Task Scheduling for Probabilistic
In-band Network Telemetry

Wei Chen, Ye Tian, Member, IEEE, Zhongxiang Wei, Jiangyu Pan, Xinming Zhang, Senior Member, IEEE

Abstract—In-band Network Telemetry (INT) is a novel frame-
work for monitoring network health in real-time, and its recent
variant, Probabilistic INT (PINT), reduces its bandwidth con-
sumption with a probabilistic approach. However, as we show in
this paper, a PINT task can be successfully accomplished only
when it is allocated a sufficient number of packets, and if there
are many tasks executed in parallel, packets become a scarce
resource. Meanwhile, today’s production network generally exe-
cutes multiple measurement tasks for tracing different network
states simultaneously. Therefore, in such a context, scheduling
parallel PINT tasks on one single INT flow that has a limited
number of packets becomes a critical problem. In this paper, we
address this problem for the first time. We propose an algorithm
that efficiently schedules multiple parallel PINT tasks on a flow
by allocating the flow’s packets to the tasks and showing that
the allocation is optimal. We realize the algorithm with a packet
processing pipeline and implement it on software and hardware-
programmable switches. Comprehensive evaluation on a FatTree
testbed shows that at a low scheduling overhead, our algorithm
can conduct parallel PINT tasks to detect various network faults
in a timely and accurate manner. Additionally, the algorithm
accomplishes more PINT tasks with higher quality than the
alternative solutions.

Index Terms—Network measurement, Probabilistic In-band
Network Telemetry (PINT), task scheduling, resource allocation.

I. INTRODUCTION

AULTS and errors are inevitable in today’s produc-

tion networks. For troubleshooting network malfunctions,
monitoring network health in real-time is essential. Sampling-
based network monitoring solutions, such as NetFlow [1]
and sFlow [2], have been successfully applied for decades;
however, these methods miss many small flows, and thus,
are inadequate today. Meanwhile, with the rapid development
of software-defined networking (SDN) and data plane pro-
grammability, innovations in network telemetry have attracted
increasing attention in recent years (e.g., [3] [4] [5] [6] [7] [8]
[9] [10] [11]).

One critical problem in network telemetry is efficiently
reporting measurement data to analyzers. There are two rep-
resentative approaches: out-band network telemetry and in-
band network telemetry (INT). The former employs dedicated

This work was supported in part by the National Natural Science Foun-
dation of China (NSFC) under Grants 61672486 and 62072425 and in
part by the Strategic Priority Research Program of the Chinese Academy
of Sciences under Grant XDC02070300. (Corresponding author: Ye Tian
(yetian@ustc.edu.cn).)

The authors are with the Anhui Key Lab on High Performance Computing,
School of Computer Science and Technology, University of Science and Tech-
nology of China, Hefei, Anhui, China, 230026. (e-mail: {szcw33, wz199758,
pjiangyu } @mail.ustc.edu.cn; {yetian, xinming} @ustc.edu.cn)

channels to transfer measurement data to analyzing servers.
However, such an approach may raise a scalability of concern,
as a large volume of measurement data needs to be transmitted.
Instead, in INT, telemetry data are carried within a packet
header, and as the packet travels along a path, network state
values on all the switches that are enroute can be collected
by the sink. The benefit of INT is obvious, as no dedicated
out-of-band channel is needed, while measurement data can
be collected at the line rate.

However, by carrying network state values in the packet
header, INT consumes nontrivial bandwidth, which consid-
erably reduces a flow’s goodput and increases its completion
time. To overcome this problem, Probabilistic INT (PINT) was
proposed in [12]. Rather than using one single packet to carry
network state values from all the switches enroute, in PINT,
a packet carries data from only one switch that is randomly
selected along the path, and a path-wide measurement result is
collectively gathered by several different packets. The chance
that network state values on all the switches along a path can
be successfully collected depends on the amount of packets
that are used for collecting them. Our analysis in this paper
shows that to ensure a high success probability, over 1,000
packets are required for a path of only 5 hops. Obviously,
with PINT, packets become a scarce resource.

Meanwhile, for troubleshooting various network faults,
multiple network states are generally traced in parallel. For
example, in data center networks, packet counters and switch
IDs are traced for preventing forwarding loops and detecting
silent blackholes [5] [13] [8] [7] [9] [10]. In addition, interar-
rival time, port utilization, and queue occupancy are traced
for congestion control and preventing load imbalances [3]
[14]. In industrial wireless networks, transmitting delay, signal
strength, and interference are traced for QoS-aware routing and
energy saving [15]. Note that different measurement tasks may
have various requirements for collecting measurement data.
Some tasks should be conducted more frequently and some
network states should be collected within shorter intervals than
others. For example, the static network state, such as switch
ID, needs to be collected only once, as long as the path is
unchanged. However, for some time-varying network states,
such as packet counters and interarrival times, their values
should be collected timely and at relatively high frequency
to detect dynamic network events, such as microbursts and
congestion.

Motivated by the above observation, in this paper, we
consider the following problem: When multiple parallel PINT

tasks are imposed on a single INT flow' that has a limited
number of packets, how can the tasks be scheduled according
to their diverse requirements for collecting measurement data?
To address this problem, we propose a scheduling algorithm
that allocates the “right” numbers of packets to different tasks.
We aim to meet three objectives with the algorithm. First,
the algorithm should be effective, meaning that the algorithm
should accomplish as many PINT tasks as possible. Moreover,
a task should collect the network state at an appropriate
frequency, and the collected sample data should meet the
task’s requirement regarding time proximity. Second, the al-
gorithm should be practical. In particular, switches should
not expect expensive interventions, such as rule insertions and
updates, frequently from the network control plane. Third, the
algorithm should be realizable with a Reconfigurable Match-
Action Table (RMT) [16] [17] pipeline, which is essential
for hardware implementation. Additionally, since P4 [18§]
has already become the de facto standard for data plane
programmability, a P4 implementation is preferred. Driven by
these objectives, we make two contributions in this paper.

o Analysis and design: We start by analyzing the relation
between the number of packets of a flow that are allocated
to a PINT task and the task’s success probability. Based
on the analysis, we formulate the PINT task scheduling
problem and solve it with an algorithm that allocates
optimal numbers of packets to different tasks. We also
propose a batch allocation scheme to preserve the time
proximity of the collected sample data and improve the
task success probabilities.

o Realization and evaluation: We propose realizing the
task scheduling algorithm with a five-stage RMT pipeline
and implementing the pipeline with P4 on software and
hardware-programmable switches [19]. [20] Comprehen-
sive evaluations show that our proposed algorithm out-
performs other solutions with respect to both quality and
quantity when accomplishing PINT tasks. Experiments on
a FatTree testbed confirm that our method can be practi-
cally applied to schedule parallel PINT tasks for detecting
various real-world network faults, and the evaluation on
the hardware switch suggests that the overhead caused by
PINT task scheduling is insignificant.

Previous works on resource allocation among network mea-
surement tasks are focused mainly on in-switch memories,
such as TCAM [21] and SRAM [3] [22]. To the best of our
knowledge, we are the first to consider a flow’s packets as
a scarce resource and allocate them among parallel measure-
ment tasks. For the remainder of this paper, we give a brief
introduction to INT-based network diagnosis and discuss the
related works in Sec. II. Sec. III formulates the PINT task
scheduling problem and presents our solution. A performance
evaluation is given in Sec. IV, and we conclude this paper in
Sec. V.

'As in PINT [12], in this work, we refer to an INT flow as all the packets
traveling from the same origin to the same destination over a fixed single
path. Note that an INT flow may contain packets from multiple application
sessions. We use the terms “flow” and “INT flow” interchangeably in this
work.

II. BACKGROUND AND RELATED WORK
A. INT-based Network Diagnosis

Today’s production network is composed of a wide range
of network elements, including many types of switches and
middleboxes, and faults arise from any single or combination
of these elements. In the following, we describe a number
of network faults that commonly occur and how INT-based
methods can detect them.

o Path deviation: Switches or middleboxes mistakenly
forward packets, causing the actual forwarding paths to
deviate from the planned paths. Such a fault can be
detected by checking the switch IDs of all the switches
that are enroute between the origin and the destination
(4] [5] [8].

o Forwarding loop: A faulty switch or middlebox may
throw packets back toward their origin, resulting in for-
warding loops. Such a fault can be detected by comparing
the counters of forwarded packets on all the switches
along the path that contains loop [4] [5] [8] [10].

« Silent blackhole: A switch with buggy software or faulty
hardware randomly drops packets without reporting. Such
a fault can be detected by comparing the counters of
received packets on all the switches that are enroute. A
hop whose downstream switches received substantially
fewer packets is considered a blackhole switch [6] [12].

o Congestion: Bursting traffic and load imbalances can
cause congestion, which leads to longer RTTs, higher
packet loss rates, and lower throughputs. Congestion can
be detected by comparing packet interarrival time distri-
butions on switches or by comparing queue occupancies
of switch ports [14] [12].

o DDoS attack: A DDoS attack occurs when numerous
attacking end hosts across the network collectively send
a large volume of traffic to the victim. The attackers’
positions can be detected by determining the traffic
contribution from all ingress switches that reach a DDoS
victim switch [13].

B. Related Work

Existing studies focus on two aspects for improving data
plane visibility in production networks. Efforts are made to
enable switches to trace network states more efficiently. There
is a rich literature on sketch-based measurement frameworks
that implement a probabilistic data structure (i.e., sketch) for
tracing traffic characteristics [23]. In particular, Yu et al. [3]
presented a software-defined traffic measurement architecture
named OpenSketch and designed a three-stage pipeline that
contained various sketches to support different measurement
tasks. Yang et al. [24] introduced a generic sketch named
Elastic Sketch that was fast and accurate in network mea-
surements, and was adaptive to traffic characteristics. Zhou
et al. [25] proposed a set of common frameworks, each for
a family of traffic measurement solutions that shared the
same implementation structure. Zhang et al. [26] designed a
structure named CocoSketch that was capable of supporting
partial key queries.

The other aspect describes how to report traced measure-
ment data to analyzers. The approaches can be classified into
two categories: out-band and in-band. For out-band network
telemetry, Handigol et al. [5] used a separate VLAN to
collect packet histories from OpenFlow switches for network
diagnosis. Zhu et al. [6] exploited the “match and mirror”
functionality of commodity switches to mirror packets to
analyze servers through dedicated links. However, such an
approach may raise a scalability concern, as it could introduce
a large volume of measurement traffic. To reduce measurement
overhead, some systems proposed retrieving the entire or part
of a sketch via the southbound interface of the controller (e.g.,
[3] [7]) and carefully partition the measurement data stored at
end-hosts and switches (e.g., [27]).

Furthermore, in-band network telemetry (INT), which keeps
measurement data in packets, has attracted increasing attention
in the last few years. Tammana et al. [8] proposed embedding
packet trajectory information into packet headers at each
switch that was enroute and analyzing it at the end-hosts.
Moreover, switch memory is used to store pointers to end-
hosts where relevant telemetry data are stored [9]. Jeyakumar
et al. [4] proposed allowing packets to access and carry switch
state information and designing a concise set of instructions
for switches to collect the states at the line rate. Sonchack et al.
[28] proposed carefully partitioning processing between ASIC
hardware and application software, and developed a switch
accelerated telemetry system that could monitor network traffic
at the line rate. Niu et al. [29] proposed an INT system to
visualize an IP-over-optical network in real-time. Basat et al.
[12] presented the Probabilistic In-band Network Telemetry
(PINT) framework, which employed a number of probabilistic
techniques to reduce the bandwidth consumption in carrying
INT data. Zhao et al. [11] combined INT and device-local
sketches by splitting sketches on switches into sketchlets
embedded in packet headers and aggregated the sketchlets
to restore the sketches at the end-hosts for analyzing flow
statistics. Sheng et al. [30] presented DeltaINT, which reduced
INT bandwidth consumption by selectively carrying network
states only when their values changed substantially. Yang et al.
[31] proposed constructing a novel sketch named TowerSketch
at the end-host with an INT approach. A comprehensive survey
on INT was presented in [32], and INT was standardized by
state-of-the-art programmable data planes, such as P4 [33].

With regard to resource allocation in network measure-
ments, Yu et al. [3] allocated SRAM resources on switches
used in multiple measurement tasks. Moshref et al. [21] [22]
proposed an adaptive measurement framework that dynami-
cally adjusted a switch’s TCAM and SRAM devoted to each
measurement task while ensuring a user-specified level of
accuracy. However, most previous works focused on allocating
in-switch memory resources, and as far as we know, we are
the first to consider an INT flow’s packets as a scarce resource
and allocate them among different measurement tasks.

III. PINT TASK SCHEDULING

In this section, we first analyze the relation between the
number of packets allocated to a PINT task and the task’s

TABLE I
Notation Meaning
(p1,--+ ypon) An INT flow of n packets, p; is the it packet.
(s1,--,5m) | An m-hop network path, s; is the jth switch.
v (pi, S5) Value of k** state on switch s; observed by packet p;.
Sm () Lower bound of success probability of accomplishing

a task on a path of length m by allocating x packets.
K Total num. of PINT tasks.

{ug} Utilities of PINT tasks.

{qr} Switch parameters for allocating packets to tasks.

h(ps, j) Hashing function for selecting a switch in a PINT task.
g(pi) Hashing function for allocating p; to a PINT task.

success probability. Then, based on the analysis, we formulate
the task scheduling problem and present our solution.

A. PINT Task Success Probability

We consider a per-flow measurement task as in [12], where
an INT flow containing n packets travels a network path
composed of m switches. As listed in Table I, the flow is
denoted as (p1,--- ,p,), with p; representing the i*" packet
in the flow, and the path is denoted as (s1,- -, Sy,), With s;
representing the 5" switch that is enroute along the path. Each
switch has a number of states, such as switch ID, packet and
byte counters, packet interarrival time, port utilization, queue
occupancy, etc. In particular, many network states, such as
counter, time interval, utilization and occupancy ratios, are
time-varying and require being repeatedly collected. In INT
[4] [33] [34], when a switch receives a packet, it can record
the current values of its states in the INT field of the packet’s
header, and the packet carries the data to the destination. We
use vi(p;, s;) to denote the value of the k' state on a switch
s; that can be recorded in packet p;’s header.

An INT task is accomplished by using one packet to carry
the state values from all the switches that are enroute, i.e.,
ve(piy $1)s -, Uk (Di, Sm). However, INT consumes nontrivial
bandwidth by carrying up to m state values in each packet’s
header, which considerably reduces the flow’s goodput and
increases its completion time. In PINT [12], a packet carries
the state value from only one switch to reduce the bandwidth
consumption, and since there are m switches along the path,
which switch’s state value will be carried is determined in a
probabilistic way.

More specifically, in PINT, when a switch s; receives a
packet p;, it computes a hash value h(p;, j) in [0, 1) based on
the packet data and the switch’s position index. If h(p;, j) < %,
s; overwrites the INT field in p;’s header with its state value
vk(ps, 55), regardless of whether the field has been written by
an upstream switch. Simple analysis shows that when a packet
reaches its destination, it has an equal chance to carry each
switch’s state value, i.e., the probability of carrying vy (p;, s;)
in p;’s header is L, for Vs; € {s1, -+, sy }. Clearly, after
receiving a sufficient number of packets, all the state values
of the switches that are enroute can be collectively gathered.

The procedure of accomplishing a PINT task (i.e., collecting
a state’s values from all the switches enroute) is a coupon
collecting game [35]. Suppose n’ is the number of packets

= ©0O~NO O,

333333
=)

bt tod

Num. of packets

0.5 0.6 0.7 0.8 0.9
Task success prob.

0.99

Fig. 1. Number of packets required for accomplishing a PINT task on a path
of different lengths (m) above various success probabilities.

required for accomplishing a PINT task on an m-hop path;
then, its expectation can be computed as follows:

hm = E[n'] =mlnm+ym +1/2+ O(1/m) (1)

where v ~ 0.5772. Note that h,, depends only on the path
length m.

According to Markov’s inequality [36], for any x > h,,,
we have Pr[n’ > z] < % In other words, if x packets are
allocated to a PINT task, then the probability that the task can
be successfully accomplished is lower bounded as follows:

him
Sm(z) =1 - 2)

Following (2), we present the numbers of packets required
for accomplishing a PINT task on network paths of different
lengths with various success probabilities in Fig. 1. The figure
shows that to achieve a certain success probability, accom-
plishing a task on a longer path requires more packets, as
state values on more switches need to be collected. Moreover,
if we want to ensure a higher success probability, more packets
should be allocated. For example, for a PINT task on a 5-hop
path to be accomplished with a chance above 80%, we need to
allocate at least 58 packets; if we want to ensure a 99% success
probability, as many as 1, 144 packets are needed. Obviously,
for PINT, making good use of the limited packets in an INT
flow becomes a critical issue.

B. Multiple Tasks and Problem Formulation

Our previous analysis considered only one single PINT
task. However, as we discuss in Sec. I, a production network
generally traces multiple network states to troubleshoot various
faults. In this section, we consider that a switch is capable of
tracing a total number of K different states, and collecting
each state corresponds to a different PINT task. We recognize
that different measurement tasks have various requirements in
collecting measurement data [37] [38]. For example, a static
network state, such as a switch ID, needs to be collected
only once, while for some time-varying states, such as packet
counters and interarrival times, the value should be collected
more frequently.

With the above observation, in task scheduling, we associate
each PINT task, such as tasky, with a nonnegative utility
uy, which reflects its requirement in tracing the corresponding

network state. Generally, a task with a higher utility means that
the measurement data should be collected more frequently.

To enable a switch to conduct multiple tasks in parallel,
we introduce in every switch a uniform hash function g(.) in
[0,1) and a set of parameters {gj}¥ with >, gx = 1. Upon
receiving a packet p;, the switch computes a hash value g(p;),
and if g(p;) falls in the interval of [g1+ - “+qr—1,¢1+" - +qx),
p; is allocated to tasky. In other words, packets are allocated
to tasky with a probability of g, and for a flow of n packets,
statistically ny = n X g packets are allocated to tasky.

For scheduling multiple PINT tasks on a network flow, we
seek to allocate an appropriate number of packets to each task
to ensure that the tasks can be accomplished according to their
utilities with high success probabilities. Formally, we present
the objective of maximizing the weighted overall utility of the
PINT tasks, which is defined as follows:

K

K -
Um:ZSm(nk) Xuk_2(1nk> xup (3)
=1

k=1

where S,,(ny) is the success probability of tasky with ny
packets allocated, as formulated in (1), and uy, is tasky’s utility
given by the network administrator.

For a network flow of n packets traversing an m-hop path,
we formulate the PINT task scheduling problem as follows:

max U,
st Y mp=n “)
ng € NO

where the nonnegative integer nj is the number of packets
allocated to task;.

C. Task Scheduling Algorithm

To solve the integer optimization problem in (4), we first
relax the conditions by allowing the variables {n;} to be
real numbers. Moreover, we use {g;} to replace {n;} in the
problem, which is now formulated as follows:

K h
max U, =>,_; (1 — nx"ék) X U

s.t. Zszl =1 &)
qr >0

The Lagrangian function for the above problem is as follows:

K h K
A:;(l—nqu) xuk+>\(1—2qk> (6)

k=1

Since the problem is convex [39], by applying the Karush—
Kuhn-Tucker (KKT) conditions, we obtain the following:

oA OA

8qk 7 oA
By solving (7), we can obtain the global optimal solution as
follows:

Vi

qr = ZKiu ¥
i=1 i

=0 @)

for Vk € {1,--- ,K}.
The solution in (8) does not require the knowledge of path
length m and flow size n; it depends only on the tasks’ utilities

Per-packet schedule Task A [1]1]2T2] Fail
(1] [0 (=7 23 (1] [(2] (=] (20 [(2] B0 Tesk B [EiEziE Fail

Task C [FSY Fail
[\ [\ [\

Task D [B]8] Fail
S1 S2 S3

Per-batch schedule Task A Success
(1] (3] (2] (2] (] [I e . "o+ B) Success

Task C Fail
Task D Fail

Fig. 2. A demonstrating example of task scheduling. Each packet is repre-
sented as a small rectangle, and its color represents which task the packet is
allocated to and the number in the rectangle indicates from which switch the
network state value is collected from.

{uy } . Note that this is a desired property, as switches can
allocate packets to PINT tasks using a fixed set of parameters,
{qx }1, as long as the measurement tasks’ utilities are the same
on each switch.

In our previous discussion, we assume that each packet is
allocated to a task individually; however, in practice, such
per-packet scheduling has two drawbacks. First, per-packet
scheduling cannot preserve the time proximity of the collected
sample data, which is required when collecting some time-
varying network states (e.g., interarrival interval, port utiliza-
tion). For example, suppose that there are 10 tasks of the same
utility. On average, a switch’s network state can be collected
only once in every 10 packets, and it takes as long as 10 X h,,
packet time to sample from all the switches that are enroute.
The second drawback is that per-packet scheduling cannot
ensure successful accomplishments of the PINT tasks when an
INT flow has only a limited number of packets. Additionally,
in the above example, if the flow has only 50 packets, equally
allocating 5 packets to each task is meaningless, as all the 10
tasks will fail with so few packets allocated.

Motivated by the above observation, we propose grouping
packets in batches and allocating an entire batch of packets to
one single PINT task each time. Fig. 2 presents an example,
where an INT flow containing 12 packets travels along a path
composed of 3 switches. Suppose that there are 4 PINT tasks
with the same utility, and under the per-packet scheduling,
each packet randomly collects a network state from a random
switch with an equal chance. As a result, each task has an
average of 3 packets allocated, and each switch is selected by
4 packets on average, but overall, none of the tasks can collect
state values from all the switches that are enroute, and thus,
fail. However, if we group 6 consecutive packets into a batch,
and allocate a batch of packets to one single task at a time,
as shown in the figure, 2 of the 4 tasks can be successfully
accomplished. In this example, we can see that with batch
allocating, more packets can be concentrated on one single
task to ensure its success and preserve the time proximity of
the collected sample data.

To enable the per-batch task scheduling, when the first
switch of a path receives a packet p; that is not allocated
to any task, it allocates this packet, as well as the B — 1
subsequent packets, to a task according to g(p;) and {g; } .
More specifically, the switch maintains a counter initialized
as B and records the ID of the assigned task in the packet

header. All the downstream switches along the path read
the task ID from the packet and directly allocate the packet
to the corresponding task. The first switch decrements the
batch counter on receiving each packet, and when the counter
becomes zero, it assigns a new task to the next batch of
B packets, and resets the counter. Algorithm 1 presents the
complete algorithm.

Algorithm 1: Task scheduling algorithm

Algorithm Algorithm runs on switch s;
Input : packet p;

Find flow that p; belongs to;

if s; is the flow’s first switch then

if flow.batch_counter == 0 then
Compute g(p;);
Find task; that p; is allocated to;
Set flow.batch_counter = B;

Decrement flow.batch_counter by 1;
| Write task ID k to p;’s header;

else

L Read task ID k from p;’s header;
Compute h(p;, j);
if h(pi, j) < 5 then

L Write vy (p;, s;) to p;’s header;

We set the batch size B as follows:
B=1{cx hp] 9)

where h,, is the expected number of packets for accomplishing
a task, as in (1), and we refer to ¢ (¢ > 0) as the batch size
scaling factor for controlling the batch size. For example, in
Fig. 2, if ¢ = 1, the batch size B should be [¢ x h3] = 6
packets.

D. Pipeline Design and Realization

We design a packet processing pipeline to realize Algo-
rithm 1 and implement the pipeline with the P4 language
[18], which is currently the de facto standard for data plane
programmability. Note that all the resources and operations
required by Algorithm 1, such as the self-defined INT field,
hash functions, and counters, are natively supported by P4.
Fig. 3 illustrates the ingress pipeline of a flow’s first switch,
which is composed of five stages: Stage 1 checks the source
and destination addresses of a received packet p; and decides
which INT flow the packet belongs to, as well as the position
index of the switch on the flow’s forwarding path. If the switch
is the first hop, Stage 2 maintains a counter for the flow and
decides whether the incoming packet belongs to the current
batch or to a new batch. If the packet is the first packet of
a new batch, Stage 3 computes g(p;), decides which task the
new batch of packets should be allocated to, and writes the task
ID into the packet header. In Stage 4, the hash value h(p;, j)
is computed, and in Stage 5, h(p;,j) is compared against 1
to decide whether the switch’s state value vy (p;, s;) should be
written to p;’s INT field. Other switches on the path do not

Switch pipeline

Write vi(ps, 5)

New batch
for the flow

v

(Compute g(pJ}»'{ Compute h(p;, j) }»»

(
L

—

Flow classify }»»

Current batch ‘
for the flow ‘

‘Compute h(p;, j)}» Write vi(ps, 5)

‘ } Compute h(p;, /) }»

Write vi(ps, 5;)

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Fig. 3. Pipeline layout illustration: For the first-hop switch, the first packet
of a new batch is processed by Stages 1-5, while the subsequent packets are
processed by Stages 1-2 and 4-5. The non-first hop switches process packets
with Stages 1 and 4-5.

maintain the batch counter, and their pipelines only contain
Stage 1, Stage 4, and Stage 5, where Stage 1 confirms that
the switch is not the first hop, and Stage 4 and Stage 5 execute
the corresponding PINT task according to the task ID in the
packet header embedded by the first-hop switch.

The pipeline is populated with rule entries from the network
controller. Specifically, since the controller oversees the global
topology, when planning a path from an origin to a destination,
it knows each switch’s position on the path. The controller
uses this knowledge to compute all the parameters related
to PINT tasks and task scheduling, constructs rule entries
for differently positioned switches, and installs them in the
switches’ pipelines.

In Sec. III-A and III-B, we define the two hash functions of
h(.) and g(.) in [0,1) and compare the hash values h(p;, j)
and g(p;) against real number thresholds and ranges. However,
in practice, P4-provided functions only return integers. To
bridge this gap, in our implementation, we map real numbers
in [0,1) to integers. Specifically, we use the P4-provided
crc32 hash function in {0--- 65,535} as h(.), and use the
integer round(65,535 X %) as the threshold. Similarly, we
use the P4-provided random function in {0---999} as g(.),
and compare its returned value against the integer range of
[round(999 x Z;:ll qi), round(999 x Zle ¢i)] to decide
whether the current batch executes tasky.

We implement Algorithm 1 on the bmv2 software switch
[19] and the Barefoot Tofino hardware switch [20], and share
the P4 code with the community?.

E. Discussion

The proposed PINT task scheduling algorithm achieves the
objectives discussed in Sec. I: First, the algorithm is effective,
as it basically follows the optimal solution in (8) to allocate
packets to different PINT tasks. In Sec. IV, we further illustrate
its effectiveness with a comprehensive evaluation.

Second, the algorithm is practical, as it does not require
frequent rule insertions and updates on the data plane from the
control plane. From Algorithms 1 and (8), we can see that the
rules for task scheduling on a switch are updated only when the
tasks’ utilities, i.e., {uk}{(, are changed. Since tasks generally
do not change their requirements in collecting measurement
data, the task scheduling rules are updated infrequently.

Zhttps://github.com/DpintHPCC416/Batch-Pint

Third, as discussed in the above section, the algorithm
can be realized with a packet processing pipeline, which is
implemented on programmable switches with the P4 language.

Thus far, we consider the case in which a packet can collect
and carry only one state value from a switch that is enroute. If
each packet is capable of carrying multiple state values in its
header, we can view each packet as multiple “virtual” packets
and view an INT flow as multiple “virtual” INT flows on the
same path. By applying Algorithm 1 to allocate packets on
each “virtual” INT flow independently, the problem can be
solved.

For the issue of assigning utilities to various tasks, as we
have discussed in Sec. I, a task’s utility is closely related to the
nature of the network state that it aims to collect, and it also
depends on how critical the corresponding malfunction is to
the network health. For example, a network administrator may
assign a task that collects packet counters with a high utility if
the network has an extremely low tolerance to packet losses,
or they may assign a task that monitors queue occupancy with
a high utility if latency is one of the most important QoS
metrics. Clearly, assigning utilities to parallel PINT tasks is
empirical and case-by-case, and this topic is beyond the scope
of this work.

IV. EVALUATION

In this section, we evaluate our proposed PINT task schedul-
ing algorithm with experiments. We first compare the al-
gorithm with a number of alternative solutions in various
conditions (Sec. IV-A). Then, we construct a data center
network testbed with the FatTree topology [40] and apply
our algorithm to run four real-world measurement tasks for
troubleshooting four different network faults in parallel (Sec.
IV-B). Finally, we implement the algorithm on a hardware
switch and evaluate its impact on the switch’s forwarding
performance (Sec. IV-C). The evaluations show that our algo-
rithm outperforms alternative solutions and can be practically
applied in the real world.

A. Algorithm Evaluation

1) Experiment setup: We consider a simple scenario where
an INT flow of n packets traverses an m-hop path and compare
the following methods to schedule K parallel PINT tasks on
the flow.

o Batch: This is exactly our proposed algorithm, as elabo-
rated on in Sec. III and Algorithm 1.

o NoBatch: This method applies a per-packet allocation
according to the parameters in (8).

+ Random: In this method, packets are allocated to tasks
randomly with a probability of % for each task.

o Random batch (RandomB): In this method, a batch of
packets are randomly allocated to a task at a probability
of %, and the batch size is set the same as in Batch.

¢ Round robin (RR): In this method, packets are allocated
to tasks in a round-robin way. Formally, the i*" packet of
a flow is allocated to the k* task with k =i mod K.

Similar to the Batch algorithm, we implement NoBatch,
Random, RandomB, and RR with P4. Since we are the first

05 140 IlBatch 1 ‘-Balch [NoBatch [T]Random [Jll] RandomB -RR‘
.g 120 [NoBatch
04 [CIRandom 0.8
€ 100 IRandomB % .
Q Q BRR =
Eos 1S £ 06
@ > 80 >
g @ £ 04
£02 |5 60 5
g < 2 0.2
® 40 z0
% 0.1 . . M.
e 20 O™ "= g~ m - 1
0 0 -0.2
50 100 200 400 600 800 1000 50 100 200 400 600 800 1000 50 100 200 400 600 800 1000

Flow size (num. of packets)

(a) Task accomplishment ratio

Flow size (num. of packets)

(b) SN gap

Flow size (num. of packets)

(c) Utility fitness

Fig. 4. Comparison of five different PINT task scheduling methods under various flow sizes (number of packets) regarding (a) task accomplishment ratio,

(b) averaged SN gap, and (c) averaged utility fitness.

to address the problem of scheduling multiple PINT tasks
in parallel, we develop the following metrics to assess the
scheduling result.

o Task accomplishment ratio: This metric is defined as
the ratio between the number of actually accomplished
PINT tasks and the maximum number of tasks that can
be accomplished in theory, which is % For instance,
considering a flow of 20 packets on a 5-hop path, the
maximum number of tasks that can be accomplished
in theory is 25—0 = 4, as each task requires at least 5
packets. If the flow actually accomplishes one task, then
the task accomplishment ratio is 0.25. In other words, the
task accomplishment ratio reflects how well a scheduling
algorithm can make use of an INT flow’s packets without
wasting them, and we use it as the primary metric for
evaluating a task scheduling scheme.

o Sequence number gap (SN gap): Each time a task is
accomplished, the SN gap is defined as the difference
between the sequence numbers of the last and first packets
that are used to accomplish this task. Clearly, the smaller
the SN gap is, within a shorter interval the corresponding
task is accomplished. In other words, this metric measures
the time proximity of the collected sample data under a
task scheduling scheme.

e Utility fitness: For a flow with K tasks scheduled, a task
may be accomplished multiple times. We use ay, to denote
the frequency of accomplishing tasky, and the utility
fitness is defined as the Pearson’s correlation between two
normalized vectors ,< ay > and < q >, where ¢y, is the
parameter for allocating packets to taskj as in (8). This
metric reflects how well tasks are accomplished according
to their diverse requirements in collecting measurement
data.

In the following, we use the three metrics to evaluate and
compare the different PINT task scheduling methods and
discuss the impact of various factors on their performance.
Unless otherwise specified, we fix the flow size n = 200
packets, path length m = 5 hops, and tasks are assigned with
linear utilities as up, = k (k=1,--- , K) for K = 12. We set
the batch size scaling factor as ¢ = 1, and according to (9), a
batch contains B = [¢ X hs| = 12 packets.

2) Impact of the flow size (number of packets): We first
consider the impact of the flow size by varying n from

50 to 1,000 packets. Fig. 4 presents the five PINT task
scheduling methods’ performances under various flow sizes.
Each experiment was repeated 20 times. From Fig. 4(a) and
(b), we can see that when the flow size is small, RandomB
and Batch, which allocate packets in batches, have higher
task accomplishment ratios and smaller SN gaps than the per-
packet allocation schemes of NoBatch, Random, and RR.
This observation conforms to our analysis that batch allocation
can ensure task success and preserve the time proximity of the
collected sample data.

As the flow size increases, all the solutions achieve high task
accomplishment ratios, but the accomplished tasks have larger
SN gaps. This is because when the flow has more packets, a
task, which used to be unaccomplished with a smaller flow,
can be accomplished now by waiting for more packets to be
allocated to it.

Fig. 4(c) shows that Batch and NoBatch outperform Ran-
dom, RandomB, and RR regarding utility fitness. The reason
for this is that the methods of Random, RandomB, and
RR are agnostic to tasks’ utilities. Moreover, for Batch and
NoBatch, their utility fitness increases with the flow size. This
is because Batch and NoBatch allocate packets according to
(8); thus, their scheduling results approach the optimal ones
when there are more packets for allocation. Finally, NoBatch
outperforms Batch as it allocates packets in a finer granularity.

3) Impact of the path length: To assess the impact of the
path length, we vary m from 3 to 15 hops. It was found
that when the path becomes longer, we have lower task
accomplishment ratios and larger SN gaps for all five methods.
This is easy to understand, as a longer path means that more
packets are required for accomplishing a task. Given the fixed
flow size, fewer tasks can be accomplished on longer paths.

We also find that the Batch and RandomB methods, which
can concentrate a batch of packets on one single task, achieve
higher task accomplishment ratios and smaller SN gaps than
the per-packet allocating methods of NoBatch, Random, and
RR. In additional, Batch and NoBatch outperform Random,
RandomB, and RR regarding utility fitness. We omit the
detailed experimental results because they are intuitive and
easy to understand.

4) Impact of the number of tasks: In this section, we
examine the impact of the task number /K by assigning 8
to 20 parallel PINT tasks on an INT flow. Fig. 5 presents

05 140 1 B 5ot B8 NoBatch - Random B Randoms HRR
o
= 120] 0.8 i
= .
z o 100 | ln HI <8
o) % o 0.6
I 03) lBatch £
R = 80 [NoBatch |1 2. 0.4
_g.] [[JRandom || =
S 0.2 124 60 PlRandomB || = 0.2
8 < 40 HRR ES
%01 0
A 20 02
o
0 8 10 12 14 16 18 20 0 8 10 12 14 16 18 20 8 10 12 14 16 18 20

Num. of tasks

(a) Task accomplishment ratio

Num. of tasks
(b) SN gap

Num. of tasks

(c) Utility fitness

Fig. 5. Comparison of five different PINT task scheduling methods under various numbers of parallel tasks regarding the (a) task accomplishment ratio, (b)

averaged SN gap, and (c) averaged utility fitness.

-

‘ [l 8atch [NoBatch []Random [l RandomB [l RR ‘—

Linear

o o
o ®

o
[N}

Avg. utility fitness
o
N

S
N O

Exponential

Fig. 6. Comparison of the utility fitness of five different PINT task scheduling
methods under linear and exponential utility patterns.

the experimental results. From Fig. 5(a) and (b), it can be
seen that for the NoBatch, Random, and RR methods, their
performances become worse when more tasks are scheduled.
This is because the limited packets have to be distributed
among more tasks, with each task less likely to be successfully
accomplished.

However, the methods of Batch and RandomB are not im-
pacted by the task number regarding the task accomplishment
ratio and the SN gap. This is because the two methods allocate
a batch of packets to one single task each time, and thus, can
successfully accomplish a task with a high probability.

Fig. 5(c) shows that compared with NoBatch, the Batch
method is more impacted by the task number regarding utility
fitness because when there are more tasks and packets are
allocated in batches, tasks with low utilities may have no
packets allocated at all, resulting in poor utility fitness.

5) Impact of the utility pattern: Previous experiments as-
sume that PINT tasks are assigned linear utilities, i.e., ux = k;
however, in practice, some PINT tasks require measurement
data to be collected much more frequently than other tasks, and
these tasks should have much higher utilities. In this section,
we consider an exponential utility pattern, where tasky’s
utility ux = of with a = 1.5. Note that when there are
K = 12 tasks, the highest utility uq5 is over 86 times larger
than the lowest utility u.

Since the utility pattern does not impact the task accom-
plishment ratio and the SN gap, we only present the utility
fitness of different task scheduling methods in Fig. 6. We can
see that when tasks’ utilities become more imbalanced under

0.4 80
o
g 0.6
=03 60 2
g & £
= €04
[}
202 5 40 z

o E
8 z S0,
801 ‘ 20 z0
[72]
©
'—

00.’0.51 234 00.‘0.51 234

Batch size scaling factor

00.10.51 234

Fig. 7. Impact of the batch size on the performance of the Batch method

the exponential pattern, the methods of Batch and NoBatch
preserve their good performances, as they apply the optimal
solution in (8) to allocate packets to tasks, and thus, are
adaptive to the highly imbalanced task utilities.

6) Impact of batch size: As in (9), our proposed PINT task
scheduling method (i.e., Batch) has a scaling factor ¢ for
controlling the batch size. In this section, we examine how
the batch size impacts the performance by varying ¢ from 0.1
to 4, which indicates that the number of packets in a batch
varies from 2 to 46.

In Fig. 7, we present the three metrics achieved by the
Batch method under various batch size scaling factors. We
can see that a tradeoff exists; when the batch size increases,
a higher task accomplishment ratio and a smaller SN gap can
be achieved. This is easy to understand, as a larger batch
size means that more packets are allocated to the current task
without being wasted on other tasks. Note that when the batch
size is large enough, a task may be accomplished multiple
times within a batch, which explains the small SN gap in Fig.
7.

However, the metric of the utility fitness decreases with the
batch size scaling factor c. This is because as packets are
allocated in a coarser granularity with a larger batch size, the
actual packet allocation result deviates more from the optimal
solution in (8), leading to a lower utility fitness.

Summary: From the experiments, we conclude that compared
with the alternative approaches, our proposed PINT task
scheduling algorithm, i.e., Batch, accomplishes more PINT
tasks, better preserves the time proximity of the collected
sample data, and better fits the tasks’ diverse requirements

in collecting the measurement data. Moreover, these merits
persist under varied combinations of flow size, path length,
utility pattern, and task number. The algorithm is also flexible
by allowing a tradeoff between the quality and the quantity of
the tasks being accomplished.

B. Network Evaluation

1) Experimental setup: In this section, we emulate a data
center network with a FatTree topology [40] using Mininet
[41], and schedule four parallel PINT tasks to detect four
real world faults in the network. As shown in Fig. 8(a), the
testbed is composed of 16 hosts and 20 P4 software switches.
In the experiment, each host sends a flow at a constant rate of
1,000 pps to another host in the network, and we program the
switches with rules to forward packets of the flows according
to the routing policy in [40]. More specifically, for a pair of
hosts, the FatTree topology contains multiple equal-cost paths,
and the algorithm in [40] selects a path based on the parity of
the source address. As a result, 192 paths containing 5 hops,
32 paths containing 3 hops, and 16 paths containing 1 hop that
interconnect all the hosts on the FatTree network are planned,
and the paths are evenly distributed among the switches.

We introduce four different faults in the FatTree network.

o Inflated path: We introduce an inflated path, which is
a case of path deviation fault as described in Sec. II-A,
by modifying the forwarding rules at s4 and s7;. More
specifically, we instruct s4 to forward packets destined for
odd-indexed hosts to s7, which forwards these packets to
S5, and s5 handles them normally as in [40]. As a result,
the impacted flows have paths longer than 5.

o Forwarding loop: We introduce a loop by modifying the
forwarding rules at s13 and s15. When receiving a packet
from s, that is destined for hy or h7, si5 forwards the
packets to s13, which forwards them back to s15, and s15
handles them normally as in [40].

« Blackhole: We introduce two blackholes at s;; and si4.
s11 is configured to randomly drop packets on its port
connecting to sg, and sij4 randomly drops packets on
its port connecting to s;¢. Both switches drop packets
at a probability of 8%. Note that although the blackhole
definition applies to the switch rather than to the switch
port, here we configure the switch ports to randomly drop
packets for partially imitating a faulty switch’s behaviors
in the experiment.

o Congestion: We introduce three congested links s; — s3,
S7 — S19, and s19 — Sg by imposing a random latency
before sending packets on s1, s7, and s1g. The latency is
chosen randomly between 20 ms and 40 ms.

Each network fault can be detected with a different PINT

task, more specifically.

o To detect inflated paths, a PINT task is scheduled to
collect switch IDs of all the switches traversed by a flow.
If the number of unique switches on a path exceeds 5,
an inflated path is detected.

o To detect forwarding loops, a switch maintains a per-flow
packet counter at each of its egress ports, and a PINT task
is scheduled to collect the counters from all the switches

traversed by a flow. For a pair of two consecutive switches

(8iy8i+1), if % exceeds a threshold of 1.8, we
declare a forwarding loop starting at ;4.

o To detect blackhole switches, a switch maintains a per-
flow packet counter at each of its ingress ports, and a
PINT task is scheduled to collect the counters from all
the switches traversed by a flow. For a switch s;, if all its
downstream switches have counters no more than 0.93 x
counter;, we declare that s; is a blackhole.

o To detect congestion, a switch records the interarrival
time between the two consecutive packets it recently
received, and a PINT task is scheduled to collect the
interarrival times on all the switches traversed by a flow.
With the collected samples, the analyzing server derives
an interarrival time distribution on each hop and computes
a Chi-square distance between the distributions of any
two consecutive switches. The Chi-square distance is
defined as follows:

— (z; —y:)?
Z (@i + i)

i=1

(10)

where n is the number of bins, and x; and y; are the
number of samples in the i bin for the two distributions
respectively [42]. In our experiment, we put the collected
samples into n = 4 bins with each bin of 15ms, and
declare that a link (s;,s;+1) is congested when the
distance between the distributions of the two switches
s; and s;4+1 exceeds a threshold of 0.3.

Before presenting the experimental results, we first discuss
how the utilities of the four parallel PINT tasks should be
assigned in principle. First, for detecting inflated paths, since
a switch ID needs to be collected only once, the corresponding
task should have a low utility.

The utility of the task for detecting forwarding loops should
also be low, as a switch in a loop has a counter that is twice as
large as the one on an off-loop switch, and such a difference
is easy to detect.

However, the utility of the task for detecting blackholes
should be high; as a blackhole switch drops packets at a low
probability, its counter value is only slightly lower than that
of a normal switch. Since a packet counter increases over
time and counters on different switches are collected asyn-
chronously, the PINT task should collect a sufficient number
of samples on each hop to offset the impact that counters on
different switches are collected at different moments.

Finally, for detecting congestion, the utility of the task
should be high, as we need to accumulate a sufficient number
of samples to derive an interarrival time distribution on each
hop and compute the chi-square distance with the distributions.

2) Result: We evaluate two utility settings in our exper-
iment. We first ignore the differences in the PINT tasks by
assigning each task an equal utility of 0.25. After every
100 ms, we detect the network faults with the measurement
data collected thus far. For each fault, we present the detection
results in terms of the precision, recall, and Fl-score in Fig.
8(b). In the figure, we can see that the inflated path is accu-
rately detected at 100 ms, and the forwarding loop is detected
at 200 ms. However, for the two blackhole switches and the

-%-Inflated path -¥-Loop ~©-Blackhole ~&- Congestion
1

-%-Inflated path -%-Loop ~@©-Blackhole —=-Congestion
1 -

Precision

Z-

Precision

Recall

Recall

F1-score

F1-score

I
=)
a
=)
IS
N
=3
S

300 400

Time (ms) Time (ms)

(b) (©

Fig. 8. (a) FatTree topology; (b) precision, recall, and Fl-score for detecting four network faults under task utilities of (0.25,0.25,0.25,0.25); (c) precision,
recall, and Fl-score for detecting four network faults under task utilities of (0.1,0.1,0.4,0.4).

30P o o)
R —— [P— s *
25
£
— 20
2
=15
2
= 10
Z
5 -e-switch.p4 + PINT schedule |]
0 *-switch.p4
0 1 2 3
Traffic load (pps) X 10°

Fig. 9. Comparison of forwarding performances with and without the PINT
task scheduling and execution pipeline on Barefoot Tofino switch.

three congested links, we do not have accurate detection results
with Fl-scores above 0.9 until 400 ms.

We then take the different requirements of the PINT tasks
in collecting measurement data into consideration, and assign
the utilities of the tasks for detecting inflated paths, forwarding
loops, blackholes, and congestion as 0.1, 0.1, 0.4, and 0.4
respectively. We believe that this setting is more reasonable
by assigning higher utility values to the tasks for detecting
blackholes and congestion. Fig. 8(c) presents the results, from
where it can be seen that we have successfully detected all the
network faults with F1-scores above 0.9 at the 200 ms, which
is much earlier than under the equal utility setting.

The experimental results in this section suggest that first,
our proposed algorithm can be practically applied to schedule
parallel PINT tasks for detecting real world network faults;
second, when multiple PINT tasks are scheduled in parallel,
their utility values should be carefully selected to improve the
overall network diagnosis efficiency.

C. Hardware Evaluation

Our proposed pipeline demonstrated in Fig. 3 computes two
hash values and accesses memory at most once for each INT
flow packet. In this section, we realize the pipeline on the com-
modity Edgecore Wedge 100BF Tofino-based programmable
switch and evaluate the impact of the overhead on the switch’s
forwarding performance.

In particular, we append our five-stage pipeline to the
ingress pipeline of switch.p4, which is a baseline P4
implementation for the L2/1.3 switch [43]. We run the program

on the Tofino hardware switch and compare the switch’s for-
warding performance with the case when the switch runs the
baseline switch.p4. To assess the forwarding performance,
we send a traffic load varying from 4,000 pps to 30,000
pps and send an INT flow containing 127,834 packets back-
to-back to the switch. In our five-stage pipeline, INT flow
packets are allocated to K = 8 PINT tasks for carrying
different state values, such as the switch ID, port number,
packet counter, byte counter, timestamp, etc., while with the
original switch.p4, the INT flow is treated as an ordinary
flow.

We record the INT flow’s flow completion times (FCTs)
under various background traffic loads, with and without the
PINT task scheduling pipeline, and compare the results in Fig.
9. In the figure, we can see that after appending our proposed
pipeline, the FCTs increase no more than 10%. The result sug-
gests that the overhead introduced by our proposed pipeline for
PINT task scheduling and execution is insignificant, and our
proposed algorithm can be practically applied in production
networks.

V. CONCLUSION

In this paper, we assert that for the first time, with Proba-
bilistic In-Network Telemetry (PINT), packets in a flow will be
a scarce resource and require smart allocation among parallel
PINT tasks. Based on the analysis of the relation between the
number of packets allocated to a PINT task and the task’s
success probability, we formulate the PINT task scheduling
problem and solve it by allocating the optimal numbers of
packets to different measurement tasks. We propose a PINT
task scheduling algorithm that requires few interventions from
the control plane, realize it with a five-stage pipeline, and
implement it with P4. Comprehensive performance evaluation
shows that at a low scheduling overhead, our proposed algo-
rithm can accomplish more PINT tasks with higher quality
than other alternative solutions, and it can be applied to
schedule parallel PINT tasks for efficiently detecting real
world network faults.

REFERENCES

[1] B. Claise, “Cisco systems netflow services export version 9,” RFC 3954,
Oct. 2004. [Online]. Available: https://www.ietf.org/rfc/rfc3954.txt

[2]
[3]
[4

=

[7]
[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. Phaal and M. Lavine, “sflow version 5, Jul. 2004. [Online].
Available: https://sflow.org/sflow_version_5.txt

M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proc. NSDI'13, Lombard, IL, USA, Apr. 2013.
V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazieres,
“Millions of little minions: Using packets for low latency network
programming and visibility,” in Proc. SIGCOMM’14, Chicago, IL, USA,
Aug. 2014.

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in Proc. NSDI’ 14, Seattle, WA, USA, Apr. 2014.
Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng, “Packet-level telemetry in
large datacenter networks,” in Proc. SIGCOMM’15, London, UK, Aug.
2015.

Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better NetFlow for
data centers,” in Proc. NSDI’16, Santa Clara, CA, USA, Mar. 2016.

P. Tammana, R. Agarwal, and M. Lee, “Simplifying datacenter network
debugging with pathdump,” in Proc. OSDI’16, Savannah, GA, USA,
Nov. 2016.

——, “Distributed network monitoring and debugging with Switch-
Pointer,” in Proc. NSDI'18, Reton, WA, USA, Apr. 2018.

J. Kucera, R. B. Basat, M. Kuka, G. Antichi, M. Yu, and M. Mitzen-
macher, “Detecting routing loops in the data plane,” in Proc.
CoNEXT’20, Barcelona, Spain, Dec. 2020.

Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu, N. Zheng,
R. Wang, H. Wu, Y. Wang, and N. Zhang, “LightGuardian: A full-
visibility, lightweight, in-band telemetry system using sketchlets,” in
Proc. NSDI'21, Apr. 2021.

R. B. Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzen-
macher, “PINT: Probabilistic in-band network telemetry,” in Proc.
SIGCOMM 20, Virtual Event, NY, USA, Aug. 2020.

S. Narayana, M. T. Arashloo, J. Rexford, and D. Walker, “Compiling
path queries,” in Proc. NSDI’16, Santa Clara, CA, USA, Mar. 2016.
Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu, “HPCC: High precision
congestion control,” in Proc. SIGCOMM’19, Beijing, China, Aug. 2019.
A. Karaagac, E. D. Poorter, and J. Hoebeke, “In-band network telemetry
in industrial wireless sensor networks,” IEEE Trans. Netw. Service
Manag., vol. 17, no. 1, 2019.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN,” in Proc.
SIGCOMM’13, Hong Kong, China, Aug. 2013.

S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and
T. Edsalll, “dRMT: Disaggregated programmable switching,” in Proc.
SIGCOMM’17, Los Angeles, CA, USA, Aug. 2017.

“P4 open source programming language,” accessed on May 20, 2021.
[Online]. Available: https://p4.org/

“bmv2, the behavioral model for P4,” accessed on May 20, 2021.
[Online]. Available: https://github.com/p4lang/behavioral-model

“Intel Tofino Series,” accessed on Apr. 20, 2022. [Online].
Available: https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch.html

M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: Dynamic
resource allocation for software-defined measurement,” in Proc. SIG-
COMM'’14, Chicago, Illinois, USA, Aug. 2014.

——, “SCREAM: Sketch resource allocation for software-defined mea-
surement,” in Proc. CoONEXT’15, Heidelberg, Germany, Dec. 2015.

S. Li, L. Luo, D. Guo, Q. Zhang, and P. Fu, “Sketch
for traffic measurement: design, optimization, application and
implementation,” CoRR, vol. abs/2012.07214, 2020. [Online]. Available:
https://arxiv.org/abs/2012.07214

T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic Sketch: Adaptive and fast network-wide
measurements,” in Proc. SIGCOMM 18, Budapest, Hungary, Aug. 2018.
Y. Zhou, Y. Zhang, C. Ma, S. Chen, and O. O. Odegbile, “Generalized
sketch families for network traffic measurement,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 3, no. 3, 2019.

Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu, R. Zhang, and
J. Jiang, “CocoSketch: High-performance sketch-based measurement
over arbitrary partial key query,” in Proc. SSIGCOMM’21, Virtual Event,
USA, Aug. 2021.

Q. Huang, H. Sun, P. P. C. Lee, W. Bai, F. Zhu, and Y. Bao, “OmniMon:
Re-architecting network telemetry with resource efficiency and full
accuracy,” in Proc. SIGCOMM 20, Virtual Event, NY, USA, Aug. 2020.

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]
[42]

[43]

J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
hardware accelerated network monitoring to concurrent and dynamic
queries with *flow,” in Proc. USENIX ATC’18, Boston, MA, USA, Jul.
2018.

B. Niu, J. Kong, S. Tang, Y. Li, and Z. Zhu, “Visualize your IP-
over-optical network in realtime: A p4-based flexible multilayer in-band
network telemetry (ML-INT) system,” IEEE Access, vol. 7, 2019.

S. Sheng, Q. Huang, and P. P. C. Lee, “DeltaINT: Toward general in-
band network telemetry with extremely low bandwidth overhead,” in
Proc. ICNP’21, Virtual Event, Nov. 2021.

K. Yang, Y. Li, Z. Liu, T. Yang, Y. Zhou, J. He, J. Xue, T. Zhao, Z. Jia,
and Y. Yang, “SketchINT: Empowering INT with TowerSketch for per-
flow per-switch measurement,” in Proc. ICNP’21, Virtual Event, Nov.
2021.

L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X. Liu, and N. Li,
“In-band network telemetry: A survey,” Comput. Netw., vol. 186, no.
107763, 2021.

“In-band network telemetry (int) dataplane specification,”
The Pd.org Applications Working Group, Tech. Rep.,
Nov. 2020. [Online]. Available: https://github.com/p4lang/p4-
applications/blob/master/docs/INT_v2_1.pdf

“In-band network telemetry detects network performance
issues,” Intel, White Paper, Dec. 2020. [Online].
Available: https://networkbuilders.intel.com/solutionslibrary/in-band-

network-telemetry-detects-network-performance-issues
R. Motwani and P. Raghavan, Randomized Algorithms.
UK: Cambridge University Press, 1995.

E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integra-
tion, and Hilbert Spaces. Princeton, NJ, USA: Princeton University
Press, 2005.

Y. Kim, D. Suh, and S. Pack, “Selective in-band network telemetry for
overhead reduction,” in Proc. IEEE International Conference on Cloud
Networking (CloudNet), Tokyo, Japan, Oct. 2018.

E. Song, T. Pan, C. Jia, W. Cao, J. Zhang, T. Huang, and Y. Liu, “INT-
label: Lightweight in-band network-wide telemetry via interval-based
distributed labelling,” in Proc. INFOCOM’21, Vancouver, BC, Canada,
May 2021.

S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. SIGCOMM 08, Seattle, WA, USA,

Cambridge,

Cambridge, UK:

Aug. 2008.

“Mininet,” accessed on May 20, 2021. [Online]. Available:
http://mininet.org/

Y. Dodge, The Concise Encyclopedia of Statistics. ~ New York, NY,

USA: Springer, 2008.
“Consolidated switch repo,” accessed on May 1, 2022. [Online].
Available: https://github.com/p4lang/switch

Wei Chen received the bachelor’s degree in com-
puter science from University of Science and Tech-
nology of China (USTC), Hefei, China, in 2020.
He is currently pursuing the Ph.D. degree with
the School of Computer Science and Technology,
USTC. His research interest is focused on pro-
grammable networks.

Ye Tian received the bachelor’s degree in electronic
engineering and the master’s degree in computer
science from University of Science and Technol-
ogy of China (USTC), Hefei, China, in 2001 and
2004, respectively, and the Ph.D. degree from the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong,
in 2007. He joined USTC in 2008 and is currently
an Associate Professor with the School of Computer
Science and Technology, USTC. His research inter-
ests include programmable networks, network and
Internet measurements, and network softwarization. He has published over 70
papers and co-authored a research monograph published by Springer. He is
the winner of the Wilkes Best Paper Award of Oxford The Computer Journal
in 2016. He is currently serving as a Young Associate Editor of Springer
Frontiers of Computer Science Journal. He is a member of the IEEE.

Zhongxiang Wei received the bachelor’s degree
in computer science from University of Science
and Technology of China (USTC), Hefei, China, in
2020. He is currently working toward the master’s
degree with the School of Computer Science and
Technology, USTC. His research interests include
programmable networks and network measurement.

Jiangyu Pan received the bachelor’s and master’s
degrees in computer science from University of
Science and Technology of China (USTC), Hefei,
China, in 2019 and 2022 respectively. His re-
search interests include wireless networks and pro-
grammable networks. He will join TP-Link Tech-
nologies in July 2022.

Xinming Zhang received the BE and ME degrees
in electrical engineering from China University of
Mining and Technology, Xuzhou, China, in 1985
and 1988, respectively, and the PhD degree in com-
puter science and technology from the University of
Science and Technology of China (USTC), Hefei,
China, in 2001. Since 2002, he has been with the
faculty of USTC, where he is currently a Professor
with the School of Computer Science and Technol-
ogy. From September 2005 to August 2006, he was a
visiting Professor with the Department of Electrical
Engineering and Computer Science, Korea Advanced Institute of Science and
Technology, Daejeon, Korea. His research interest includes wireless networks,
deep learning, and intelligent transportation. He has published more than 100
papers. He won the second prize of Science and Technology Award of Anhui
Province of China in Natural Sciences in 2017. He won the awards of Top
reviewers (1%) in Computer Science & Cross Field by Publons in 2019. He
is a senior member of the IEEE.

