software/hardware on two conditions: 1)
The Distributed-software/hardware method does not aggre-
gate more counters than the largest Elastic sketch on the path;
and 2) the small-sized (e.g., 8-bit) counters in the light part
of the Elastic sketch do not overflow. In the following, we
use three experiments to show that when either of the two

2 4 6 8

x 10
4

0

10

20

30

40

50

Num. of flows

A
R

E

Elastic-everywhere

Distributed-software (8-hop)

Distributed-hardware (8-hop)

Distributed-software (10-hop)

Distributed-hardware (10-hop)

Fig. 11. Comparison of Elastic-everywhere, Distributed-software, and
Distributed-hardware for flow size estimations on longer paths when mea-
suring various number of flows.

conditions is unsatisfied, Distributed-software/hardware will
be more accurate.

In our previous experiment on the FatTree network, when
the experiment duration is extended to 300 seconds, we find
that both Distributed-software and Distributed-hardware
outperforms Elastic-everywhere in all the measurement tasks.
The reason is straightforward, as a lot of 8-bit counters in the
Elastic sketch light part overflow when many mice flows have
more than 256 packets in a 300-second duration. We omit the
detailed results for brevity.

We then consider a more subtle case in which we synthesize
two 10-second packet traces containing 10, 000 to 80, 000
flows following a skewed flow size distribution. We set the
distributions’ skewness factors as 0.8 and 1.0 respectively, both
are smaller than the MAWI trace’s skewness factor of 1.47.
We repeat the experiment on the FatTree network with the two
synthesis traces, and present the heavy hitter detection results
in Fig. 10. We focus on the heavy hitter detection as the task
is more sensitive to the traffic skewness. As we can see in the
figure, under the traffic of 1.0 skewness factor, Distributed-
software outperforms Elastic-everywhere when over 70, 000
flows are measured; and when the traffic is less skewed
with a skewness factor of 0.8, both Distributed-software and
Distributed-hardware achieve higher accuracies than Elastic-
everywhere when measuring over 30, 000 and 50, 000 network
flows respectively.

To better understand the experiment result, we investigate
the largest Elastic sketches in Elastic-everywhere. We find
that when there are more flows and flow sizes are less skewed,
the heavy part hash table can no longer accommodate all the
top-10% largest flows, and some of the heavy-hitter flows have
to be counted by the 8-bit counters in the light part, which
overflow and result in a reduction on the F1-score.

To enable Distributed-software/hardware to aggregate
more counters, we consider to apply the Distributed-software
and Distributed-hardware methods on longer network paths
and compare it with Elastic-everywhere. To this end, we
experiment with a linear topology containing 8 or 10 switches
as hops. Note that such path lengths are widely observed in
inter-data center networks [47]. Switches are configured as in
Table IV, and we present how the path sketches of the 8-

14

2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

0.8

Round

A
R
E

 =0.8

 =1.2

(a)

2 4 6 8 10
0.96

0.97

0.98

0.99

1

Round

J
F
I

 =0.8

 =1.2

(b)

Fig. 12. (a) ARE of flow size estimation and (b) JFI of switches’ cell
occupation ratios under γ = 0.8 and 1.2 with network flows arriving and
departing dynamically.

and 10-hop paths are mapped to the switch sketches using the
interval-based and the approximation mapping methods in the
Supplementary Material. Fig. 11 presents the flow size estima-
tion results. Note that for Elastic-everywhere, its performance
is decided by the largest Elastic sketch along the path, which
hardly changes with the path length. From the figure we can
see that when the path contains 8 hops, Distributed-software
is more accurate than Elastic-everywhere as long as there
are no more than 75, 000 flows, and Distributed-hardware is
more accurate when the network flows do not exceed 60, 000.
When the path contains 10 hops, both Distributed-software
and Distributed-hardware are more accurate than Elastic-
everywhere all the time.

E. Workload-aware Adjustment

In Sec. III-B, we have proposed a workload-aware method
as in (5) for adjusting the bucket mapping intervals by taking
the dynamic measurement workload into the consideration.
In this experiment, we evaluate the effectiveness of this
method. Since Distributed-hardware does not enforce the
bucket mapping intervals assigned by (5) strictly, and it is
only slightly less accurate than Distributed-software, we only
evaluate Distributed-software in this experiment.

The experiment is conducted in rounds with each round
lasting 10 seconds. At the beginning of round 0, we feed
a total number of 12, 000 flows randomly to the 112 paths
in the FatTree network, and apply (4) to compute an initial
bucket mapping interval [αj , βj]@p to assign to each switch
per path. A network flow has a duration randomly selected
from the distribution in [20] with a mean duration lasting
50 seconds. Given the mean flow duration and according to
Little’s law, 2, 400 flows arrive to the network per round
following a Poisson process.

At the end of each round, in addition to evaluating ARE of
the flow size estimation, we also compute the fairness of the
measurement workload distributed among the switches with
Jain’s fairness index (JFI), which is defined as

JFI(ρ1, · · · , ρn) =
(
∑n

i=1 ρi)
2

n
∑n

i=1 ρ
2
i

where ρi is the cell occupation ratio of the switch si, and
n is the total number of the switches in the network. After
obtaining ARE and JFI, we then compute a new bucket map-
ping interval [αj , βj]@p using (5) with the current workload

distribution, report and clear the sketch cells, and proceed to
the next round with the new mapping intervals.

Since in (5), we employ a parameter γ for controlling the
adjusting aggressiveness, we experiment with two γ values:
0.8 and 1.2, and present the evolvements of ARE and JFI over
rounds in Fig. 12. From the figure, we can see that at the end of
round 0, the system has relatively a lower accuracy in terms
of a larger ARE and a lower level of workload distribution
fairness in terms of a smaller JFI, due to the random initial
flow assignment. However, after round 1, both accuracy and
fairness are improved, and the improvements are preserved
during the subsequent rounds under the dynamic arrivals and
departures of the network flows. Another observation is that
with a less aggressive γ value of 0.8, we can achieve a higher
accuracy and a better fairness, while γ = 1.2 is over aggressive
under the network dynamics in this experiment.

We summarize our results as the following.
• The methods based on Distributed Sketch, i.e.,

Distributed-software and Distributed-hardware,
are lightweight regarding per-packet measurement
overhead in terms of memory accesses and hash
computation.

• Distributed-software and Distributed-hardware are
significantly more accurate than all the solutions using the
classical CM sketch, i.e., CM-at-core, CM-at-edge, and
CM-everywhere, and they also outperform the ideal CM-
flow-divide method, which equally divides flows among
the switches along a path.

• Comparing with the solutions based on advanced
sketches, Distributed-software and Distributed-
hardware outperform the TowerSketch based solutions,
i.e., Tower-at-core, Tower-at-edge, and Tower-
everywhere, as well as Elastic-at-core and Elastic-
at-edge all the time, and they are more accurate than
Elastic-everywhere in many circumstances, such as
when measuring traffic in longer durations, or measuring
less skewed network traffic, or measuring traffic on
longer network paths.

• Our proposed workload-aware method for dynamically
adjusting the bucket mapping interval assignments can
effectively improve the measurement accuracy and work-
load distribution fairness under an environment in which
network flows arrive and depart dynamically.

VI. CONCLUSION

In this paper, we presented Distributed Sketch, a novel
method for per-flow network measurement. Unlike the conven-
tional approaches that place a complete sketch data structure
at one individual switch, in Distributed Sketch, each network
path is associated with a logical sketch, which is collectively
maintained by all the switches along the path; meanwhile,
each switch multiplexes its physical sketch to participate in
the constructions of the logical sketches of all the paths it
belongs to. With Distributed Sketch, switches collaborate to
measure network flows, and the network-wide measurement
workload is fairly distributed to all the switches in the network.
To overcome the problem that existing hardware switches

15

do not support float-point computation, we proposed an ap-
proximation method that involves only integer operations for
mapping logical path sketch buckets to physical sketch cells.
We implemented a system prototype with P4 on commodity
hardware programmable switches, and proved in theory that
Distributed Sketch has a lower error bound compared with the
conventional sketch placement strategies. We also discussed
the challenges in deploying Distributed Sketch in large-scale
data center networks, and presented an INT-based solution.

Using a FatTree data center network testbed, we compared
Distributed Sketch with conventional sketch placement strate-
gies. We applied both the classical CM sketch as well as the
recently proposed advanced sketches of TowerSketch and Elas-
tic sketch with these strategies. We also compared Distributed
Sketch with an ideal method that equally divides network
flows among the switches along a path. The experiment results
showed that Distributed Sketch applying both the interval-
based and the approximation mappings outperforms all the
alternative approaches, with the only exception when placing
an Elastic sketch at every switch in the network. However,
we find that when measuring traffic for longer durations, or
measuring less skewed traffic, or measuring traffic on longer
network paths, Distributed Sketch is still more accurate. Our
findings suggested that Distributed Sketch is a lightweight and
accurate per-flow measurement method, and is practical to be
deployed in data center networks.

We stress that Distributed Sketch is not a replacement of
the conventional sketch, as the general ideal of Distributed
Sketch, i.e., splitting sketch structure for fairly distributing
measurement workload to all the switches across the network,
is not just for CM, but can be applied to other sketch data
structures as well. For the future work, we aim to develop
distributed sketching algorithms based on recently proposed
advanced sketches, such as Elastic sketch, TowerSketch, etc.
For example, all the switches along a network could collec-
tively construct a logical Elastic sketch or TowerSketch, and
each switch maintains a part of the global sketch structure by
dividing and mapping the hash spaces.

REFERENCES

[1] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” IEEE/ACM Trans. Netw., vol. 14,
no. 5, 2006.

[2] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.
SOSR’17, Santa Clara, CA, USA, Apr. 2017.

[3] R. B. Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Design-
ing heavy-hitter detection algorithms for programmable switches,”
IEEE/ACM Trans. Netw., vol. 28, no. 3, 2020.

[4] H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent items
in data streams,” Proc. VLDB Endow., vol. 10, no. 4, 2016.

[5] G. Cormode and S. Muthukrishnan, “What’s new: finding significant
differences in network data streams,” IEEE/ACM Trans. Netw., vol. 13,
no. 6, 2005.

[6] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proc. NSDI’13, Lombard, IL, USA, Apr. 2013.

[7] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. SIGCOMM’16, Florianopolis, Brazil, Aug. 2016.

[8] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C. Chen, and
G. Zhang, “SketchVisor: Robust network measurement for software
packet processing,” in Proc. SIGCOMM’17, Los Angeles, CA, USA,
Aug. 2017.

[9] X. Yu, H. Xu, D. Yao, H. Wang, and L. Huang, “CountMax: A
lightweight and cooperative sketch measurement for software-defined
networks,” IEEE/ACM Trans. Netw., vol. 26, no. 6, 2018.

[10] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic Sketch: Adaptive and fast network-wide
measurements,” in Proc. SIGCOMM’18, Budapest, Hungary, Aug. 2018.

[11] T. Yang, S. Gao, Z. Sun, Y. Wang, Y. Shen, and X. Li, “Diamond sketch:
Accurate per-flow measurement for big streaming data,” IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 12, 2019.

[12] L. Liu, Y. Shen, Y. Yan, T. Yang, M. Shahzad, B. Cui, and G. Xie,
“SF-Sketch: A two-stage sketch for data streams,” IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 10, 2020.

[13] Y. Zhang, J. Li, Y. Lei, T. Yang, Z. Li, G. Zhang, and B. Cui, “On-Off
sketch: A fast and accurate sketch on persistence,” Proceedings of the
VLDB Endowment, vol. 14, no. 2, 2020.

[14] Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu, R. Zhang, and
J. Jiang, “CocoSketch: High-performance sketch-based measurement
over arbitrary partial key query,” in Proc. SIGCOMM’21, Virtual Event,
USA, Aug. 2021.

[15] K. Yang, Y. Li, Z. Liu, T. Yang, Y. Zhou, J. He, J. Xue, T. Zhao, Z. Jia,
and Y. Yang, “SketchINT: Empowering INT with TowerSketch for per-
flow per-switch measurement,” in Proc. ICNP’21, Virtual Event, Nov.
2021.

[16] Y. Li, X. Yu, Y. Yang, Y. Zhou, T. Yang, Z. Ma, and S. Chen,
“Pyramid family: Generic frameworks for accurate and fast flow size
measurement,” IEEE/ACM Trans. Netw., vol. 30, no. 2, 2022.

[17] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” J. of Algorithms, vol. 55,
no. 1, 2005.

[18] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” ACM SIGMCOMM CCR, vol. 32, no. 4, 2002.

[19] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Proc. International Colloquium on Automata,
Languages, and Programming (ICALP’02), Malaga, Spain, Jul. 2002.

[20] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. IMC’10, Melbourne, Australia,
Nov. 2010.

[21] Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and K. Xu, “A first look
at inter-data center traffic characteristics via yahoo! datasets,” in Proc.
IEEE INFOCOM’11, Shanghai, China, Apr. 2011.

[22] C. H. Song, P. G. Kannan, B. K. H. Low, and M. C. Chan, “FCM-
Sketch: Generic network measurements with data plane support,” in
Proc. CoNEXT’20, Barcelona, Spain, Dec. 2020.

[23] “Intel tofino series,” accessed on Aug. 20, 2022. [Online].
Available: https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch.html

[24] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better NetFlow for
data centers,” in Proc. NSDI’16, Santa Clara, CA, USA, Mar. 2016.

[25] Q. Huang, S. Sheng, X. Chen, Y. Bao, R. Zhang, Y. Xu, and G. Zhang,
“Toward nearly-zero-error sketching via compressive sensing,” in Proc.
NSDI’21, Apr. 2021.

[26] R. Ben-Basat, G. Einziger, S. L. Feibish, J. Moraney, B. Tayh, and
D. Raz, “Routing-oblivious network-wide measurements,” IEEE/ACM
Trans. Netw., vol. 29, no. 6, 2021.

[27] D. Harris, A. Rinberg, and O. Rottenstreich, “Compressing
distributed network sketches with traffic-aware summaries,”
IEEE Trans. Netw. Service Manag., 2022. [Online]. Available:
https://doi.org/10.1109/TNSM.2022.3172299

[28] R. B. Basat, G. Einziger, and B. Tayh, “Cooperative network-wide flow
selection,” in Proc. ICNP’20, Madrid, Spain, Nov. 2020.

[29] V. Bruschi, R. B. Basat, Z. Liu, G. Antichi, G. Bianchi, and M. Mitzen-
macher, “DISCOvering the heavy hitters with disaggregated sketches,”
in Proc. CoNEXT’20, poster, Barcelona, Spain, Dec. 2020.

[30] A. Cornacchia, G. Sviridov, P. Giaccone, and A. Bianco, “A traffic-
aware perspective on network disaggregated sketches,” in Proc. Med-
ComNet’21, Ibiza, Spain, Aug. 2021.

[31] D. Prountzos and K. Pingali, “Betweenness centrality: algorithms and
implementations,” in Proc. PPoPP’13, Shenzhen, China, Feb. 2013.

[32] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. SIGCOMM’15, London,
UK, Aug. 2015.

[33] “IEEE standard for a precision clock synchronization protocol
for networked measurement and control systems,” IEEE SA,
IEEE Standard IEEE 1588-2019, Nov. 2019. [Online]. Available:
https://standards.ieee.org/ieee/1588/6825/

16

[34] Z. Wei, Y. Tian, W. Chen, L. Gu, and X. Zhang, “DUNE: Improving
accuracy for sketch-int network measurement systems,” in Proc. IEEE
INFOCOM’23, New York, USA, May 2023.

[35] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in
Proc. SIGCOMM’10, New Delhi, Inida, Aug. 2010.

[36] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien, “Pingmesh: A
large-scale system for data center network latency measurement and
analysis,” in Proc. SIGCOMM’15, London, UK, Aug. 2015.

[37] P. Cui, H. Pan, Z. Li, J. Wu, S. Zhang, X. Yang, H. Guan, and G. Xie,
“NetFC: Enabling accurate floating-point arithmetic on programmable
switches,” in Proc. ICNP’21, Dallas, TX, USA, Nov. 2021.

[38] Y. Yuan, O. Alama, J. Fei, J. Nelson, D. R. K. Ports, A. Sapio, M. Canini,
and N. S. Kim, “Unlocking the power of inline floating-point operations
on programmable switches,” in Proc. NSDI’22, Renton, WA, USA, Apr.
2022.

[39] Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu, N. Zheng,
R. Wang, H. Wu, Y. Wang, and N. Zhang, “LightGuardian: A full-
visibility, lightweight, in-band telemetry system using sketchlets,” in
Proc. NSDI’21, Apr. 2021.

[40] “P416 portable switch architecture (PSA),” The P4.org Architecture
Working Group, Working draft, Apr. 2021. [Online]. Available:
https://p4.org/p4-spec/docs/PSA.pdf

[41] S. Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, H. Zhao, and
C. Guo, “Explicit path control in commodity data centers: Design and
applications,” in Proc. NSDI’15, Oakland, CA, USA, May 2015.

[42] “bmv2, the behavioral model for P4,” accessed on Aug. 15, 2022.
[Online]. Available: https://github.com/p4lang/behavioral-model

[43] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. SIGCOMM’08, Seattle, WA, USA,
Aug. 2008.

[44] “Mininet,” accessed on Aug. 20, 2022. [Online]. Available:
http://mininet.org/

[45] “MAWI working group traffic archive,” accessed on Aug. 15, 2022.
[Online]. Available: https://mawi.wide.ad.jp/mawi/

[46] H. Namkung, Z. Liu, D. Kim, V. Sekar, and P. Steenkiste, “SketchLib:
Enabling efficient sketch-based monitoring on programmable switches,”
in Proc. NSDI’22, Renton, WA, USA, Apr. 2022.

[47] Q. Wang, Y. Tian, X. Yu, L. Ding, and X. Zhang, “Where is
the traffic going? a comparative study of clouds following different
designs,” IEEE Trans. Services Comput., 2022. [Online]. Available:
https://doi.org/10.1109/TSC.2022.3182047

Liyuan Gu received the bachelor’s degree in com-
puter science from China University of Mining and
Technology, Xuzhou, China, in 2021. He is currently
pursuing the master’s degree with the School of
Computer Science and Technology, University of
Science and Technology of China, Hefei, China. His
research interest is focused on network measure-
ment.

Ye Tian received the bachelor’s degree in electronic
engineering and the master’s degree in computer
science from University of Science and Technol-
ogy of China (USTC), Hefei, China, in 2001 and
2004, respectively, and the Ph.D. degree from the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong,
in 2007. He joined USTC in 2008 and is currently
an Associate Professor with the School of Computer
Science and Technology, USTC. His research inter-
ests include programmable networks, network and

Internet measurements, and network softwarization. He has published over 70
papers and co-authored a research monograph published by Springer. He is
the winner of the Wilkes Best Paper Award of Oxford The Computer Journal
in 2016. He is a member of the IEEE.

Wei Chen received the bachelor’s degree in com-
puter science from University of Science and Tech-
nology of China (USTC), Hefei, China, in 2020.
He is currently pursuing the Ph.D. degree with
the School of Computer Science and Technology,
USTC. His research interests include programmable
networks and network measurement.

Zhongxiang Wei received the bachelor’s and mas-
ter’s degrees in computer science from University
of Science and Technology of China, Hefei, China,
in 2020 and 2023 respectively. His research interest
is focused on programmable networks. He will join
Alibaba in July, 2023.

Cenman Wang received the bachelor’s degree in
computer science from University of Science and
Technology of China (USTC), Hefei, China, in 2022.
She is currently pursuing the master’s degree with
the School of Computer Science and Technology,
USTC. Her research interest is focused on pro-
grammable networks.

Xinming Zhang received the BE and ME degrees
in electrical engineering from China University of
Mining and Technology, Xuzhou, China, in 1985
and 1988, respectively, and the PhD degree in com-
puter science and technology from the University of
Science and Technology of China (USTC), Hefei,
China, in 2001. Since 2002, he has been with the
faculty of USTC, where he is currently a Professor
with the School of Computer Science and Technol-
ogy. From September 2005 to August 2006, he was a
visiting Professor with the Department of Electrical

Engineering and Computer Science, Korea Advanced Institute of Science and
Technology, Daejeon, Korea. His research interest includes wireless networks,
deep learning, and intelligent transportation. He has published more than 100
papers. He won the second prize of Science and Technology Award of Anhui
Province of China in Natural Sciences in 2017. He won the awards of Top
reviewers (1%) in Computer Science & Cross Field by Publons in 2019. He
is a senior member of the IEEE.

