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Abstract—To overcome the inherent limitation of the optical
circuit switch (OCS) while utilizing its high bandwidth, cir-
cuit/packet hybrid networks are widely proposed for modern data
centers. However, as today’s OCS has reduced the reconfiguration
delay to microseconds, the circuit from a source rack to a
destination rack typically lasts fewer than 10 RTTs. Such a short
circuit time brings a critical challenge to TCP, as it is difficult for
a TCP sender to sufficiently grow its congestion window (CWND)
and utilize the optical bandwidth. To address this problem, in this
work, we present AccelToR, a top-of-rack switch for improving
TCP performance in circuit/packet hybrid data center networks.
AccelToR leverages end-host congestion control to “accelerate”
a blocked TCP flow by temporarily scheduling its packets to be
transferred through the packet network a few RTTs before its
circuit is established, and after enlarging the flow’s CWND with
the acceleration, the switch buffers the last window of packets.
During the circuit time, the switch sends out the buffered packets,
and the accelerated flows, which have their CWNDs already
grown large, continue to send packets at high rates to achieve
a high optical bandwidth utilization. Experiment results show
that AccelToR achieves high throughputs for elephant flows and
utilizes over 90% of the optical bandwidth, and it preserves
short flow completion times for mice flows at the same time. In
addition, AccelToR is robust under unexpected packet losses, and
can benefit a wide range of TCP congestion control algorithms.

Index Terms—Optical circuit switch (OCS), circuit/packet
hybrid data center network, TCP congestion control, packet
scheduling

I. INTRODUCTION

ITH the approach of the end of Moore’s law, packet-

switched networks face a challenge that for CMOS-
based electrical packet switches (EPSes), cost and power
consumptions increase at faster rates than switching capacity
[1]. Meanwhile, emerging giant AI models such as ChatGPT
[2] require massive bandwidth, and are facing a “bandwidth
wall” when running on computing clusters inter-connected by
conventional packet-switched networks [3], [4].

To provide higher bandwidth, optical technologies seem to
be a promising direction, and during the past decade, inno-
vative designs that introduce optical circuit switches (OCSes)
to the data center network architecture have been proposed
and practiced [5]-[20]. Compared with EPS, OCS has several
merits: 1) OCS is agnostic to data rate, thus does not need to
be upgraded when the network evolves to a higher data rate;
2) OCS has a much lower per-bit power consumption as it

This work was supported in part by the National Natural Science Foundation
of China (NSFC) under Grant 61672486 and Grant 62072425. (Corresponding
author: Ye Tian.)

The authors are with Anhui Key Laboratory on High-Performance Com-
puting, School of Computer Science and Technology, University of Science
and Technology of China, Hefei, Anhui, China, 230026.

is bufferless and passively handles photons without per-packet
processing; 3) OCS-based network is inexpensive as there is no
need to use transceivers for conducting the expensive optical-
electrical-optical conversions in the network core.

One major drawback of OCS is that the switch can only
provide point-to-point connectivity between its ingress and
egress ports at a time, and reconfiguring the connectivity
among the ports (called a matching) incurs a non-trivial
delay, during which the switch can not handle any traffic.
To overcome this limitation, a natural approach is to have
a circuit/packet hybrid network, in which the OCS-based
network provides high bandwidth and an EPS-based network
provides continuous connectivity in parallel [5], [6], [8], [9].

To reconfigure OCS frequently while achieving a circuit
uptime ratio above 90%, the interval between two consecutive
configurations is typically a few to a dozen times of the
reconfiguration delay. Meanwhile, modern OCSes can be re-
configured in microseconds, which means that in today’s data
centers with microsecond-scale propagation delays [21], the
optical circuit from a source rack to a destination rack typically
lasts fewer than 10 RTTs [22]. Such a short circuit time
brings a critical challenge to TCP, as it is difficult for a TCP
sender, which may be either recovering from packet losses
due to the previous OCS reconfiguration, or just switched
from the low-bandwidth packet network, to sufficiently grow
its congestion window (CWND). As a result, TCP flows in
the hybrid network are unable to efficiently utilize the optical
bandwidth and achieve high throughputs [22], [23].

Previous works addressing this problem focus on end-hosts.
For example, Mukerjee et al. [22] suggest that a TCP sender
at end-host increases CWND on receiving an explicit circuit
state feedback from the top-of-rack (ToR) switch, and Chen et
al. [23] develop a new TCP variant named Time-division TCP
(TDTCP) that maintains multiple sets of independent conges-
tion control states for the low-bandwidth packet network and
the high-bandwidth circuit network separately. However, in
these solutions, all network flows are transferred through the
packet network when the corresponding optical circuits are
unavailable. As a consequence, congestions are brought by the
bandwidth-hungry elephant flows to the packet network, and
greatly impact the delay-sensitive mice flows. Moreover, the
existing solutions [22], [23] require end-hosts to coordinate
closely with the circuit network, thus impose considerable
complexity by substantially modifying the OS protocol stack.

In this paper, we present AccelToR, a novel ToR switch
for improving TCP performance in circuit/packet hybrid data
center networks. As in many hybrid networks [5], [9], [24],
[25], AccelToR segregates TCP traffic into elephant and mice



flows, and transfers them over the circuit and packet networks
separately. The benefit is that by restricting elephant flows
from the packet network, mice flows can preserve their short
flow completion times (FCTs). The challenge is that within a
circuit time shorter than 10 RTTs, elephant flows do not have
enough time to grow their CWNDs and sufficiently utilize the
optical bandwidth.

For boosting performances of the elephant flows without
sacrificing the mice flows, the AccelToR switch “accelerates”
the elephant flows by scheduling their packets to be transferred
through the packet network a few RTTs before their circuits to
the destinations are established, and buffers the last windows
of their packets. With the acceleration, the elephant flows can
enlarge their CWNDs ahead of time. During the circuit time,
the switch sends out the buffered packets to fill the capacity
of the optical link, and the elephant flows, which have their
CWNDs already enlarged, continue to send packets at high
rates to sufficiently utilize the optical bandwidth.

AccelToR has the following desired properties. 1) AccelToR
enables bandwidth-hungry elephant flows to achieve high
throughputs over the hybrid network and sufficiently utilize
the optical bandwidth. 2) AccelToR preserves short FCTs for
delay-sensitive mice flows without bringing congestions to
the packet network. 3) AccelToR is scalable to network size
with a constant and moderate memory overhead for packet
buffering, thus is practical with today’s switch hardware. 4)
AccelToR does not require any explicit coordination from
end-hosts, thus is easy to deploy. 5) AccelToR is widely
applicable as it benefits a wide range of TCP variants using
different congestion control algorithms (CCAs). In the design,
development, and evaluation of AccelToR, we have made the
following contributions.

o Analysis. We make an insightful analysis on the chal-
lenges and design space of the TCP data transportation in
a circuit/packet hybrid data center network, and show that
for bandwidth-hungry elephant flows, when their source-
destination circuits are not available, there is a dilemma
on whether to block the flows or transfer them through
the packet network.

o Design. We propose a novel method for “accelerating”
the elephant TCP flows. Our method is centered around
the AccelToR switch, in which we employ the disciplines
of priority queue and calendar queue for scheduling
packets of different TCP flows. In particular, we for-
mulate the TCP flow accelerating problem as an integer
optimization problem, and design a packet scheduling
algorithm based on the problem solution.

« Evaluation. We carry out extensive packet-level simula-
tions to evaluate AccelToR and compare it with alterna-
tive solutions. The experiment results show that Accel-
ToR significantly increases elephant flows’ throughputs
and utilizes over 90% of the optical bandwidth, and it
preserves short FCTs for mice flows at the same time.
In addition, AccelToR is robust against congestions and
unexpected packet losses, and benefits a wide range of
TCP CCAs.

The remainder part of this paper is organized as follows.
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Fig. 1. Model of a circuit/packet hybrid data center network composed of N
racks inter-connected by a giant EPS and an OCS in parallel.

We introduce the background and analyze the challenges that
motivate this work in Sec. II; Sec. III presents the detailed
design of AccelToR; We evaluate AccelToR in Sec. IV; Sec.
V discusses the related works and we conclude in Sec. VL.

II. BACKGROUND AND MOTIVATION
A. Optical Circuit Switching in Data Center

Optical switched networking is a promising direction for
data center networks. Compared with the network based on
legacy EPS, OCS is agnostic to data rate, and can provide
very high switching capacity at a lower per-bit cost and power
consumption.

Both EPS and OCS establish a matching between their
respective ingress and egress ports. While an EPS can recon-
figure its matching instantaneously, it takes time for an OCS
to change its current matching to a new one, and during the
reconfiguration, the switch can not carry any traffic. OCS re-
configuration delay varies from milliseconds to microseconds,
depending on the adopted optical switching technology, e.g.,
2D/3D MEMS [5], [7], [8], [10], [12], [16], AWGR [11], [15],
free-space optics mirror assembly [26], [27], etc.

OCS matchings can be configured in either a demand-
aware or a demand-agnostic manner. In a demand-aware
way [5], [7]-[9], an OCS controller first estimates the com-
munication demands among the racks, then it computes a
series of matchings for satisfying the demands [24], [25],
[28], [29]. A major drawback of this approach is the latency
incurred for demand estimating and matching computation at
the centralized controller, as for OCSes with microsecond-
scale reconfiguration delays, such a latency is too high.

Recently, people propose to configure OCS in a demand-
agnostic manner [12], [14]. In such an approach, the OCS
locally cycles through a series of static matchings in a round-
robin way, regardless of the inter-rack communication de-
mands. The benefit is that the time-consuming centralized
computation is avoided, and network complexity is reduced.
In particular, since OCS matchings are static and recurrent,
scheduling can be planned ahead rather than ad-hoc.

B. Circuit/Packet Hybrid Network Model

To overcome the inherent limitation of the OCS-based net-
work while preserving its desired properties, people propose to
develop circuit/pacekt hybrid networks for data centers [5], [6],



[81, [9], [22], [23]. In a hybrid network, a separate electrical
packet network runs in parallel with an optical circuit network.
Typically, the packet network has a much lower bandwidth, but
has a negligible reconfiguration delay.

In this work, we consider a circuit/packet hybrid data center
network model similar to the ones in [5], [6], [9], [24], [25]. As
demonstrated in Fig. 1, the network contains N racks, where
each rack connects to the rest part of the network via a ToR
switch. In particular, the N ToR switches are inter-connected
by both an electrical packet switched network and an optical
circuit switched network. For simplicity, in our model, we
view the entire packet network as one giant EPS, and assume
that one OCS connects to all the ToR switches'. Each ToR
switch has an uplink connecting to the giant EPS and an uplink
connecting to the OCS separately.

The OCS realizes an N x N-connectivity among the N racks
over time. After being configured with a matching, which
decides how the NN ingress ports are connected to the N egress
ports, the OCS maintains the matching for a period of time,
which is called a day, then it takes an interval of time, which
is called a night, to be reconfigured to the next matching that
decides a new connectivity. To achieve a high reconfiguration
frequency and a high uptime ratio, the duration of a day is
typically a few to a dozen times of a night.

The OCS cycles through a series of N —1 static matchings in
a demand-agnostic manner to enforce an N x N-connectivity
over time [12], and such a circle is referred to as a week. For
example, if a day lasts 240 us and a night lasts 20 ps, then for
a network containing N = 50 racks, a week is composed of
49 days and nights, and has a duration of 12.74 ms.

C. TCP Data Transportation in Hybrid Data Center Network

TCP is heavily used in data centers [30], and studies [31],
[32] show that sizes and durations of the TCP flows in a data
center are highly skewed: there are a few long-lived and heavy-
traffic flows, which are referred to as elephant flows, while
the other mice flows are small in size and short in duration.
Generally, elephant flows are used for bulk data transportation
such as migrating virtual machines and replicating video
contents, although these applications are bandwidth hungry,
they are not sensitive to latencies. On the other hand, mice
flows are generated by delay-sensitive applications like web
services and online gaming, and for these applications, the
flow completion time (FCT) is the key. Given microsecond-
scale propagation delays widely observed in modern data
centers [21], retransmission caused by congestion is the major
reason behind the long FCTs of the delay-sensitive mice flows.

Many hybrid data center networks choose to transfer ele-
phant flows through the high-bandwidth circuit network, and
send mice flows via the low-bandwidth packet network [5], [6],
[8], [9]. The benefit is that by restricting elephant flows from
the packet network, congestions can be mitigated. However,
transferring elephant flows only through the circuit network
suggests that when the source-destination circuit is unavail-
able, the flows will be blocked. To avoid packet losses due to
the blocking, the source rack is supposed to maintain many

Commodity OCSes have radices on the order of 100 ports.

queues, one for each destination, to buffer all the on-the-fly
packets after the corresponding flows are blocked [8], [20].

However, buffering packets with per-destination queues
raises a scalability concern, as the more racks a network
contains, the larger packet buffer each rack needs to maintain.
For example, suppose the optical bandwidth is 400 Gbit /s and
RTT of the circuit network is 60 us, then the bandwidth-delay
product (BDP) is 3 MB, which means that the source rack
needs to buffer 3 MB of packet data in a queue dedicated to
each destination rack. For a network containing 50 racks, the
source rack must buffer as large as 147 MB of packet data.

Unfortunately, for state-of-the-art hardware switches, in-
switch packet buffer is small in size and expensive. For
example, the Xilinx Virtex-II Pro NetFPGA has only 10 MB
of SRAM [33], and the Intel Tofino chip has 20 MB of packet
buffer, which is shared by up to 32 ports [34]. Clearly, with
the limited memory resource, it is impractical for a ToR switch
to maintain per-destination queues to buffer packets for all the
blocked elephant flows.

Instead of blocking elephant flows, recent studies [22], [23]
propose to transfer elephant flows through the packet network
when their optical circuits are unavailable. However, since a
source-destination circuit lasts only one day in a week, for
most time, elephant flows are competing bandwidth with mice
flows in the packet network, and greatly prolong the latters’
FCTs by bringing congestions to the packet network.

Moreover, a recent study [22] shows that as modern OCSes
can be reconfigured in microseconds, a day typically lasts
fewer than 10 RTTs. In such a hybrid network, when a
congested elephant flow is switched from the low-bandwidth
packet network to the high-bandwidth circuit network, it does
not have enough time to grow its CWND, thus is unable to
sufficiently utilize the optical bandwidth. Previous study [22]
and our experiment in Sec. IV show that considerable optical
bandwidth is unused in this case.

In summary, as today’s OCSes have reduced the reconfig-
uration delay to microseconds, when the source-destination
circuits for elephant TCP flows are unavailable, we are facing
a dilemma on whether to block the flows or transfer them
through the packet network. By blocking elephant flows, a
rack needs to maintain per-destination queues with a total size
proportional to the size of the network, which is unscalable
and impractical with today’s switch hardware. On the other
hand, by transferring elephant flows through the packet net-
work, FCTs of the mice flows will be prolonged due to the
congestions brought by the elephant flows, and the optical
bandwidth is under-utilized.

ITI. ACCELERATING TCP WITH ACCELTOR

A. Objective and Challenge

In this work, we present a novel ToR switch named Accel-
ToR for improving TCP performance in a circuit/packet hybrid
data center network. With AccelToR, we pursue the following
objectives.

o Objective 1: We aim to achieve high throughputs for ele-
phant flows and efficiently utilize the optical bandwidth.
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o Objective 2: We seek to preserve short FCTs for mice
flows.

o Objective 3: AccelToR should be practical with today’s
switch hardware by being scalable. In particular, the
memory overhead for queueing and buffering packets
should be small and irrelevant to network size.

To achieve these objectives, we make the following design
choices. First, AccelToR blocks elephant flows when their
source-destination circuits are unavailable. By blocking ele-
phant flows, we avoid congesting the packet network, and
accomplish Objective 2. Second, AccelToR does not maintain
per-destination queues for buffering packets of the blocked
network flows. Without maintaining per-destination queues,
we realize Objective 3 regarding the scalability.

However, with the above design choices, it is challenging
to fulfill Objective 1, which pursues high elephant flow
throughput and optical bandwidth utilization. This is because
without per-destination queues, when an elephant flow has
its packets lost after being blocked, it will spend a time
interval called retransmission timeout (RTO) to confirm the
loss, and reduce its CWND to the minimal value (i.e., 1 MSS);
furthermore, since the flow is eligible to send packets in only
one day per week, it is very likely that the flow will encounter
successive losses when trying to retransmit the lost packets,
as illustrated in Fig. 2. Note that after each retransmission
timeout, the sender’s RTO is doubled, and its ssthresh,
which decides the upper bound of the CWND in the next
slow-start phase, is set as half of its current window size.
Recall that for state-of-the-art OCSes, a day lasts fewer than
10 RTTs, therefore it is difficult for an elephant flow, which
may either wait for the retransmission timer to expire or has
a minimum-sized CWND, to sufficiently grow its CWND and
utilize the optical bandwidth.

To overcome this problem, AccelToR chooses to “acceler-
ate” the blocked elephant flows before their optical circuits are
about to be established. The key idea is to schedule the blocked
elephant flows to resume sending packets through the packet
network a few RTTs before their circuit days. By leveraging
the slow-start phase in TCP congestion control, the elephant
flows can rapidly enlarge their CWNDs. During the last RTT,
the elephant flows are blocked and have their packets buffered
within the AccelToR switch. When the circuit to a destination
rack is established, the switch sends out the buffered packets
to fill the capacity of the optical link, and the elephant flows,
which have their CWNDs already grown large because of the
accelerating, continue to inject packets to the optical link at
high rates for realizing a high bandwidth utilization.

Note that unlike the previous works [9], [12], [14], [22],
we seek to restrict our solution within the ToR switch without
requiring any explicit coordination from end-hosts.

Ethernet link Optical link
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Fig. 3. The priority queue and calendar queue of AccelToR switch.

B. Switch Design

Before describing the detailed design of the AccelToR
switch, we first introduce some notations. In a circuit/packet
hybrid data center network as presented in Fig. 1, we refer
to the current day as day,, and refer to the subsequent days
as day,, day,, ---. Consider a specific source rack S, we
denote the group of the elephant flows from S that have the
optical circuit to their destination rack currently available as
Fy, and denote the group of the elephant flows with their
circuit established in day, as F;.

As shown in Fig. 3, in AccelToR, each egress port to
the packet network is associated with a priority queue [35]
composed of two queues, namely the high-priority (HP) queue
and the low-priority (LP) queue, and the LP queue can dequeue
packets only when the HP queue is empty.

Each egress port to the optical switched network is associ-
ated with a calendar queue [36] composed of K queues (K
is a constant independent to the network size N), denoted as
Qo, Q1, -+, Qi —_1, where @; is the queue for packets from
the flows in F;, 0 < ¢ < K. Note that in calendar queue,
only Qo is allowed to dequeue packets, while all the other
queues are paused, as no circuits to their destination racks is
available. For packets belonging to F; with ¢ > K, they are
simply dropped as there is no queue for them.

The calendar queue in AccelToR supports a rotation oper-
ation that synchronizes with the OCS reconfiguration. More
specifically, during the night when the OCS is reconfigured
after day,, the AccelToR switch rotates @); to (Q;—1 (for
1 <i < K), and the previous Qo becomes Q1. After the
night, the switch pauses () x—_1, the former @)y, and unpauses
the new @y to dequeue its buffered packets. Note that after
the rotation, the previous F; becomes F( and its belonging
flows start to transfer through the circuit network. For the other
flow groups, F; — F;_1,1 <14 < K, and a new flow group
F k1 containing the elephant flows of day, _; is formed and
associated with Q1. For example, if K = 3, then after each
night, Q2 = Q1, Q1 = Qo, and Qo — Q2.

Note that both priority queue and calendar queue are mature
disciplines supported by commodity switches. Priority queue is
widely supported by nearly all the off-the-shelf switches [35],
and calendar queue can be realized on existing programmable
hardware switches [36], such as the Intel Tofino switch [34].
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Fig. 4. Demonstration of TCP flow acceleration.

C. Accelerating TCP with Packet Scheduling

As we will describe in Sec. III-G, at each source rack,
we select elephant flows from the top-k largest flows to each
destination rack, group them to Fy, ¥y, ---, Fy_1, and label
the other flows as mice flows. An AccelToR switch enforces
the following rules to schedule packets based on their labels.

o Case I: If a packet is from a delay-sensitive mice flow,
enqueue it to the HP queue for transferring through the
packet network.

o Case II: If a packet is from an elephant flow f in
Fy, enqueue it to )y for transferring through the circuit
network.

e Case III: If a packet is from a flow f in F;, where
1 <1¢ < K, then,

— Either accelerate the flow by enqueueing the packet
to the LP queue for transferring through the packet
network;

— Or enqueue the packet to @); for buffering.

o Case IV: If a packet is from a flow f in F';, where K <
1 < N, drop the packet.

However, in the above procedure, there are two unsolved
problems: First, how many queues are required in the calendar
queue? That is, how to decide K? Second, for a packet in
Case III, when to transfer it through the packet network for
accelerating and when to buffer it in the calendar queue?

To answer the questions, we first suppose that an elephant
flow is accelerated for m RTTs and has its packets buffered
in the calendar queue in the last RTT before its circuit day. If
m is known, then the flow’s packets should be enqueued to
the calendar queue K; days before its circuit is established,

where
m + 1) x RTT,
i, = ) X RT T (1)
Tday T+ Thight

In (1), RTTyy is the RTT of the packet network, 74,y and
Tnight are the durations of day and night respectively. Note that
RTTpki, Tday, and Thigne are either measurable, or configurable
network parameters, thus are already known. In the following,
we present and solve an integer optimization problem to decide
m, the only unknown parameter in (1).

Letn = LR?;YJ be the number of the circuit RTTs in a day,
where RTT,;; is the RTT of the circuit network. As shown in
Fig. 4, for the TCP sender of an elephant flow, it sends packets
through the packet network for m RTTs and through the circuit
network for n RTTs. Suppose that during the m + n RTTs,
the sender spends  RTTs in the slow-start phase growing its

CWND from 1 MSS, and in the y subsequent RTTs, it is in
the congestion-avoidance phase, then we have

r+y=m+n 2)

We then study the relationship between x and y. In the first
x RTTs in slow-start, an elephant flow’s CWND is enlarged to
X between 22! and 27, and is linearly grown to X +y after
y RTTs in congestion avoidance. After detecting a timeout
caused by packet losses that happen after the circuit day, the
flow’s CWND is reduced to 1 and its ssthresh is set as
%, which means that next time the sender will exit the slow-
start phase at a CWND size of % Clearly, at equilibrium,
we have % = X, which leads to 2*7! <y = X < 27,

Given the above constraints, we aim to accelerate an ele-
phant flow as early as possible, so as to sufficiently enlarge its
CWND. To this end, we aim to find the largest m by solving
the following integer optimization problem.

max m
st. m+n=x+vy
20l <y <2” 3)
n= I‘R?I—fi';:\;irj
m,x,y € LT

Note that in (3), n is a fixed integer parameter decided by Tqay
and RTT.;, m, x, and y are integer variables, and we aim to
maximize m.

Unfortunately, the problem in (3) is unbounded, as we
can have z and y as large as possible, and compute m as
(z+y —n). However, if we accelerate an elephant flow many
RTTs before its circuit day, we are indeed transferring the flow
through the packet network, which brings congestions as we
have discussed in Sec. II.

To avoid congesting the packet network, when accelerating
an elephant flow, we prefer to transfer its packets through the
packet network only in the slow-start phase. This is because
when c packets are transferred in an RTT in the slow-start
phase, the flow’s CWND is expected to grow to 2c, but if the
flow is under congestion avoidance, its CWND only grows to
¢+ 1. In other words, it is more cost-effective to accelerate a
TCP flow in its slow-start phase. For this reason, we require
that the RTTs for accelerating a flow must not exceed the RTTs
of its slow-start phase, i.e., m < x, and by incorporating this
constraint, the problem in (3) becomes

max m

st. mi+n=x+4+y
m<x
2171 < y S 9 (4)
n= LR?%YL"J

m,x,y € ZT

For the problem in (4), we have the following result.

Theorem 1. Given a specific value of n, i.e., number of RTTs
in a circuit day, the problem in (4) is bounded and has an
unique integer solution, in which x = m and y = n.

Proof. Since we seek to maximize m, from m +n =z +y
and m < z, it is easy to see that in the optimal solution, we
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Fig. 5. Comparison of CWND evolvements of an accelerated elephant flow
and a flow not accelerated, where shaded regions represent circuit days.

have x = m and y = n. From the third constraint, we can see
that 2~1 < n < 27, so given a concrete value of n, we can
find a unique solution for x, and solve the problem in (4). [

We use an example to demonstrate how an elephant flow
is accelerated. Suppose n = 8§, i.e., a day contains 8 RTTs,
then the only feasible solution for (4) is + = m = 3 and
y = 8. As shown in Fig. 5, the AccelToR switch accelerates
the elephant flow for m = 3 RTTs, during which the flow is
under the slow-start phase and grows its CWND to 2 = §
MSS. During the circuit day, the flow is under congestion
avoidance and linearly grows its CWND to 2™ 4+ n = 16
MSS. After a timeout caused by blocking, the flow’s CWND
is reduce to 1 MSS, and its ssthresh is set as zm% =38
MSS, which is the size that the flow can grow its CWND after
being accelerated for m = 3 RTTs before its circuit day in the
next week.

After m is decided by solving (4), we can apply (1)
to compute K. In the above example, with 74,y =240 ps,
Tnight =20ps, and RTTp, =30ps, we have K; = 1 and
K = K + 1, as day, also consumes a queue in the calendar
queue. However, in our practice, we set K = K7 + 2, and use
one additional queue in the calendar queue as a safe margin,
which we explain in Sec. III-E.

Finally, after obtaining m and K, we detail the packet
scheduling rules in Case III as:

o Case III: If a packet is from a flow f in F;, where
1 <1 < K, then,

— Subcase III-A: If there is > RTTy left before day;
starts, accelerate the flow f by enqueueing the packet
to the LP queue for accelerating.

— Subcase III-B: If there is < RTTyy left before day,
starts, enqueue the packet to @; for buffering.

Algorithm 1 presents the complete packet scheduling algo-
rithm.

D. Analysis and Comparison

In this section, we analytically compare the case that an
elephant TCP flow is accelerated with the case that it is not
accelerated (e.g., [5]). In both cases, we optimistically assume
that the flow resumes to send packets and enlarges its CWND
as soon as it is accelerated or unblocked. Similar to (4), for the
non-accelerating case, the RTTs x and y that the flow spends

Algorithm 1: Packet scheduling algorithm

1 Algorithm Packet scheduling on AccelToR

Input : packet pkt of flow f

2 switch f do

3 case [ is a mice flow do

4 | Enqueue pkt to HP queue ; /« Case I «/

5 case f € Fy do

6 | Enqueue pkt to Qo ; /+ Case II #/

case f € F;,, 1 <i < K /+ case III */

8 do

9 if there is > RTT,y left before day; then

10 Enqueue pkt to LP queue ; /» Subcase
III-A «/

11 else

12 L Enqueue pkt to (); ; /+ Subcase III-B
*/

13 case f € F;,, K <i< N do

14 L Drop pkt ; /% Case IV /

in the slow-start and congestion-avoidance phases are obtained
by solving the following problem.

rt+y=n
{ 2I—1 <y§2x (5)

where x,y € Z* are unknown integers and n = LR?I—E;{&J is
the RTTs in a circuit day. For example, given n = 8, the only
feasible solution for (5) is x = 3 and y = 5.

Fig. 5 presents the CWND evolvements of an elephant
flow being accelerated for m = 3 RTTs and a flow without
accelerating. In both cases, a day contains n = 8 RTTs.
One can see that the accelerated flow grows its CWND to
16 MSS by the end of a circuit day, while the flow that is
not accelerated has its CWND grown to 10 MSS. Moreover,
during a circuit day, the accelerated flow sends 2.19 times
more packets than the flow without accelerating, thanks to its
larger CWND and the packets buffered within the AccelToR
switch. From the comparison, we can see that by accelerating,
an elephant flow can better utilize the optical bandwidth and
transfer more data.

We also compare the buffering space required by AccelToR
with the approach that maintains per-destination queues in the
ToR switch (e.g., [8]). With m = 3 and K = 3 as in the above
example, the calendar queue of the AccelToR switch needs to
buffer 2™ = 8 packets for each elephant flow. If |F;| = 32,
i.e., there are 32 elephant flows to each destination, then the
total size of the calendar queue should be K x 32 x 8 = 768
packets. On the other hand, consider a network composed of
N = 50 racks, in which each ToR switch maintains 49 per-
destination queues. Given the same packet buffering space,
each per-destination queue can buffer no more than 16 packets
for 32 flows. In other words, an elephant flow can buffer fewer
than one packet on average, while having all the other on-the-
fly packets dropped after being blocked. From the comparison,
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Fig. 6. By enqueueing packets to LP queue one day earlier than RTOyp,
AccelToR can recover from both expected packet losses caused by blocking
and unexpected packet losses that happen during the previous circuit day.

we can see that AccelToR is scalable to network size by
imposing an O(1) memory overhead, thus is compatible with
today’s switch hardware.

Finally, unlike the approaches that unblock all the elephant
flows all the time [22], [23], AccelToR only allows the
elephant flows to transfer through the packet network for a
very short time of m RTTs. In addition, since all the packets
from the accelerated elephant flows are enqueued to the LP
queue, they will not jam the mice flows, whose packets are
enqueued to the HP queue and get transferred with a higher
priority. For these reasons, AccelToR is capable to preserve
short FCTs for the mice flows in the packet network.

E. RTO,,;, and Safe Margin

In the above sections, we optimistically assume that a
blocked elephant flow always resumes sending packets as
soon as it is accelerated. However, at the moment when an
elephant flow is eligible to send packets, it may still wait for
the retransmission timer to expire, especially after successive
packet losses with its RTO doubled multiple times.

In standard TCP [37], after the initial packet loss, a TCP
sender computes its RTO as SRTT + 4 x RTTVAR, where
SRTT and RTTVAR are the smoothed RTT and RTT variance
respectively. Meanwhile, modern OSes have a lower bound on
RTO named RTO.,;,, which is a configurable parameter, and
in many Linux versions, RTOp;, is set as 200 ms by default.
Obviously in today’s data centers with SRTT and RTTVAR in
microseconds, the millisecond-scale default RTO,,;, is indeed
the initial RTO enforced by TCP senders [38].

We leverage the configurable RTOy,, at end-host to ensure
that a blocked elephant flow resumes to send packets as soon
as it is accelerated. In particular, we configure RTOy,, as

RTOpin = Tweek — Tday — (m + 1) X RTTpkt (6)

where Tyeex is the duration of a week. For example, given
Tweek =12.74ms, Tgay =240 ps, RTTy =30ps, and m = 3,
RTOpin should be set as 12.38 ms. Clearly, by configuring
RTO,,;, with (6), after the circuit to the destination becomes
unavailable and packets are dropped, the elephant flows in |F|
will always resume to send packets after the AccelToR switch
starts to accelerate it in the next week.

Note that according to (1) and (6), we have K; =

W—‘ , which means that after an elephant flow is
blocked, its retransmission timer is supposed to expire within
K days and nights before the flow’s circuit day in the next
week. However, as we employ one additional queue in the

calendar queue as the safe margin (i.e., K = K;+2), the flow’s
packets are indeed eligible to be enqueued to the calendar
queue one day earlier. This is because an elephant flow has
chances to accidentally lose packets during its circuit day. For
example, packets may be corrupted in the optical network
for reasons such as connector contaminations and decaying
transmitters [39]; and when there is a lot of intra-rack traffic,
packets may also be dropped due to the congestion within the
source or destination rack. As demonstrated in Fig. 6, when
such incidents happen, if a flow is eligible to enqueue packets
to the calendar queue one day earlier, it can recover from these
unexpected packet losses.

F. Configuring Queue Size and Right-sizing F;

We configure the size of each queue in the calendar queue
slightly smaller than C' x RTT;, where C' is the capacity of
the optical path, because of the following reasons. First, the
data buffered in a queue should not exceed the bandwidth-
delay product (BDP) of the optical path. Second, to achieve
a high utilization of the optical bandwidth, the size of each
queue (; in the calendar queue should be close to C' x RTTg;;.

Once the queue size B is decided, we carefully control the
size of the set F'; to avoid over-filling @);. Recall that each flow
has grown its CWND up to 2" MSS after being accelerated
for m RTTs, if a queue in the calendar queue can buffer up
to B packets, we require that 2™ x |F;| < B, so that a queue
will not overflow after each flow in F; has been accelerated
for m RTTs.

To right-size F';, for each source-destination rack pair, we

maintain no more than 2- elephant flows in F;, and label the
other flows as mice flows.

S

G. Selecting Elephant Flow

To select elephant flows, we can apply the methods for
detecting the heavy-hitter flows, such as the ones proposed
in [40] and [41]. In particular, the data structure for tracking
heavy hitter flows (referred to as sketch) can be deployed at the
ingress pipeline of each AccelToR switch, and monitors all the
traversing packets. For each source-destination rack pair, the
module identifies the top-k largest flows, and label no more
than 2],5; of them as the elephant flows in F';. For each elephant
flow, the AccelToR uses a dedicated counter to count its size.
If a counter does not increase for some time, the corresponding
elephant flow is considered to leave the network, and in this
case, it is removed from F;, and a new flow is selected from
the heavy-hitter flows and added to F;. Note that replacing
elephant flows take time, during which the optical link would
be slightly under-utilized.

IV. EVALUATION
A. AccellToR in ns-3

We have realized AccelToR as well as a circuit/packet
hybrid data center network in ns—3 [42]. Realizing such a
network in ns—3 is non-trivial, as the existing ns—3 modules
do not support pausing, unpausing, and rotating queues as
required by AccelToR. To overcome these limitations, we



|
module
AN |

g g

ocs | Controller
module
Configue
Global
i network
Vil device

| dew

Pkt ['Schedulin
f 2
ToR o " les
scheduler ooe
Flow info

pkt decision

pkt

: Scheduli
o] Settne
scheduler

okt decision

ToR1

ToRN

Fig. 7. Overview of the AccelToR ns-3 realization.

develop a new device class namely ToRNetDevice, and
realize all the required operations from scratch.

An overview of our ns—3 realization is presented in Fig.
7. Besides the ToR device module, we also develop a number
of other modules that are necessary for our experiment. In
particular, we develop a Controller module, which maintains
a global network view and configures both ToR and OCS
switches in the simulated network. We develop an OCS routing
module to enforce a cycle of matchings from the Controller
on OCS. Within a ToR switch, we develop the ToR scheduler
module that applies Algorithm 1 to locally decide how to
handle packets. In addition to the modules, we also develop
the corresponding helpers for facilitating users to construct
a circuit/packet hybrid data center network. We make our
AccelToR ns-3 realization publicly available?.

B. Experiment Setup

With the ns—3 AccelToR realization, we carry out packet-
level simulations on a circuit/packet hybrid data center net-
work composed of N racks, where each rack connects to an
ESP switch and an OCS switch as in Fig. 7. We configure the
durations of a day and a night as 74,y=240 us and Tpign:=20 s,
and set the capacities of the uplinks connecting to the EPS and
the OCS as 10 Gbit/s and 80 Gbit/s respectively. For any pair
of inter-rack end-hosts, the RTT of the optical circuit network
is set as 55 s, and the RTT of the packet network is 60 ps.
An experiment lasts 5 seconds.

Note that given the above configuration, the week duration
and number of weeks contained in the 5-second simulation
depend on the network size. For example, suppose that the
network has 72 racks, then each week lasts 18.46 ms, and 5
seconds contain 270 weeks. When the network size decreases,
more weeks are contained in the simulation.

We simulate network flows with their sizes drawn from
pFabric [43]. At the beginning of each experiment, for each
pair of source-destination racks, we select |F;| = 80 largest
flows as elephant flows, and label the others as mice flows.
Subsequent flows arrive to the network following a Poisson
process, and we vary the Poisson arrival rate to impose
different load, which is defined as the ratio between the
aggregated rate of the mice flows and the EPS bandwidth, on
the packet network. We use Count-Min (CM) [44], the simplest
heavy-hitter detecting sketch to select elephant flows: Once an

Zhttps://github.com/HPCC724/RDCNSimulate

elephant flow leaves the network, we employ the CM sketch to
select a new heavy-hitter flow to replace it. In addition, after
a mice flow is labeled as an elephant flow, we add a new mice
flow with its size as the original flow’s residual size, so that
the overall load on the packet network is unchanged. We do
not simulate intra-rack traffic for simplicity.

We compare the following solutions for TCP data trans-
portation on the circuit/packet hybrid data center network.

o Blocking. In such a solution, elephant flows are blocked
when their circuits to the destination racks are unavail-
able, and mice flows are transferred through the packet
network all the time. Each ToR switch maintains N
queues. Among them, one queue is for the packet network
that is never blocked, and the other N — 1 queues are for
the circuit network, where each queue is dedicated to one
destination rack and buffers packets of the corresponding
elephant flows when the circuit to the destination rack is
unavailable. The size of the queue for the packet network
is 300kB, and the NV — 1 per-destination queues for the
circuit network have a total size of 1.5 MB. For fairness,
we set RTO,,, on end-hosts as

RTOpin = Tweek — Tday @)

so that a blocked elephant flow can resume sending pack-
ets as soon as it is unblocked. Note that the systems in
[5], [6], [81, [9], [20] choose to block elephant flows, and
among them, Mordia [8] and NegotiaToR [20] maintain
per-destination queues within the ToR switch.

o Unblocking. In this solution, the ToR switch always
transfers the mice flows through the packet network,
while for the elephant flows, they are sent through the
circuit network when their circuits are established, and
are transferred through the packet network during the
other time. As in [22], the egress ports connecting to
the EPS and OCS share a queue, and to enable a fair
comparison, the queue size is set as 1.8 MB. Note that
existing systems in [22], [23] transfer elephant flows via
the packet network when their circuits are unavailable.

o AccelToR. Our proposed AccelToR follows Algorithm 1
to schedule packets from different flows. In AccelToR,
the HP and LP queues of the priority queue each has a
size of 150kB, and according to Sec. III-C and the net-
work parameters, we have m = 2 and use K = 3 queues
in the calendar queue. Each queue has a size B of 500 kB,
which is slightly smaller than C' x RTT, =550kB, and
satisfies the condition B > 2™ x |F;| =480kB, as we
have discussed in Sec. III-F. The total packet buffering
space is 1.8 MB as in Blocking and Unblocking. We
apply (6) to configure RTOyy;,.

Note that in the three solutions, mice flows are transferred
through the packet network all the time, and the solutions
differ in how the elephant flows send packets through the
packet network. We focus on the following performance
metrics in the experiments.

o Weekly throughput. For each elephant flow, we measure
its throughput averaged through an entire week.
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o Daily throughput. We also measure an elephant flow’s
throughput during a day when the circuit to its destination
rack is available.

« Optical link bandwidth occupancy. During each circuit
day, we measure the usage of the optical link’s bandwidth
in percentage.

o Normalized flow completion time (FCT). For each mice
flow, we compute its normalized FCT as the flow’s actual
FCT normalized to its ideal FCT when no other flows are
active in the packet network, i.e.,

Norm. FCT = FCT under examined solution

FCT if is the only flow in packet network

o Aggregated congestion window (CWND). We study
the evolvement of the CWND aggregated from all the
elephant flows during a circuit day.

The above metrics are aggregated from all the weeks in
the 5-second simulation. Finally, we use NewReno [45] as the
end-host TCP congestion control if not otherwise specified.

C. AccelToR vs. Blocking

In the first experiment, we vary the network size from 8§ to
72 racks, and evaluate the solutions of Blocking, Unblocking,
and AccelToR. The load on the packet network introduced
by the mice flows is fixed as 50%. We present the daily and
weekly throughputs of the elephant flows, the occupancy of
the optical link bandwidth, and the normalized FCTs of the
mice flows in Fig. 8. From Fig. 8(a), (b), and (c), we can
see that comparing with Blocking, our proposed AccelToR
achieves much higher throughputs for elephant flows and a
much higher optical link bandwidth occupancy. In addition,
the daily throughput and the optical bandwidth occupancy of
AccelToR are stable in different-sized networks.

On the contrary, under Blocking, the daily throughputs
and bandwidth occupancy decrease as the network contains
more racks. This is because given a constant packet buffering
space, when the network size increases, the size of each
per-destination queue decreases. In addition, Fig. 8(a) and
(b) shows that the elephant flows under AccelToR exhibit
much smaller throughput variance than under Blocking. This
is because the flows accelerated by AccelToR have similar
rates, while under Blocking, many flows do not send any
data as they fail in competing the limited buffering space of

the per-destination queues. Our observation suggests that by
accelerating elephant flows a few RTTs before their circuit
days, AccelToR substantially outperforms Blocking regarding
the throughputs and optical bandwidth utilization.

To better understand the strength of AccelToR over Block-
ing, we fix the network size as 50 racks, and present the distri-
butions of the weekly throughputs of the elephant flows from
rack 5 to rack 37 in Fig. 9. We also estimate the elephant flows’
FCTs by assigning each flow a size randomly selected from the
top-200 largest flows in pFabric, and present the distribution
in Fig. 10. Fig. 9 shows that under AccelToR, most of the
elephant flows have a weekly throughout between 26.9 and
29.7 Mbit/s, and the variance is small. Fig. 10 suggests that
comparing to Blocking, AccelToR can substantially reduce the
flows” FCTs.

In Fig. 11, we plot the evolvements of the aggregated
CWNDs under different solutions during the day. From the
figure, we can see that under AccelToR, the CWND has
already grown to 4 MSS at the beginning of the day, and
it continues to grow during the circuit day. On the other hand,
the elephant flows under Blocking have an aggregated CWND
as small as 1 MSS at the beginning of the day, and about
90% elephant flows do not send packets and enlarge their
CWNDs during the circuit day, as the senders of these flows
are suffering packet losses due to buffer overflow.

Fig. 8(d) shows that both Blocking and AccelToR preserve
short FCTs for the mice flows, and in Fig. 12, we present the
distributions of the normalized FCTs for the mice flows under
the three solutions. We can see that Blocking has normalized
FCTs close to 1 for most mice flows, as the elephant flows are
restricted from the packet network. From the inset figure of
Fig. 12, we can see that AccelToR has the normalized FCTs
slightly larger, as it exploits the packet network to accelerate
the elephant flows. However, AccelToR still preserves short
FCTs for the mice flows with the distribution curve basically
overlapping with the one of Blocking, as it introduces only a
limited volume of traffic to the packet network, and employs
a priority queue to prevent the elephant flows from competing
bandwidth with the mice flows.

From the above experiment we can see that under Blocking,
given a limited size of the packet buffering space, when the
network contains more racks, the per-destination queue has its
size reduced, and consequently the elephant flows suffer more
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packet losses due to buffer overflow. A question one may ask
is, if the ToR switch can employ a larger packet buffer, will
Blocking outperforms AccelToR? In the following experiment,
we presume that Blocking can employ up to 10 times larger
packet buffer than AccelToR, and compare the elephant flows’
daily and weekly throughputs of the two solutions in Fig.
13. The figure shows that even with a per-port packet buffer
as large as 18 MB, which is impractical on today’s switch
hardware, the throughputs achieved by Blocking are still
significantly lower than AccelToR. The result suggests that
enlarging the in-switch packet buffer for Blocking is neither
practical nor effective.

D. AccelToR vs. Unblocking

Fig. 8 also presents performances of Unblocking and com-
pares it with AccelToR. From Fig. 8(a), (b), and (c), we can see
that Unblocking has the lowest daily throughput and optical
link bandwidth occupancy among the three solutions, and its
weekly throughput is also significantly lower than AccelToR
due to its low utilization of the optical bandwidth, despite that
it allows elephant flows to transfer all the time. The elephant
flows under Unblocking exhibit a greater variance than under
AccelToR. For example, Fig. 9 shows that under Unblocking,
an individual flow has a weekly throughput varying from O
to 22 Mbit /s, depending on how it is congested in the packet
network. Moreover, as many as 80% elephant flows do not
send any packet during the circuit day. Fig. 10 suggests that
for the elephant flows, their FCTs are significantly longer
under Unblocking than under AccelToR, and Fig. 11 shows

Unblocking, and AccelToR.

Unblocking, and AccelToR. Note that
the figure and the inset figure use log
and linear scales on Xx-axes respec-
tively.

that comparing with AccelToR, the aggregated CWND under
Unblocking is much smaller and grows slowly, as many flows
stall waiting for the retransmission timers to expire since their
last packet losses due to the congestions in the packet network.
From Fig. 8(d), we can see that Unblocking has much
longer FCTs for the mice flows than AccelToR and Blocking.
The reason is that under Unblocking, when the circuits are
unavailable, the elephant flows compete bandwidth with the
mice flows, and introduce severe congestions to the packet
network. To better understand the impact of the congestions
on the mice flows, we study the FCT distributions in Fig. 12.
We can see that Unblocking causes very long FCTs for many
mice flows, as these flows have slim chances to successfully
send packets when competing bandwidth with the elephant
flows, and stall after experiencing successive packet losses.

E. Impact of Congestion in Packet Network

The basic idea of AccelToR is to use the packet network
to accelerate elephant TCP flows before their circuit paths are
established. However, when the packet network is congested,
the acceleration should be interrupted. In this experiment, we
examine the impact of the congestions in the packet network,
and in particular, we focus on a network containing 50 racks,
and change the Poisson arrival rate of the mice flows to make
the load on the packet network vary from 10% to 95%.

Fig. 14 presents performances of Blocking, Unblocking, and
our proposed AccelToR under various loads on the packet
network. From Fig. 14(a), we can see that the elephant flows
under Blocking are not impacted, as they do not transfer
through the packet network at all. The weekly throughputs of
the elephant flows under Unblocking decrease as the packet
network becomes more and more congested. This is because
the TCP senders’ congestion states such as CWND and
ssthresh are largely shaped by the congested packet net-
work. Under AccelToR, we find that the weekly throughputs
of the elephant flows remain high as long as the load imposed
on the packet network is below 70%, but when the packet
network is severely congested with the load exceeding 70%,
the throughputs decrease dramatically.

In Fig. 14(b), we present the optical bandwidth occupancies.
The result conforms with the above observation that AccelToR
utilizes over 90% of the optical bandwidth as long as the
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packet network.

load on the packet network is below 70%, but the bandwidth
occupancy drops quickly as the packet network gets severely
congested. Fig. 14(c) presents the normalized FCTs of the
mice flows, from which we can see that Blocking and Ac-
celToR do not inflate the mice flows” FCTs, as they either
consume little bandwidth on the packet network, or prioritize
the mice flows over the elephant flows; but under Unblocking,
the FCTs increase with the congestion level, as all the flows
compete bandwidth in the packet network.

Our observation from Fig. 14 shows that when the load
of the mice flows on the packet network is high (e.g., above
70%), the elephant flows” weekly throughputs and the optical
link bandwidth occupancy degrade rapidly. This is because
when the HP queue of the priority queue in the AccelToR
switch is busy sending packets from the mice flows, the LP
queue for accelerating the elephant flows is jammed, and drops
packets when the queue is full. In this case, the elephant flows
waste their optical days waiting for the retransmission timers
to expire rather than growing their CWNDs.

The experiment result suggests that when the packet net-
work is severely congested, AccelToR chooses preserving
short FCTs for mice flows over accelerating elephant flows.
We believe that such a choice is reasonable, as most mice
flows are delay-sensitive, and their FCTs directly impact users’
service experiences. As bandwidth in data center tends to be
overprovisioned to cope with the unpredictable usage patterns,
the long-term load is generally low, so in most time, AccelToR
can preserve short FCTs for mice flows and accelerate elephant
flows simultaneously.

F. Effectiveness of Safe Margin

In Sec. III-E, we propose to use one additional queue in the
calendar queue as safe margin for recovering from unexpected
packet losses that happen during the circuit days. In this
experiment, we examine the effectiveness of this design. In
particular, we compare the AccelToR solutions with and with-
out the safe margin, and examine the optical link bandwidth
occupancies under the two cases. Note that when AccelToR
runs without the safe margin, we use K = K; +1 = 2
queues in the calendar queue, and the elephant flows are
eligible to send packets through the packet network one day
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Fig. 15. Optical link bandwidth occupancies in circuit days of 70 consecutive
weeks under AccelToR with and without safe margin.

later comparing with the safe margin case. In both cases, the
network contains 50 racks.

We focus on a pair of source-destination racks, and to
introduce unexpected packet losses, we set the loss rate within
the destination rack as 0.01. Fig. 15 presents the optical
link’s bandwidth occupancies achieved by both solutions in the
circuit days of 70 consecutive weeks. One can see that with the
safe margin, the optical bandwidth occupancy remains stable
at above 90%. But in the case without the safe margin, the
bandwidth occupancy has a decreasing trend and is reduced to
65% after 70 weeks. This is because without the safe margin,
when an elephant flow encounters an unexpected packet loss
that happens during its circuit day, there are chances that the
flow can not recover from the loss and stops sending packets
in the subsequent weeks, as we have discussed in Sec. III-E.
When many flows stall because of the irrecoverable packet
losses, we observe a reduction on the bandwidth occupancy.

Note that although we do not introduce intra-rack traffic
in our simulation, however, the experiment result in Fig. 15
suggests that when there is a lot of intra-rack traffic that causes
congestions within the racks, AccelToR can successfully re-
cover from the packet losses.

G. Impact of Queue Overflow

In Sec. III-F, we discuss that to avoid queue overflow, the

condition |F;| < £ should be satisfied. In the following,

we experiment a case when this condition is violated. More
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specifically, we set the size of each queue in the calendar queue
as 300 kB, which is smaller than 2™ x |F;| =480kB, and to
avoid packet loss in this case, if @); is full when a packet of
a flow in F; arrives, we schedule the packet to be transferred
through the LP queue. The experiment is conducted in a 50-
rack network.

In Fig. 16, we present the distribution of the 80 elephant
flows’ weekly throughputs with the queue size set as 300 kB,
and compare with the distribution when the queue size is
500kB that satisfies the condition. We find that with the
300kB-queues, the elephant flows exhibit a greater variance
than the flows under the 500 kB-queues. By investigating the
packet traces, we find that when setting the queue size as
300kB, there are many fast retransmissions caused by packet
reordering, and some flows encounter more reordered packets
than the other flows, which hinder them from growing their
CWNDs. We also find that the optical bandwidth utilization
is slightly reduced. The experiment result suggests that it is
necessary to right-size F; to avoid queue overflow.

H. AccelToR with TCP Variant

In the previous experiments, we use NewReno as the default
TCP congestion control. In the following, we experiment as
many as 15 other TCP congestion control algorithms (CCAs)
available in ns-3 [46]. The algorithms fall into four cate-
gories:

e Loss-based CCA: The TCP variants of BIC [47], CU-
BIC [48], HighSpeed [49], H-TCP [50], Hybla [51],
Reno [52], Scalable [53], Veno [54], and Westwood [55]
are loss-based congestion controls. In these algorithms,
packet loss is interpreted as a signal of congestion, and
sender reduces CWND on detecting packet losses.

o Delay-based CCA: The TCP variants of LEDBAT [56]
and Vegas [57] are delay-based. In these algorithms, the
sender monitors the end-end delays, and uses the change
of the delay as an indication of congestion.

o Hybrid CCA: The TCP variants of Illinois [58], BBR
[59], and YeAH [60] combine losses, delays, and other
signals in their congestion controls.

o Switch-assisted CCA: The TCP variant of DCTCP [30],
[61], which is dedicatedly designed for data center net-
works, leverages switches to provide Explicit Congestion
Notifications (ECNs) to end hosts. In our evaluation, we

deploy DCTCP at EPS of the packet network with a
default ECN marking threshold as 65 packets.

In Fig. 17(a), we present the weekly throughputs of the ele-
phant flows under the solutions of Blocking, Unblocking, and
AccelToR in a network containing 50 racks with a 50% load
on the packet network, and experiment the 15 different TCP
variants under the three solutions. In Fig. 17(b), we present
the optical link bandwidth occupancies achieved by AccelToR
when applying different CCAs. From Fig. 17(a), we can see
that with all the CCAs, AccelToR achieves higher throughputs
for the elephant flows than Blocking and Unblocking, and Fig.
17(b) shows that most TCP variants can realize an optical link
bandwidth occupancy as high as above 90%. The observations
suggest that AccelToR is effective with most TCP variants
under the evaluation, as these CCAs have a slow-start or a
similar phase for rapidly seizing the available bandwidth, thus
can benefit from the accelerating.

In Fig. 17(b), we find that CUBIC [48] and BBR [59]
have their optical bandwidth occupancies as 53.1% and 76.0%
respectively, which are relatively lower than the other TCP
variants. The reasons are as follows: CUBIC employs a cubic
function to increase CWND, and such a function makes the
sender less aggressive to explore bandwidth when approaching
to the window size of the previous packet loss, which happens
at the end of the circuit day.

For BBR, the sender seeks to keep the queue empty by
always working at the point with the base RTT. However,
since AccelToR buffers packets, the BBR sender will detect
a significant RTT increase caused by the buffering, and enter
into the drain state by proactively reducing its packet sending
rate for draining the queue. For this reason, BBR does not
achieve a throughput as high as the other TCP variants.

Finally, we summarize our findings from the experiments
as follows.

o AccelToR substantially improves elephant flows’
throughputs, and greatly increases utilization ratio of the
optical bandwidth. For example, in a network composed
of 50 racks, AccelToR achieves 8.24x and 12.92x
optical bandwidth occupancies comparing with the
alternative solutions that block and unblock the elephant
flows respectively.

o AccelToR is effective in preserving short FCTs for mice
flows by avoiding congesting the packet network. For



example, in a network composed of 50 racks, AccelToR
only increases the FCT of the mice flows 0.97% com-
paring with the Blocking solution, and reduce 98.82% of
the FCT comparing with Unblocking.

e AccelToR incurs a moderate memory overhead that is
independent of the network size.

o AccelToR is robust against unexpected packet losses that
happen during the circuit day without stalling the TCP
senders, and avoids queue overflow by right-sizing the
set of the elephant flows.

o AccelToR can benefit a wide range of TCP CCAs by
achieving an optical link bandwidth occupancy above
90% for most of the TCP variants under the evaluation.

V. RELATED WORK

To provide a higher bandwidth at a lower cost, in the past
decade, people explore to introduce optical circuit switched
networks to data centers [S5]-[16], [18], [20], [62], in which
an optical circuit network core is developed to inter-connect
the racks. For configuring OCS, various algorithms are pro-
posed to compute a series of OCS matchings based on the
communication demand estimations [24], [25], [28], [29], [63],
and coflows are carefully scheduled over the hybrid network
[64], [65]. As today’s OCSes have reduced the reconfiguration
delay from milliseconds to microseconds, people propose to
configure OCSes in a demand-agnostic manner, in which the
time-consuming computation at the OCS controller is skipped,
and an OCS locally cycles through a series of static matchings
in a round-robin way [12], [14].

Since OCS reconfiguration incurs non-trivial delays, to
preserve the desired properties of the circuit network while
providing a continuous connectivity among the racks, cir-
cuit/packet hybrid data center networks are proposed [5], [6],
[8], [9], [22], [23]. In such a network, when the circuits to
the destination racks are unavailable, some works propose to
block the corresponding flows [5], [6], [8], [9], and buffer
the packets in the per-destination queues maintained either
by the ToR switch [8], [20], or by end-hosts [9]. However,
Porter et al. [8] show that maintaining per-destination queues
raises a scalability concern. Recent works propose to allow
all the flows to transfer through all the available paths, so as
to reduce the network complexity [22], [23]. However, as we
have shown in this work, without segregating network flows,
mice flows will be impacted by the congestions brought by
elephant flows, and have their FCTs significantly prolonged.
AccelToR follows the design choice of segregating elephant
and mice flows, but unlike the previous works, AccelToR
does not maintain per-destination queues, thus is scalable to
network size.

To reconfigure OCS frequently and have a high circuit
uptime ratio, in today’s OCS-based data center networks, the
optical circuit from a source rack to a destination rack typically
lasts fewer that 10 RTTs [22]. With such a short circuit
time, TCP faces a critical challenge as it is difficult for a
TCP sender to sufficiently enlarge its CWND and efficiently
utilize the optical link bandwidth. To address this problem,
Mukerjee et al. [22] suggest that ToR switches dynamically

resize the queues for buffering packets, and a TCP sender at
end-host increases CWND on receiving an explicit circuit state
feedback sent from the ToR switch. Chen et al. [23] develop
a new TCP variant named Time-division TCP (TDTCP) that
maintains multiple sets of independent congestion control
states for low-bandwidth packet network and high-bandwidth
circuit network separately. However, these solutions require
end-hosts to closely coordinate with the circuit network, and
substantially modify the OS protocol stack. Unlike these ap-
proaches, AccelToR does not demand any explicit coordination
from end-hosts, and efficiently utilizes the optical bandwidth
by achieving high throughputs for elephant flows.

There is a rich literature on exploiting switches for boosting
TCP performances in general. For example, active queue man-
agement (AQM) techniques are applied for reducing queueing
delays for TCP flows [66]-[68]. Turkovic et al. [69] propose
to monitor network flows passing a switch based on their con-
gestion control behaviors, and apply appropriate measures to
improve the fairness. Chen et al. [70] enhance fairness among
TCP flows with weighted fair queueing on programmable
switches. For improving TCP at end-host, TAS [71] is an OS
service that accelerates TCP by reducing the packet processing
overhead. AccelTCP [72] accelerates TCP by offloading TCP
operations to NIC hardware. SUSS [73] is a sender-side add-
on to safely expedite the growth of the CWND. Unlike these
works, we focus on accelerating TCP in a circuit/packet hybrid
data center network, and restrict our solution within the ToR
switch.

VI. CONCLUSION

Circuit/packet hybrid data center networks are widely pro-
posed to provide high bandwidth of a circuit network and
preserve a continuous connectivity among the racks with a
packet network in parallel. As today’s OCSes have reduced
the reconfiguration delay to microseconds, to achieve a high
uptime ratio and a reconfiguration frequency, a circuit day
typically lasts fewer than 10 RTTs. Such a short circuit time
brings a critical challenge to TCP, as a TCP sender does
not have sufficient time to enlarge its CWND and utilize the
optical bandwidth.

To address this problem, in this paper, we present Accel-
ToR, a novel ToR switch for improving TCP performance
in circuit/packet hybrid data center networks. For enlarging
elephant flows” CWNDs, AccelToR “accelerates” the flows by
scheduling their packets to be transferred through the packet
network a few RTTs before their circuit days, and buffers
the last windows of their packets. When the circuit to the
destination rack is established, the AccelToR switch sends out
the buffered packets to fill the capacity of the optical link,
and the accelerated flows, which have their CWNDs already
enlarged, continue to increase their windows for sufficiently
utilizing the optical bandwidth. We have realized AccelToR in
ns-3, and packet-level simulations show that comparing with
the alternative solutions, AccelToR achieves high throughputs
for elephant flows and highly utilize the optical link band-
width, and it preserves short FCTs for mice flows at the same
time; in addition, AccelToR is robust under unexpected packet



losses and can benefit a wide range of TCP congestion control
algorithms.
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