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Abstract—Large spread and high persistence are widely ob-
served in malicious activities such as botnets and DDoS attacks in
high-speed networks, while how to identify persistent-spreaders
is still a challenging issue. In this work, we present PS-Sketch, a
system for estimating persistent-spreads of network flows and de-
tecting persistent-spreaders in network data streams. PS-Sketch
is based on our definitions of persistence and persistent-spread,
which overcome the limitations of the conventional definitions
by better capturing network flows’ behaviors, and being difficult
for attackers to bypass. Within a switch’s pipeline, PS-Sketch
processes packets with two adjacent sketch data structures,
namely the P-sketch and the S-sketch. In the P-sketch, we
employ low-pass filter (LPF) to trace an element’s persistence that
incorporates occurrences in its entire history, and in the S-sketch,
we extend the HyperLogLog (HLL) algorithm, and integrate
an element’s persistence to the spread estimation of the flow
that the element belongs to, for estimating the flow’s persistent-
spread. We present theoretical analysis on the error bound of PS-
Sketch. Trace-driven evaluation shows that PS-Sketch achieves
high accuracy in estimating network flows’ persistent-spreads,
and outperforms the existing solutions in detecting persistent-
spreaders. We further prototype PS-Sketch in P4 and show that
the system is deployable on commodity hardware switches.

Index Terms—Persistence, persistent-spreader, sketch, pro-
grammable switch

I. INTRODUCTION

N large-scale network attacks such as DDoS attacks [1],

network scanning [2], worm propagation [3], etc., the
attacker usually exhibits an extraordinary large spread by
contacting a large number of other hosts. Despite many efforts
on detecting spreaders in network data streams [4], [5], [6], [7],
production networks are still vulnerable under these attacks.
One reason is that in many malicious attacks such as botnets
[8] and stealthy DDoS attacks [9], the attacker prefers to
reduce its fan-out by spreading the malicious communication
over a long time span, so as to bypass the spreader detection.
Although a number of methods for detecting persistent patterns
in network data streams are proposed in recent years [10], [11],
[12], [13], [14], however, they focus on detecting individual
connections or sessions rather than attackers.
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To address this problem, people consider to detect network
flows that have abnormally large numbers of persistent ele-
ments, and refer to these flows as persistent-spreaders [9],
[15], [16]. In these works, time is divided into epochs, a source
or destination address is called a flow, and a distinct source-
destination address pair is called an element in the flow. Given
an element that includes all the packets sent from address x
to address y, it is considered as a persistent element if it has
at least one packet that appears in no less than k out of the
t recent epochs. For a flow composed of many elements, if
the number of its persistent elements exceeds a threshold, it
is classified as a persistent-spreader.

The above definition on a network flow’s persistent-spread
and existing solutions [9], [15], [16] for detecting persistent-
spreaders following this definition have two limitations. First,
when estimating an element’s persistence, only the occurrences
in the t recent epochs are considered. However, as we will
discuss in this paper, when an attacker is aware of the
parameter values of ¢ and k, it can manipulate the contact
pattern of each element to bypass the detection. Moreover,
in these works, a persistent-spreader is defined as a flow
that has enough number of persistent elements. However, an
attacker can make a tradeoff between persistence and spread
to bypass the detection. For example, a stealth DDoS attacker
can deliberately reduce the number of its attacking machines
in each epoch below the threshold, but instruct each machine
to persistently consume resource of the target over a long time
span. Similarly, a super-spreader can recruit a large number of
attacking machines to quickly bring down the target within a
short time. Obviously in both cases, the attacker can avoid
being detected as a persistent-spreader.

In this paper, we present new definitions on an element’s
persistence and a network flow’s persistent-spread, and fol-
lowing our definitions, we develop PS-Sketch, a system for
estimating persistent-spreads of network flows and detecting
persistent-spreaders in high-speed networks. Unlike the con-
ventional definition that only considers the ¢ recent epochs, we
define an element’s persistence as the time-decaying sum of
all its occurrences in its entire history. Based on the definition
of element persistence, we define a flow’s persistent-spread
as the sum of the persistence of all the elements that belong
to the flow, and consider a flow as a persistent-spreader if
its persistent-spread exceeds a threshold. Comparing with the
conventional definition, our definition of persistent-spreader
covers a wide range of network flows from super-spreaders
that have large numbers of non-persistent elements, to stealthy
DDoS attackers that have moderate numbers of highly persis-
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Fig. 1. Occurrences of three elements in a period of 19 epochs.

tent elements, as well as any flows between the two extremes,
thus is difficult to bypass.

PS-Sketch adopts a sketch-based approach by processing
packets with two adjacent sketch data structures, namely the
persistent-sketch (P-sketch) and the spread-sketch (S-sketch),
within a switch’s pipeline. In the P-sketch, we exploit the low-
pass filter (LPF) of programmable switch [17] to compute
the time-decaying element persistence. In addition, for each
element, we embed its estimated persistence in its first packet
of each epoch to update the S-sketch, in which we employ the
HyperLoglog (HLL) algorithm [18] as the distinct counter. To
estimate a flow’s persistent-spread, we integrate an element’s
persistence to the spread estimation of the flow that the
element belongs to. In particular, we extend the HLL algorithm
to encode the estimated persistence to the hash string of the
element, and use the string to update the HLL registers.

From theoretical analysis, trace-driven evaluation, and hard-
ware prototyping, we find that PS-Sketch has the following
merits. First, PS-Sketch achieves high accuracy in estimat-
ing network flows’ persistent-spreads. Second, PS-Sketch is
capable to detect persistent-spreader flows accurately and
outperforms the existing solutions. Third, by reporting the S-
sketch at the end of each epoch, PS-Sketch is able to detect
persistent-spreaders in a timely manner. Fourth, PS-Sketch is
compatible with the commodity hardware switch and is able
to process packets at line-rate. In the design, analysis, and
evaluation of PS-Sketch, we make the following contributions.

e« We present formal definitions of element persistence
and network flow’s persistent-spread, and show that our
definitions better capture a persistent-spreader flow’s be-
havior, and are difficult for attackers to bypass.

o We design PS-Sketch, a system for estimating persistent-
spreads of network flows and detecting persistent-
spreaders in network data streams.

o We present theoretical analysis on PS-Sketch, and obtain
error bound on the estimating accuracy in respect to the
memory usages of different components in the system.

o« We show with trace-driven simulation that PS-Sketch
achieves high accuracy in estimating persistent-spreads
of network flows, detects persistent-spreaders in a timely
manner, and outperforms the existing solutions.

o We prototype PS-Sketch in P4 on the Intel Tofino chip
[19], and show that it is feasible to deploy PS-Sketch on
commodity hardware switches. We make the prototype
source code publicly available'.

The remainder part of this paper is organized as follows. We
discuss background and motivation in Sec. II; Sec. III presents
the design and analysis of PS-Sketch; We evaluate PS-Sketch

Uhttps://github.com/wyw0530/PS-Sketch
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Fig. 2. Top: t-occurrences of three elements in Fig. 1 with ¢ = 8; Bottom:
Py, of three elements with v = 0.05.

in Sec. IV, and discuss alternative design choices in Sec. V.
Sec. VI discusses related works and we conclude in Sec. VII.

II. BACKGROUND AND MOTIVATION
A. Definitions of Persistence and Persistent-Spread

Consider a data stream of network packets, where we define
a unique pair of source and destination addresses m = (x,y)
as an element, which contains all the packets sent from the
source host = to the destination y. We further group the
elements with x as source address as a per-source flow, which
contains all the packets sent from x. Similarly, elements with y
as destination address form a per-destination flow that contains
all the packets sent to y.

Time is divided into non-overlapping and contiguous time
windows called epochs. Given an element m from x to y,
people used to define its persistence as how many epochs
the element occurs in the past ¢ epochs [10], [9], [11], [15],
[12], [13], [16], [14], and we refer to such a definition as
t-occurrence persistence in this paper.

Given a network flow z composed of many elements, its
persistent-spread is defined as number of the distinct persistent
elements in the flow. In particular, [9], [15] estimates a flow’s
persistent-spread as number of the elements in the flow that
occur in all the ¢ recent epochs; and [16] generalizes the
problem by estimating a flow’s k-persistent spread, which is
the number of the distinct elements that occur in at least k
(k <t) out of the ¢ recent epochs.

However, since only the ¢ recent epochs are considered, if an
attacker is aware of the pre-specified ¢ and k parameter values,
it can manipulate its contact pattern to bypass the detection.
In particular, the attacker can contact a destination in exactly
k — 1 epochs per each t consecutive epochs, but still contacts
the destination frequently. For example, suppose ¢ = 8, then
the elements A and B in Fig. 1 each has a t-occurrence of 5,
despite that both elements occur 12 times in the 19 epochs,
as we can see in the top-figure of Fig. 2. On the other hand,
element C has a t-occurrence of 6 in as many as 4 epochs,
although it occurs only 10 times in the 19 epochs. If we set
k = 6, then C will be classified as a persistent element, but A
and B will not. If an attacker follows the pattern of element A
or B in contacting a target, then no matter how many elements
the attacker flow contains, none of them will be classified as a



persistent element, and the flow will bypass the detection by
having a zero k-persistent spread by definition.

B. Detecting Persistent-Spreader with Programmable Switch

Existing works employ a hybrid method for detecting
spreaders or persistent-spreaders [4], [9], [15], [16], [5], [6],
where hardware maintains simple data structures such as bit
arrays, and the complicated operations for constructing the
estimators are conducted by software. However, as commodity
switches nowadays provide a line-rate up to dozens even
hundreds of Gbps, it is challenging for the software-based
solutions to keep up with the speed of hardware switches.

In recent years, a wide range of network algorithms, which
used to be implemented with software or dedicated hardware,
have opportunities to be realized on hardware programmable
switches (e.g., switches based on the Intel Tofino chip [19])
and run at line-rate. Obviously, in high-speed networks, it
is ideal to estimate network flows’ persistent-spreads with
programmable switches. However, to fulfill such an objective,
we need to deal with the following challenges.

e The first challenge is how to define persistence and
persistent-spread in a way to accurately capture a
persistent-spreader flow’s behavior, and is difficult for
attackers to bypass.

o The second challenge is how to design data structures and
algorithms that are fast, accurate, and memory-efficient
to estimate network flows’ persistent-spreads in network
data streams.

o Finally, unlike software, programmable switches have
limited resources and many restrictions, such as the lack
of support for float-point values, no support for multipli-
cation, division, exponential and logarithmic operations,
etc., it is challenging to overcome these limitations.

III. ESTIMATING PERSISTENT-SPREAD WITH PS-SKETCH

Motivated by the observation in Sec. II, in this work, we
present PS-Sketch, a system for accurately estimating network
flows’ persistent-spreads with a sketch-based approach. Table
I lists the notations frequently used in this paper.

A. Problem Statement and System Overview

1) Problem statement: Given a network data stream, we
consider a pair of unique source-destination address pair m =
(z,y) as an element, and group all the elements with = as
source address as a per-source flow, or a flow for short. Note
that although we focus on per-source flows, PS-Sketch is also
applicable to per-destination flows as well.

Time is divided into epochs. We denote the current epoch
as tp, and denote the previous epochs as t_1, t_o, - - -. For an
element m = (x,y), we define its persistence Py, as

Pm, = Im0 + Im.,—l e T 4 Im,—2 . 6727 + .. (1)

where e is Euler’s number, I,,,, = 1 (K = ---,-1,0) if
at least one packet of element m appears in epoch tx, and
I, = 0 otherwise. Note that unlike the works that only
count an element’s occurrences in the ¢ recent epochs as its

TABLE I

FREQUENTLY USED NOTATIONS
Notation | Meaning
Defined in Sec. III-A
m = (z,y) Element composed of packets from z to y.
T Flow composed of packets sent from x.
P Real persistence of element m as defined in (1).
Sz Real persistent-spread of flow x as defined in (2).
Defined in Sec. III-B
B P-sketch composed of d; X wi buckets.

B;[j].C, B;[j]-t LPF and timestamp of the P-sketch bucket B;[j].

Persistence of element m estimated by P-sketch.

m
p.C, p.F Counter and flag associated with packet p.
€1 Approximation parameter of the P-sketch.
o1 Error probability of the P-sketch.
Defined in Sec. III-C
H(m) L-bit hash string of element m.
Hi(m), Ha(m) b-bit and (L — b)-bit sub-strings of H(m).
Sz Persistent-spread of flow x approximated by HLL.
o Error bound of HLL approximation.
Defined in Sec. III-D
C S-sketch composed of d2 X wa buckets.
Ci[j].H HLL counter of the S-sketch bucket C;[5].
C;[j].X, Ci[j].L | Flow ID and level of the S-sketch bucket C;[j].
Sy Persistent-spread of flow x estimated by S-sketch.
€2 Approximation parameter of the S-sketch.
b2 Error probability of the S-sketch.

persistence (i.e., the t-occurrence persistence), (1) incorporates
an element’s occurrences during its entire history, and decays
over time with a factor of e™” per epoch, thus better captures
the element’s behavior. To show this, we present P, of the
elements A, B, and C in Fig. 1 in the bottom figure of Fig.
2. We can see that the elements A and B, which occur more
often than C, have their P, higher than C all the time.
Note that although P,, summarizes an element’s occur-
rences in its entire history, however, its value is bounded by
e .
——7- In other words, a counter for P, will never overflow.
For a network flow x containing many elements, at the end
of each epoch, we define its persistent-spread S, as

mex

In addition, if a flow x has its persistent-spread S, greater
than a pre-specified threshold, it is considered as a persistent-
spreader.

Note that with our definitions in (1) and (2), the problem
of detecting persistent-spreaders that we study in this paper is
very different from the one studied in the previous works [9],
[15], [16]. In particular, our definition of persistent-spread
in (2) does not impose a threshold on individual element’s
persistence, but aggregates P, of all the elements in a flow
to compute S,. Since we only apply a threshold on S, to
detect persistent-spreaders, either a flow with a large number
of none-persistent elements (i.e., a super-spreader), or a flow
with moderate numbers of highly persistent elements (i.e.,
a stealthy DDoS attacker), or any flow between the two
extremes, may have its S, large enough to be detected as a
persistent-spreader. In other words, it is difficult for an attacker
to bypass the detection by making a tradeoff between element
persistence and flow spread.
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Fig. 3. Overview of PS-Sketch.

Given our definitions on persistence and persistent-spread,
we pursue two objectives in the design and development of PS-
Sketch: 1) the system should be able to estimate a network
flow’s persistent-spread as defined in (2) accurately; 2) the
solution should be applicable in high-speed networks, and in
particular, be deployable on hardware switches.

2) System overview: Fig. 3 presents an overview of PS-
Sketch, which is composed of two sketch data structures,
namely the persistence sketch (referred to as the P-sketch) and
the spread sketch (referred to as the S-sketch).

As shown in Fig. 3, both the P-sketch and the S-sketch
are updated by packets traversing the switch pipeline. When
a packet of element m and flow z arrives to the switch, it
first traverses the P-sketch and has its element persistence
estimated as P,,. If the packet is the first packet of the element
in the current epoch, it encodes Pm to the hash string of its
element ID, and uses the hash string to update the S-sketch
for estimating the flow’s persistent-spread S,. At the end of
each epoch, the control plane detects persistent-spreader flows
from the S-sketch reported by the switch data plane.

B. Estimating Element Persistence with P-sketch

1) Data structure and operation: We extend the Count-
Min (CM) sketch [20] to design the P-sketch B, which has d;
bucket arrays, and each array contains w; buckets. The sketch
is associated with d; mutually independent hash functions
hi(-):E— {1,--- ,w; }, where E is the element ID universe.
Each sketch bucket has two fields: a low-pass filter (LPF) and
a timestamp. LPF is a self-decaying counter. More specifically,
if we add value a at the current time ¢ to an LPF with previous
value v and last update time ¢’ (¢’ < t), then its new value
will become

v=a+v e /T 3)

where 7 is the decay time parameter. By setting 7 = 1/, it
is easy to see that LPF can be used for tracking an element’s
time-decaying persistence P, as defined in (1). Note that LPF
is natively supported as an advanced feature of the Intel Tofino
chip [17], and it can also be approximated using basic P4 on
hardware programmable switches without dedicated support
[21], [22]. We use B;[j].C to denote the LPF of the P-sketch
bucket B;[j], and use B;[j].|C| to denote its counter value.
On receiving a packet p that belongs to an element m, the
switch allocates a counter in the metadata associated with
p, denoted as p.C, and uses it to estimate m’s persistence
Initially, p.C'is assigned with a value slightly larger than .
The packet p also has a flag p.F initialized as False in its
metadata, which indicates whether p is the first packet of the
element m during the current epoch. The switch applies the

hash functions h;(-) to map packet p to the buckets B;[h;(m)],
i=1,---,dy, and processes the packet as the following:

o If B;[h;(m)].t, which is the timestamp of the bucket, is
not in the current epoch tg, set B;[h;(m)].t as the current
time, set p.F as True, and add 1 to B;[h;(m)].C.

o Compare p.C' with B,[h;(m)]. and if p.C >
B, [h:(m)].|C], assign By [hi(m)].IC] 0 p.C.

Algorithm 1: Packet processing with P-sketch

1 Algorithm

Input : A packet p belonging to element m.
2 p.C <+ a value greater than ef—il;
3 p.F < False,
4 fori=1,---,d;, do
5 if B;[h;(m)].t & to then
6 Add(B;[h;(m)].C,1);
7 L B;[hi(m)].t « curr_time; p.F < True;
8 if p.C > B;[h;(m)].|C| then
9 [ p.C < Bi[hi(m)].IC];

Algorithm 1 presents the procedure of packet processing
with the P-sketch. Note that after packet p has accessed all the
d, mapped buckets, p.C' is indeed the element m’s estimated
persistence Pm, ie.,

p.C = P, = min(B;[h;(m)].|Cl;i=1,--- ,d1) (4

Fig. 4 presents some examples. In the cases of Fig. 4(a) and
(b), each packet is the first packet of its element in the current
epoch, and after updating the P-sketch, it carries the minimal
of the LPF counter values in p.C, and has the flag p.F set
as T'rue, which means that the packet will be subsequently
used to update the S-sketch. In Fig. 4(c), the packet is not the
first packet of its element in the current epoch, or there exist
hash collisions at all its mapped buckets, and in both cases,
the packet’s flag p.F' remains as Flalse.

2) Analysis: For Pm estimated by the P-sketch as in (4),
we have the following result regarding its estimating accuracy.

Theorem 1. For wy = [e/e1] and di = [In(1/61)], with a
probability at least 1 — 61, P, is no larger than P, + €1 P,
where P = Zm P,,.. In other words, we have

Pr[P, < Py +21P) > 1- 6y (5)

The proof of Theorem 1 is given in Appendix A-A.

Fig. 4(c) shows that for an element m that occurs in an
epoch, when its first packet encounters hash collisions at all
the mapped buckets, the packet will have p.F' = Flalse, and
in this case, the element m fails to update the S-sketch.

To analyze the probability of such an incident, let My be the
set of the distinct elements in epoch t;, (k = --- ,—1,0), then
the probability that an element encounters a hash collision
at a mapped bucket is 1 — (1 — )|Mk‘ ~ ‘Mi‘l, and the
probability that hash collisions happen at all its mapped
buckets is (|w’1“ )41, which is close to 0 when w; >> |[My/|. In
other words, for each element in the data stream, after being



N, LPF Y, LPF+1 N, LPF

packet

¥, LPF+1

packet

p.C
p.F=False

packet packet
£ N,LPF Y, LPF+1

H
H
H
H
H
N, LPF Y, LPF+1 H
H
H
H
H

=

B Y.LPF

=

ke poe e ]

¥, LPF

¥, LPF+1

.C=min(LPF)
= p.F=False

Y, LPF Y, LPF

(a) First packet of element m,
and no hash collision

Fig. 4.

processed by the P-sketch, its first packet has p.F' = True
and updates the S-sketch with a probability close to 1.

C. Integrating Persistence to HyperLogLog

1) HyperLogLog preliminary: Distinct counter is a pow-
erful tool for estimating cardinality (i.e., number of distinct
items) of a data stream, and representative distinct counters
include PCSA [23], LoglLog [24], HyperLogLog (HLL) [18],
multi-resolution bitmap [25], etc. In this work, we choose HLL
in the S-sketch because of its memory efficiency.

We briefly introduce HLL as the following. An HLL counter
is composed of s 2" registers, denoted as M]i|, i =
1,---,s, which are initialized as 0. Let H(-) : E — {0,1}
be a hash function that hashes an element ID to an L-bit hash
string H(m), where L > b. To update the registers, H(m)
is divided into two sub-strings: the first b bits is denoted as
Hy(m) and the remaining L — b bits is denoted as Ha(m).
Let p(H2(m)) be the position of the left-most ‘1’ in Ha(m),
then the register M [H;(m)] is updated as

M[H:(m)] = max(M[H:i(m)], p(H2(m))) (6)
For example, suppose H(m) =‘11000110°, L = 8, b = 2,
and by dividing H(m), we have Hi(m) =‘11"= 3 and

p(Hz(m)) = 4. If the original value of the register M|[3] is
smaller than 4, then the element m updates M [3] to 4.

After being updated by all the elements in a data stream,
the stream’s cardinality is estimated based on the harmonic
mean of {2M[i]}i:17...75 as

52 (i 2~ M
i=1

where o is the bias correction constant. In particular, a1 =
0.673, azo = 0.697, agq = 0.709, etc. Finally, the cardinality
estimation D is computed based on the raw value from (7)
and number of the registers equaling to 0. In addition, given
the real cardinality D, D(1 — o) < D < D(1 + o), where o
is multiples of i: 04 [18].

2) Integrating Pm to HLL: The rationale behind HLL is to
use randomization to approximate cardinality. Randomization
is achieved with the hash function H(-), where intuitively a
hash string with more leading ‘0’s is less likely and indicates
a larger cardinality. If a bit pattern 0¢°~D1x is observed in
Hy(m), then a good cardinality approximation should be 2°.

Our basic idea is to encode an element’s persistence into
its hash string. Suppose that the HLL encounters an element
m with its persistence P, estimated by the P-sketch, after
applying the hash function H(-) and obtaining the two sub-
strings of Hi(m) and Ha(m), we right-shift the sub-string

)

(b) First packet of element m, and
hash collision at one bucket
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(c) Not first packet of element m,
or hash collisions at all buckets

Examples of packet processing with P-sketch, where “Y’ or ‘N’ indicates whether timestamp of the bucket is in the current epoch or not.

( ) [logy Py,] bits, and denote the resulting sub-string
as Hj(m). Intuitively, if the original bit pattern 0(P~1)1x
of Ha(m) suggests a spread of 2¢, then by right-shifting
[logy P | bits, Hj(m) indicates a spread of 2(p+ogs Prul)
whose value is between P, - 2° and P, - 2°*1. In other
words, we multiply P, with the spread approximation. After
the bit-shifting, the sub-strings (H;(m), Hj(m)) update the
HLL registers as

M{[Hy(m)] = max(M [Hy(m)], p(H3(m))) ®)

For example, when H(m ) =‘11000110", L = 8, b = 2, and
P, = 3, we have [log, WJ = 2, and after the bit-shifting,
H)(m) =000001" and p(H4(m)) = 6.

3) Analysis: We analyze the errors introduced by bit-
shifting and HLL approximation in this section. Suppose
that for a flow z, one dedicated HLL counter is used to
approximate its persistent-spread as above described, and we
denote the result as S,. Note that S, contains the errors
introduced by P-sketch, bit-shifting, and HLL approximation,
and for the accuracy of S, we have the following result.

Theorem 2. For a network flow x, S, > (1 —0)S,, and with
a probability at least 1 — 61, we have

S, <2(1+0)(Sy +e1PDy) )

where D, = Zm@ L, 0 is flow x’s spread in epoch ty.

The proof of Theorem 2 is given in Appendix A-B.

D. Estimating Flow Persistent-Spread with S-sketch

1) Data structure and operation: During each epoch, after
being processed by the P-sketch, an element’s first packet
is further processed by the S-sketch (by matching p.F' with
True). The S-sketch C is composed of dy bucket arrays with
each array containing wy buckets. Each bucket, say C;[j],
has three fields: the field C; [ j|.H is an HLL distinct counter,
whose value is denoted as C;[j].|H]|; the field C;[j].L is the
level of this bucket, which records the maximum number of the
leading ‘0’s in Hj(m) that the bucket has ever encountered;
and the field C;[j].X keeps the ID of the flow that most
recently updates C;[j].L. The S-sketch is associated with dy
mutually independent hash functions g;(-) : F — {1,--- ,wa},
i=1,---,ds, where FF is the flow ID universe.

Algorithm 2 presents the procedure for updating the S-
sketch. After receiving a packet with its element ID as m
and flow ID as x, which has p.F' = True and carries m’s
persistence estimation Pm in p.C, the switch computes the
hash string H (1), right-shifts [log P,,] bits to obtain the two
sub-strings of Hy(m) and Hj(m), and uses them to update the



Algorithm 2: Packet processing with S-sketch

1 Algorithm
Input : Packet p of element m and flow z with

p.F = True and carrying P, in p.C.
Compute (Hy(m), Hj(m)) with m and P,,;
fori=1,--- ,ds do

Update C;[g;(x)].H with (Hy(m), H5(m));
if C;[g:(2)].L < p(H%(m)) — 1 then
L Cilgi(2)).L  p(Hj(m)) — 1
Cilgi(2)]. X + x;
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S-sketch. In particular, for each bucket array, the switch applies
the corresponding hash function g;(-) to map the packet to the
bucket C;[g;(z)],i =1, -+ ,ds, and updates C;[g;(x)]. H, the
HLL counter of the bucket, with (H;(m), Hy(m)) as in (8).
The switch further compares the number of the leading ‘0’s in
Hl(m) G.e., p(Hy(m)) — 1) with C;[g;(x)].L: if C;[gi(x)].L
is smaller, assign p(H4(m)) — 1 to C;[g;(z)].L, and assign z
to C;[g:(z)]. X.

At end of each epoch, the switch reports the S-sketch C
to the control plane, which checks all the buckets in C. If a
bucket has an HLL counter value C;[j].|H| exceeding a pre-
specified threshold, we obtain the corresponding flow ID as
x = C;[j].X, and estimate the persistent-spread of flow x as

S, = min(Cylg; ()| H|;i = 1,- -+, dy) (10)

If S’x still exceeds the threshold, then flow x is classified as a
persistent-spreader.

2) Analysis: Recall that if we use one dedicated HLL
counter to estimate each flow, then for a flow =z, its persistent-
spread estimated by the counter is S,. However, in the S-
sketch, an HLL counter is shared among multiple flows, so
comparing with S, the S-sketch introduces additional errors.
For a flow 2’s persistent-spread S, estimated by the S-sketch
as in (10), we have the following result regarding its accuracy.

Theorem 3. For wy = [e/ey] and dy = [In(1/d2)], with a
probability at least 1 — b3, Sy is no larger than S, + €35,
where S =" Sy. In other words, we have

Pr[S, < S, 4225 >1— 6, a1

The proof of Theorem 3 is given in Appendix A-C.

Finally, combining Theorems 2 and 3, we have the following
result regarding the upper error bound of flow x’s estimated
persistent-spread S, comparing to its real persistent-spread .S,

Theorem 4. Given ¢1, 9, 01, 0o, and o, with a probability
at least (1 — 81)(1 — d2), we have

S, < 2(140)S, +2e1(140)PD,
+2e2(1 +0)S + 2¢6162(1 + o) PD

where P =% P, S=>.5, D=5 D, and D, =
Y mes Im,o is flow x’s spread in epoch t.

12)

The proof of Theorem 4 is given in Appendix A-D.

From Theorem 4, we can see that the inaccuracy of a
network flow’s persistent-spread estimation come from four
sources: 1) hash collisions in the P-sketch, 2) bit-shifting
when integrating the estimated persistence P, to H (m), 3)
HLL approximation, and 4) hash collisions in the S-sketch. In
the subsequent section, we evaluate the impacts of different
components on PS-Sketch’s estimating accuracy.

IV. EVALUATION

We implement PS-Sketch with Python on a machine with an
8-core Intel i7-8700 CPU, and evaluate it using traffic traces
captured from real-world networks. With the trace-driven
simulation, we find that 1) PS-Sketch is capable to estimate
a network flow’s persistent-spread accurately; 2) PS-Sketch is
efficient in memory utilization, enlarging the P-sketch and the
S-sketch is favorable to improving the estimating accuracy,
but enlarging the HLL counters by employing more registers
is not necessarily helpful; 3) PS-Sketch can detect persistent-
spreader flows with high accuracy in a timely manner, and
outperforms the existing solutions [16], [7].

We also implement a PS-Sketch prototype in P4 on an
Edgecore Wedge 100BF-32X programmable switch based on
the Intel Barefoot Tofino chip [19]. We show that PS-Sketch
is inexpensive in resource consumption, and is deployable in
high-speed networks.

A. Experiment Setup

We use the following real-world network traffic traces in
our evaluation.

o MAWI trace: The MAWI Working Group [26] captures
IP traffic from ISP backbone links. Each trace lasts
15 minutes, and we select one trace, which contains
145,090 distinct per-source flows and 8, 892, 143 distinct
elements, for our evaluation. We divide the trace into 15
epochs, with each epoch lasting one minute.

e Facebook (FB) trace: This is a 24-hour trace captured
from machines in a cluster of Facebook [27], [28]. Each
epoch lasts one minute, and there are 1,449 epochs in
the trace. The trace contains 6,130 distinct flows and
1,125,159 distinct elements.

o Witty trace: The UCSD Network Telescope [29] collects
packets sent from hosts infected by the Witty worm
in 2004 [30]. We select a trace lasting 60 minutes,
and divide the trace into 60 epochs, with each epoch
lasting one minute. There are 2,741 distinct flows and
9,253,979 distinct elements in the trace.

Different traces have different characteristics. The MAWI
trace contains many super-spreader flows that have large
spreads, and it also contains a few flows that are composed of
moderate numbers of very persistent elements (e.g., elements
occurring in all the 15 epochs). Flows in the FB trace have
moderate spreads due to limited destinations within the cluster,
but as the trace lasts 1,449 epochs, many elements are highly
persistent by occurring in hundreds of epochs. For the Witty
trace, since it contains only the worm traffic sent from infected
hosts, the trace is dominated with supper-spreader flows.



We configure PS-Sketch as the following. The P-sketch
contains d; = 3 arrays of buckets, and each bucket has a
32-bit LPF counter and a 32-bit timestamp; the S-sketch has
ds = 4 bucket arrays, and each bucket is composed of an HLL
counter, a 32-bit flow ID, and a 5-bit level. For configuring the
HLL counters, we fix L = 32, and set the size of each register
as 5 bits. We vary b, wy, and wsy to change the sizes of the
HLL counters, the P-sketch, and the S-sketch respectively in
our evaluation. More specifically, in the experiments with the
MAWTI and the Witty traces, we apply a default configuration
containing a P-sketch of 5 MB and an S-sketch of 1 MB, and
set b = 4 for the HLL counters. We denote the configuration
with a three-tuple as (5 MB—4—1MB). In the experiments
with the FB trace, the default PS-Sketch configuration, denoted
as (1 MB—4—-256 kB), contains a 1 MB-sized P-sketch and a
256 kB-sized S-sketch, and we set b = 4 for the HLL counters.
If not otherwise specified, we set v = 0.05 for the MAWI and
the Witty traces and set v = 0.1 for the FB trace.

We focus on the following metrics in our evaluation.

o Averaged relative error (ARE): ARE is computed as

I S — S
AREfn; S (13)

x

where n is number of the estimations, S, and S't are flow
x’s real and estimated persistent-spreads.

e Precision: Precision is defined as the ratio between true
positives and the sum of true positives and false positives.
In detecting persistent-spreaders, it is the probability that
a detected flow is a real persistent-spreader.

e Recall: Recall is defined as the ratio between true posi-
tives and the sum of true positives and false negatives. In
detecting persistent-spreaders, it is the probability that a
real persistent-spreader flow gets detected.

o Detecting time and detecting time difference (DTD): We
define the earliest epoch that a flow is detected as its
detecting time. We also evaluate DTD, which is defined
as the difference between the detecting time of a flow
and the epoch that the flow’s real persistent-spread first
exceeds the threshold. Detecting time and DTD reflect
how timely a persistent-spreader is detected.

We do not consider the F1 score, which is the geometric
mean of precision and recall, in our evaluation. Note that
in network security, recall should be more important than
precision, as missing a real persistent-spreader would bring a
larger potential damage than mis-classifying an innocent flow,
thus we believe that the two metrics should not be averaged.

B. Estimating Persistent-Spread

In this section, we employ the MAWI and the FB traces to
evaluate PS-Sketch. We start with the default configurations,
and enlarge the P-sketch, the HLL counters, and the S-sketch
respectively to investigate the their impacts on the estimating
accuracy in estimating network flows’ persistent-spreads.

1) Impact of HLL counter size: We first increase the
number of the registers in each HLL counter by increasing
b from 4 to 6. Note that as each S-sketch bucket contains an
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Fig. 5. AREs of persistent-spread estimations under various PS-Sketch

configurations that have different memory usages with different-sized P-
sketches, HLL counters, and S-sketches respectively.

HLL counter, the size of the S-sketch also increases with b.
For estimating persistent-spreads of the flows in the MAWI
trace, we evaluate PS-Sketch with a series of configurations
from (b MB—4—1MB) to (5 MB—6—3.14 MB). Similarly, to
estimate persistent-spreads of the flows in the FB trace, we
evaluate with the configurations from (1 MB—4—-256kB) to
(1 MB—-6—-805kB).

Fig. 5 presents AREs of the persistent-spread estimations
under the different configurations. From the figures, we can
see that in the MAWI trace, employing more registers can
moderately reduce the errors, but to our surprise, when b is
increased to 6, a larger ARE is observed with the FB trace.

We explain the paradoxical observation in Fig. 5 with the
small-range correction of the HLL algorithm. In HLL, when
the cardinality of a data stream is small, after being updated
by all the elements, some registers may still have a value of
0 as initialized. If the harmonic mean computed by (7) is no
larger than 5s, where s = 2° is the number of the registers,
the algorithm directly returns slog(s/V') as the estimation, in
which V' is the number of the registers equaling to 0 [18].

In PS-Sketch, since we encode an element’s persistence
before updating the HLL counters, if a flow contains a
moderate number of elements, even though the elements are of
high persistence, each element updates the HLL counters only
once, and at the end of each epoch, some registers in a counter
are likely to be 0. In this case, the small-range correction is
triggered, and the HLL counter will under-estimate the flow’s
persistent-spread as slog(s/V’), which indeed has nothing to
do with the elements’ persistence. Moreover, since s = 20,
when b increases, more flows will have their harmonic means
computed by (7) smaller than %s, and as a consequence, their
persistent-spreads will be under-estimated.

With the above observation, we analyze the estimating
errors in the MAWI trace as follows. Since many persistent-
spreaders in the trace are also super-spreaders in the trace,
when estimating their persistent-spreads, the small-range cor-
rection of the HLL algorithm is unlikely to be triggered,
and using more registers actually improves accuracy of the
HLL approximation. To show this, in Fig. 6(a) and (b), we
present the scatter plots of the real and estimated persistent-
spreads of the flows in the MAWI trace under the PS-Sketch
configurations of (5 MB—4—1 MB) and (5 MB—6—3.14 MB)
respectively. We can see that by using 4 times more registers
per HLL counter, the errors are reduced, especially for the
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flows with large persistent-spreads.

On the other hand, as the FB trace lasts 1, 449 epochs, many
flows have a moderate number of highly persistent elements,
and after using more registers by increasing b, these flows
are likely to be impacted by the small-range correction of
the HLL algorithm and have their persistent-spreads under-
estimated. To show this, we present the scatter plots of the
real and estimated persistent-spreads of the flows under the
configurations of (1 MB—4—256kB) and (1 MB—6—805kB)
in Fig. 7(a) and (b) respectively. One can see that after using
more registers in each HLL counter, nearly all the flows
are under-estimated, which explains the increased ARE as
observed in Fig. 5(b).

2) Impact of P-sketch size: We then enlarge the P-sketch
to examine its impact on the estimating accuracy. More
specifically, for estimating in the MAWI trace, we increase w;
to enlarge the P-sketch from 5 MB to 7 MB, and evaluate with
a series of PS-Sketch configurations from (5 MB—4—1MB) to
(7TMB—4—1MB). For the FB trace, we enlarge the P-sketch
from 1 MB to 1.5 MB, and experiment with the configurations
from (1 MB—4—-256kB) to (1.5 MB—4—-256 kB).

Fig. 5 presents AREs of the persistent-spread estimations
achieved under the configurations containing different-sized
P-sketches. We can see that for the MAWI trace, enlarging
the P-sketch is the least effective way to reduce the errors,
but it is the most effective approach for the FB trace. This
is because in the MAWI trace which lasts only 15 epochs,
many persistent-spreaders detected by PS-Sketch are super-
spreaders with low element persistence, and enlarging the P-
sketch for improving the persistence estimating accuracy is not
very helpful. To show this, we present the scatter plots of the
real and estimated persistent-spreads of the flows under the
configurations of (5 MB—4—1MB) and (7 MB—4—1MB) in
Fig. 6(a) and (c) respectively, and find that there is no obvious

6
g 10 2
14 4
) )
T 4 T
210 =
[} [
@ @
[0 2]
¢ 10 I}
o Qo
10 10
10° 102 10* 10° 10° 102 10* 108

Real persistent-spread

(c) (TMB—-4—1MB)

Real persistent-spread

(d) (6MB—4—-3MB)

6. Scatter plots of real and estimated persistent-spreads of flows in MAWI trace under different configurations.

4 4
=10 g 10
o o
Q. Q.
P P
5 5
% 10° % 10? -
z 2
[} [0}
o Q

10 10

10° 102 10* 10° 102 10*

Real persistent-spread
(¢) (1.5 MB—4—256 kB)

Real persistent-spread
(d) (1 MB—4—-768kB)
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difference between them.

On the other hand, since the FB trace contains as many
as 1,449 epochs, with a higher persistence, an element has
a greater impact on the persistent-spread of the flow that
it belongs to, and enlarging the P-sketch is effective for
reducing the estimating errors. To show this, we compare the
scatter plots of the real and estimated persistent-spreads of
the flows under the configurations of (1 MB—4—256 kB) and
(1.5 MB—4-256 kB) in Fig. 7(a) and (c), and one can see that
by enlarging the P-sketch, the errors in the persistent-spread
estimations are reduced.

3) Impact of S-sketch size: We also enlarge the S-sketch
by increasing ws, and investigate the impact on the estimating
accuracy. For estimating persistent-spreads of the flows in
the MAWI trace, we evaluate with a series of PS-Sketch
configurations from (5 MB—4—1MB) to (5 MB—4—-3MB),
and for the FB trace, we experiment with the configurations
from (1 MB—4—-256kB) to (1 MB—4—-768 kB). From Fig. 5,
we can see that in the MAWTI trace, enlarging the S-sketch is
the most effective way to reduce the errors, but it has little
effect on the FB trace.

We explain the observations with the differences of the two
traces: The MAWTI trace contains over one hundred thousand
flows, whose persistent-spreads are over-estimated when the
size of the S-sketch is limited, and enlarging the S-sketch helps
to reduce the errors. To show this, we compare the scatter plots
of the real and estimated persistent-spreads of the flows under
the configuration of (5 MB—4—1MB) and (5 MB—4—-3 MB)
in Fig. 6(a) and (d), and one can see that by enlarging the
S-sketch, the estimating errors are reduced.

On the contrary, since there are relatively fewer flows in
the FB trace, a small-sized S-sketch can achieve a good
accuracy, and further enlarging it does not bring significant
benefit. To show this, we compare the scatter plots of the
real and estimated persistent-spreads of the flows under the
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configurations given fixed total memory usage.

configurations of (1 MB—4—-256kB) and (1 MB—4—-768 kB)
in Fig. 7(a) and (d), and find that there are no obvious
reductions on the errors.

4) Fixed total memory usage: Finally, we consider the
case that the P-sketch and the S-sketch consume a fixed total
amount of memory, and examine how the memory allocation
impacts the estimating accuracy. For the MAWTI trace, we
fix a total memory of 8 MB, vary the size of the S-sketch
from 1 MB to 4 MB, and allocate the rest memory to the P-
sketch; Similarly, with the FB trace, we fix a total memory of
1.75MB, vary the size of the S-sketch from 4kB to 768 kB,
and allocate the rest to the P-sketch. We fix b = 4 for the HLL
counters.

Fig. 8 presents the AREs achieved by PS-Sketch under
different memory allocation schemes. We can see that with
the MAWI trace, the minimum ARE is achieved under the
configuration of (6 MB—4—2 MB), which means that the size
of the P-sketch is 3 times of the S-sketch. On the other
hand, with the FB trace, the minimum ARE is realized under
(1.72MB—4—32kB), in which the P-sketch is 54 times larger
than the S-sketch. Such a difference can be explained with
different characteristics of the traffic traces. Recall that in the
MAWTI trace, a flow’s persistent-spread is largely decided by
its spread, so the S-sketch for spread estimating should be
allocated as much as % of the total memory. On the other hand,
in the FB trace, a flow’s persistent-spread is largely decided
by the persistence of its belonging elements, so the P-sketch
for persistence estimating should be allocated over 98% of the
available memory for minimizing ARE.

5) Discussion:

a) Analysis on errors: The experiment results in Fig.
5-8 suggest that PS-Sketch is overall accurate in estimating
network flows’ persistent-spreads. However, for an individual
flow, its persistent-spread could be either over-estimated or
under-estimated. The over-estimating errors are caused by hash
collisions in both the P-sketch and the S-sketch, and the
errors impact all the network flows. On the other hand, as
discussed in Sec. IV-B1, the under-estimating errors are caused
by bit-shifting and HLL’s small-range correction, which im-
pact network flows with small spreads more severely. As a
consequence, from Fig. 6 and 7, one can see that network flows
with large persistent-spreads tend to be over-estimated, while
flows with small persistent-spreads are more likely to be under-
estimated. In particular, since many network flows in the FB
trace have small spreads, their persistent-spread estimations

99

100 - &—0—o——e—9

c — c —
k] = 298 985 %
g ——Enlarge P-sketch, precision 9 3 '8 ——Enlarge P-sketch, precision 3
& 60 -@ ‘Enlarge S-sketch, precision o a -G Enlarge S-sketch, precision o

—+Enlarge P-sketch, recall 99.6 [—+—Enlarge P-sketch, recall

-G Enlarge S-sketch, recall -G ‘Enlarge S-sketch, recall

55 85 98
6 7 8 1.2 1.4 1.6 1.8
Memory (MB) Memory (MB)
(a) MAWI (b) FB

Fig. 9. Precisions and recalls for detecting persistent-spreaders in MAWI and
FB traces under various PS-Sketch configurations.

are consistently under-estimated, as shown in Fig. 7.

b) How to configure?: Our evaluation suggests that it is
not always beneficial to employ more registers in the HLL
counters due to the small-range correction of the HLL algo-
rithm, and we suggest b = 4 for configuring the HLL counters.
For the P-sketch and the S-sketch, our evaluation shows that it
is always favorable to enlarge the two components for reducing
the estimating errors, whose upper bound is given in Theorem
4. In particular, in (12), €1 and §; decide the P-sketch size of
w1 and d; as stated in Theorem 1, and &5 and §, decide wo and
do, which is the size of the S-sketch as stated in Theorem 3.
Given a memory budget and a target error bound, to configure
PS-Sketch, one can choose 1, 01, €2, and 5 to ensure that the
total memory usage does not exceed the budget, and under the
configuration, the upper bound of the estimating error in (12)
is below the target. One remaining issue is that the theoretical
bound in (12) depends on the total persistence P, total spread
D, and total persistent-spread S of the elements and flows
in the traffic, which is unknown in advance. Fortunately, as
traffics on high-speed links are stable [31] and self-similar
[32], these statistics can be obtained by analyzing pre-captured
traffic traces in an offline way.

C. Detecting Persistent-Spreaders

1) Detecting accuracy: In this section, we use PS-Sketch to
detect persistent-spreaders. For the MAWI trace, we consider
a flow as a persistent-spreader if its real persistent-spread as
defined in (2) exceeds 200, and apply the threshold to detect
the persistent-spreader flows in the S-sketch at the end of each
epoch. For detecting persistent-spreaders in the FB trace, we
use a threshold of 50.

In our evaluation for the MAWI trace, we start with the
default configuration, enlarge the P-sketch from 5MB to
7MB, and enlarge the S-sketch from 1 MB to 3 MB respec-
tively. Similarly, for the FB trace, we start with the default
configuration, enlarge the P-sketch from 1 MB to 1.5 MB, and
enlarge the S-sketch from 256 kB to 768 kB respectively.

Fig. 9 presents precisions and recalls of the detecting results.
From Fig. 9(a), we can see that for the MAWI trace, PS-
Sketch can achieve a precision around 70%, and a recall over
95% in detecting persistent-spreaders. Furthermore, enlarging
P-sketch allows more elements to update the S-sketch, and
consequently has more flows classified as persistent-spreaders,
which explains the increased recall and decreased precision in
Fig. 9(a). The observation suggests that enlarging the P-sketch
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allows us to trade precision with recall, which is desirable as
recall is of a higher importance than precision in detecting
network anomalies.

Fig. 9(b) shows that when the P-sketch and S-sketch are
sufficiently large, PS-Sketch realizes a precision of 100% and
a recall over 99.8%. Further investigation shows that only
one real persistent-spreader flow is mis-classified. The result
indicates that although using various approximation techniques
including sketches and HLL, PS-Sketch can still achieve a very
high detecting accuracy.

2) Detecting timeliness: To evaluate timeliness of the
persistent-spreader detections, we compute DTD, which is the
difference between the first epoch a flow is detected by PS-
Sketch as a persistent-spreader and the first epoch that the
flow’s real persistent-spread exceeds the threshold (i.e., 200
for the MAWI trace and 50 for the FB trace). Note that a
DTD could be 0, positive, or negative. A DTD of 0 means
that the flow is detected in the same epoch that it becomes a
real persistent-spreader, and a negative or positive DTD means
that the detection is earlier or later.

In Fig. 10(a) and (b), we present CDFs of the DTDs of the
detected persistent-spreaders under various configurations in
the MAWI and the FB traces respectively. From both figures,
we can see that the detections are timely. When detecting in
the MAWI trace under the default configuration, as many as
60.31% flows have a DTD of 0, and in the FB trace with
the default configuration, 77.33% of the flows have DTDs in
[-1,1]. In addition, by comparing the distributions, we can
see that enlarging the P-sketch is slightly more helpful in
reducing DTD than enlarging the S-sketch, as P-sketch is the
first stage of the estimation, improving its accuracy benefits

all the subsequent stages.

3) Impact of element persistence decaying speed: In (1), we
define an element’s persistence as the time-decaying sum of
all its occurrences in the past, and the parameter ~y decides the
decaying speed. In this section, we vary « from 0.05 to 0.15,
and study how the parameter value impacts the persistent-
spreader detections in the FB trace.

Fig. 11 presents detecting time of the persistent-spreaders
detected by PS-Sketch with v = 0.05, 0.10, and 0.15 re-
spectively. From the figure we can see that with different
v parameter values, PS-Sketch detects almost a same set of
network flows in nearly the same epochs, and most of the flows
are detected in early epochs of the trace. More specifically, 75
distinct flows are detected by PS-Sketch under all the three
v parameter settings. With v = 0.05, only one more flow,
ie., the flow “277cfd3e55f6a5da”, is detected in the 687"
epoch. Moreover, 73 of 76 flows are detected in same epochs
under different v values. When ~ is set as 0.05, the flow
“277cfd3e55f6a5da” is detected 59 epochs earlier than the
cases with v = 0.10 and 0.15; and when ~ is set as 0.10,
the flows “8a4655e48d34058d” and “0ea37886e741a715” are
detected 8 and 4 epochs respectively earlier than the case with
v = 0.15.

Fig. 11 suggests that the behaviors of the persistent-spreader
flows in the trace are very different from the non persistent-
spreaders, and can be consistently identified by PS-Sketch.
With a smaller v value, PS-Sketch detects one more persistent-
spreader, and detects a few persistent-spreader flows a little
earlier. This is because with a slower element persistence
decaying speed, elements have higher persistence values, and
consequently larger persistent-spreads. Despite these differ-
ences, the element persistence decaying speed decided by -y
has a limited impact on the detecting results.

Overall, our experiment results suggest that PS-Sketch is
capable to detect persistent-spreader flows in a timely manner
accurately, and the detecting results are robust under various
element persistence decaying speeds.

D. Comparing with Existing Solutions

In this section, we compare PS-Sketch with two existing
solutions. The first solution is based on computing network
flows’ k-persistent spreads [16]. As described in Sec. II,
a flow’s k-persistent spread is the number of the elements
that occur in at least k out of the ¢ recent epochs (i.e.,
t-occurrence> k), and a flow is defined as a k-persistent
spreader if its k-persistent spread exceeds a pre-specified
threshold. The second method under comparison is SpreadS-
ketch [7], which detects super-spreader flows that have their
estimated spreads greater than a threshold. Note that unlike PS-
Sketch and the solution in [16], SpreadSketch [7] is designed
for detecting super-spreaders rather than persistent-spreaders.

In our comparison, we apply the default configurations of
PS-Sketch as described in Sec. IV-A for the MAWI, FB,
and Witty traces respectively. We configure SpreadSketch into
the same size of the S-sketch in PS-Sketch, but replacing
each HLL counter with a multi-resolution bitmap [25]. When
applying PS-Sketch and SpreadSketch, we set the thresholds as
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Fig. 12. Precisions and recalls for detecting persistent-spreaders by PS-Sketch, SpreadSketch, and method based on k-persistent spread (denoted as “k-persist”)

in (a) MAWI, (b) FB, and (c) Witty traces.

200 with the MAWTI trace and 50 with the FB and Witty traces.
When applying the method based on k-persistent spread, with
the MAWI trace, we set ¢t = 8, vary k as 2, 4, 6, and 8, and set
the threshold as % so that the product of k£ and the threshold
is 200. Similarly, with the FB trace, we set ¢t = 16, vary k as
6, 8, 10, and 12, and set the threshold as @ With the Witty
trace, we set t = 8, however, we only experlment with &k = 2,

as there is no k-persistent spreader in the trace when k& > 2.

We apply the three methods to detect persistent-spreaders
in the three traces, and present the results in terms of pre-
cisions and recalls in Fig. 12. From the figure, we can see
that PS-Sketch has the overall best performance across the
three traffic traces. In particular, with the MAWI trace that
contains many super-spreaders but also a number of flows
with highly persistent elements, as shown in Fig. 12(a), PS-
Sketch achieves the highest recall by successfully detecting
93.33% of the real persistent-spreaders. On the other hand,
with &k = 2, only 27.06% of the persistent-spreader flows
are detected as k-persistent spreaders, and the recall further
decreases as k is increased to 3, 4, and 5. This is reasonable as
many flows in the trace are super-spreaders containing a large
number of concurrent elements, but their elements have low
persistence, thus can not be detected as k-persistent spreaders.
SpreadSketch successfully detects the super-spreaders in the
trace (i.e., network flows with their spread greater than the
threshold in at least one epoch), but it fails to detect those
flows that do not have large spreads but have their elements
highly persistent, therefore has a lower recall of 82.77%.

For the FB trace in which all the persistent-spread flows
contain highly persistent elements, Fig. 12(b) shows that the
method based on k-persistent spread successfully detects all
the 76 real persistent-spreaders until £ = 12. This is reasonable
as all the persistent-spreader flows in the trace are also k-
persistent spreaders. PS-Sketch has a recall of 98.68% by
missing only one persistent-spreader flow due to the under-
estimating error of the HLL counter. On the contrary, SpreadS-
ketch has a much lower recall of 86.84%, as it misses the
persistent-spreader flows whose spreads are not large enough
but have highly persistent elements.

Finally, for the Witty trace that contains only super-
spreaders, Fig. 12(c) shows that SpreadSketch, which is ded-
icatedly designed for detecting super-spreaders, successfully

detects all the 264 real persistent-spreader flows. PS-Sketch
miss-identifies one persistent-spreader due to hash collision in
the S-sketch, and achieves a recall of 99.62%. On the other
hand, with the method based on k-persistent spread, we have
meaningful results only when k£ = 2, and with £ = 2, the
method only detects 26 flows, while misses the other 238
persistent-spreaders that have large spreads but few elements
occurring in two or more epochs in ¢ = 8 recent epochs.

In summary, our comparisons suggest that the existing
solutions have their limitations: The method based on k-
persistent spread [16] fails to detect the persistent-spreader
flows that are super-spreaders in the MAWI and the Witty
traces, and SpreadSketch [7] is unable to detect the persistent-
spreaders containing highly-persistent elements in the MAWI
and the FB traces. On the other hand, despite the diverse
characteristics, PS-Sketch is capable to detect the persistent-
spreader flows accurately across the traces all the time.

E. PS-Sketch on Programmable Switch

We implement a PS-Sketch prototype with P44 [33] and
compile it on an Edgecore Wedge 100BF-32X hardware
programmable switch based on the Intel Barefoot Tofino
chip [19]. We overcome the limitations of the programmable
switch, such as the lack of support for float-point values, no
support for multiplication, division, exponential and logarith-
mic operations, etc., with the following approaches.

First, in our definition of element persistent as in (1), when
the value of I, ; is 1 and is decayed by a factor of ™7, its
new value would be between 0 and 1, which is a float-point
value not supported by the programmable switch. To overcome
this limitation, in our implementation, I,, ; is either O or 512,
and when estimating an element’s persistence as in (4), the
raw value is right-shifted 9 bits to divide 512.

Second, to integrate an element’s estimated persistence B,
to the HLL approximation, we right-shift the sub-string H(m)
[log, Pm] bits. Unfortunately, logarithmic operation is not
supported by the programmable switch. To solve this prob-
lem, we use a range-match table to perform the logarithmic
computation. More specifically, we compare P, with a range
between 2:~! and (2' — 1), and if P, falls in such a range,
we right-shift Hs(m) ¢ bits to obtain Hj(m). Since the largest



TABLE 11
SWITCH RESOURCE USAGE

Total P-sketch  S-sketch
MAU Stages 12 6 6
Hash bit 5.9% 4.0% 1.9%
ALU 29.2%  10.4% 18.8%
SRAM 11.7%  9.5% 2.2%
TCAM 1.0% 0.3% 0.7%
VLIW instruction | 5.7% 3.4% 2.3%
PHV 17.7% - -

e"l

the table

element persistence estimation is bounded by
has a limited number of entries.

Finally, to compute p(H,(m)), i.e., position of the left-
most ‘1’ in the sub-string H}(m), we use a longest-prefix-
match (LPM) table to match the sub-strings to the patterns of
0(»~D1x, and update the corresponding registers. The LPM
table contains at most L — b entries.

In the PS-Sketch prototype, we implement the P-sketch with
dq = 2 rows and w; = 25 columns of buckets, and realize the
S-sketch with dy = 2 rows and ws = 2! columns of buckets.
The other parameters are set as in Sec. IV-A. Table II presents
the consumptions of various resources on the programmable
switch. From the table we can see that PS-Sketch consumes
12 stages, which is all the stages that the switch can provide,
and among them, the P-sketch takes the first 6 stages and
the S-sketch takes the remaining 6 stages. In addition to the
overall resource usages, we also present resource usages of the
P-sketch and the S-sketch in the table as well. We can see that
PS-Sketch consumes relatively more ALU and SRAM, as the
sketches, which are realized as register arrays, consume plenty
of these resources. Anyway, PS-Sketch still leaves sufficient
resources in each stage for other applications.

One potential issue of PS-Sketch is its stage usage, as the
prototype uses up all the 12 stages. One possible modification
is to split the P-sketch and the S-sketch and deploy them on
two adjacent switches, and let the packets to carry p.C' and
p.F in their unused header fields such as VLAN or DSCP. In
addition, the new generation of Tofino chip provides as many
as 20 stages, which is sufficient for PS-Sketch. Finally, as an
application successfully compiled and deployed on the Tofino
switch, we find that the PS-Sketch prototype can process
packets at the line-rate of the switch (i.e., 40 Gbit/s).

ev—1°

V. DISCUSSION

In this section, we discuss some alternative choices in
designing PS-Sketch. In the S-sketch, we employ HLL as
the distinct counter, and one alternative design choice is to
use multi-resolution bitmap [25], as it is also updated by
the leading ‘0’s in the hash string of an element, and the
hash string can also be right-shifted to encode the estimated
element persistence. However, unlike HLL that uses registers,
a multi-resolution bitmap employs ¢ bitmaps for the hash
string patterns of 0%1%, 0'1%, - -+, 0° 1%, and consumes more
memory than HLL. For example, the multi-resolution bitmap
in [7] is as large as 438 bits, which is over 5 times of the
80-bit HLL counter that we use in this work. Moreover, right-
shifting hash strings produces more patterns, and require more

bitmaps. Since P-sketch has removed duplicates by allowing
only one packet of an element to reach to the S-sketch per
epoch, another design choice is to simply use a counter instead
of HLL. However, for tracking a persistent-spread up to S, a
counter of O(log S,) bits is needed, while HLL requires only
Q(loglog S,) bits [18]. For these reasons, we prefer HLL to
multi-resolution bitmap or counter in our design.

As we have seen in Sec. IV, since an element updates the
S-sketch only once, if a flow has a small spread, its persistent-
spread tends to be under-estimated due to bit-shifting and
HLL’s small-range correction. One possible way to overcome
this problem is to exploit the recirculation mechanism of the
programmable switch [34], which allows the first packet of
an element with an estimated persistence ]5m to pass the
pipeline and update the S-sketch [P,,| times. Note that to
have randomized hash strings, each time the packet passes the
pipeline, it has its element ID changed as m’ = (x, H(m)),
where m is its element ID in the previous pipeline pass.
However, recirculating such a large number of packets for
so many times will consume considerable processing and
memory resources within the switch, and impose substantial
complexity to the system design. For example, it is challenging
to ensure that all the recirculations end within the right epoch.
On the other hand, as we have seen in Sec. IV, most of the
flows heavily under-estimated by the HLL algorithm are the
ones with small spreads, which are unlikely to be persistent-
spreaders. For this reason, we prefer bit-shifting to packet
recirculating in our design.

VI. RELATED WORK
A. Spread and Persistence Estimating

To detect network flows with large spreads, Snort [35]
and FlowScan [36] maintain all active connections for each
source address, however, per-source tracking is not scalable
in high-speed networks. To reduce the overhead, Cao et al.
[37] propose to filter out network flows with small cardinality,
and employ a thresholded bitmap to detect super-spreaders.
Li et al. [4] present a dynamic bit-sharing technique to track
network flows, and apply the maximum-likelihood estimation
to detect heavy spreaders. Huang et al. [5] develop an on-
chip method to sample packets without duplications, and
estimate per-flow spread with the sampled packets in the off-
chip memory. Zhang et al. [6] propose a memory-efficient
method for estimating spreads of network flows under any
arbitrary flow definition. Su et al. [38] extend the virtual
bitmap estimator [9] to estimate spreads for either 1D or 2D
hierarchical flows. SpreadSketch [7] extends the Count-Min
sketch [20] by replacing the conventional counter in each
sketch bucket with a multi-resolution bitmap [25]. Despite
these efforts, one major drawback of spreader detection is that
an attacker can bypass the detection if it reduces its spread
but attacks more persistently [9].

There is a rich literature on estimating element persistence
in data streams. SS [10] uses a hash-based filter to sample
elements in each epoch. PIE [11] stores Raptor codes [39]
in a Space-Time Bloom filter (STBF), and decodes ID of
a persistent element if sufficient Raptor codes are found in



STBEF. Chen et al. [12] apply Bloom filter and load-balancing
techniques to reduce memory overhead for recording persistent
elements. On-Off sketch [13] extends the Count-Min sketch
[20] by associating the counter in each sketch bucket with an
On/Off state, which prevents the sketch from over-estimating
an item’s persistence when it repeatedly appears in one epoch.
P-Sketch [14] extends the On-Off sketch by tracking arrival
continuities of the items, and uses a probabilistic mechanism
to evict elements on hash collisions. The authors further
refine bucket replacement decisions with multi-dimensional
information [40]. However, these works focus on individual
elements rather than attackers, and are based on software.

B. Persistent-Spread Estimating

To estimate persistent-spreads of network flows that appear
in all the ¢ recent epochs. Xiao et al. [9] propose a data struc-
ture called multi-virtual bitmaps to estimate persistent-spreads
of flows in high-speed networks. Zhou et al. [15] present a data
structure named Virtual Intersection HyperLoglog (VI-HLL)
that is more memory efficient. Huang et al. [16] generalize the
problem by estimating number of the elements in a flow that
appear in no less than & out of the ¢ recent epochs. However, as
we have discussed in Sec. II, under the conventional definition
of persistent-spreader as in these works, an attacker can
bypass the detection by manipulating its contact pattern and
making a tradeoff between persistence and spread. Moreover,
existing works adopt an online/offline hybrid method, where
the complicated operations for constructing the estimators are
conducted by software. A recent work [41] proposes a sketch
named WavingSketch that is versatile to track top-K persistent
elements or super-spreaders, however, the tasks can not be
conducted simultaneously.

Our work differs from existing works in two aspects. First,
our new definitions on persistence and persistent-spread are
more accurate, and are difficult for an attacker to bypass. Sec-
ond, our solution is compatible with hardware programmable
switches, and processes packets at line-rate of the switch.

C. Sketch for Network Traffic Monitoring

Sketch-based methods are widely used to track traffic
characteristics in high-speed networks. To collect per-flow
statistics, Elastic Sketch [42] employs a hash table and a
Count-Min sketch [20] to monitor elephant and mice flows
respectively; Gu et al. [43] propose a mechanism that allows
switches to collaborate in network-wide per-flow measurement
tasks; uMon [44] presents WaveSketch to perform wavelet
transforms with switch hardware for detecting microsecond-
scale flow events. To detect heavy-hitter flows, HashPipe [45]
uses a pipeline of hash tables to retain heavy flows while
evicting lighter flows over time. To detect packet losses, Loss-
Radar [46] presents a Invertible Bloom Filter (IBF) to capture
individual lost packet and report the location where the losses
happen; ChameleMon [47] proposes a novel sketch named
FermatSketch, and automatically allocates on-chip memory
between packet accumulation and loss detection tasks.

D. Programmable Packet Processing in Hardware

To deploy sketch-based data structures and algorithms on
hardware programmable switch. UnivMon [48] develops a
framework for flow monitoring, and provides generality and
high accuracy with programmable switches. Sketchovsky [49]
presents a cross-sketch optimization and composition frame-
work to ensemble sketch instances for diverse measurement
tasks on programmable switches. HeteroSketch [50] provides
a network-wide flow monitoring framework that coordinates
sketch-based measurement to determine task placement and
resource allocation for a network of heterogeneous devices.

For other packet processing tasks, MacDavid et al. [51]
exploit low-pass filter (LPF) in Tofino switch for fairly allocat-
ing bandwidth among network flows. Chen et al. [22] realize
exponential weighted moving average (EWMA) with P4 on
hardware programmable switches to cope with the burstiness
in TCP traffic for weighted fair queueing (WFQ) [52].

VII. CONCLUSION

Detecting persistent-spreaders is essential for preventing
attacks in high-speed networks. In this paper, we present PS-
Sketch, a novel system for estimating persistent-spreads of
network flows and detecting persistent-spreaders in network
data streams. The design of PS-Sketch is centered around
our formal definitions on element persistence and network
flow’s persistent-spread. We define an element’s persistence
as the time-decaying sum of all its occurrences in the past,
which better captures the element’s behavior than counting
its occurrences in the ¢ recent epochs as in the conventional
definition. Based on element persistence, we define a network
flow’s persistent-spread as the sum of the persistence of the
elements that belong to the flow, and consider a flow as a
persistent-spreader if its persistent-spread exceeds a threshold.
Our definition of persistent-spreader covers a wide range of
network flows from super-spreaders to stealthy DDoS attack-
ers, and is difficult for attackers to bypass.

PS-Sketch employs a sketch-based approach to estimate
network flows’ persistent-spreads with two adjacent sketches,
namely the P-sketch and the S-sketch. In the P-sketch, we
exploit the feature of low-pass filter (LPF) in programmable
switch to compute the time-decaying element persistence, and
in the S-sketch, we employ the HyperLogLog (HLL) algorithm
to estimate network flows’ persistent-spreads. In particular,
we extend the HLL algorithm to integrate an element’s
estimated persistence to the spread estimating of the flow
that the element belongs to. Theoretical analysis and trace-
driven evaluation show that PS-Sketch achieves high accuracy
in estimating persistent-spreads for network flows, detects
persistent-spreaders in a timely manner, and outperform the
existing solution. We further implement PS-Sketch in P4 and
demonstrate that it is feasible to be deployed on commodity
hardware switches.

APPENDIX A
PROOFS
A. Proof of Theorem 1

Theorem 1. For wy = [e/e1] and di = [In(1/61)], with a
probability at least 1 — 61, Py, is no larger than P,, + ¢ P,



where P = Zm P,,.. In other words, we have

Pr[P, < Py +&P| > 16, )

Proof. Let M, be the set of the elements that occur in an
epoch ty, € {---,t_1,t0}, and at the current epoch tg, the
value added by the elements in Ml is decayed by a factor of
e~k7. By the definition in (1), we have

Z M |e ™% = me =P

tre{t_1,to}

Consider the LPF B;[h;(m)].C of an element m, let T,,
be the set of the epochs that the element m occurs, and
let T,, = {---,t_1,tg} — T,, be the set of the epochs
that m does not occur. In an epoch ¢, € T,,, an element
m’ € My, is hashed to B;[h;(m)] (1e hi(m) = h;(m), but
m’ # m) with a probability of wl, so during the epoch,
the probability that B;[h;(m)].C’ is mistakenly increased is
1—(1- w%)'“’ﬂk‘ ~ %, and at the current epoch tg, the
mistakenly increased value is decayed by a factor of e~*7.
Let A;P,, = B;[hi(m)].|C| — P,,, which is the value that
B;[h;(m)].C is mistakenly increased by the elements other
than m due to hash collisions, then according to (14), for all
the epochs in T,,, we have

(14)

1—(1—-L)Mxl
— w1
E[APn] = 3 e (15)
tk€Tm
< Ztke{m t_1,to} |Mk|
- wieky
P Elp
= _— S _—
w1 e
Since Pr[P,, — P,,, < &1 P] = 1-Pr[P,,— P, > 1P|, and
Pr[P,, — P, > e1P] = Pr[Vi,A; P, > 1P| = (Pr[A; Py, >
£1P])®, from (15) and according to Markov’s inequity [53],
E[A; Py, 1
PI‘[AiPm > Elp] < g < - (16)
€1P e

So, Pr[Pm — P >eP] < e~ < 61, which means that
with a probability at least 1—47, we have P,,, < P,,+&,P. O

B. Proof of Theorem 2
Theorem 2. For a network flow x, S, > (1—0)S,, and with
a probability at least 1 — §,, we have

Sy <2(1+0)(Sy +e1PD,) )

where D, =" L, 0 is flow x’s spread in epoch t.

mex

Proof. Let S, = > ..
2[log P < 2]5m, it is easy to see that

mex mex

olog Py Since P,, <

~ Imoo.
(17)

As the P-sketch only over-estimates by having P, > P,

we have
S>ZP m0>ZP Tmo=25,  (I8)

mex

On the other hand, according to Theorem 1, with a probability
at least 1 — 91, we have

S, < 2ZPm I (19)
mex
< 2) (Pn+e1P) I <2(Se +e1PD,)
mex

where D, = Zmex L0 is flow 2’s spread in epoch %.

If the flow x is estimated by one dedicated HLL, then S, is
the ground-truth of the HLL approximation, and S, - (1—0) <
S, < S, - (14 o), where o is multiples of 1'70; [18].

From (18), we have

S, >(1-0)S,>(1—-0)S, (20)

and from (19), one can see that with a probability at least
1—464,

Sy <(140)S, <2(1+0)(Sz +e1PDy) 21

O

C. Proof of Theorem 3

Theorem 3. For wy = [e/es] and dy = [In(1/d2)], with a
probability at least 1 — 0o, S, is no larger than S, + €25,
where S = Z . In other words, we have

Y

Proof. Consider an HLL C;[g;(m)].H of a flow x, and let
A;S; = C;lgi(m)].|H| — Sz be the value introduced to
C;[g:(m)].H by the flows other than x due to hash collisions.
Since a flow 2’ # x has g;(2’) = g;(z) at a probability of w%,
let S_, = Ey;&w S,/, then the amount that C;lgi(m)].H is

L) v 5=z s casy to
w2 wo

Pr[S’z <8, 4628 >1-10,

mistakenly increased is 1 — (1 —
see that

= S S

E[AS,] = 25

Wy ~ Wo2 e

(22)

Since Pr[S} -9, < 525'] =1- Pr[Sm - S, > 625’], and

Pr[S — S, > €38] = PrVi,A;S, > €35 = (Pr[A;S, >
£95])%, according to Markov’s inequity [53],
-~ - E[AS)] 1

So, Pr[S, — S, > £38] < e 2 < d2, which means that
with a probability at least 1 —d,, we have S, < S, +e,5. O

D. Proof of Theorem 4

Theorem 4. Given ¢1, €2, 01, 0o, and o, with a probability
at least (1 —61)(1 — 62), we have

S, < 2(140)S,+2e,(1+0)PD,
+2e5(1+0)S + 2e165(1 + 0)PD

12)

where P =% Py, S =55, D =)D, and D, =
> mex Im,o is flow x’s spread in epoch to.



Proof. According to Theorem 2, with a probability at least
1—1061, 5, <2(1+40)(Sz +e1PD,), we can see that with
the same probability,

ﬂy+@§:wm+aPDd (24)

§=>"8, <

2u+ax§+aPD)

From (9) and (24), and according to Theorem 3, with a
probability at least (1 — d1) - (1 — d2), we have

S
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