
1

Enhancing Fairness for Approximate Weighted Fair

Queueing with a Single Queue
Wei Chen, Ye Tian, Member, IEEE, Xin Yu, Bowen Zheng, and Xinming Zhang, Senior Member, IEEE

Abstract—Weighted fair queueing (WFQ) is an essential strat-
egy for enforcing bandwidth guarantee and isolation in high-
speed networks. Unfortunately, implementing the original WFQ
packet scheduling algorithm on today’s commodity switch hard-
ware is challenging due to the prohibitive complexity. Approxi-
mate WFQ packet schedulers, which work with the cheap and
widely available First-In First-Out (FIFO) queues, have been
proposed as an alternative in recent years. In this paper, we show
that both the ideal and the approximate WFQ packet schedulers
are unable to allocate bandwidths to TCP flows fairly, because of
the bursty nature of the TCP traffic. Furthermore, we find that
the representative approximate WFQ schedulers further degrade
the scheduling fairness, due to their excessive packet drops.
To address these issues, we present novel approximate WFQ
packet scheduling algorithms in this paper. Our initial design,
namely SQ-WFQ, imposes the minimum hardware requirement
by using one single FIFO queue, and effectively reduces the
excessive packet drops. Extended from SQ-WFQ, we propose
the SQ-EWFQ packet scheduling algorithm. SQ-EWFQ inherits
all the merits of SQ-WFQ, and is adaptive to the bursty TCP
traffic by tolerating short-term packet bursts, while enforcing a
long-term fairness among the TCP flows. We have implemented
our proposed schedulers on commodity hardware programmable
switches, and achieve line rate packet scheduling with them.
Experiment results from a real-world testbed and large-scale
simulations show that SQ-WFQ and SQ-EWFQ outperform the
state-of-the-art approximate schedulers regarding the scheduling
fairness, and SQ-EWFQ allocates bandwidths to TCP flows more
fairly than SQ-WFQ and other existing solutions.

Index Terms—Weighted fair queueing (WFQ); packet schedul-
ing; TCP; programmable switch

I. INTRODUCTION

WEIGHTED fair queueing (WFQ) is a network schedul-

ing strategy that enforces the generalized processor

sharing (GPS) principle among network flows [1]. In WFQ,

each backlogged flow is assigned with a weight, and obtains a

proportional bandwidth from the port that it shares with other

flows. By providing bandwidth guarantees and performance

isolation, WFQ is essential for network virtualization in data

centers and other high-speed networks.

Unfortunately, realizing WFQ on high-speed networks is

challenging. Although a few hardware schedulers have been

proposed to sort packets based on their departure times [2],

[3], they do not scale due to the prohibitive packet processing

overhead. Novel queue abstractions such as Push-In First-Out

This work was supported in part by the National Natural Science Foundation
of China (NSFC) under Grants 61672486 and 62072425. (Corresponding

author: Ye Tian (yetian@ustc.edu.cn)).
The authors are with Anhui Key Laboratory on High-Performance Com-

puting, School of Computer Science and Technology, University of Science
and Technology of China, Hefei, Anhui, China, 230026. (email: {szcw33,
yuxin5836, bwzheng}@mail.ustc.edu.cn, {yetian, xinming}@ustc.edu.cn)

(PIFO) [4] and Push-In Extract-Out (PIEO) [5] are proposed

recently to provide a universal programmability for packet

scheduling, but their hardware designs were realized only on

experimental platforms such as FPGA (field programmable

gate array) because of the complexity.

Instead of faithfully implementing the original WFQ al-

gorithm, a number of approximate packet schedulers based

on FIFO (First-In First-Out) queues have been proposed in

recent years, as FIFO is the simplest queue that can run at

line rate and is available in almost all switches. Among the

approximate schedulers, Admission-In First-Out (AIFO) [6]

is a representative example that approximates PIFO with one

single FIFO queue, and proactively rejects packets based on

local comparisons on packet ranks. Programmable Calendar

Queue (PCQ) [7] is another exemplary scheduler based on

calendar queues, which is composed of a set of priority FIFO

queues with a fixed rotation order. However, as we will see in

this paper, existing approximate schedulers incur considerable

scheduling errors, and drop packets excessively.

All the WFQ packet schedulers make an implicit assumption

that packets of a network flow are independent, and dropping

a packet will not influence the arrivals of the flow’s subsequent

packets. With such an assumption, the schedulers enforce

their scheduling decisions by dropping packets of the flows

whose bandwidth usages exceed their fair shares. However,

the assumption does not hold for TCP, as a TCP sender

transmits packets in bursts and adjusts its packet sending

behavior according to the feedbacks including packet losses.

Our analysis and experiments in this paper show that both the

ideal and the approximate WFQ schedulers have unexpected

impacts on TCP, and allocate bandwidths unfairly; moreover,

the AIFO and PCQ-based approximate schedulers further

degrade the fairness due to their excessive packet drops.

For enhancing fairness in bandwidth allocation, in this

paper, we propose novel WFQ approximate packet scheduling

algorithms. Our initial design, namely SQ-WFQ, reduces the

excessive packet drops comparing with the AIFO and PCQ-

based schedulers. Extended from SQ-WFQ, we propose SQ-

EWFQ, a WFQ approximate scheduler dedicatedly designed

for the bursty TCP traffic. In addition to preserving all the

merits of SQ-WFQ, SQ-EWFQ adapts to TCP by tolerating

short-term packet bursts in TCP flows, while enforcing a long-

term fairness in packet scheduling. Unlike many schedulers

using multiple priority queues per egress port [7]–[10], SQ-

WFQ and SQ-EWFQ require one single FIFO queue per port,

thus greatly save the precious physical queue resources in

hardware switches.

We have implemented SQ-WFQ and SQ-EWFQ on com-

2

modity hardware programmable switches based on the In-

tel Tofino chip [11], and evaluate our proposed algorithms

with a real-world testbed and large-scale simulations. The

experiment results show that both SQ-WFQ and SQ-EWFQ

schedule packets at line rate and are work-conserving, and

both schedulers improve fairness in scheduling TCP flows by

reducing the excessive packet drops. In particular, SQ-EWFQ

is capable to allocate bandwidths to small-weighted TCP

flows, TCP flows with longer round-trip times (RTTs), TCP

flows applying less aggressive congestion controls, and small-

to-medium sized TCP flows more fairly than other solutions.

In summary, our key contributions in this paper are:

• We analyze the representative approximate WFQ packet

schedulers based on AIFO [6] and PCQ [7], and show that

they make excessive packet drops. We further reveal that

the ideal WFQ algorithm is unfair when scheduling TCP

flows, and the approximate schedulers further degrade the

fairness due to their excessive packet drops.

• We propose novel approximate packet scheduling algo-

rithms. Our initial design, namely SQ-WFQ, schedules

packets with one single FIFO queue and reduces exces-

sive packet drops. Extended from SQ-WFQ, we propose

the SQ-EWFQ algorithm that inherits all the merits of

SQ-WFQ, and is adaptive to the bursty TCP traffic.

SQ-EWFQ provides burst tolerance to TCP flows by

temporally increasing a flow’s weight when detecting

a packet burst, while enforces a long-term fairness by

constraining the total amount of bytes a flow can enqueue

over an interval that is sufficiently long for covering a

burst duration.

• We evaluate our proposed SQ-WFQ and SQ-EWFQ

schedulers with a real-world testbed and large-scale sim-

ulations. We find that SQ-WFQ outperforms existing ap-

proximate WFQ schedulers by reducing excessive packet

drops, and SQ-EWFQ allocates bandwidth to TCP flows

more fairly than all the existing approaches.

• We implemented both SQ-WFQ and SQ-EWFQ with the

P4 language [12] on Tofino-based commodity hardware

switches, and achieve line rate packet scheduling with

them. We make our implementations publicly available

at https://github.com/HPCC724/SingeQueue WFQ.

To our best knowledge, we are the first to address the

unfairness issue of WFQ packet scheduling on TCP flows,

and present solutions for enhancing the scheduling fairness.

The remainder part of this paper is organized as follows.

We discuss the related works in Sec. II. Sec. III analyzes

the existing WFQ schedulers and presents our motivation;

We describe the design and implementation of our proposed

WFQ approximate schedulers in Sec. IV; Sec. V presents the

evaluation results and we conclude in Sec. VI.

II. RELATED WORK

A. Programmable Packet Scheduling

There is a rich literature of packet scheduling, and represen-

tative algorithms such as WFQ [13], pFabric [14]–[16], STFQ

[17], SRPT [18], [19], EDF [20] provide various guarantees in

network services. On the other hand, conventional hardware

switches have limited and fixed functionalities, and can not

support the scheduling algorithms flexibly.

To provide programmability for packet scheduling, novel

queueing abstractions were proposed in recent years. For

example, PIFO [4] assigns each packet a rank, and sorts

packets in an ascending order according to their ranks and

dequeues from the head. PIEO [5] provides a better expres-

siveness than PIFO by supporting a programmable filtering

at dequeue. Although a wide range of packet scheduling

algorithms including fair queueing can be realized with PIFO

and PIEO, however, they require sorting packets’ priority ranks

at line rate, which is challenging for today’s commodity switch

hardware.

To approximate PIFO with the existing FIFO-based switch

hardware, SP-PIFO [8] employs multiple strict-priority queues,

maps packet ranks to queue priorities, and dynamically adjusts

the queue priority bounds to reduce the scheduling errors.

AIFO [6] approximates PIFO with one single FIFO queue, and

proactively rejects a packet if its rank is relatively high among

a number of recently received packets. PCQ [7] imposes a

fixed rotation order on a set of priority queues, and transforms

a packet’s rank to the index of the queue it is enqueued to.

Although many packet scheduling algorithms can be approx-

imated, however, the approximation itself comes at a cost of

scheduling errors, as we will show in this paper.

B. Fair Queueing

For enforcing (weighted) fair queueing among network

flows, the bit-by-bit round robin (BR) algorithm [13] computes

a bid number to estimate the departure time for each packet,

and transmits the packet that departs earliest. By assigning

packet rank as its departure time, the BR algorithm can

be emulated with PIFO [4] and its approximations such as

AIFO [6]. To avoid employing a massive number of priority

queues, the SFQ [21] algorithm maps network flows to a small

set of priority queues using a hash function, and perturbs

the mapping periodically. The DRR [22] algorithm improves

SFQ’s fairness by assigning a quantum to each queue for

controlling the bytes a queue can send in each round. The AFQ

[9] algorithm approximates fair queueing with a scheduler that

reuses a set of priority queues by periodically rotating them,

and the authors extend the scheduler to the more generalized

PCQ [7] for approximating a wider range of packet scheduling

algorithms including WFQ. EFQ [23] enhances AFQ by im-

proving the queue unitization and reducing unnecessary packet

drops. GearBox [10] improves PCQ with a logical FIFO queue

hierarchy that can support a wider range of packet departure

times and reduce the departure time discrepancy. Note that

most approximate packet schedulers require multiple queues

per egress port, while physical queues are precious in hardware

switches. Similar to AIFO [6], the schedulers we propose in

this paper require only one single queue per port.

Besides packet scheduling, another approach for fair band-

width allocation is probabilistic packet dropping, in which

packets of a flow that exceeds its fair share bandwidth are

dropped at a certain probability. Early examples include RED-

PD [24], AFD [25], and CSFQ [26]. By carrying per-flow

3

rate and hierarchy information within packet header, HCSFQ

[27] approximates hierarchical fair queueing with a fluid algo-

rithm. AHAB [28] employs control plane to collect bandwidth

demands and compute bandwidth allocations. Cebinae [29]

is a mechanism that augments fairness with packet dropping

penalties on flows exceeding their fair share bandwidth. Unlike

the solutions that punish bursty TCP flows, our proposed

SQ-EWFQ scheduler tolerates packet bursts in TCP flows,

therefore avoids excessive packet drops and converges quickly.

Beside fair queueing on switch, novel queue structures and

operations are proposed for efficiently scheduling packets in

software [30]–[32], however, these designs can not be applied

on today’s hardware switches yet.

III. BACKGROUND AND MOTIVATION

In this section, we briefly review the WFQ packet schedul-

ing algorithm and the representative approximate schedulers

based on AIFO and PCQ. We show that both approximate

schedulers drop packet excessively, and analyze how WFQ

packet scheduling impacts TCP flows.

A. Weighted Fair Queueing

Weighted fair queueing (WFQ) is a packet scheduling policy

that enforces the generalized processor sharing (GPS) principle

among network flows [1]. Specifically, consider a set F of

backlogged flows sharing a switch egress port, where each

flow 5 ∈ F is assigned with a weight F 5 . If the port has a

bandwidth of ', then WFQ allocates a bandwidth of ' 5 =

' ×
F 5

∑

5 ∈F F 5
to flow 5 .1 : o n a p k t o f f l o w f a r r i v a l :/ / c o m p u t e p k t ’ s v i r t u a l f i n i s h t i m e2 : ! fRs i z ep k trt i m ef i n i s hft i m ef i n i s hf .,_.m a x_.

 ! ;3 : t i m ef i n i s hft i m ef i n i s hp k t _._. ; e n q u e u e (p k t) ;4 : w h i l e p o r t i s i d l e a n d b u f f e r i s n o t e m p t y :5 : s e l e c t p k t i n b u f f e r w i t h s m a l l e s t v i r t u a l f i n i s h t i m e ;6 : d e q u e u e (p k t) ; Rs i z ep k trr .
 ! ;

Fig. 1. The WFQ packet scheduling algorithm.

Fig. 1 presents the WFQ packet scheduling algorithm [13].

The algorithm maintains a virtual time A, and for each arrived

packet, the algorithm computes its virtual finish time as the

maximum of the current virtual time A and the virtual finish

time of the flow’s last enqueued packet, plus the time required

to transmit the arrived packet at rate ' 5 (line 2). When the

port is idle, the algorithm selects the packet with the earliest

virtual finish time in the buffer to dequeue, and increments

the virtual time by
?:C.B8I4

'
(line 4-6). The algorithm achieves

weighed max-min fairness and is work-conserving, i.e., unused

bandwidth share of a flow can be allocated to other flows.

The WFQ algorithm can be faithfully realized on novel

queue abstractions such as Push-In First-Out (PIFO) [4] by

assigning a packet’s rank as its virtual finish time, and we

refer to the resulting scheduler as PIFO-WFQ in this paper.

Unfortunately, PIFO requires arbitrarily sorting packets at line

rate, which is challenging to implement with today’s switch

hardware. To overcome this problem, a number of approx-

imate schedulers built on FIFO (First-In First-Out) queues,

which are cheap and widely available in commodity hardware

switches, were proposed in recent years. In the following, we

briefly introduce two representative schedulers that approxi-

mate WFQ based on Admission-In First-Out (AIFO) [6] and

Programmable Calender Queues (PCQ) [7] respectively.

B. AIFO-based Approximate WFQ Scheduler

AIFO [6] approximates PIFO with one single FIFO queue.

Unlike PIFO that evicts high-ranked packets from the queue,

AIFO proactively rejects an arrived packet if its rank is

relatively high among a number of recently received packets.

More specifically, AIFO maintains a dynamic threshold as

1

1 − :

& − �

&
(1)

where & is the queue length, � is the queue depth (i.e.,

amount of data buffered in the queue), and : is a param-

eter for controlling the aggressiveness of packet rejection.

For an arrived packet ?:C, it is enqueued only when its

rank quantile in a window of , recent received packets,

i.e., ,.@D0=C8;4(?:C.A0=:), does not exceed the threshold.

Obviously, by using a packet’s virtual finish time as its rank,

WFQ can be approximated with AIFO, and we refer to the

corresponding scheduler as AIFO-WFQ.

C. PCQ-based Approximate WFQ Scheduler

PCQ [7] is a practical mechanism for approximating packet

scheduling algorithms with " (" ≥ 2) strict-priority FIFO

queues. In PCQ, when the head queue with the highest priority

is drained by dequeueing all its packets, it is paused and

assigned with the lowest priority; while the previous second-

highest-priority queue becomes the new head queue, and starts

to dequeue packets. Such an operation is called a rotation.

As described in [7], PCQ can be used to approximate WFQ

packet scheduling, and we refer to such a scheduler as PCQ-

WFQ. When receiving a packet of a flow 5 , the PCQ-WFQ

scheduler computes the index = of the queue to which the

packet should be enqueued as

= = ⌊(� 5 + ?:C.B8I4)/(& × F 5) − A⌋ (2)

where & is the queue length, F 5 is the flow weight, A is the

current round, and � 5 = max(� 5 , A×&×F 5) is the maximum

of the bytes the flow has ever enqueued and the bytes it is

eligible to enqueue in the past A rounds. Note that in PCQ,

queues are indexed between 0 and " − 1 with queue 0 as

the head queue, and when the queue index = computed by

(2) is greater than " − 1, the packet is dropped. Round A is

incremented by 1 each time a rotation happens.

D. Excessive Packet Drops

From the above introduction one can see that both the

ideal and the approximate WFQ schedulers enforce bandwidth

413
k t = r = 0k k11 2t = r = 2 12 2 12

Fig. 2. An example of excessive packet drops made by AIFO-WFQ.

allocation by selectively dropping packets. More specifically,

in PIFO-WFQ, higher-ranked packets would be evicted from

the queue to make room for a lower-ranked packet; an arrived

packet would be proactively rejected by AIFO-WFQ; and in

PCQ-WFQ, if an arrived packet can not find a queue to be

enqueued to, it will be dropped.

Moreover, after carefully examining AIFO-WFQ and PCQ-

WFQ, we find that they make excessive packet drops. To show

this, consider an example as in Fig. 2, in which 3 flows, i.e.,

51, 52, and 53, share an egress port with their weights as F1 =

F2 = F3 =
1

3
. Packets are equal-sized and the port can transmit

one packet per unit time, i.e., ' = 1. The queue has a length of

& = 6 packets, and is managed by AIFO with the parameters

of , = 4 and : = 0.2. From Fig. 2(a), one can see that

for the 2
=3 packet of 53, its rank quantile among the 4 recent

arrived packets is ,.@D0=C8;4(6) = 0.75, which is greater than

the threshold of 1

1−:
&−�
&

= 0.417 according to (1), and the

packet is dropped. The 3
A3 packet of 51, which arrives at C = 2

as shown in Fig. 2(b), is also dropped, as its rank is greater

than the ranks of all the , = 4 recently arrived packets, and

,.@D0=C8;4(9) = 1 is greater than the threshold of 0.625.

However, both packets are dropped excessively. If we re-

place the AIFO queue with PIFO, then when the 2
=3 packet

of 53 arrives, the queue has spare space to buffer it, and all

the packets with smaller ranks, which would evict this packet

potentially, have already been enqueued. Similarly, the 3
A3

packet of 51 will not be evicted either, as when it arrives, the

queue has enough space to buffer it, and all the packets with

smaller ranks have already arrived.

PCQ-WFQ also makes excessive packet drops, to show this,

consider an example in Fig. 3, in which a PCQ is composed

of " = 2 strict-priority queues, and each queue has a length

of & = 4 packets. Consider a flow 5 with a weight of F 5 =
1

3
,

and the flow sends a packet to the switch in every 3 time

units. According to the WFQ policy, all the packets of 5

should be enqueued as the flow demands exactly 1

3
of the

port bandwidth. In Fig. 3(a), when C = 0 and A = 0, the

2
=3 packet of flow 5 is enqueued to the queue indexed at

1, as = = ⌊(� 5 + ?:C.B8I4)/(& × F 5) − A⌋ = ⌊ 6

4
− 0⌋ = 1

according to (2). After 3 time units when the 3
A3 packet

of the flow arrives, A is still 0 as no rotation happens, but

the packet has to be dropped, because at this time = =

⌊(� 5 + ?:C.B8I4)/(& × F 5) − A⌋ = ⌊ 9

4
− 0⌋ = 2, which is

greater than " − 1 = 1, as we can see in Fig. 3(b).

t = 0 , r = 02 1 t = 3 , r = 03 2e x c e s s i v ed r o p 1k
Fig. 3. An example of excessive packet drop made by PCQ-WFQ.

E. Impact of WFQ Packet Scheduling on TCP

When scheduling network flows by dropping packets selec-

tively, an implicit assumption made by WFQ schedulers is that

packets are independent to each other, and dropping a packet

will not impact arrivals of the flow’s subsequent packets.

Such an assumption is reasonable for UDP flows without end-

host rate control, but for TCP flows, which have end-to-end

congestion controls, the assumption no longer holds.

In TCP, a sender maintains a congestion window (cwnd),

and typically sends an entire window of packets in a burst.

After sending a burst of packets, the sender waits for feed-

backs, which could be either acknowledgments (ACKs) from

the receiver or timeouts, adjusts its cwnd accordingly, and

sends (resends) packets in another burst.

When scheduling TCP flows, a WFQ scheduler may drop

a flow’s packet despite that the flow has not achieved its fare

share bandwidth. This is because when a burst of packets from

a TCP flow arrive to the switch, the “extra” packets in the burst

that exceed the flow’s fair share buffering space in the queue

are likely to be dropped. To show this, consider an example

in which a TCP flow 5 has a weight of F 5 = 0.05 and shares

a port with a bandwidth of ' =10 Gbit/s with other flows.

The queue size is & = 100 packets, so the flow’s fair share

buffering space in the queue is & × F 5 = 5 packets. If the

flow has an RTT (round trip time) of 600 µs, its cwnd must

be no smaller than 25 packets for ensuring that its data rate,

which is cwnd
RTT

, can reach to its fair share bandwidth of ' ×

F 5 =500 Mbit/s. But on the other hand, the WFQ scheduler

may start to drop the flow’s packet when the burst size exceeds

its fair share buffering space in the queue, which is 5 packets

in this example.

To make things worse, packet loss is considered as a signal

of congestion by TCP, and can significantly impact a TCP

sender’s subsequent behavior. For example, in the congestion

avoidance state, after a packet loss, if the sender receives

sufficiently number of duplicate or selective ACKs, it enters

into the fast retransmit state and halves its cwnd, but when

a packet is lost without triggering fast retransmit, the sender

must wait until its retransmission timer expires, which would

be much longer than RTT [33], without sending any data.

Moreover, the sender will reduce its cwnd to as small as

1 MSS after an retransmission timeout (RTO). Note that in

both cases, the sender will take many RTTs to recover its

original window size, during which the flow can not maintain

its original throughput.

How a TCP sender reacts to packet losses depends on many

factors, such as the sender’s congestion control algorithm, end-

5

to-end RTT, etc., therefore, different TCP flows are impacted

by WFQ packet scheduling differently, which arises an un-

fairness issue. In Sec. V, we learn from experiments that

WFQ packet scheduling is unfair against TCP flows with small

weights, TCP flows with longer RTTs, TCP flows applying

less aggressive congestion control algorithms, and small-to-

medium sized TCP flows. Moreover, when employing AIFO-

WFQ or PCQ-WFQ, fairness is further sabotaged, due to the

excessive packet drops made by the two schedulers. As far as

we know, we are the first to address the unfairness issue of

WFQ packet scheduling on TCP flows.

IV. OUR PROPOSED WFQ PACKET SCHEDULERS

A. Design Objective

Motivated by our analysis in Sec. III, in this section, we seek

to develop approximate WFQ packet scheduling algorithm that

fulfills the following objectives:

• (O1): When scheduling network flows without rate con-

trol, the scheduler should achieve weighted max-min

fairness and be work-conserving.

• (O2): The scheduler should reduce the excessive packet

drops made by AIFO-WFQ and PCQ-WFQ.

• (O3): The scheduler should be adaptive to the bursty TCP

traffic and fairly allocate bandwidths to TCP flows.

• (O4): The scheduler should be practical to implement on

existing commodity hardware switches, schedule packets

at line rate, and use as few as one single FIFO queue per

port.

We achieve our goals in two steps. In the first step, we

present SQ-WFQ, an approximate WFQ scheduler that realizes

weighted max-min fairness and is work-conserving (O1). SQ-

WFQ also reduces excessive packet drops (O2) and employs

one single FIFO queue in packet scheduling (O4). Extended

from SQ-WFQ, we then propose an algorithm named SQ-

EWFQ that inherits all the merits of SQ-WFQ, and enhances

the fairness when scheduling TCP flows (O3).

B. SQ-WFQ: WFQ Packet Scheduler with Single Queue

In this section, we propose an approximate WFQ packet

scheduling algorithm named SQ-WFQ, and present it in Fig.

4. 1 : o n a p k t o f f l o w f a r r i v a l :2 :),m a x (fff wRrBC
 ! ;/ / e n q u e u e i n g c o n d i t i o n3 : i f RQrwRs i z ep k tC ff

 !"#)().(4 : e n q u e u e (p k t) ; s i z ep k tCB ff .
 ! ;5 : e l s e6 : d r o p (p k t) ;7 : o n a p k t d e q u e u e d :8 : R DQs i z ep k trr

!" . ;
Fig. 4. The SQ-WFQ packet scheduling algorithm.

As its name suggests, SQ-WFQ employs one single FIFO

queue, and only makes decisions on whether a packet should

be enqueued or not on its arrival. For each backlogged flow

5 , the algorithm traces the amount of bytes the flow has ever

enqueued with a per-flow state � 5 . When a packet ?:C of

the flow arrives, the algorithm computes a variable � 5 as the

maximum of � 5 and A × ' ×F 5 (line 2), where ' is the port

rate and F 5 is the flow’s weight, for ensuring that � 5 is no

smaller than the amount of bytes that flow 5 is eligible to

enqueue in the past A rounds. The algorithm then compares
� 5 +?:C.B8I4

F 5 ×'
− A and

&

'
, where the former is the expected time

to dequeue the arrived packet if it is enqueued, and the latter

is the time to drain a full queue. If the former is no greater

than the latter, the packet is enqueued, otherwise, it is dropped

(line 3-6).

Unlike PCQ-WFQ that increments the round value A by

one per rotation, SQ-WFQ updates A more frequently on each

packet dequeue (line 7). Moreover, when a packet ?:C is

dequeued, we increment the round value A by an amount of
?:C.B8I4×&/�

'
, where & is the queue length, and � is the queue

depth defined as the amount of bytes buffered in the queue

(line 8). Note that by scaling the packet size with
&

�
, we

adaptively adjust the increasing speed of A according to the

queue status.

We explain the adaptive increasing of the round value A in

more detail: When the queue has few packets buffered with

� ≪ &,
&

�
≫ 1, the round value A will be increased at a

rate much faster than
?:C.B8I4

'
. In this case, the enqueueing

condition in line 3 of the algorithm, which we re-present as

� 5 + ?:C.B8I4

' × F 5

− A ≤
&

'
(3)

is easy to meet, and packets are more likely to be enqueued

to prevent the port from starving.

Consider an extreme case that � → 0, which means that

the queue is close to empty1. In this case, the enqueueing

condition in (3) is boiled down to enqueueing an arrived packet

?:C as long as ?:C.B8I4 ≤ F 5 ×&, which means that if a flow’s

fair share buffering space in the queue is no smaller than a

packet size, a packet from the flow should be enqueued. If we

consider a flow as schedulable as long as F 5 × & ≥ ")*,

then the condition states that when the queue is close to empty,

SQ-WFQ will enqueue any arrived packet from a schedulable

flow, so as to prevent the port from starving.

On the other hand, when the queue is almost full with � →

&, the round value A is increased at a rate of
?:C.B8I4

'
, which

makes the enqueueing condition in (3) difficult to meet, and

the switch tends to drop packets to avoid the queue overflow.

Consider an other extreme case that � → & and a flow 5

has � 5 such that

(

� 5 + ?:C.B8I4

' × F 5

− A →
&

'

)

⇒

(

� 5 + ?:C.B8I4 →

(

&

'
+ A

)

× ' × F 5

) (4)

1� will never be zero as it is the queue depth at the moment a packet is
dequeued, thus should be at least one packet size.

6

t = 0 , r = 0t = 2 , r = 3
[6 m 6][6 m 6]

Fig. 5. Excessive packet drops avoided by SQ-WFQ comparing with the
example of AIFO-WFQ in Fig. 2.

After a packet is dequeued, A is incremented by
?:C.B8I4

'
, and

the right side of “→” in (4) is increased by F 5 × ?:C.B8I4. To

keep the condition in (3) hold, � 5 at the left side of “→” can

be incremented by no more than F 5 ×?:C.B8I4. In other words,

the scheduler has to wait for the switch to dequeue over 1

F 5

packets before it can enqueue a new packet from flow 5 , while

any earlier arrived packet must be dropped. From the analysis,

we can see that the adaptive increasing of the round value A can

automatically tune the difficulty of the enqueueing condition,

and prevent the queue from either starvation or overflow.

SQ-WFQ reduces the excessive packet drops that we have

seen in AIFO-WFQ and PCQ-WFQ. To show this, reconsider

the example in Fig. 2, in which we replace AIFO-WFQ

with SQ-WFQ to manage the FIFO queue, and re-present the

example in Fig. 5. As we can see in Fig. 5(a), when the 2
=3

packet of 53, which is excessively dropped by AIFO-WFQ,

arrives to the switch, we have A = 0, and the left side of

the enqueueing condition in (3) is
� 5 +?:C.B8I4

F 5 ×'
− A = 6, which

is no greater than the right side of
&

'
= 6. The packet is

enqueued. Similarly, when the 3
A3 packet 51 arrives at C = 2,

A is increased to 3, as two packets have been dequeued with

� = 4, and each packet dequeue increments A by
&

�
= 1.5.

As we can see in Fig. 5(b), the enqueueing condition still

holds with
� 5 +?:C.B8I4

F 5 ×'
− A = 6 ≤

&

'
= 6, and the packet is

also enqueued despite that it is excessively dropped by AIFO-

WFQ.

To compare SQ-WFQ with PCQ-WFQ, we reconsider the

example in Fig. 3, but replace PCQ with a single FIFO queue

of equal size (i.e., & = 8) managed by the SQ-WFQ algorithm.

As shown in Fig. 6(a), at C = 0 when the 2
=3 packet of

flow 5 arrives, since no packet has been dequeued, we have

A = 0, and the enqueueing condition in (3) is satisfied with
� 5 +?:C.B8I4

F 5 ×'
− A = 6 <

&

'
= 8. The packet is enqueued. After 3

time units when the 3
A3 packet of flow 5 arrives, the queue

depth � remains 5, but the round value A is increased to

3 ×
&

�
= 4.8, as 3 packets have been dequeued, and each

packet dequeue increments A by
&

�
= 1.6. Note that for

this packet, the enqueueing condition in (3) still holds with
� 5 +?:C.B8I4

F 5 ×'
− A = 9 − 4.8 <

&

'
= 8, and as shown in Fig.

6(b), the packet is enqueued by the SQ-WFQ algorithm, even

though it is excessively dropped by PCQ-WFQ.

From the above analysis and comparisons, we can see that

unlike AIFO-WFQ that drops high-ranked packets based on

local comparisons, SQ-WFQ carefully maintains two variables

of � 5 and A, which accumulate all the previous enqueueing

t = 0 , r = 0t = 3 , r = 4 . 8
[6 < 8][4 . 2 < 8] k

112 23
Fig. 6. Excessive packet drop avoided by SQ-WFQ comparing with the
example of PCQ-WFQ in Fig. 3.

events of the flow and dequeueing events of the queue, and

compares (� 5 + ?:C.B8I4) with (A × ' × F 5) to make the

scheduling decisions more precisely. Unlike PCQ-WFQ, which

updates the round value A per rotation, SQ-WFQ updates A

more frequently per packet dequeue, thus can make more

accurate decisions with up-to-date information. As we will

see in Sec. V, SQ-WFQ reduces the excessive packet drops

that happen in AIFO-WFQ and PCQ-WFQ, and is capable to

schedule packets more fairly than them.

C. SQ-EWFQ: Enhancing Fairness with Burst Tolerance1 : o n a p k t o f f l o w f a r r i v a l :2 :)1().(
 !" ffff ns i z ep k tsns ; 1

 ! ff nn ;3 :)()1(fn o wff tt
 ! "!# $%$% ; n o wf tt ;4 :)1,)()(m a x (ffff wRs

 ! "#$;5 :),m a x (fff wRrBC
 ! ;/ / e n q u e u e i n g c o n d i t i o n6 : i f RQwRRwrs i z ep k tC ffff

 !!!!"#)),1m i n (().(
 7 : e n q u e u e (p k t) ; s i z ep k tCB ff .

 ! ;8 : e l s e9 : d r o p (p k t) ;1 0 : o n a p k t d e q u e u e d :1 1 : R DQs i z ep k trr
!" . ;

Fig. 7. The SQ-EWFQ packet scheduling algorithm.

As we have discussed in Sec. III-E, the SQ-WFQ scheduling

algorithm, as well as the other WFQ schedulers, has an

unfairness issue on TCP. In this section, we extended SQ-

WFQ and propose an approximate WFQ packet scheduling

algorithm named SQ-EWFQ. SQ-EWFQ inherits all the merits

of SQ-WFQ by requiring only one single FIFO queue and

reducing excessive packet drops. Moreover, comparing with

SQ-WFQ, SQ-EWFQ is more adaptive to the bursty TCP

traffic and allocates bandwidths more fairly to TCP flows.

The basic idea of SQ-EWFQ is simple: When a TCP flow

is detected to start sending a burst of packets, the scheduler

temporarily increases the flow’s weight, so as to enable it

to grow its cwnd to an extent larger than the one under the

SQ-WFQ algorithm. The larger cwnd will allow the flow to

transmit a burst of packets at a higher chance of success

without being interrupted by packet drops. SQ-EWFQ enforces

7

the weighted fairness by constraining the total amount of bytes

a flow can enqueue over an interval that is sufficiently long

for covering a burst duration.

More specifically, for each backlogged flow 5 , SQ-EWFQ

maintains five per-flow states, denoted as � 5 , = 5 , B 5 , g 5 , and

C 5 , which we describe as the following.

• � 5 is the state that traces the bytes that flow 5 has ever

enqueued, as we have seen in the SQ-WFQ algorithm.

• = 5 is the number of flow 5 ’s packets that have arrived to

this switch.

• B 5 is the averaged packet size of flow 5 .

• g 5 is the exponential moving averaged (EMA) packet

inter-arrival time of flow 5 .

• C 5 is the timestamp of flow 5 ’s last arrived packet.

Besides � 5 , the other four states actually trace a flow’s packet

arrival pattern, and are used to detect packet bursts.

For each flow 5 , the scheduler computes its data arrival rate

as
B 5
g 5

, and compares it with the flow’s fair share bandwidth,

i.e., ' × F 5 . If the former is greater than the latter, which

suggests that the flow is sending a burst of packets and

demands a higher instant rate than its fair share bandwidth,

the scheduler temporarily increases 5 ’s weight to U 5 × F 5 .

Here U 5 = max(d ×
B 5 /g 5

'×F 5
, 1) is a scaling factor computed

by dividing 5 ’s data arrival rate B 5 /g 5 with ' × F 5 , and we

use a parameter d (0 < d ≤ 1) to control the aggressiveness.

Note that when d = 1, the algorithm would increase 5 ’s rate

to B 5 /g 5 , which means that the switch will temporarily send

the flow’s packets at the rate that they arrive, regardless of the

flow weight.

SQ-EWFQ employs the following packet enqueueing con-

dition

� 5 + ?:C.B8I4 − A × F 5 × '

' × min(1, U 5 × F 5)
≤

&

'
(5)

The condition constrains the difference between � 5 + ?:C.B8I4

and A × F 5 × ', where the former is the amount of data en-

queued by 5 (plus the arrived ?:C), and the latter is the amount

of data that 5 is eligible to enqueue in the past A rounds.

Note that the difference is divided by ' × min(1, U 5 × F 5),

which is temporarily increased during a burst, but falls back to

' × F 5 afterwards. As a consequence, the condition ensures

that over a period of time that is sufficiently long to cover

a burst, flow 5 can enqueue more data than its weight F 5

allows, but after the burst, the total bytes it has enqueued still

needs to be constrained by A × F 5 × '. In other words, SQ-

EWFQ enforces a long-term weighted fairness rather than a

short-term one among the TCP flows.

We present the SQ-EWFQ algorithm in Fig. 7. In the

algorithm, when a packet of flow 5 arrives, the per-flow states

of B 5 , = 5 , g 5 , and C 5 are updated (line 2-3), and the algorithm

computes the scaling factor U 5 with the updated B 5 and g 5
(line 4). Note that when updating g 5 , we use \ as the weight in

the exponential moving averaging. The enqueueing condition

(line 6) enforces a long-term weighted fairness. Finally, as in

SQ-WFQ, the round value A is incremented by
?:C.B8I4×&/�

'

on each packet dequeue (line 10-11).

D. Implementation

We use Intel’s Barefoot Tofino Ethernet switch [11] as

the hardware platform, and implement the SQ-WFQ and

SQ-EWFQ schedulers with the P416 programming language

[12]. Implementing SQ-WFQ and SQ-EWFQ on Tofino-based

switch is non-trivial, and in this section, we describe how we

overcome the challenges in the implementations.

1) Handling Multiplication and Division Operations: In a

Tofino-based switch, an incoming packet first goes through

an ingress pipeline, where a scheduling decision is made by

the SQ-WFQ or SQ-EWFQ algorithm on whether the packet

should be enqueued or not. When making the decision, both

SQ-WFQ and SQ-EWFQ incur multiplication and division

operations. Unfortunately, the Tofino-based switch does not

support multiplication and division on arbitrary values. To

overcome this problem, we apply the following methods.

Our first method is to replace divisions with multiplications.

For example, in SQ-WFQ, when evaluating the enqueueing

condition

max(� 5 , A × ' × F 5) + ?:C.B8I4

' × F 5

− A ≤
&

'
(6)

We multiply both sides of the inequality with ' ×F 5 , so that

the condition becomes

max(� 5 , A × ' × F 5) + ?:C.B8I4 − A × ' × F 5 ≤ & × F 5 (7)

One can see that when evaluating (7), no division is required.

Our second method is to replace multiplications with arith-

metic bit-shift operations. To this end, we require flow weight

to be power of 2 (or sum of powers of 2). For example, in the

experiment in Sec. V-A1, there are four flows with weights

as F1 = 8, F2 = 4, F3 = 2, and F4 = 1, but within the

switch, the actual weights are F1 =
1

2
, F2 =

1

4
, F3 =

1

8
, and

F4 =
1

16

2. In addition, the constant of port bandwidth ' is also

rounded as power of 2. As a result, we can use left or right

bit-shift operations, which are supported by Tofino, to replace

the multiplications. For example, to evaluate the condition in

(7), since F 5 and ' are powers of 2, only arithmetic bit-shift

operations are required.

Our third method is to use lookup table to approximate

multiplication. For example, in SQ-EWFQ, to compute

U 5 × F 5 × ' = max(d ×
B 5

g 5
, F 5 × ') (8)

we make two observations: First, for a flow 5 to be schedula-

ble, its weight F 5 should be no smaller than F 5 ,min =
")*
&

,

otherwise, the fair share buffering space of 5 in the queue

is smaller than MTU. Our second observation is that, for a

given specific value of B 5 , there exists an upper bound of g 5
for satisfying d ×

B 5
g 5

≥ F 5 ,min × '.

With the observations, we compute the right side of (8) as

the following. We first find the upper and lower bounds of

B 5 as B+
5
= ")* and B−

5
= 0, and equally divide the range

[B−
5
, B+

5
] into " sub-ranges, with the 8Cℎ sub-range as [B−

5
+

8 × ΔB 5 , B
−
5
+ (8 + 1) × ΔB 5], where ΔB 5 =

B+
5
−B−

5

"
. For the

2To efficiently utilize the queue buffer space, the sum of all the flows’
weights should close to 1.

8

Fig. 8. Using range-match lookup table to approximate multiplication.

central value B 5 ,8 = B−
5
+ (8 + 0.5) × ΔB 5 of the 8Cℎ sub-range,

we find the upper and lower bounds of g 5 ,8 as g+
5 ,8

and g−
5 ,8

,

where g−
5 ,8

= 0 and g+
5 ,8

is obtained by applying our second

observation as above described. Similarly, we divide the range

[g−
5 ,8
, g+

5 ,8
] into #8 sub-ranges, with the 9 Cℎ sub-range as [g−

5 ,8
+

9 ×Δg 5 , g
−
5 ,8

+ (9 +1) ×Δg5], where Δg 5 =
g+
5 ,8

−g−
5 ,8

#8
. As shown

in Fig. 8, we place a range-match lookup table in the ingress

pipeline to enumerate all the combinations of the sub-ranges.

After obtaining B 5 and g 5 from a new packet, the two values

are range-matched in the lookup table, and the action of the

matched table entry writes the pre-computed value of (8) to

the packet’s metadata as the computation result.

2) Computing Round Value A: When making decision on

whether to enqueue or drop a packet, both algorithms of SQ-

WFQ and SQ-EWFQ require the knowledge of the round value

A, which is computed with the queue depth � that dynamically

changes over time. Unfortunately, queue depth is maintained

by a module called traffic manager (TM) between the ingress

and egress pipelines, and a packet can record the queue depth

� in its metadata only after its has been dequeued and enters

into the egress pipeline.

In our implementation, for each switch port, we use a

register in its egress pipeline for maintaining the round value

A, which is updated each time a packet is dequeued. We use

a lookup table as above described to perform the
?:C.B8I4×&

'×�

computation. Meanwhile, we maintain a copy for the register

in the ingress pipeline, and execute the packet scheduling

algorithms with the value in the copy register.

To synchronize the ingress register to the egress one,

we exploit the recirculation mechanism of the Tofino-based

switch. More specifically, we send a special packet called

carrier packet, and recirculate it within the switch. When the

carrier packet arrives to the egress pipeline, it reads the register

and carry the round value A in its payload. The egress pipeline

recirculates the carrier packet to the ingress pipeline, which

writes the the round value A that the carrier packet carries to

the copy register.

Using carrier packet to compute A is efficient. Since carrier

packet does not queue with data packets and goes through a

dedicated port, it is recirculated very fast within the switch.

In our implementation, a recirculation takes shorter time

than transmitting an MTU-sized packet, or in other words,

A is updated more frequently than its value changes, and

such a capability guarantees the accuracies of the scheduling

decisions made by the SQ-WFQ and SQ-EWFQ algorithms.

3) Computing (Moving) Average: The SQ-EWFQ algo-

rithm uses B 5 and g 5 to detect whether a flow is sending a

burst of packets, where B 5 is the averaged packet size and g 5
is the exponential moving average (EMA) of the packet inter-

TABLE I
SUMMARY OF RESOURCE USAGES OF OUR SQ-WFQ AND SQ-EWFQ
IMPLEMENTATIONS ON TOFINO-BASED SWITCH, AND THE RESOURCE

USAGE OF PCQ-WFQ REPORTED BY [7].

Resource Type SQ-WFQ SQ-EWFQ PCQ-WFQ

Pipeline Stages 6 12 12
Match Crossbars 61 107 63
Hash Bits 263 420 140
SRAM 32 57 46
TCAM 6 12 2
ALU Instructions 3 13 13

arrival time. We place a ring buffer as in [6] in the ingress

pipeline to compute B 5 and g 5 .

The ring buffer is composed of 5 records for keeping

the sizes and arrival times of the 5 recent packets. We also

maintain an index to indicate the current head position of the

ring buffer. When a new packet arrives, it reads and updates

the index, and updates the ring buffer with its own size and

arrival time by over-writing the earliest record.

The averaged packet size B 5 and the EMA of the inter-

arrival time g 5 are computed by the arriving packet from the

5 recent packets. For example, with \ = 0.5, g 5 is computed

as

g 5 = 0.5 × (C 5 ,1 − C 5 ,2) + 0.25 × (C 5 ,2 − C 5 ,3)

+ 0.125 × (C 5 ,3 − C 5 ,4) + 0.125 × (C 5 ,4 − C 5 ,5)
(9)

where C 5 ,8 is arrival time of the 8Cℎ recent packet.

4) Resource Overhead: Table I shows the overheads of

implementing SQ-WFQ and SQ-EWFQ on the Tofino-based

switch reported by the P4 compiler. We also consult [7] and

list the implementation overhead of PCQ-WFQ in the table

as well. From the table one can see that SQ-EWFQ requires

more resources than SQ-WFQ as it involves more states and

incurs more computations.

Finally, we stress that our proposed SQ-WFQ and SW-

EWFQ algorithms are independent of the hardware architec-

ture, and believe that the implementation presented here is

valuable for implementing them on other platforms.

V. EVALUATION

In this section, we evaluate our proposed SQ-WFQ and SQ-

EWFQ packet scheduling algorithms and compare them with

the state-of-the-art solutions. We carry out the experiments

on both a real-world testbed based on commodity hardware

programmable switches and Netbench [34], [35], a packet-

level simulator.

9

0 2 0 4 0 6 0 8 0 1 0 0 1 2 00246
81 0

T i m e (s e c .)Th rough put(Gb ps) F l o w 1F l o w 2F l o w 3F l o w 4
(a) SQ-WFQ

0 2 0 4 0 6 0 8 0 1 0 0 1 2 00246
81 0

T i m e (s e c .)Th rough put(Gb ps) F l o w 1F l o w 2F l o w 3F l o w 4
(b) SQ-EWFQ

0 2 0 4 0 6 0 8 0 1 0 0 1 2 00246
81 0

T i m e (s e c .)Th rough put(Gb ps) F l o w 1F l o w 2F l o w 3F l o w 4
(c) FIFO

Fig. 9. Evolvements of UPD flows’ throughputs over time when the flows are scheduled by (a) SQ-WFQ, (b) SQ-EWFQ, and (c) FIFO. The four flows have
their weights set as F1 = 8, F2 = 4, F3 = 2, and F4 = 1.

A. Evaluation on Hardware Testbed

Our real-world testbed is composed of one Edgecore Wedge

100BF-32X Tofino-based hardware switch and 4 servers con-

necting to the switch. Each server is equipped with a 8-

core Intel i7-8700 CPU and an Intel X710-DA2 10GbE

dual-port Ethernet adapter, and runs Ubuntu 16.04 LTS with

Linux kernel 4.14.24. The Tofino-based switch runs our P4

implementation of the SQ-WFQ or SQ-WFQ packet scheduler,

and we configure the line rate of the switch port as 10 Gbit/s.

We set \ = 0.5 and d = 0.9 for the SQ-EWFQ algorithm, if

not otherwise specified.

1) Weighted Fairness and Work-Conserving: We first exam-

ining the SQ-WFQ and SQ-EWFQ algorithms on scheduling

UDP flows. For this purpose, we send 4 UDP flows using

iPerf3 [36] at a rate of 9.8 Gbit/s to the Tofino-based switch,

and set the weights of the flows as F1 = 8, F2 = 4, F3 = 2,

and F4 = 1. Moreover, different flows start and end at different

times: flow 51 starts at time 0 and lasts for 120 seconds, flow

52 starts at the 15
Cℎ second and lasts for 90 seconds, flow 53

starts at the 30
Cℎ second and lasts for 60 seconds, and flow 54

starts and ends at the 45
Cℎ and 75

Cℎ seconds respectively.

Fig. 9(a) and (b) present the evolvements of the flows’

throughputs over time when they are scheduled by SQ-WFQ

and SQ-EWFQ respectively, and we also present the through-

puts when the switch employs a FIFO queue without applying

any packet scheduling algorithm in Fig. 9(c). From Fig. 9(a)

and (b), we can see that both SQ-WFQ and SQ-EWFQ

schedule packets at line rate and achieve a weighted max-min

fairness, as each of the concurrent flows achieves a throughput

proportional to its weight, and their total throughput saturates

the port bandwidth without starving the port. On the contrary,

from Fig. 9(c), one can see that when applying FIFO, the

concurrent UDP flows equally divide the port bandwidth

regardless of their weights.

Fig. 9(a) and (b) also show that both SQ-WFQ and SQ-

EWFQ are work-conserving, as when a UDP flow ends,

its unused bandwidth is proportionally allocated among the

remaining flows according to their weights.

2) Bandwidth Allocation for TCP Flows:

a) Scheduling TCP flows with different weights: In the

remaining experiments on the real-world testbed, we use SQ-

WFQ and SQ-EWFQ to schedule TCP flows. We first send 6

TCP flows to the Tofino-based switch, and set the weights for

the flows 51- 54 as 1, and for the flows 55 and 56 as 2. The

TCP senders run NewReno [37] for congestion control.

Fig. 10 presents the averaged throughputs of the 6 flows

scheduled by SQ-WFQ, SQ-EWFQ, and FIFO in 60 seconds.

From the figure we can see that SQ-WFQ is unfair against

the smaller-weighted TCP flows, i.e., 51- 54, as the throughput

achieved by 55 or 56 is as much as over 6 times of the ones

achieved by 51- 54. However, when applying SQ-EWFQ, band-

width is allocated to the 6 flows approximately proportional to

their weights, and the smaller-weighted TCP flows, i.e., 51- 54,

obtain fairer bandwidth allocations.

We explain the improved fairness of SQ-EWFQ over SQ-

WFQ as the following: When scheduled by SQ-WFQ, a TCP

flow with a smaller weight is more often to have its packet

burst size exceeding its fair share buffering space in the queue,

thus experiences more packet drops than a larger-weighted

TCP flow, and it is well-known that a higher packet loss rate

leads to greater throughput reductions. One the other hand,

when scheduled by SQ-EWFQ, both flows can grow their

cwnds without being frequently interrupted by packet drops,

and the amount of bytes a flow can successfully enqueue

is largely decided by its weight rather than the end-host

congestion control.

b) Scheduling TCP flows with different RTTs: We also

apply SQ-WFQ, SQ-EWFQ, and FIFO to schedule TCP flows

with different RTTs. To this end, we send 8 TCP flows to the

Tofino-based switch, where the flows have equal weights but

different RTTs. In particular, flows 51- 54 have an RTT of 3 ms

and flows 55- 58 have an RTT of 7 ms. We use Linux tc [38]

to add latency to the TCP flows.

Fig. 11 presents the averaged throughputs of the 8 flows

scheduled by SQ-WFQ, SQ-EWFQ, and FIFO in 60 sec-

onds. One can see that under SQ-EWFQ, TCP flows obtain

bandwidths proportional to their weights and have similar

throughputs regardless of their RTTs. But under SQ-WFQ and

FIFO, 51- 54 have much higher throughputs than 55- 58, and

to our surprise, SQ-WFQ is more biased towards 51- 54 than

FIFO. We explain the observation with the fact that when a

TCP flow has a longer RTT, its cwnd grows slowly. Comparing

with FIFO, the SQ-WFQ scheduler, which has no tolerance to

packet bursts, would be more likely to drop packets that arrive

10

Fig. 10. Averaged throughputs of 6 TCP flows
scheduled by SQ-WFQ, SQ-EWFQ, and FIFO,
where 51- 54 have a weight of 1, and 55- 56 have a
weight of 2.

Fig. 11. Averaged throughputs of 8 TCP flows
scheduled by SQ-WFQ, SQ-EWFQ, and FIFO,
where 51- 54 have an RTT of 3 ms, and 55- 58 have
an RTT of 7 ms. Flows have equal weights.

Fig. 12. Averaged throughputs of 8 equal-weighted
TCP flows scheduled by SQ-WFQ, SQ-EWFQ,
and FIFO, where 51- 52 apply H-TCP, 53- 54 apply
CUBIC, 55- 56 apply NewReno, and 57- 58 apply
BIC as congestion controls.

0 1234
5

s c h e d u l e rNFM(1 ms) P I F O # W F QA I F O * W F QP C Q 0 W F Q 0 2 q u e u e sP C Q ; W F Q ; 8 q u e u e sS Q E W F QS Q J E W F Q
(a) NFM(1 ms)

00 . 20 . 40 . 60 . 8 11 . 21 . 4
S c h e d u l e rNFM(100 ms) P I F O w W F QA I F O ~ W F QP C Q � W F Q � 2 q u e u e sP C Q � W F Q � 8 q u e u e sS Q � W F QS Q � E W F Q

(b) NFM(100 ms)

00 . 20 . 40 . 60 . 8 11 . 2
S c h e d u l e rNFM(1 s) P I F O Æ W F QA I F O Í W F QP C Q Ó W F Q Ó 2 q u e u e sP C Q Þ W F Q Þ 8 q u e u e sS Q è W F QS Q í E W F Q

(c) NFM(1 s)

Fig. 13. Normalized Fairness Metrics (NFMs) of the PIFO-WFQ, AIFO-WFQ, PCQ-WFQ-2queues, PCQ-WFQ-8queues, SQ-WFQ, and SQ-EWFQ schedulers
in durations of (a) 1 ms, (b) 100 ms, and (c) 1 s.

in bursts, thus it takes the flow with a longer RTT more time to

recover. On the other hand, by temporarily increasing a TCP

flow’s weight, the SQ-EWFQ scheduler can better handle the

bursty TCP traffic and enforce a longer-term weighted fairness,

as we have discussed in Sec. IV-C.

c) Scheduling TCP flows with different congestion con-

trols: We study how SQ-WFQ, SQ-EWFQ, and FIFO allocate

bandwidths to TCP flows applying different congestion control

algorithms. For this purpose, we send 8 equal-weighted TCP

flows to the Tofino-based switch, and the flows are divided

into 4 groups with each group containing 2 flows. We apply

different congestion control algorithms of H-TCP [39], CUBIC

[40], NewReno [37], and BIC [41] in different groups.

Fig. 12 presents the flows’ averaged throughputs under

different schedulers. We can see that when not applying any

packet scheduling, i.e., FIFO, the flows using BIC have much

higher throughputs than the other flows, because of BIC’s ag-

gressive cwnd growth function. When the flows are scheduled

by SQ-WFQ, the BIC and NewReno flows still have higher

throughputs than the H-TCP and CUBIC flows, as the latter

two algorithms make efforts to avoid being overaggressive in

growing their cwnds after packet losses. Finally, we can see

when the TCP flows are scheduled by SQ-EWFQ, they equally

divide the port bandwidth according to their weights, despite

that they apply different congestion control algorithms.

B. Packet-level Simulation with a Single-Switch Network

1) Simulation Setup: In this section, we employ

Netbench [34], [35], a packet-level simulator, to evaluate

various WFQ packet scheduling algorithms. In particular, we

evaluate and compare the following schedulers:

• PIFO-WFQ: We apply the WFQ algorithm as in Fig. 1

to assign ranks to packets, and emulate PIFO [4] with

Netbench to realize the PIFO-WFQ scheduler. Since

PIFO-WFQ faithfully implements the WFQ algorithm, we

use it as the benchmark in our evaluation.

• AIFO-WFQ: We realize AIFO [6] with Netbench and

apply it to approximately schedule packets with their

ranks assigned by the WFQ algorithm as in Fig. 1. We

set , = 40 and : = 0.15 as suggested by [6].

• PCQ-WFQ: This is the approximate WFQ packet sched-

uler realized over PCQ [7]. In particular, we evaluate two

PCQ-WFQ scheduler instances with the PCQ containing

2 queues and 8 queues respectively.

• SQ-WFQ: This is the approximate WFQ packet sched-

uler that we have proposed in Sec. IV-B.

• SQ-EWFQ: This is the approximate WFQ scheduler that

we have proposed in Sec. IV-C. We set \ = 0.5 and d =

0.9 as in the testbed experiments by default.

All the packet schedulers are evaluated and compared under

same per-port buffer size. That is, suppose the egress port has

a buffer of � bytes, then for PIFO-WFQ, AIFO-WFQ, SQ-

11

Fig. 14. Averaged normalized goodputs for TCP flows of different weights
under various WFQ schedulers.

WFQ, and SQ-EWFQ that employ one single queue, the queue

length is & = � bytes, while for PCQ-WFQ using " (" ≥ 2)

queues, each queue has a length of & =
�
"

bytes.

We first simulate a single-switch topology in which 11

hosts are connected by a switch. Each host-switch link has

a bandwidth of 10 Gbit/s and a propagation delay of 3 µs. We

set the per-port buffer size as 2.25 MB.

We set up 500 TCP flows to send data from 10 senders to

1 receiver. The flow weights are between 1 and 5, and we

choose 100 flows to have a weight of 1, 100 flows to have a

weight of 2, ..., and 100 flows to have a weight of 5. We use

NewReno [37] as the end-to-end TCP congestion control, and

set ')$<8= as 200 µs.

2) Weighted Fairness: We use the Normalized Fairness

Metric (NFM) as defined in [30] to numerically measure the

weighted fairness achieved by different packet schedulers.

NFM is based on the Fairness Metric (FM) [22], which

computes the maximum difference of the bytes sent by two

flows, normalized by their weights during a time interval

g. NFM is the FM over all intervals of duration g, and

normalized to the data sent by the port. Note that according

to its definition, a smaller NFM indicates a fairer bandwidth

allocation among the flows.

Fig. 13 presents NFMs of the PIFO-WFQ, AIFO-WFQ,

PCQ-WFQ (2 queues), PCQ-WFQ (8 queues), SQ-WFQ, and

SQ-EWFQ schedulers over three durations of 1 ms, 100 ms,

and 1 s. From the figures one can see that in general, it is

easier to achieve a fairer bandwidth allocation over a longer

interval. For each individual scheduler, several observations

can be made: First, PIFO-WFQ is the fairest scheduler with the

lowest NFMs over all the three durations, this conforms to our

expectation as PIFO-WFQ faithfully realizes the ideal WFQ

algorithm by evicting high-ranked packets; Second, besides

PIFO-WFQ, our proposed SQ-WFQ scheduler has the lowest

NFM, as it reduces the excessive packet drops made by AIFO-

WFQ and PCQ-WFQ, as we have analyzed in Sec. III-E;

Third, with a short duration of 1 ms, our proposed SQ-EWFQ

has the highest NFM, this is reasonable as SQ-EWFQ would

temporarily increase a bursty TCP flow’s weight in a short

interval, thus harms the short-term fairness; but with longer

durations of 100 ms and 1 s, SQ-EWFQ has NFMs lower than

AIFO-WFQ and PCQ-WFQ, and is only slightly higher than

SQ-WFQ. Such an observation indicates that SQ-EWFQ is

capable to maintain a long-term weighted fairness across the

flows, as we have discussed in Sec. IV-C.

3) Bandwidth Allocation for Small-Weighted TCP Flows:

To examine how different WFQ schedulers allocate band-

widths to TCP flows of different weights, we examine a flow’s

normalized goodput, which is the flow’s goodput divided by

its weight. Fig. 14 presents the mean normalized goodputs

of the flows with different weights under various schedulers.

From the figure we can see that for the flows of the smallest

weight, i.e., weight 1, the schedulers of PIFO-WFQ, AIFO-

WFQ, PCQ-WFQ and our proposed SQ-WFQ have obvious

lower normalized goodputs than the larger-weighted flows. In

particular, the PCQ-WFQ scheduler using 2 queues in PCQ

barely sends any data with a goodput close to zero.

The observation in Fig. 14 can be explained with the fact

that WFQ packet scheduling is unfavorable to TCP flows

of small weights, especially the flows of weight 1 in this

experiment. Moreover, the approximate schedulers of AIFO-

WFQ and PCQ-WFQ further degrade the scheduling fairness

due to their excessive packet drops. In particular, the PCQ-

WFQ scheduler instance using 2 queues has a very low

goodput for the smallest-weighted flows, as the scheduler

updates the round value A infrequently. The stall A value of

PCQ-WFQ causes continuous packet drops, which lead to

more RTOs than other schedulers.

Our proposed SQ-WFQ algorithm has a normalized goodput

close to the ideal PIFO-WFQ scheduler and outperforms

AIFO-WFQ and PCQ-WFQ, as it substantially reduces the

excessive packet drops. When scheduled by SQ-EWFQ, the

smallest-weighted TCP flows have a normalized goodput close

to the larger-weighted flows, and is higher than the other five

schedulers. We explain the observation with the fact that SQ-

EWFQ is designed to be adaptive to TCP. By temporarily

increasing a bursty flow’s weight, SQ-EWFQ enables a TCP

flow to transfer packet bursts at a higher chance of success,

rather than being frequently interrupted by packet drops as

under other WFQ schedulers.

To better understand the impacts of the different schedulers

on TCP flows, in Fig. 15 we present cwnd of a smallest-

weighted TCP flow under each WFQ scheduler. We can see

that the flows under the two PCQ-WFQ scheduler instances

employing 2 and 8 queues have their cwnds much smaller

than the flows under PIFO-WFQ and our proposed SQ-WFQ

and SQ-EWFQ schedulers, and AIFO-WFQ also causes the

flow to have a relatively smaller cwnd. On the other hand, our

proposed SQ-WFQ and SQ-EWFQ enable the TCP flows to

maintain larger cwnds by reducing the excessive packet drops.

Moreover, one can see that although fluctuating, the cwnd of

the flow under SQ-EWFQ is larger than the one under SQ-

WFQ, and is even larger than PIFO-WFQ from time to time,

thanks to the burst tolerance of the scheduler.

4) Impact of parameter d on SQ-EWFQ: As described

in Sec. IV-C, our proposed SQ-EWFQ algorithm employs a

parameter d to control the aggressiveness of the temporary

weight increasing. In this experiment, we examine the impact

of this parameter by experimenting various d values of 0.3,

0.5, 0.7, and 0.9. Note that with a larger d, the SQ-EWFQ

12

0 0 . 2 0 . 4 0 . 6 0 . 8 102 0 0 04 0 0 06 0 0 08 0 0 01 0 0 0 0
T i m e (s e c .)cwnd(b yt e) P I F O ! W F QA I F O (W F Q
(a)

0 0 . 2 0 . 4 0 . 6 0 . 8 102 0 0 04 0 0 06 0 0 08 0 0 01 0 0 0 0
T i m e (s e c .)cwnd(b yt e) P C Q Z W F Q Z 2 q u e u e sP C Q e W F Q e 8 q u e u e s

(b)

m m n o m n p m n q m n r smo m m mp m m mq m m mr m m ms m m m m
t u v w x y w z n {|}~��� �� �� � � � � � �� � � � � � �
(c)

Fig. 15. Congestion window (cwnd) of TCP flows of weight 1 scheduled by (a) PIFO-WFQ and AIFO-WFQ, (b) PCQ-WFQ-2queues and PCQ-WFQ-8queues,
and (c) SQ-WFQ and SQ-EWFQ.

(a) NFM (b) Normalized goodput

Fig. 16. (a) NFMs and (b) normalized goodput of different-weighted TCP
flows scheduled by SQ-EWFQ with d = 0.3, 0.5, 0.7, and 0.9.

scheduler increases a flow’s weight more aggressively, and can

tolerate larger packet bursts.

In Fig. 16(a), we present fairness of the packet scheduling

in terms of NFM(1 ms), NFN(100 ms), and NFN(1 s) for SQ-

EWFQ under various d values. We can see that within a

1 ms duration, when d is large, the scheduler behaves less

fairly. This is reasonable as tolerating larger packet bursts will

surely harm the short-term fairness of the packet scheduling.

But under the longer durations of 100 ms and 1 s, SQ-EWFQ

has similar NFMs under different d values. This is because

SQ-EWFQ enforces a long-term weighted fairness with its

enqueueing condition, as we have discussed in Sec. IV-C.

We also examine the normalized goodputs of the TCP flows

of different weights under SQ-EWFQ when applying various d

values, and present the results in Fig. 16(b). We find that when

d is small, SQ-EWFQ behaves more close to SQ-WFQ, which

is unfavorable to the small-weighted TCP flows. But with a

larger d value, the small-weighted TCP flows are allocated

bandwidths more fairly, as the SQ-EWFQ algorithm allows a

TCP sender’s cwnd to temporarily grow more aggressively for

transmitting larger bursts of packets. From Fig. 16, one can

see that by varying d, SQ-EWFQ makes a tradeoff between

the short-term and long-term fairness in packet scheduling.

C. Packet-level Simulation on a Large-Scale Network

Besides the single-switch topology, we also evaluate our

proposed WFQ schedulers and compare with other solutions

using a large-scale leaf-spine data center network as shown in

Fig. 17. We simulate the network using Netbench [34]. The

Fig. 17. The leaf-spine data center network topology.

network contains 4 spine switches and 9 leaf switches. Each

leaf switch connects to 16 hosts, and a total number of 144

hosts are connected by the network. The host-leaf link has a

bandwidth of 10 Gbit/s and the leaf-spine link has a bandwidth

of 40 Gbit/s. The per-port buffer size is set as 150 kB.

Our experiments are driven by empirical web search work-

load in a data center network [42]. In particular, the workload

follows a heavy-tailed distribution regarding flow size, and

flows arrive in a Poisson process with different inter-arrival

intervals resulting in different traffic loads. All flows are over

TCP with NewReno [37] as the end-to-end congestion control,

and flows are of same weight.

We examine the flow completion time (FCT) of the TCP

flows in the data center network, and present the normalized

FCTs3 for the flows of different sizes under various network

loads in Fig. 18. In addition to PIFO-WFQ, AIFO-WFQ, PCQ-

WFQ and our proposed SQ-WFQ and SQ-EWFQ algorithms,

we also evaluate DCTCP [42] with a default ECN marking

threshold of 65 packets. For PCQ-WFQ, we only consider the

scheduler with the PCQ containing 8 queues. We make the

following observations from the experiment results:

Small-sized flows benefit from fewer packet drops. From

Fig. 18(a), (b), (e)-(h), we find that small-sized TCP flows have

lower mean and 99
Cℎ percentile FCTs under our proposed SQ-

WFQ and SQ-EWFQ schedulers. For example, for the flows

with sizes no larger than 10 kB, SQ-WFQ reduces the mean

FCTs of the AIFO-WFQ scheduler by 19.5%−25.5%, and re-

duces the 99
Cℎ percentile FCTs by as much as 61.1%−75.2%,

under the network loads varying from 20% to 90%; SQ-EWFQ

reduces the mean FCTs of PCQ-WFQ by 4.9% − 12.2%, and

reduces the 99
Cℎ percentile FCTs by 10.0% − 66.2%. The

advantages of SQ-WFQ and SQ-EWFQ over AIFO-WFQ and

3Normalized FCT means a flow’s actual FCT normalized to its ideal FCT
when no other flows are active in the network.

13

2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 %1 02 03 04 05 06 07 0
L o a dN ormali zedFCT D C T C PP I F O Ë W F QA I F O Ò W F QP C Q Ø W F QS Q Ý W F QS Q â E W F Q

(a) Mean FCT, (0,10kB]

2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 %05 01 0 01 5 02 0 02 5 03 0 0
L o a dN ormali zedFCT D C T C PP I F O & W F QA I F O - W F QP C Q 3 W F QS Q 8 W F QS Q = E W F Q

(b) 99
Cℎ FCT, (0,10kB]

2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 %51 01 52 02 53 03 54 0
L o a dN ormali zedFCT D C T C PP I F O � W F QA I F O � W F QP C Q � W F QS Q � W F QS Q � E W F Q

(c) Mean FCT, (0,100kB]

2 0 % 3 0 % 4 0 % 5 0 % 6 0 % 7 0 % 8 0 % 9 0 %05 01 0 01 5 02 0 02 5 0
L o a dN ormali zedFCT D C T C PP I F O Ú W F QA I F O á W F QP C Q ç W F QS Q ì W F QS Q ñ E W F Q

(d) 99
Cℎ FCT, (0,100kB]

9 k 1 9 k 2 8 k 4 8 k 7 7 k 1 9 4 k 9 7 4 k 1 . 9 M 4 . 9 M 9 . 7 M 2 9 . 2 M051 01 52 02 53 03 54 04 5
F l o w s i z e (b y t e s)N ormali zedFCT D C T C PP I F O N W F QA I F O U W F QP C Q [W F QS Q ` W F QS Q e E W F Q

(e) Mean FCT breakdown, 50% load

9 k 1 9 k 2 8 k 4 8 k 7 7 k 1 9 4 k 9 7 4 k 1 . 9 M 4 . 9 M 9 . 7 M 2 9 . 2 M02 04 06 08 01 0 01 2 0
F l o w s i z e (b y t e s)N ormali zedFCT D C T C PP I F O ¾ W F QA I F O Å W F QP C Q Ë W F QS Q Ð W F QS Q Õ E W F Q

(f) 99
Cℎ FCT breakdown, 50% load

9 k 1 9 k 2 8 k 4 8 k 7 7 k 1 9 4 k 9 7 4 k 1 . 9 M 4 . 9 M 9 . 7 M 2 9 . 2 M01 02 03 04 05 06 07 0
F l o w s i z e (b y t e s)N ormali zedFCT D C T C PP I F O / W F QA I F O 6 W F QP C Q < W F QS Q A W F QS Q F E W F Q

(g) Mean FCT breakdown, 90% load

9 k 1 9 k 2 8 k 4 8 k 7 7 k 1 9 4 k 9 7 4 k 1 . 9 M 4 . 9 M 9 . 7 M 2 9 . 2 M05 01 0 01 5 02 0 02 5 03 0 0
F l o w s i z e (b y t e s)N ormali zedFCT D C T C PP I F O W F QA I F O § W F QP C Q W F QS Q ² W F QS Q · E W F Q

(h) 99
Cℎ FCT breakdown, 90% load

Fig. 18. Normalized FCTs of TCP flows of different sizes when imposing various loads from the web search workload [42] on the leaf-spine data center
network.

PCQ-WFQ can be explained with the fact that the small-

sized TCP flows, which transfer data with a few bursts,

are vulnerable under the excessive packets drops made by

AIFO-WFQ and PCQ-WFQ. By reducing the excessive drops,

our proposed SQ-WFQ and SQ-EWFQ algorithms enable the

small-sized flows to better claim their fair share bandwidths.

Moreover, small-sized TCP flows further benefit from the burst

tolerance of SQ-EWFQ, and can grow larger cwnds without

suffering frequent packet losses.

Heavily-loaded networks benefit from fairer bandwidth

allocations. From Fig. 18(a)-(d), (g), and (h), we find that

our proposed SQ-WFQ and SQ-EWFQ schedulers benefits

small-to-medium sized TCP flows more significantly when

the network is heavily loaded. For example, under the 90%

network load, for TCP flows no larger than 48 kB, SQ-WFQ

reduces the 99
Cℎ percentile FCTs of AIFO-WFQ and PCQ-

WFQ by 40.2% and 13.1% respectively, in contrast to the

reductions of 11.2% and 0.5% under the 50% network load;

and SQ-EWFQ reduces the 99
Cℎ percentile FCTs of AIFO-

WFQ and PCQ-WFQ by 48.8% and 24.7%, in contrast to

the reductions of 47.1% and 19.0% under the 50% network

load. The reason behind the significant FCT reductions is that

in a heavily-loaded network, more TCP flows compete for

bandwidth, and consequently, each flow will have a smaller

normalized weight than they would have in a lightly-loaded

network. As we have seen in Sec. V-B2, SQ-WFQ and

SQ-EWFQ are fairer in allocating bandwidths to the small-

weighted TCP flows than the other approximate schedulers,

and reduce their FCTs more significantly.

Worst-case performances are improved under SQ-WFQ

and SQ-EWFQ. By comparing Fig. 18(e) and (f), (g) and

(h), we find that our proposed SQ-WFQ and SQ-EWFQ

schedulers improve the worst-case performances, i.e., the 99
Cℎ

percentile FCTs of the TCP flows more significantly than

other schedulers. For example, under the 90% network load,

for network flows within 10 kB, SQ-WFQ reduces the 99
Cℎ

percentile FCTs of DCTCP, AIFO-WFQ, and PCQ-WFQ by

34.5%, 61.3%, and 50.1% respectively, and SQ-EWFQ further

reduces the 99
Cℎ percentile FCTs of the three schedulers by

as much as 55.6%, 73.7%, and 66.2%. The improvements

can be explained with the improved fairness provided by SQ-

WFQ and SQ-EWFQ. As in DCTCP, AIFO-WFQ, and PCQ-

WFQ, if a small-sized TCP flow unfortunately encounters

retransmission timeouts in its first a few RTTs, it will have

difficulty to grow its cwnd, and as a result, this flow will have

a low goodput and long FCT, as we have seen in Fig. 14. On

the other hand, as small-sized flows are scheduled more fairly

by SQ-WFQ and SQ-EWFQ, their worse-case performances

are substantially improved.

SQ-EWFQ is close to and even outperforms PIFO-WFQ.

From Fig. 18(a)-(h), one can see that our proposed SQ-EWFQ

algorithm has achieved the mean and 99
Cℎ percentile FCTs

very close to the ideal PIFO-WFQ scheduler, and for small-to-

medium sized TCP flows, SQ-EWFQ even outperforms PIFO-

WFQ regarding the 99
Cℎ percentile FCT in heavily-loaded

networks.

The reason for the good performance of SQ-EWFQ is two-

fold: First, as extended from SQ-WFQ, SQ-EWFQ reduces the

excessive packet drops made by AIFO-WFQ and PCQ-WFQ,

thus is fairer in bandwidth allocation than them. Second, by

temporarily increasing a bursty TCP flow’s weight in short

intervals while enforcing a long-term fairness, SQ-EWFQ

allows larger packet bursts than PIFO-WFQ does, and better

handles the bursty TCP traffic.

VI. CONCLUSION

In this paper, we focused on weighted fair queueing (WFQ),

and studied both the ideal scheduler realized on the PIFO

queue abstraction and the approximate schedulers based on

AIFO and PCQ. We found that existing WFQ packet sched-

ulers can not allocate bandwidths to TCP flows fairly, because

14

of the unexpected impacts of the scheduled packet drops

on TCP congestion control, and the AIFO and PCQ-based

approximate schedulers further degrade the scheduling fairness

due to their excessive packet drops.

To address these issues, in this paper we propose approx-

imate WFQ packet scheduling algorithms. Our initial design,

namely SQ-WFQ, employs only one single FIFO queue, and

is capable to schedule packets at line rate. In addition, SQ-

WFQ is work-conserving and achieves the max-min weighted

fairness when scheduling UDP flows. By avoiding excessive

packet drops, SQ-WFQ improves the fairness in scheduling

TCP flows, comparing with the AIFO and PCQ-based ap-

proximate WFQ schedulers. Extended from SQ-WFQ, we

propose the SQ-EWFQ algorithm. SQ-EWFQ inherits all the

merits of SQ-WFQ, and by tolerating packet bursts while

enforcing a long-term fairness, SQ-EWFQ outperforms all

the existing WFQ packet schedulers regarding fairness in

scheduling TCP flows. In particular, SQ-EWFQ is capable to

allocate bandwidths more fairly to small-weighted TCP flows,

TCP flows of longer RTTs, TCP flows applying less aggressive

congestion controls, and small-to-medium sized TCP flows

than the existing ideal and approximate WFQ schedulers.

We have implemented prototypes of the SQ-WFQ and SQ-

EWFQ schedulers on the Tofino-based commodity hardware

programmable switches, and shared our P4 implementations

with the community.

REFERENCES

[1] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: the single-node
case,” IEEE/ACM Trans. Networking, vol. 1, no. 3, 1993.

[2] H. J. Chao, Y.-R. Jenq, X. Guo, and C. H. Lam, “Design of packet-fair
queuing schedulers using a RAM-based searching engine,” IEEE J. Sel.

Areas Commun., vol. 17, no. 6, 1999.
[3] A. Ioannou and M. G. H. Katevenis, “Pipelined heap (priority

queue) management for advanced scheduling in high-speed networks,”
IEEE/ACM Trans. Networking, vol. 15, no. 2, 2007.

[4] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown,
“Programmable packet scheduling at line rate,” in Proc. of SIG-

COMM’16, Florianopolis, Brazil, Aug. 2016.
[5] V. Shrivastav, “Fast, scalable, and programmable packet scheduler in

hardware,” in Proc. of SIGCOMM’19, Beijing, China, Aug. 2019.
[6] Z. Yu, C. Hu, J. Wu, X. Sun, V. Braverman, M. Chowdhury, Z. Liu,

and X. Jin, “Programmable packet scheduling with a single queue,” in
Proc. SIGCOMM’21, Virtual Event, Aug. 2021.

[7] N. K. Sharma, C. Zhao, M. Liu, P. G. Kannan, C. Kim, A. Krishna-
murthy, and A. Sivaraman, “Programmable calendar queues for high-
speed packet scheduling,” in Proc. of NSDI’20, Santa Clara, CA, USA,
Feb. 2020.

[8] A. G. Alcoz, A. Dietmüller, and L. Vanbever, “SP-PIFO: Approximating
push-in first-out behaviors using strict-priority queues,” in Proc. of

NSDI’20, Santa Clara, CA, USA, Feb. 2020.
[9] N. K. Sharma, M. Liu, K. Atreya, A. Krishnamurthy, and A. Sivaraman,

“Approximating fair queueing on reconfigurable switches,” in Proc. of

NSDI’18, Renton, WA, USA, Apr. 2018.
[10] P. Gao, A. Dalleggio, Y. Xu, and H. J. Chao, “Gearbox: A hierarchical

packet scheduler for approximate weighted fair queuing,” in Proc. of

NSDI’22, Renton, WA, USA, Apr. 2022.
[11] “Intel tofino series,” accessed on Nov. 30, 2022. [Online]. Avail-

able: https://intel.com/content/www/us/en/products/details/network-
io/programmable-ethernet-switch/tofino-series.html

[12] “P416 portable switch architecture (psa),” The P4.org Architecture
Working Group, Tech. Rep., 2021.

[13] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of
a fair queueing algorithm,” in Proc. of SIGCOMM’89, Austin, Texas,
USA, Sep. 1989.

[14] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: Minimal near-optimal datacenter transport,”
in Proc. of SIGCOMM’13, Hong Kong, China, Aug. 2013.

[15] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
agnostic flow scheduling for commodity data centers,” in Proc. of

NSDI’15, Oakland, CA, USA, May 2015.

[16] V. Dukic, S. A. Jyothi, B. Karlas, M. Owaida, C. Zhang, and A. Singla,
“Is advance knowledge of flow sizes a plausible assumption?” in Proc.

of NSDI’19, Boston, MA, USA, Feb. 2015.

[17] P. Goyal, H. M. Vin, and H. Cheng, “Start-time fair queueing: A
scheduling algorithm for integrated services packet switching networks,”
IEEE/ACM Trans. Networking, vol. 5, no. 5, 1997.

[18] L. E. Schrage and L. W. Miller, “The queue M/G/1 with the shortest
remaining processing time discipline,” Operations Research, vol. 14,
no. 4, 1997.

[19] Z. Wang, J. Ye, D. Lin, Y. Chen, and J. C. S. Lui, “Approximate and
deployable shortest remaining processing time scheduler,” IEEE/ACM

Trans. Networking, vol. 30, no. 3, 2022.

[20] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, 1973.

[21] P. McKenney, “Stochastic fairness queueing,” in Proc. of IEEE INFO-

COM’90, San Francisco, CA, USA, Jun. 1990.

[22] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Trans. Networking, vol. 4, no. 3, 1996.

[23] J. Liu, J. Huang, Z. Li, Y. Li, J. Wang, and T. He, “Achieving per-flow
fairness and high utilization with limited priority queues in data center,”
IEEE/ACM Trans. Networking, vol. 30, no. 5, 2022.

[24] R. Mahajan, S. Floyd, and D. Wetherall, “Controlling highbandwidth
flows at the congested router,” in Proc. of ICNP’01, Riverside, CA,
USA, Nov. 2001.

[25] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Approximate fairness
through differential dropping,” SIGCOMM CCR, vol. 33, no. 2, 2003.

[26] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair queueing: a
scalable architecture to approximate fair bandwidth allocations in high-
speed networks,” IEEE/ACM Trans. Networking, vol. 11, no. 1, 2003.

[27] Z. Yu, J. Wu, V. Braverman, I. Stoica, and X. Jin, “Twenty years after:
Hierarchical core-stateless fair queueing,” in Proc. of NSDI’21, Boston,
MA, USA, Apr. 2021.

[28] R. MacDavid, X. Chen, and J. Rexford, “Scalable real-time bandwidth
fairness in switches,” IEEE/ACM Trans. Networking, 2003, early access.

[29] L. Yu, J. Sonchack, and V. Liu, “Cebinae: Scalable in-network fairness
augmentation,” in Proc. of SIGCOMM’22, Amsterdam, Netherlands,
Aug. 2022.

[30] B. Stephens, A. Singhvi, A. Akella, and M. Swift, “Titan: Fair packet
scheduling for commodity multiqueue NICs,” in Proc. of ATC’17, Santa
Clara, CA, USA, Jul. 2017.

[31] B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and efficient nic
packet scheduling,” in Proc. of NSDI’19, Boston, MA, USA, Feb. 2019.

[32] A. Saeed, Y. Zhao, N. Dukkipati, E. Zegura, M. Ammar, K. Harras, and
A. Vahdat, “Eiffel: Efficient and flexible software packet scheduling,” in
Proc. of NSDI’19, Boston, MA, USA, Feb. 2019.

[33] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing web
latency: the virtue of gentle aggression,” in Proc. of SIGCOMM’13,
Hong Kong, China, Aug. 2013.

[34] “Netbench,” accessed on Feb. 20, 2023. [Online]. Available:
https://github.com/ndal-eth/

[35] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla,
“Beyond fat-trees without antennae, mirrors, and disco-balls,” in Proc.

SIGCOMM’17, Los Angeles, CA, USA, Aug. 2017.

[36] “iperf3,” accessed on Feb. 20, 2023. [Online]. Available: https://iperf.fr/

[37] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno
modification to TCP’s fast recovery algorithm,” 2004, rfc 6582.

[38] “tc (Linux),” accessed on Feb. 20, 2022. [Online]. Available:
https://en.wikipedia.org/wiki/Tc (Linux)

[39] D. Leith and R. Shorten, “H-TCP: TCP congestion control for high
bandwidth-delay product paths,” 2005, internet draft draft-leith-tcp-htcp-
00.txt.

[40] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffenegger,
“CUBIC for fast long-distance networks,” 2018, rfc 8312.

[41] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks,” in Proc. INFOCOM’04, Hong
Kong, China, Mar. 2004.

[42] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in
Proc. of SIGCOMM’10, New Delhi, India, Aug. 2010.

absol
附注
URL: https://datatracker.ietf.org/doc/pdf/draft-leith-tcp-htcp-00.html

15

Wei Chen received the bachelor’s degree in com-
puter science from University of Science and Tech-
nology of China (USTC), Hefei, China, in 2020.
He is currently pursuing the Ph.D. degree with
the School of Computer Science and Technology,
USTC. His research interests include programmable
networks and network traffic scheduling.

Ye Tian received the bachelor’s degree in electronic
engineering and the master’s degree in computer
science from University of Science and Technol-
ogy of China (USTC), Hefei, China, in 2001 and
2004, respectively, and the Ph.D. degree from the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong,
China, in 2007. He joined USTC in 2008 and is
currently an Associate Professor with the School
of Computer Science and Technology, USTC. His
research interests include programmable networks,

network traffic scheduling, and network measurement. He has published over
80 papers and co-authored a research monograph published by Springer. He is
the winner of the Wilkes Best Paper Award of Oxford The Computer Journal
in 2016. He is a member of the IEEE.

Xin Yu received the bachelor’s degree in computer
science from University of Science and Technology
of China (USTC), Hefei, China, in 2021. He is
currently working toward the master’s degree with
the School of Computer Science and Technology,
USTC. His research interest is focused on network
traffic scheduling.

Bowen Zheng received the bachelor’s degree in
software engineering from University of Electronic
Science and Technology of China, Chengdu, China,
in 2022. He is currently pursuing the master’s degree
with the School of Computer Science and Tech-
nology, USTC. His research interest is focused on
programmable networks.

Xinming Zhang received the BE and ME degrees
in electrical engineering from China University of
Mining and Technology, Xuzhou, China, in 1985
and 1988, respectively, and the PhD degree in com-
puter science and technology from the University of
Science and Technology of China (USTC), Hefei,
China, in 2001. Since 2002, he has been with the
faculty of USTC, where he is currently a Professor
with the School of Computer Science and Technol-
ogy. From September 2005 to August 2006, he was a
visiting Professor with the Department of Electrical

Engineering and Computer Science, Korea Advanced Institute of Science and
Technology, Daejeon, Korea. His research interest includes wireless networks,
deep learning, and intelligent transportation. He has published more than 100
papers. He won the second prize of Science and Technology Award of Anhui
Province of China in Natural Sciences in 2017. He won the awards of Top
reviewers (1%) in Computer Science & Cross Field by Publons in 2019. He
is a senior member of the IEEE.

