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Abstract—Silent packet drops and packet corruptions, which
are caused by faulty network elements and hurt performances of
cloud applications, are common in data centers but hard to detect
and localize. Existing solutions based on active probes introduce
additional probe traffic and are constrained by probe rate,
while solutions based on passive traffic monitoring measure the
entire network traffic, and are generally unable to pinpoint the
locations where packet losses happen. In this paper, we present
Canary, a system for detecting and localizing network faults
with partial traffic monitoring. Canary employs a lightweight
and adaptive mechanism to detect packet losses by monitoring a
small set of large-sized network flows, and it ensures that on each
network path, a sufficient number of packets are monitored by
upstream and downstream switches. In addition, Canary encodes
information of the path that a packet travels along within its
header, and by leveraging path information of the lost packets,
Canary is capable to localize network faults with high accuracy.
We theoretically prove the effectiveness of our proposed method,
and prototype Canary with P4 on commodity hardware pro-
grammable switches. Results from extensive experiments driven
by real-world traffic show that Canary is lightweight regarding
measurement overhead, robust under traffic dynamics, and is
accurate in detecting and localizing faulty network links. In
particular, comparing with the state-of-the-art solutions, Canary
reduces the memory overhead by over 97% under 10−2 link loss
rate, and increases the F1-score in localizing the faulty links by
over 20% on a 𝑘 = 8 fat-tree data center network.

Index Terms—Loss detection, fault localization, partial traffic
monitoring, data center network, programmable switch

I. INTRODUCTION

CLOUD providers have built large data centers for a
wide range of applications including giant AI models,

massive online gaming and social networking, high-volume
e-commerce transactions, etc. However, packet losses hurt
performances of these applications. For example, even with
a 10−4 loss rate, the throughput of a RDMA flow would drop
over 75% [1], and a loss rate of 10−4 can cause a TCP CUBIC
flow to drop its throughput by 50% [2].

Congestions and network faults are two major sources of
packet losses. To avoid packet drops due to congestions,
several congestion control algorithms have been developed
in recent years [3]–[5]. Nevertheless, many packet losses are
caused by faulty network elements. For example, gray failures
[6] such as software bugs or malfunctional hardware cause
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switches to drop packet probabilistically without reporting
(i.e., silent packet drops) [1], and link-related issues such
as connector contamination, damaged or bent fiber, decaying
transmitters, and bad transceivers cause packet corruptions [7].
Silent packet drops and packet corruptions are common in
data centers but time-consuming to localize, as the upstream
switch usually cannot detect the loss, while the downstream
switch can not recover any information from lost or corrupted
packets. For example, Microsoft reports that 12.67% links with
loss rates above 0.001 are caused by corruptions [7]; and
according to Alibaba, 18% network performance anomalies
within their data centers are caused by silent packet drops and
packet corruptions, which constitute 50% of the network faults
that take over 180 minutes to localize [8].

One approach for detecting and localizing network faults are
based on active probe [9]–[15]. In such a system, a number of
end-hosts are selected for sending and receiving probe packets.
To ensure that a probe packet travels along a pre-planned path,
IP-in-IP source routing is adopted [12], [14]. Based on the
probe results, an inference algorithm is generally employed to
localize the network faults [9], [12]–[14], [16]. One drawback
of the active probe based approaches is the additional traffic
imposed on the network, and to reduce this overhead, end-
hosts are only allowed to send probes at a low rate. For
instance, in NetBouncer [14], an end-host is configured to
send only 100 packets per 5 minutes. Clearly, with fewer probe
packets, it is more difficult to detect packet losses that happen
at small probabilities.

Another representative approach is based on passive traffic
monitoring [17]–[19]. In such a system, flow or packet-level
information is collected by switches, and packet losses are
detected by comparing the measurement data collected at
different positions. To reduce the memory and bandwidth
overhead, sketch data structures such as Invertible Bloom
filter Lookup Table (IBLT) [17] and FermatSketch [19] are
employed. Although by monitoring the entire network traffic,
all the lost packets can be detected, however, unless deployed
hop-by-hop, these methods are unable to pinpoint the locations
where packet losses happen.

In this paper, we present Canary, a system for detecting
and localizing network faults with partial traffic monitoring.
Comparing with the solutions based on active probe and
passive traffic monitoring, Canary has the following merits.

First, Canary is effective. Unlike the traffic monitoring based
solutions that are unable to localize network faults. Canary
encodes information of the path that a packet travels along
within its header, therefore is capable to localize the positions
where packet losses happen.
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Second, Canary is lightweight. Unlike the active probe based
approaches, Canary is based on passive traffic monitoring,
thus does not introduce additional traffic. In addition, rather
than monitoring the entire network traffic, Canary is based
on partial traffic monitoring, and traces only a small number
of selected network flows, as long as a sufficient number of
packets are counted on each path segment for loss detecting.

Third, Canary is adaptive. Canary guarantees to count
enough packets on each path segment, and when packets
monitored on a path segment are insufficient due to traffic
dynamics, Canary adaptively selects more large-size network
flows on that path segment for traffic monitoring.

Fourth, Canary is accurate. Comparing with the solutions
that send a limited number of probe packets, Canary uses
much more packets collected from on-going network flows,
thus reduces the errors in detecting packet losses caused by
imperfect measurement. In addition, by improving a state-of-
the-art inference algorithm [14], Canary can localize the faulty
links that used to be overlooked by the original algorithm.

By designing and implementing the Canary system, we
make the following contributions in this paper.

• An effective way to encode path information in packet
header. We propose a novel method based on Bloom filter
to encode the path segment that a packet travels along in
its header, and exploit characteristic of Clos-structured
data center network to ensure that each path segment can
be uniquely decoded at the controller. We prove in theory
that path segments are decodable.

• A lightweight and adaptive mechanism to detect packet
losses. We design a compact pipeline that allows upstream
and downstream switches to count packets and collect
path information for a number of selected network flows,
and detect packet losses on each path segment by compar-
ing the measurement data. In addition, we incorporate a
heavy-hitter detecting algorithm [20] to select large-sized
network flows, and make sure that a sufficient number of
packets are counted on each path segment under traffic
dynamics.

• An improved methodology for localizing faulty network
links. We improve the state-of-the-art algorithm in Net-
Bouncer [14] by proposing a methodology that iteratively
runs the algorithm in multiple stages. Our proposed
method leverages the path information of the lost packets,
preserves the high accuracy of NetBouncer’s algorithm in
localizing the faulty links with substantial loss rates, and
overcomes the limitation of the algorithm that overlooks
the links with low loss rates.

• A prototype based on commodity hardware programmable
switch. We have implemented a Canary system prototype.
In particular, we compose the switch pipeline with the
P416 programming language [21], and realize it on the
Intel Tofino based hardware programmable switch [22].
We make the prototype publicly available1.

We have evaluated Canary on both simulated networks and a
real-world testbed. With packet-level simulation, we show that

1The prototype source code is available at
https://github.com/HPCC724/Canary FaultDiag

Canary is inexpensive regarding the memery overhead, and
provides flexibility in allocating memory resources. For exam-
ple, given a link loss rate of 10−2, Canary reduces the in-switch
memory usage by 97.7%, comparing with FermatSketch [19],
and its memory usage can be further reduced as the loss rate
increases. We also show that with the assistance of the heavy-
hitter detection, Canary is robust against traffic dynamics, and
can reduce the controller overhead by counting enough packets
without monitoring too many network flows. The experiment
on a large-scale data center network indicates that Canary is
capable to infer faulty network links with few false positive
and false negative errors, and outperforms the state-of-the-
art algorithms. For example, on a 𝑘 = 8 fat-tree network,
Canary increases the F1 score in localizing faulty network
links by 36.7% and 22.2%, comparing with NetBouncer [14]
and Flock [16] respectively. Finally, evaluation on the real-
world testbed shows that Canary is practical for real-world
deployment without impacting a switch’s packet forwarding
speed.

The remainder part of this paper is organized as follows.
Sec. II discusses the related work; We present the system
design in Sec. III; Sec. IV analyzes the experiment results,
and we conclude this paper in Sec. V.

II. RELATED WORK

A. Approaches based on Active Probe

Modern data centers nowadays deploy “always-on” active
probe services such as Pingmesh [10], NetNORAD [11],
and RD-Probe [15] in their networks. In such a service,
active probe packets are sent from end-hosts for detecting
and localizing network faults. One critical issue of the active
probe based methods is the uncertainty of the paths traveled
by probe packets, as multi-path routing (e.g., ECMP [23]) is
widely adopted in data centers. To overcome this problem, 007
[13] employs a traceroute-like scheme to discover the paths
on which packet drops happen. deTector [12] and NetBouncer
[14] leverage the fact that only one path exists from a server
to a top-layer switch in a Clos-structured network, and control
the path that probe packets travel along with source routing
based on IP-in-IP encapsulation.

To detect and localize network faults from the probe results,
tomography-based techniques [24]–[27] for ISP networks are
consulted. However, as data centers require continuous and
near real-time diagnosis, efforts are made to speed up the
inference. In particular, 007 [13] ranks links based on their
likelihoods to drop packets; [9] solves a system of equations
for obtaining links’ packet loss rates; deTector [12] localizes
faulty network links with a score-based greedy algorithm;
NetBouncer [14] and Flock [16] model the problem as a
minimization optimization, and apply coordinate descend (CD)
and maximum likelihood estimation (MLE) algorithms respec-
tively to infer faulty network elements.

Different from these works, Canary does not send active
probes, but encodes the path segment that a packet travels
along in its header, thus provides location information with-
out introducing additional probe traffic. In addition, Canary
improves the algorithm in NetBouncer [14] by developing a
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Fig. 1. (a) An overview of the Canary system. (b) A 𝑘 = 4 fat-tree data center network, where top and bottom-layer switches are used as monitor switches.

multi-stage methodology, thus is capable to localize faulty
network links with a wide rang of packet loss rates.

B. Approaches based on Passive Traffic Monitoring

For decades, NetFlow [28] has been used for collecting traf-
fic statistics on routers, and to reduce the processing overhead,
NetFlow samples packets at certain rate (e.g., 1:100). However,
by sampling packets, NetFlow is unable to detect packet losses,
especially when packets are silently dropped or corrupted by
faulty network elements.

One feasible solution for detecting packet losses is to
monitor the entire network traffic, and to reduce the memory
overhead, sketch-based methods are adopted [29]–[31]. In
particular, LossRadar [18] employs a Bloom filter to capture
individual packet losses; FlowRadar [17] tracks packets of
all the network flows with an Invertible Bloom filter Lookup
Table (IBLT), and detects packet losses by comparing a pair of
upstream and downstream IBLTs; ChameleMon [19] replaces
IBLT with a novel sketch data structure named FermatSketch
for overcoming IBLT’s inherent limitation.

Canary differs from these works in two aspects. First, unlike
the solutions that can provide location information only when
the sketch data structures are deployed hop-by-hop, Canary
is capable to provide location information even though only
a subset of the switches monitor the network traffic. Second,
unlike the works that monitor the entire network traffic, Canary
traces only a small number of selected network flows, therefore
substantially reduces the measurement overhead.

III. THE CANARY SYSTEM

In this section, we present the Canary system. We first
give an overview of the system design, then we describe the
components that constitute the system in details.

A. Overview

Fig. 1(a) presents an overview of the Canary system, which
works on a data center network with a Clos-structured topol-
ogy like fat-tree [32] as demonstrated in Fig. 1(b). In Canary,
each packet carries a Bloom filter [33], named pathBF, for
encoding the IDs of the switches it traverses. We assume that
each switch in the network has a unique ID. For example, a
switch can use the MAC address that is numerically largest
(or smallest) among its interfaces as the unique ID.

A subset of the switches in a data center network are
selected to host upstream and downstream meters. A meter is
an in-switch data structure for monitoring traffics of network
flows, and in particular, the downstream meter, denoted as
DSM, counts packets of a set of selected flows that the switch
receives, and the upstream meter USM counts the selected
flows’ packets that are about to send out by the switch.
We refer to a meter-hosting switch as a monitor switch,
and illustrate its pipeline in Fig. 2. In particular, to have a
full coverage of all the inter-switch links, we require all the
bottom-layer switches in the data center network to be monitor
switches, while the other switches could also serve as monitor
switches. For example, in Fig. 1(b), the switches at the top and
bottom layers are used as monitor switches. Note that although
we focus on inter-switch links in this paper, however, Canary
can be easily extended to cover host-switch links by placing
meters at end-hosts.

Given a network path, we refer to a monitor switch’s
upstream switch as the closest monitor switch preceding it
on the path, and this switch is referred to as its upstream
switch’s downstream switch. A pair of upstream and down-
stream switches cover a path segment. For example, the path
𝑠1 → 𝑠3 → 𝑠18 → 𝑠7 → 𝑠6 in Fig. 1(b) contains two segments:
on the path segment of 𝑠1 → 𝑠3 → 𝑠18, 𝑠1 is 𝑠18’s upstream
switch, and 𝑠18 is 𝑠1’s downstream switch; and for the segment
of 𝑠18 → 𝑠7 → 𝑠6, 𝑠18 and 𝑠6 are each other’s upstream and
downstream switches respectively. Note that path segments
have directions.

Unlike previous works that aim to measure the entire
network traffic [17]–[19], Canary monitors only a number of
selected network flows. As shown in Fig. 1(a), we employ
the data plane algorithm of HashPipe [20] to select large-
sized network flows for switches to monitor. By leveraging
the pathBFs carried by the flows’ packets, we ensure that a
sufficient number of packets are counted on each path segment.

To detect packet losses, at the diagnozer server, we compare
a monitor switch’s DSM against the USMs in all its upstream
switches. With the assistance of the location information
encoded in the pathBFs, we localize the faulty links that have
packet losses with a multi-stage inference methodology.

In summary, as shown in Fig. 1(a), the Canary system is
composed of both data plane and control plane components.
On data plane, the switches host USM and DSM meters to
count packets, and encode pathBFs to log information of
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path segments on packets; on control plane, the diagnozer
collects meters to detect packet losses and localize network
faults; in addition, the data plane HashPipe algorithm assists
the controller to select large-sized network flows for packet
counting on demand.

B. Encoding and Decoding pathBF

In this subsection, we describe the Bloom filter based
method for encoding and decoding the path segment that
a packet travels along. Bloom filter [33] has a history of
being applied for packet traceback in both wide-area networks
[34]–[36] and under the context of software-define networking
[37], [38]. However, unlike the previous works that have
zero knowledge on network topology, Canary exploits the
characteristic of Clos-structured data center network, thus is
simpler and more effective.

1) Encoding: In Canary, each packet carries a 𝑏-bit Bloom
filter [33], namely pathBF, within its packet header, for
carrying information of the path segment that it travels along.
More specifically, to encode a switch’s ID to pathBF, the
switch 𝑠 employs 𝑚 pairwise independent hash functions
ℎ𝑖 (·) : U → {1, · · · , 𝑏}, 𝑖 = 1, · · · , 𝑚, where U is the
switch ID universe, to compute ℎ𝑖 (𝑠.𝐼𝐷), and sets the bit
𝑝𝑘𝑡.𝑝𝑎𝑡ℎ𝐵𝐹 [ℎ𝑖 (𝑠.𝐼𝐷)] as 1, for 𝑖 = 1, · · · , 𝑚.

Different switches process packets differently. A non-
monitor switch simply encodes its ID to the pathBF of any
traversing packet. But for a monitor switch, as shown in Fig.
2, after updating the DSM, the switch clears all the bits in
the packet’s pathBF, and encodes its own ID before sending
the packet out. For example, consider the path 𝑠1 → 𝑠3 →
𝑠18 → 𝑠7 → 𝑠6 in Fig. 1(b), each packet received by the top-
layer monitor switch 𝑠18 has 2 IDs of 𝑠1 and 𝑠3 encoded in
its pathBF, and after 𝑠18 clears the pathBF, the packet travels
along the second segment of the path, and has the IDs of 𝑠18
and 𝑠7 encoded when arriving to 𝑠6.

2) Decoding: As we will describe in Sec. III-C, when
monitoring a network flow, both the upstream and downstream
switches record the flow’s ID as well as its packet count in
the meters, and the downstream switch also records the pathBF
carried by the flow’s packets in its DSM. When the switches
report the meters to the diagnozer server, the server decodes
the path segment traversed by the flow from the pathBF.

The basic idea in decoding a path segment is simple:
Suppose a network flow 𝑓 is reported by an upstream monitor
switch 𝑠 and a downstream switch 𝑠′, and 𝑠′ also reports a
pathBF associated with 𝑓 . If there is only one path segment
from 𝑠 to 𝑠′ on the network, then it must be the segment

traversed by 𝑓 . But if there exist multiple path segments,
we can use the pathBF to find out which path segment 𝑓
travels along. For example, consider the network in Fig. 1(b)
and suppose that only the bottom-layer switches are used as
monitor switches, then there are up to 4 path segments from
an upstream bottom-layer switch 𝑠 to a downstream bottom-
layer switch 𝑠′ in a different pod, and ideally, we expect that
only one path segment passes the Bloom filter test.

However, since Bloom filter has inherent false positive
errors [39], there are chances that an erroneous path segment
from 𝑠 to 𝑠′ also passes the Bloom filter test, and in this case,
we fail to decode the pathBF. Fortunately, on a Clos-structured
network, an erroneous path segment from 𝑠 to 𝑠′ overlaps with
the ground-truth segment only at the first and last hops, but
differs in all the intermediate hops [14], [40]. From example,
in Fig. 1(b), all the four path segments from 𝑠1 to 𝑠6 have 5
hops, and they differs in the 2𝑛𝑑 , 3𝑟𝑑 , and 4𝑡ℎ hops. Based on
such a characteristic of Clos-structured network, we have the
following result.

Theorem 1. Given a Clos-structured network, suppose a path
segment from an upstream switch to a downstream switch is
encoded in a pathBF and both monitor switches are at the
bottom layer, then the probability that we fail to decode a
unique path segment from the pathBF is

𝑃 𝑓 𝑎𝑖𝑙 ≈
(
1 − 𝑒−

(ℎ−1)𝑚
𝑏

) (ℎ−2)𝑚
(1)

where ℎ is the length of the bottom-to-bottom path segment,
𝑚 is the number of the hash functions, and 𝑏 is the Bloom
filter size.

We provide the proof of Theorem 1 in Appendix A-A.
Suppose that pathBF is carried in a 32-bit field such as the
VLAN tag within a packet header (i.e., 𝑏 = 32), 𝑚 = 3 hash
functions are applied, and a bottom-to-bottom path segment
has ℎ = 5 hops, then according to (1), the decoding failure
probability 𝑃 𝑓 𝑎𝑖𝑙 is as small as 2.85 × 10−5.

Theorem 1 indicates that there exists a trivial but non-zero
failure probability that a pathBF is undecodable. Fortunately,
since switch ID is static, we can enumerate all the path
segments in an offline way in advance, and examine whether
there exist path segments with their pathBFs undecodable. If
such segments exist, we can alter the IDs of the switches
that cause the decoding failures (e.g., by using the second
largest/smallest MAC address as the switch ID), and make
sure that each path segment has a decodable pathBF.
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C. Monitoring Network Flows with Meters

As illustrated in Fig. 2, a monitor switch hosts both the
DSM and the USM meters in its pipeline, and we place
match+action tables to monitor a small number of selected
network flows with them. More specifically, for each network
flow selected to be monitored by the DSM, it has a rule in
the DSM table that matches packets with flow ID and pathBF,
and updates the DSM with the matched packets. Similarly,
each flow monitored by the USM has a rule in the USM table,
which matches packets with flow ID and updates the USM.

Both USM and DSM are composed of 𝑑 rows, and each
row has 𝑤 buckets. A DSM bucket has the following fields:

• 𝑑𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔: a 1-bit flag indicating usability of the data in
this bucket;

• 𝑓 𝑙𝑜𝑤𝐼𝐷: ID of the flow (e.g., the 5-tuple) that is recorded
by this bucket;

• 𝑝𝑎𝑡ℎ𝐵𝐹: the 𝑏-bit Bloom filter encoding the path seg-
ment that the flow travels along;

• 𝑐𝑜𝑢𝑛𝑡: number of the flow’s packets received by the
DSM-hosting switch.

A USM bucket has three fields of 𝑑𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔, 𝑓 𝑙𝑜𝑤𝐼𝐷, and
𝑐𝑜𝑢𝑛𝑡 that are of the same meanings as in DSM.

For counting a packet 𝑝𝑘𝑡 in DSM or USM, a monitor
switch applies 𝑑 hash functions, i.e., 𝑔𝑖 (·) : F → {1, · · · , 𝑤},
𝑖 = 1, · · · , 𝑑, where F is the flow ID universe, to compute
the positions 𝑔𝑖 (𝑝𝑘𝑡. 𝑓 𝑙𝑜𝑤𝐼𝐷), and updates the corresponding
buckets. More specifically, when a monitor switch receives a
packet that matches a rule in the DSM table, the UpdateDSM
action is executed as in Algorithm 1, and when it encounters a
packet that matches a rule in the USM table, the UpdateUSM
action is executed as in Algorithm 2.

Algorithm 1: UpdateDSM
Input : A packet 𝑝𝑘𝑡

1 for 𝑖 = 1 · · · 𝑑 do
2 𝑗 = 𝑔𝑖 (𝑝𝑘𝑡. 𝑓 𝑙𝑜𝑤𝐼𝐷);
3 if 𝐷𝑆𝑀 [𝑖] [ 𝑗] .𝑑𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔 ≠ 1 then
4 if 𝐷𝑆𝑀 [𝑖] [ 𝑗] is empty then
5 𝐷𝑆𝑀 [𝑖] [ 𝑗] . 𝑓 𝑙𝑜𝑤𝐼𝐷 = 𝑝𝑘𝑡. 𝑓 𝑙𝑜𝑤𝐼𝐷;
6 𝐷𝑆𝑀 [𝑖] [ 𝑗] .𝑐𝑜𝑢𝑛𝑡 = 1;
7 𝐷𝑆𝑀 [𝑖] [ 𝑗] .𝑝𝑎𝑡ℎ𝐵𝐹 = 𝑝𝑘𝑡.𝑝𝑎𝑡ℎ𝐵𝐹;

8 else
9 if (𝐷𝑆𝑀 [𝑖] [ 𝑗] . 𝑓 𝑙𝑜𝑤𝐼𝐷 ≠ 𝑝𝑘𝑡. 𝑓 𝑙𝑜𝑤𝐼𝐷) or

(𝐷𝑆𝑀 [𝑖] [ 𝑗] .𝑝𝑎𝑡ℎ𝐵𝐹 ≠ 𝑝𝑘𝑡.𝑝𝑎𝑡ℎ𝐵𝐹) then
10 𝐷𝑆𝑀 [𝑖] [ 𝑗] .𝑑𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔 = 1;

11 𝐷𝑆𝑀 [𝑖] [ 𝑗] .𝑐𝑜𝑢𝑛𝑡 + +;

From Algorithm 1 and Algorithm 2, we can see that a
DSM/USM bucket has its 𝑑𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔 set as ‘1’ when two or
more flows collide at this bucket. In addition, a DSM bucket
could also have its 𝑑𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔 set as ‘1’ if the flow changes
its path segment. We refer to a bucket with 𝑑𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔 = 0 as
a clean bucket, and only use data from clean buckets to detect
packet losses and localize network faults.

As we will see in Sec. III-G, the probability that a flow does
not have a clean bucket is small, and to further increase the
chance that clean buckets can be found on a pair of upstream

Algorithm 2: UpdateUSM
Input : A packet 𝑝𝑘𝑡

1 for 𝑖 = 1 · · · 𝑑 do
2 𝑗 = 𝑔𝑖 (𝑝𝑘𝑡. 𝑓 𝑙𝑜𝑤𝐼𝐷);
3 if 𝑈𝑆𝑀 [𝑖] [ 𝑗] .𝑑𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔 ≠ 1 then
4 if 𝑈𝑆𝑀 [𝑖] [ 𝑗] is empty then
5 𝑈𝑆𝑀 [𝑖] [ 𝑗] . 𝑓 𝑙𝑜𝑤𝐼𝐷 = 𝑝𝑘𝑡. 𝑓 𝑙𝑜𝑤𝐼𝐷;
6 𝑈𝑆𝑀 [𝑖] [ 𝑗] .𝑐𝑜𝑢𝑛𝑡 = 1;

7 else
8 if 𝑈𝑆𝑀 [𝑖] [ 𝑗] . 𝑓 𝑙𝑜𝑤𝐼𝐷 ≠ 𝑝𝑘𝑡. 𝑓 𝑙𝑜𝑤𝐼𝐷 then
9 𝑈𝑆𝑀 [𝑖] [ 𝑗] .𝑑𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔 = 1;

10 𝑈𝑆𝑀 [𝑖] [ 𝑗] .𝑐𝑜𝑢𝑛𝑡 + +;

Match

flowID+pathBF

...

Action

UpdateDSM 

...

DSM table

Match

pathBF, count > η

...

Action
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HH table

Match

flowID

...

Action

UpdateUSM 

...

USM table

Upstream switch Downstream switch

ControllerDiagnozer

Step 1

Step 2&5
Step 3

Step 4

Step 4

Path 

segment

Fig. 3. Procedure to select large-sized network flows.

and downstream switches covering a path segment, we use
a same set of hash functions across the network, so that the
flows colliding in the USM will also collide in the DSM.

D. Selecting Large-Sized Network Flows

In Canary, time is divided into epochs. After each epoch, the
diagnozer server collects DSMs and USMs from the monitor
switches, detects packet losses by comparing the DSMs against
the upstream USMs, and localizes the faulty links with the
path segments encoded in the pathBFs. Intuitively, to detect
packet losses on a path segment that has a low loss rate, a
large number of packets should be counted. In Canary, when
the diagnozer finds that on a path segment, the switches do not
count enough packets, the network controller will instruct the
upstream and downstream switches to monitor more network
flows on that segment in the next epoch.

Since network flows in data center networks have their sizes
highly skewed [41], to reduce the measurement overhead, it is
in our favor to monitor large-sized network flows. To this end,
we employ HashPipe [20], a data plane algorithm for detecting
heavy hitters, within the pipeline. HashPipe is composed of
multiple stages of hash tables that are sequentially passed by
packets. When traversing the stages, each packet seeks to have
the ID and packet count of its flow recorded in some hash table
entry, and evicts a lighter flow that has a smaller packet count
if necessary. As a consequence, using a limited memory size,
HashPipe maintains only the network flows with the largest
packet counts (i.e., heavy hitters). Moreover, after passing the
stages, a packet can carry a state in its metadata indicating
whether its flow is a heavy hitter, as well as the flow’s packet
count retained by the HashPipe.

As shown in Fig. 2, in a monitor switch’s pipeline, we
place a HashPipe after the DSM stage to select large-sized
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network flows. However, for a network flow that is already
monitored by the DSM, we mark its packets in metadata, so
that the packets will not be counted by the HashPipe. Fig.
3 demonstrates the steps for selecting network flows on a
path segment. When the diagnozer finds that the packets being
counted on a path segment are fewer than a threshold 𝛼, or
the flows being monitored on the segment are fewer than a
threshold 𝛽, it instructs the controller to select 𝛿 additional
large-sized network flows on that path segment (Step 1).

We use a match+action table named HH table after the
HashPipe stage for selecting large-sized network flows. More
specifically, to select flows on a specific path segment, the
controller first inserts a rule in the HH table, which matches
a packet that 1) carries a pathBF encoding the path segment;
2) has not been monitored by the DSM; and 3) belongs to
a heavy-hitter flow with its packet count in the HashPipe
exceeding a threshold 𝜂 (Step 2). When such a packet 𝑝𝑘𝑡
is matched, it is reported to the controller (Step 3).

On receiving 𝑝𝑘𝑡, the controller installs a rule matching
𝑝𝑘𝑡. 𝑓 𝑙𝑜𝑤𝐼𝐷 and 𝑝𝑘𝑡.𝑝𝑎𝑡ℎ𝐵𝐹 to the DSM table at the down-
stream switch of the path segment, and inserts a rule matching
𝑝𝑘𝑡. 𝑓 𝑙𝑜𝑤𝐼𝐷 to the USM table at the segment’s upstream
switch (Step 4). The controller removes the rule in the HH
table after 𝛿 network flows have been selected (Step 5).

E. Detecting Packet Losses

After each epoch, the diagnozer server collects USMs and
DSMs from the monitor switches, and detects packet losses by
comparing the measurement data in the meters. We divide the
problem of detecting and localizing packet losses in the entire
network into disjoint sub-problems, where each sub-problem
covers a part of the network without overlapping with the other
sub-problems, and all the sub-problems constitute the entire
network. For example, for the fat-tree network as in Fig. 1(b),
each pod as well as the links between the pod’s upper-layer
switches and all the top-layer switches form a sub-problem,
and the network consists of 4 sub-problems.

Within each sub-problem, the diagnozer server compares
each DSM against its upstream USMs, and records the result
in a hash table named minus meter, denoted as MM. Each MM
table entry has the flowing fields.

• 𝑓 𝑙𝑜𝑤𝐼𝐷: ID of the flow being monitored;
• 𝑝𝑎𝑡ℎ𝐵𝐹: Bloom filter encoding the path segment that the

flow travels along;
• 𝑠𝑒𝑛𝑡: number of the flow’s packets being sent out along

the path segment during the epoch;
• 𝑙𝑜𝑠𝑡: number of the flow’s packets lost on the path

segment during the epoch.

In each DSM, we first find all the flows that have at least
one clean bucket. For such a flow, we hash its ID with a hash
function 𝐻 (·) to a table entry in the MM, write the flow’s
𝑓 𝑙𝑜𝑤𝐼𝐷 and 𝑝𝑎𝑡ℎ𝐵𝐹 in its clean bucket to the table entry,
and set 𝑠𝑒𝑛𝑡 as the bucket’s 𝑐𝑜𝑢𝑛𝑡 value. Then for this DSM,
we find all its upstream USMs. In each USM, we look up the
clean buckets of each flow recorded in the MM, and update
the 𝑙𝑜𝑠𝑡 and 𝑠𝑒𝑛𝑡 fields. Finally, we remove the entries in the

Algorithm 3: Algorithm for obtaining MM.
Input : A DSM and its upstream USMs

1 for each flow 𝑓 in 𝐷𝑆𝑀 do
2 if there exists 𝐷𝑆𝑀 [𝑖] [𝑔𝑖 ( 𝑓 )] .𝑑𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔 == 0 then
3 𝑀𝑀 [𝐻 ( 𝑓 )] . 𝑓 𝑙𝑜𝑤𝐼𝐷 = 𝐷𝑆𝑀 [𝑖] [ 𝑗] . 𝑓 𝑙𝑜𝑤𝐼𝐷;
4 𝑀𝑀 [𝐻 ( 𝑓 )] .𝑝𝑎𝑡ℎ𝐵𝐹 = 𝐷𝑆𝑀 [𝑖] [ 𝑗] .𝑝𝑎𝑡ℎ𝐵𝐹;
5 𝑀𝑀 [𝐻 ( 𝑓 )] .𝑠𝑒𝑛𝑡 = 𝐷𝑆𝑀 [𝑖] [ 𝑗] .𝑐𝑜𝑢𝑛𝑡;

6 for each flow 𝑓 in 𝑀𝑀 do
7 if there exists 𝑈𝑆𝑀 [𝑖] [𝑔𝑖 ( 𝑓 )] .𝑑𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔 == 0 and

𝑈𝑆𝑀 [𝑖] [𝑔𝑖 ( 𝑓 )] . 𝑓 𝑙𝑜𝑤𝐼𝐷 == 𝑓 .𝐼𝐷 then
8 𝑀𝑀 [𝐻 ( 𝑓 )] .𝑙𝑜𝑠𝑡 =

𝑈𝑆𝑀 [𝑖] [𝑔𝑖 ( 𝑓 )] .𝑐𝑜𝑢𝑛𝑡 − 𝑀𝑀 [𝐻 ( 𝑓 )] .𝑠𝑒𝑛𝑡;
9 𝑀𝑀 [𝐻 ( 𝑓 )] .𝑠𝑒𝑛𝑡 = 𝑈𝑆𝑀 [𝑖] [𝑔𝑖 ( 𝑓 )] .𝑐𝑜𝑢𝑛𝑡;

10 Remove MM entries that do not have valid 𝑙𝑜𝑠𝑡 values;
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Fig. 4. An example for detecting packet losses. Each DSM/USM bucket is
presented as a 3-tuple of ( 𝑓 𝑙𝑜𝑤𝐼𝐷, 𝑑𝑖𝑟𝑡 𝑦𝐹𝑙𝑎𝑔, 𝑐𝑜𝑢𝑛𝑡), and each MM
entry is presented as a 4-tuple of ( 𝑓 𝑙𝑜𝑤𝐼𝐷, 𝑝𝑎𝑡ℎ𝐵𝐹, 𝑠𝑒𝑛𝑡 , 𝑙𝑜𝑠𝑡).

MM that do not have valid 𝑙𝑜𝑠𝑡 values, as none of these flows
has a clean USM bucket. Algorithm 3 presents the algorithm.

As an example, Fig. 4 presents a sub-problem of the fat-tree
network in Fig. 1(b). In Fig. 4, the DSM at 𝑠6 is compared
against the USMs at 𝑠17, 𝑠18, 𝑠19, and 𝑠20. We first find that
the flows 𝑓1, 𝑓2, 𝑓3, 𝑓4, and 𝑓5 can be retrieved from the DSM
at 𝑠6, as each flow has at least one clean bucket. We then
query the flows in the USMs at 𝑠17, 𝑠18, 𝑠19, and 𝑠20, and find
that for the flows 𝑓1, 𝑓2, 𝑓3, and 𝑓4, we can find at least one
clean bucket, and calculate their lost packets, but for 𝑓5, we
can not obtain its lost packets due to hash collisions, therefore
remove it from the MM. As a result, we find two flows, 𝑓1
and 𝑓4 ending at 𝑠6 that have packet losses, in addition, 𝑓1
traverses the path segment 𝑠17 → 𝑠7 → 𝑠6 and 𝑓4 travels
along the segment 𝑠20 → 𝑠8 → 𝑠6. Note that since we only
use measurement data from clean buckets, the loss detection
is error-free.

F. Localizing Faulty Network Links

For each path segment 𝑝 that appears in an MM, we
compute its success probability 𝑦𝑝 as

𝑦𝑝 =

∑
𝑝∈F𝑝

( 𝑓 .𝑠𝑒𝑛𝑡 − 𝑓 .𝑙𝑜𝑠𝑡)∑
𝑝∈F𝑝

𝑓 .𝑠𝑒𝑛𝑡
(2)
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where F𝑝 is the set of the flows on the segment 𝑝 in the
MM. For example, in Fig. 4, the segment 𝑠17 → 𝑠7 → 𝑠6 has
a success probability of 0.95, and the segment 𝑠20 → 𝑠8 →
𝑠6 has a success probability of 0.90. To filter out noises, in
practice, MMs from 𝑛 consecutive epochs are aggregated, and
we only compute success probabilities for the path segments
that have packet losses in no less than 𝑛′ out of the 𝑛 epochs.

Given success probabilities of the path segments, our objec-
tive is to infer each link’s success probability, which is defined
as the ratio between the packets successfully transported
through the link and the packets transmitted on the link.

Our initial approach is to apply the method proposed in [14],
which localizes faulty network links by solving the following
optimization problem.

minimize
∑

𝑝

(
𝑦𝑝 −∏

𝑖∈𝑝 𝑥𝑖
)2

+ 𝜆
∑

𝑖 𝑥𝑖 (1 − 𝑥𝑖)
s. t. 0 ≤ 𝑥𝑖 ≤ 1

(3)

where 𝑥𝑖 is link 𝑖’s success probability, and 𝜆 is a constant
with a default value of 1.

The first term of the objective function in (3) is the square
error, which aims to contribute the observed path segment
success probabilities to the success probabilities of the links
on the segments, and the second term is a regularization
term, which seeks to push 𝑥𝑖 to the values either close to
0 or 1 for avoiding false positive errors caused by imperfect
measurement.

A coordinate descent algorithm, which we refer to as the CD
algorithm, is proposed in [14] to solve the problem. Combined
with active probes, the algorithm produces relatively fewer
false positive and false negative errors comparing with the
other active probe based methods [9], [12], [26].

However, the CD algorithm aims to detect faulty links with
substantial loss rates. For example, in [14], the algorithm is
applied to detect faulty links with loss rates between 0.02 and
1.0. When a link has a very low loss rate, e.g., 10−3, the CD
algorithm tends to ignore it. This is because when solving the
optimization problem in (3), the second term of the objective
function forces the algorithm to consider the links with low
loss rates as false positives and assigns a success probability
of 1 to them.

Motivated by the above observation, in this paper, we
propose to run the CD algorithm iteratively in multiple stages,
and in each stage, we focus only on the path segments with
their loss rates falling in a specific range. Moreover, since the
CD algorithm tends to ignore very low loss rates, when a path
segment has a very high success rate such as 0.999, we map
it to a moderate-high value (e.g., 0.8), and use the mapped
success rates of the path segments to drive the CD algorithm.

Our proposed method works as the following.

• Step 1: Divide the path segments with non-zero loss
rates in groups, where each group covers a range of
loss rates. For example, suppose we have detected a
number of path segments with their loss rates between
0.001 and 1, we can divide them into 5 groups with the
ranges as [0.2, 1], [0.1, 0.2], [0.05, 0.1], [0.01, 0.05], and
[0.001, 0.01] respectively.

0.3

0.002

(a) (b)

(c) (d)

s77 s78 s79 s80

s40

s5 s6 s7 s8

s77 s78 s79 s80

s40

s5 s6 s7 s8

s77 s78 s79 s80

s40

s5 s6 s7 s8

s77 s78 s79 s80

s40

s5 s6 s7 s8

Fig. 5. An example demonstrating the multi-stage fault localization.

• Step 2: Sort the groups in a descending order according
to loss rate, and for each group in the order:

– Step 2-1: Temporarily map the success probability
of a path segment in the current group to a value in
[0, 0.8]. For example, one may use a logarithm-based
function

𝑦′𝑗 = 𝑒ln(0.8)× ln(𝑦𝑗 −𝑎)
ln(𝑏−𝑎) (4)

to map a segment’s success probability 𝑦 𝑗 in the
current group’s range [𝑎, 𝑏] to 𝑦′𝑗 in [0, 0.8]. Here
we choose 0.8 as the right edge of the range for
mapping a very high success rate to a moderate-high
value, as previously explained.

– Step 2-2: Set 𝑦′𝑗 of the path segments in the groups
of higher loss rates as 0.

– Step 2-3: Set 𝑦′𝑗 of the path segments in the groups
of lower loss rates as 1.

– Step 2-4: Apply the CD algorithm (w. 𝜆 = 1) to
solve the problem

minimize
∑

𝑝

(
𝑦′𝑝 −∏

𝑖∈𝑝 𝑥𝑖
)2

+ 𝜆
∑

𝑖 𝑥𝑖 (1 − 𝑥𝑖)
s. t. 0 ≤ 𝑥𝑖 ≤ 1

(5)
label each link detected by the algorithm that has
a success probability lower than 1 as “bad”, and
remove it from the sub-problem.

• Step 3: Repeat Step 2-1 to Step 2-4 for the next path
segment group in the order.

Fig. 5 demonstrates an example, which is taken from a
sub-problem in our experiment in Sec. IV-D. Fig. 5(a) shows
the ground truth, in which the link 𝑠78 → 𝑠40 has a loss
rate of 0.3 and the link 𝑠40 → 𝑠8 has a loss rate of 0.002.
Fig. 5(b) presents the seven path segments that are detected
to have packet losses. In particular, by executing Step 1,
the path segments of 𝑠78 → 𝑠40 → 𝑠5, 𝑠78 → 𝑠40 → 𝑠6,
𝑠78 → 𝑠40 → 𝑠7, and 𝑠78 → 𝑠40 → 𝑠8, which have loss
rates around 0.3, are placed in a group with the range of
[0.2, 1]; and the other three segments of 𝑠77 → 𝑠40 → 𝑠8,
𝑠79 → 𝑠40 → 𝑠8, and 𝑠80 → 𝑠40 → 𝑠8, which have loss
rates around 0.002, are placed in the range [0.001, 0.01]. As
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shown in Fig. 5(c), in the first iteration of Step 2, we assign
the success probabilities of the segments 𝑠77 → 𝑠40 → 𝑠8,
𝑠79 → 𝑠40 → 𝑠8, and 𝑠80 → 𝑠40 → 𝑠8 as 1, and after applying
the CD algorithm, we successfully localize the faulty link
𝑠78 → 𝑠40, which explains the packet losses on the segments
of 𝑠78 → 𝑠40 → 𝑠5, 𝑠78 → 𝑠40 → 𝑠6, 𝑠78 → 𝑠40 → 𝑠7, and
𝑠78 → 𝑠40 → 𝑠8, and remove the link from the sub-problem.
In the second iteration, we use the logarithm-based function
to map the success probability of 𝑦 𝑗 = 0.998 to 𝑦′𝑗 = 0.795
for the three lossy segments, apply the CD algorithm on the
remaining sub-problem as shown in Fig. 5(d), and localized
the faulty link 𝑠40 → 𝑠8 for explaining the packet losses on
the path segments of 𝑠77 → 𝑠40 → 𝑠8, 𝑠79 → 𝑠40 → 𝑠8, and
𝑠80 → 𝑠40 → 𝑠8.

On the other hand, if we directly apply the CD algorithm,
only the faulty link 𝑠78− 𝑠40 is inferred, while the link 𝑠40− 𝑠8
is overlooked because of its low loss rate.

G. Discussion

1) Coordinating packet counting: To synchronize epochs
across the switches network wide, we consider OmniMon’s
synchronization mechanism [42], which does not require a
global clock, ensures strong consistency in most time, and
is downgraded to weak consistency for only a small bounded
time period.

To make sure that a pair of upstream and downstream
switches covering a path segment count a same set of packets
during an epoch. In the Canary system, epochs are labeled as
odd and even alternatively, and each monitor switch maintains
two instances of the USM and DSM meters corresponding
to the odd and even epochs. During an odd/even epoch, the
monitor switches employ the odd/even meter instances to
count packets, and after the epoch, they upload the instances to
the diagnozer server, and switch to the even/odd instances for
the next epoch. Moreover, the upstream switch marks each
packet it has counted, which indicates whether its current
epoch is odd or even. On receiving a marked packet, the
downstream switch counts the packet using the corresponding
DSM instance. We use the DSCP field for packet marking.

2) Probability of having clean bucket: As described in Sec.
III-C, a USM or DSM bucket for monitoring a large-sized
network flow is clean only when 1) there are no other flows
hashed to this bucket (i.e., no hash collision), and 2) the flow
does not change its path during the epoch. Since in multi-path
routing, a switch chooses the next hop for a packet by hashing
the packet’s static flow ID, a flow rarely changes its path
during an epoch. In the following, we analyze the probability
that a large-sized network flow does not have a clean bucket
due to hash collisions, and have the following result.

Theorem 2. For a large-sized network flow 𝑓 , the probability
that it has at least one clean bucket in a USM/DSM meter is

𝑃𝑐𝑙𝑒𝑎𝑛 = 1 −
(
1 − 𝑒−

𝐹−1
𝑤

)𝑑
(6)

where 𝑑 and 𝑤 are the rows and columns of the buckets in the
meter, and 𝐹 is the total number of the large-sized network
flows monitored by the meter.

TABLE I
CONFIGURATIONS OF SOLUTIONS IN OVERHEAD COMPARISON

Solution Data structure Configuration
FlowRadar Counting table 3 hash functions, bucket size = 144 bit.

Flow filter 1
9 of counting table size.

LossRadar Meter 3 rows of buckets, bucket size = 152 bit.
ChameleMon FermatSketch 3 rows of buckets, bucket size = 136 bit.
Canary USM 3 rows of buckets, bucket size = 137 bit.

DSM 3 rows of buckets, bucket size = 169 bit.
HashPipe 3 stages of hash tables, each has 32 entries,

table entry size = 136 bit.
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Fig. 6. (a) Memory overhead and (b) decoding time of different solutions
under various link loss rates.

We present the detailed proof of Theorem 2 in Appendix
A-B. Suppose a USM/DSM meter contains 𝑑 = 3 rows, and
each row has 𝑤 = 210 buckets, according to the theorem, for
monitoring 50 large-sized network flows, 𝑃𝑐𝑙𝑒𝑎𝑛 is as high
as 0.999. Even monitoring 400 flows, 𝑃𝑐𝑙𝑒𝑎𝑛 is 0.966. The
analysis shows that with moderate-sized meters, Canary is
capable to provide usable measurement data.

IV. EVALUATION

In this section, we evaluate Canary and compare it with the
state-of-the-art solutions. We carry out the experiments with
packet-level simulation and on a real-world testbed.

A. Experiment Setup

We simulate two network topologies. The first topology
is composed of two switches directly connected with a link
of 100 Gbit/s, and we also simulate large-scale data center
networks with fat-tree topology. The simulations are conducted
on a PC equipped with Intel Core i5-12600K running Ubuntu
16.04 LTS. The real-world testbed is composed of two hard-
ware programmable switches based on the Intel Tofino chip
[22]. The switches are inter-connected with a 40GbE link, and
each switch is connected by a server equipped with an Intel
XL710 40GbE dual-port Ethernet adapter.

If not otherwise specified, for each simulated monitor
switch, we configure the DSM, USM, and HashPipe as the
following. The DSM and USM have 𝑑 = 3 rows, and each
row has 𝑤 = 210 buckets. Each DSM bucket has a size of 169
bits, which include a 1-bit 𝑑𝑖𝑟𝑡𝑦𝐹𝑙𝑎𝑔, a 104-bit 𝑓 𝑙𝑜𝑤𝐼𝐷, a
32-bit 𝑝𝑎𝑡ℎ𝐵𝐹, and a 32-bit 𝑐𝑜𝑢𝑛𝑡. A USM bucket does not
have the 𝑝𝑎𝑡ℎ𝐵𝐹 field, and has a size of 137 bits. Unlike the
original 6-stage HashPipe in [20], we employ a lightweight
HashPipe containing only 3 stages. Each HashPipe stage is
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TABLE II
NETWORK-WIDE MEMORY OVERHEADS ON 𝑘 = 8 FAT-TREE NETWORK

UNDER VARIOUS LINK LOSS RATES (KB)

Link loss rate 10−3 10−2 10−1

FlowRadar 54, 608 54, 608 54, 608
LossRadar 4, 328 43, 232 432, 304
FermatSketch 2, 912 23, 048 46, 408
Canary (bottom) 1, 694 213 58
Canary (top+bottom) 2, 542 319 86

a hash table with 32 entries, and each table entry contains a
104-bit flow ID and a 32-bit counter.

B. Loss Detection Overhead

We first examine the overhead for detecting packet losses
incurred by Canary, and compare with the existing solutions of
FlowRadar [17], LossRadar [18], and ChameleMon [19]. The
overhead incudes the memory consumption and the decoding
time of the measurement data structures. We realize these
solutions on the 2-switch simulated network. When evaluating
Canary, we place a USM at one switch, and place a DSM and
a HashPipe at the other switch. For FlowRadar, we place a
counting table and a flow filter at each switch. A bucket in the
counting table has a 104-bit FlowXOR field, a 8-bit FlowCount
field, and a 32-bit PacketCount field. The number of the hash
functions used for the counting table is 3. The flow filter of
FlowRadar is a standard Bloom filter, which incurs 1

9 of the
counting table’s memory usage. For LossRadar, we place a
meter composed of 3 bucket rows at each switch, and a meter
bucket has a 32-bit count and a 120-bit xorSum fields. For
ChameleMon, each switch hosts a FermatSketch, which uses
3 hash functions to map network flows to 3 bucket rows, and
a FermatSketch bucket contains a 32-bit count and a 104-bit
ID fields. Table I summarizes configurations of the solutions
under the comparison.

In our experiment, we vary the loss rate of the inter-
switch link from 10−4 to 10−1, and send 10𝑘 network flows
through the link for 100 ms. For each solution under the
comparison, we vary number of the buckets in a row of the
measurement data structures, and refer its memory overhead
as the minimum memory usage that achieves 99% success
rate. The experiment results are presented in Fig. 6(a). From
the figure we can make the following observations. First,
FlowRadar has a constant memory overhead, as it aims to
monitor all the network flows regardless of the loss rate.
LossRadar seeks to record all the lost packets, so its memory
overhead is proportional to the number of the lost packets, and
under the loss rate of 10−1, LossRadar has the highest memory
overhead. FermatSketch’s memory overhead is proportional to
the network flows suffering packet losses, which increases with
the loss rate. Note that when the link’s loss rate is 10−1, nearly
all the flows have packet losses, and FermatSketch’s overhead
is close to FlowRadar, as it actually monitors all the network
flows.

Unlike these solutions, Canary’s memory overhead de-
creases with the increase of the packet loss rate. This is
because Canary only monitors a subset of network flows as
long as packet losses can be detected. When the loss rate is

low, more network flows should be traced by the meters, but
when the loss rate is high, the system can detect packet losses
even though it traces only a small number of network flows.
For example, at a link loss rate of 10−2, Canary consumes
2.3% of the in-switch memory consumed by FermatSketch.

Moreover, for localizing packet losses in a data center
network, FlowRadar, LossRadar, or FermatSketch needs to
be deployed hop-by-hop on all the switches, while Canary
does not require each switch to host the meters. In Table II,
we present the network-wide memory usages of the various
solutions on a 𝑘 = 8 fat-tree network that has a link loss
rate varying from 10−3 to 10−1. For Canary, we consider
two deployment strategies: 1) only the bottom-layer switches
host USMs and DSMs; and 2) both the top and bottom-layer
switches host the meters. From the table, we can see that
Canary can further reduce the memory overhead network wide,
as it does not need to be deployed hop-by-hop as in the other
solutions under the comparison.

Fig. 6(b) presents the time required to decode the data
structures of FlowRadar, LossRadar, FermatSketch, and the
meters of the Canary system. We can see that for FlowRadar
and FermatSketch that seek to decode all the network flows
and LossRadar that aims to recover all the lost packets, their
decoding times increase with the link loss rate. On the other
hand, Canary only needs to retrieve the records of a small
number of selected network flows, therefore its decoding time
is reduced as the link loss rate increases.

Our observation from Fig. 6 suggests that the overhead
incurred by Canary decreases as the loss rate increases. We
believe that this is a desired property, as a network adminis-
trator can allocate resources according to his objective, i.e.,
the highest loss rate the network can tolerate, rather than
allocating resources blindly when they are related to the traffic
characteristics that change dynamically.

C. Counting Enough Packets
As described in Sec. III-D, in Canary, when the diagnozer

server finds that the USM and DSM covering a path segment
do not count enough packets, the controller will add new
network flows selected by the HashPipe. In the following,
we examine the effectiveness of this mechanism under the
dynamics of real-world traffic.

We employ the 2-switch simulated network, and drive the
experiment with the packet traces captured on ISP backbone
links from MAWI [43]. The trace contains 8, 892, 143 distinct
flows. We set the thresholds as 𝛼 = 1, 000 and 𝛽 = 20, and
each time up to 𝛿 = 20 flows selected by the HashPipe are
added to the USM and DSM tables. When selecting large-
sized network flows, we vary the threshold value of 𝜂 as 8,
16, and 32. Note that a larger 𝜂 suggests that the system has a
higher standard in selecting large-sized network flows. We also
consider the case that random flows are selected by setting 𝜂
as 0.

Our experiment lasts 300 epochs, and an epoch has a du-
ration of 100 ms. After each epoch, we evaluate the following
metrics:

• Number of packets counted by the switches during the
epoch.
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Fig. 7. Distributions of (a) numbers of packets counted, (b) numbers of active flows monitored, and (c) numbers of rules installed per epoch under various
flow selection schemes.

TABLE III
CONFIGURATIONS OF INFERENCE ALGORITHMS.

Algorithm NetBouncer Flock Canary
Parameter # probe pkt. 𝜆 𝑝𝑏 𝑝𝑔 𝜌 𝜆 𝛼 𝛽 𝛿 𝜂 # groups
Value 100 1 1.0 − 10−3 2.5 × 10−4 2.0 × 10−2 1 200, 500, 1, 000 20 20 16 5
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Fig. 8. (a) Accuracy, (b) precision, (c) recall, and (d) F1-score of different fault inference methods over a 𝑘 = 8 fat-tree network with 10% faulty links.

• Number of active flows monitored by the switches during
the epoch.

• Number of match+action rules newly installed to the
switches in this epoch.

Fig. 7 presents distributions of the metrics under different
flow selection schemes. From Fig. 7(a), we can see that in
most epochs, all the schemes manage to count over 𝛼 = 1, 000
packets, however, in about 10% epochs, less than 1, 000
packets are counted, due to the traffic dynamics when flows
stop sending packets or leave the network. Fig. 7(b) shows that
when flows are selected randomly (i.e., 𝜂 = 0), the switches
averagely monitors as many as 52.1 active flows per epoch,
but when 𝜂 = 32, only 23.5 active flows are traced. From
Fig. 7(c), one can see that under all the schemes, in nearly
90% epochs, no match+action rules are installed, suggesting
that Canary does not require frequent interventions from the
controller. In addition, with the increase of the 𝜂 threshold,
fewer rules are installed to the switches.

Our observation suggests that with our proposed flow se-
lection mechanism, Canary can effectively handle the traffic
dynamics and ensure that a sufficient number of packets are
counted. In addition, by selecting large-sized network flows,
we reduce the controller overhead by installing fewer rules,
and lower the chances of hash collisions in the USM/DSM by
monitoring fewer network flows.

D. Faulty Link Inference

In this experiment, we examine how Canary localizes faulty
links in a large-scale data center network with a 𝑘 = 8 fat-
tree topology. In the simulated network, the switches at the top
and bottom layers serve as the monitor switches, and the entire
network is divided into 8 sub-problems, with each sub-problem
containing 24 switches and 64 inter-switch links. We apply our
proposed inference method with multithreading, where each
thread solves one sub-problem.

To introduce faults, we randomly select 10% links from
the network, and configure them to drop packets with rates
between 0.001 and 1.0. More specifically, we select 11 links to
have loss rates in the range of [0.2, 1.0], 13 links are selected
with loss rates in [0.1, 0.2], 9 links in [0.05, 0.1], 9 links in
[0.01, 0.05], and 10 links in [0.001, 0.01].

For comparison, we evaluate the following approaches: 1)
NetBouncer [14], which applies the CD algorithm only once
for localizing all the faulty links; 2) Flock [16], which employs
a maximum likelihood estimation (MLE) algorithm to infer
the faulty links; 3) We also evaluate a multi-stage version of
NetBouncer (referred to as NetBouncer-stage), which runs the
CD algorithm in 5 rounds, and in each round, the faulty links
detected in the previous round are removed from the network.

To localize faulty links with Canary, we need the USMs and
DSMs to count sufficient numbers of packets. For this purpose,
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Fig. 9. Tradeoff between Canary’s fault localization accuracy and inference
algorithm’s running time when dividing lossy path segments into various
numbers of groups.

we experiment with various values of the 𝛼 threshold, i.e., the
minimum number of packets supposed to be counted on a path
segment per epoch, as 200, 500, and 1, 000. For NetBouncer
and NetBouncer-stage, we actively probe each path with 100
packets as in [14]. For Flock, we feed the inference algorithm
with the path loss rates detected by NetBouncer with 100 probe
packets. Table III presents the parameters of the inference
algorithms under the comparison.

In Fig. 8, we present performances of the approaches in
localizing the faulty network links in terms of accuracy,
precision, recall, and F1-score. Note that for the approaches
containing multiple stages, i.e., NetBouncer-stage and Canary,
we present the performances after each stage in the figures.
From Fig. 8 we can make the following observations. First,
the single-stage algorithms have relatively poor performances.
For example, NetBouncer and Flock localize only 15 and 18
out of the 26 faulty links2. The reason is that comparing
with the links of high loss rates, the links with low loss
rates contribute little to the objective function as in (3), or
the likelihood function 𝐿𝐿 (𝐻) in Flock, thus are likely to be
overlooked by the inference algorithms. Second, by applying
the CD algorithm in multiple stages, NetBouncer-stage has its
performance improved after each stage, and eventually detects
22 of the 26 faulty links, at a cost of one false positive error
(i.e., one healthy link is mistakenly categorized as faulty). We
explain such an improvement with the fact that by removing
the inferred faulty links from the sub-problems after each
stage, the CD algorithm is able to detect more faulty links
with relatively lower loss rates, which used to be concealed
by the links with higher loss rates detected in the previous
rounds.

Our last observation is that Canary can localize the
faulty links more accurately than NetBouncer, Flock, and
NetBouncer-stage, and in particular, with 𝛼 = 1, 000, after the
5 stages, Canary has localized all the 52 faulty links without
false positive and false negative errors, therefore increases the
F1 score by 36.7% and 22.2%, comparing with NetBouncer
and Flock respectively. Canary’s better performance can be
explained in two folds. First, unlike NetBouncer and Flock

2NetBouncer does not consider the link direction, so we configure 26 links
to drop packets in both directions.
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Fig. 10. (a) F1 score and (b) inference algorithm’s running time of Net-
Bouncer, Flock, and two Canary systems that run in 3 and 5 stages, on fat-tree
networks with 𝑘 varying from 6 to 12.

that suffer from imperfect measurement, in Canary, more
packets are used to detect pack losses, therefore a path segment
that has a low loss rate can be detected, and its success
probability can be measured more accurately. Second, by
uniformly mapping all the path segments’ success probabilities
to the range of [0, 0.8] in each stage, the CD algorithm can
work in its “comfort zone”, and localize the faulty links with
higher accuracies.

E. Algorithm Running Time and Scalability

In Canary, we divide all the path segments with non-zero
loss rates in groups, and iteratively apply the CD algorithm
of NetBouncer to localize the faulty links that explain the
losses in each group. Intuitively, the more groups we divide,
the higher accuracy Canary can achieve. On the other hand,
by executing in more stages, the inference will take a longer
time. Clearly, there is a tradeoff between the number of the
path segment groups and the running time of the inference
algorithm.

To explore such a tradeoff, we repeat the experiment on
Canary as in Sec. IV-D, but each time we evenly divide
the lossy path segments into 1, 2, 3, 4, or 5 groups, and
correspondingly, the CD algorithm is executed in 1, 2, 3, 4,
or 5 stages. For each experiment, we examine how accurately
the faulty links are detected in terms of the F1 score, as well
as the time that the inference takes. Fig. 9 presents the result,
from which we can see that even with 1 group, Canary can
achieve an F1 score above 0.95, thanks to the over 1, 000
probe packets on each path segment. In addition, by dividing
the path segments into more groups, the F1 score is further
increased, at a cost of a longer algorithm running time.

We also examine Canary’s scalability by running the system
on fat-tree networks of different sizes with 𝑘 = 6, 8, 10,
and 12, and compare with NetBouncer and Flock. As in Sec.
IV-D, on each network, we randomly select 10% links to have
packet losses, and evenly divide the links in 3 or 5 groups. Fig.
10 presents the F1 scores and the algorithms’ running times
of the solutions. From the figure we can make the following
observations. First, all the algorithms are capable to maintain
their F1 scores on large-sized networks, especially when 𝑘
is no smaller than 8, and Canary has the F1 scores above
0.95 all the time. Second, as the network size increases, all
the algorithms have their running time significantly prolonged,
however, the increase of Canary’s running time is relatively
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slower than the ones of NetBouncer and Flock, as Canary
divides the problem into 𝑘 sub-problems, which are solved in
parallel with multithreading. The experiment result suggests
that with the state-of-the-art parallel computing techniques,
Canary is scalable on large-sized networks.

F. Detecting Heavy-Hitter Flows

Although Canary is not dedicatedly designed for detecting
heavy-hitter flows, however, since we select large-sized net-
work flows and count their packets in meters, by combining the
flows monitored by the DSM and the lightweight HashPipe,
Canary can also be used to detect heavy hitters. In the
following, we employ the 2-switch simulated network and
the MAWI traces as in Sec. IV-C to compare Canary with
the original 6-stage HashPipe [20] in detecting heavy hitters.
Note that for fairness, the original HashPipe consumes same
memory as the downstream monitor switch. In particular, we
configure the DSM to have 3 × 26 buckets, the lightweight
HashPipe is configured as in Sec. IV-A, and the original
HashPipe contains 56 entries per stage.

Fig. 11(a) presents the F1-scores in detecting the top-𝑘
largest network flows by Canary and the original HashPipe.
To our surprise, Canary is more accurate in identifying the
heavy hitters. Further investigation reveals that in the original
HashPipe, a heavy-hitter flow may be evicted if it is inactive
for some time before the end of the 30-second experiment.
But in Canary, large-sized network flows are always counted
by the DSM.

We then increase the memory usages of the two solutions
and repeat the experiment. In particular, we enlarge the origi-
nal HashPipe by having each stage to contain up to 176 hash
table entries, and proportionally enlarge the DSM by having
each row to contain up to 28 buckets. Fig. 11(b) presents the
F1-scores in detecting the top-25, top-50, and top-75 largest
flows under various memory budgets. From the figures, we can
see that when more memory is used, the original HashPipe
outperforms Canary, especially in the top-75 task. This is
because in Canary, the DSM does not monitor more than
𝛽 = 20 network flows as long as no less than 𝛼 = 1, 000
packets are counted, but HashPipe aggressively traces as many
network flows as its memory allows. The experiment results
suggest that although not dedicatedly designed for heavy hitter
detection, Canary achieves a decent accuracy, especially under
a limited memory resource budget.

TABLE IV
RESOURCE CONSUMPTION OF CANARY ON P4-PROGRAMMABLE SWITCH

Resource Usage Percentage
Match crossbar 130 5.0%
Gateway 18 9.4%
Hash bit 274 5.5%
Stateful ALU 8 8.3%
SRAM 29 3.0%
TCAM 4 1.4%
Logical Table IDs 20 11.44%
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G. Hardware Prototype

We have implemented a prototype of the Canary system, and
in particular, we compose the pipeline as illustrated in Fig. 2
with the P416 programming language [44], and realize moni-
tor switch on the Edgecore Wedge 100BF-32X Tofino-based
hardware programmable switch. Table IV presents usages of
various resources in the programmable switch reported by the
P4 compiler, from which we can see that Canary does not
have high demands on hardware resources.

We use the real-world testbed to evaluate packet forwarding
performance of the Canary system. In our experiment, we use
two Tofino-based switches as the monitor switches, and send
4 TCP flows from one server to the other using iPerf [45]. For
comparison, we also program the switches to simply forward
packets. We vary the flow size and measure the aggregated
throughput of the flows. Fig. 12 presents the results, from
which we can see that when the flows are large enough,
the aggregated throughput is close to 40 Gbit/s, which is
indeed the line speed of the switch, and there is no difference
between the monitor switch and the switch that simply for-
wards packets. As the operations introduced by Canary do not
impact a programmable switch’s packet forwarding speed, we
conclude that Canary is practical for deployment on production
networks.

V. CONCLUSION

In this paper, we present Canary, a system for detecting and
localizing packet losses based on partial traffic monitoring.
Canary employs in-switch meters to monitor network flows.
However, unlike the existing traffic monitoring based solutions
that are location agnostic, Canary encodes information of the
path that a packet travels along in its header, thus can detect
packet losses on each path segment. Moreover, different from
the solutions that measure the entire network traffic, Canary
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monitors only a small number of selected large-sized network
flows, as long as a sufficient number of packets are counted
for loss detecting. By improving a state-of-the-art inference
algorithm and leveraging path information of the lost packets,
Canary is able to infer the faulty network links, especially the
ones with low loss rates, with high accuracy.

We have implemented a Canary prototype with P4 on
Tofino-based hardware programmable switches, and evaluated
Canary with both simulation-based experiments and a real-
world testbed. The experiment results suggest that Canary
is lightweight regarding measurement overhead, and provides
flexibility for network administrators to allocate resources.
By adaptively selecting large-sized network flows, Canary
manages to count a sufficient number of packets on each path
segment under traffic dynamics. Experiment on a large scale
fat-tree data center network shows that Canary is capable to
detect faulty network links with few false positive and false
negative errors. In addition, Canary achieves a decent accuracy
in detecting heavy-hitters, despite that it is not dedicatedly
designed for that objective. Finally, performance evaluation
on the hardware testbed shows that Canary does not impact a
switch’s packet forwarding speed, thus is ready for practical
deployment.

APPENDIX A
PROOFS

A. Proof of Theorem 1

Theorem 1. Given a Clos-structured network, suppose a path
segment from an upstream switch to a downstream switch is
encoded in a pathBF and both monitor switches are at the
bottom layer, then the probability that we fail to decode a
unique path segment from the pathBF is

𝑃 𝑓 𝑎𝑖𝑙 ≈
(
1 − 𝑒−

(ℎ−1)𝑚
𝑏

) (ℎ−2)𝑚
(1)

where ℎ is the length of the bottom-to-bottom path segment,
𝑚 is the number of the hash functions, and 𝑏 is the Bloom
filter size.

Proof. Given a 𝑏-bit Bloom filter that has (ℎ − 1) switch
IDs encoded when arriving to the last-hop monitor switch,
according to the Bloom filter theory [39], the probability
that an ID of a switch off the path segment passes the
Bloom filter test (i.e., a false positive error) is approximately
(1−𝑒−

(ℎ−1)𝑚
𝑏 )𝑚. Since an erroneous path segment differs from

the ground-truth path segment in (ℎ − 2) hops, therefore the
probability that an erroneous path segment can be mistakenly
decoded from the pathBF is

𝑃 𝑓 𝑎𝑖𝑙 ≈
((

1 − 𝑒−
(ℎ−1)𝑚

𝑏

)𝑚)ℎ−2
=
(
1 − 𝑒−

(ℎ−1)𝑚
𝑏

) (ℎ−2)𝑚
(7)

□

B. Proof of Theorem 2

Theorem 2. For a large-sized network flow 𝑓 , the probability
that it has at least one clean bucket in a USM/DSM meter is

𝑃𝑐𝑙𝑒𝑎𝑛 = 1 −
(
1 − 𝑒−

𝐹−1
𝑤

)𝑑
(6)

where 𝑑 and 𝑤 are the rows and columns of the buckets in the
meter, and 𝐹 is the total number of the large-sized network
flows monitored by the meter.

Proof. Suppose that the flow 𝑓 is mapped to an arbitrary
bucket in a row of the DSM or USM meter. Since there are
(𝐹 − 1) other large-sized network flows randomly mapped to
the 𝑤 buckets in this row, the probability that no other flows
are mapped to this bucket is (1− 1

𝑤 )𝐹−1 ≈ 𝑒−
𝐹−1
𝑤 . Since there

are 𝑑 rows in a meter, among the 𝑑 buckets that 𝑓 is mapped
to, the probability that at least one collision-free bucket exists
is

𝑃𝑐𝑙𝑒𝑎𝑛 = 1 −
(
1 − 𝑒−

𝐹−1
𝑤

)𝑑
(8)

□
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