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Abstract. Understanding device pair’s contacts is essential in pocket
switched networks (PSN). However, most of the studies on this issue
are focused on the empirical distribution aggregating inter-contact times
from all the device pairs, and seeking to find common characteristics of
their contact processes. In this paper, we present an insightful analysis on
both the aggregated and the pair-wise inter-contact times obtained from
three real-world datasets. We find that device pairs are heterogeneous in
many aspects, including not only their contact frequencies, but also their
contact patterns. More surprisingly, even for those frequently contacting
pairs, their behaviors are diverse, and could not be described with a
universal model. Finally, implication of the observed heterogeneity on
PSN’s message forwarding algorithm is discussed, and we show that with
the awareness of the device pair’s heterogeneous contact pattern, the
network’s message relaying service could be improved considerably.

Key words: Delay tolerant networks, pocket switched networks, inter-
contact times, message forwarding algorithm

1 Introduction

With the advance of wireless technologies and prevalent use of portable wireless
devices, in recent years, the idea of pocket switched network (PSN), which is a
special case of the delay tolerant network (DTN), has been proposed (e.g. the
Haggle project [1]). In PSN, portable wireless devices such as cell phones and
PDAs carried by human beings form an ad-hoc network. In such a network,
contacting among devices is the only opportunity for communication, therefore,
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it is highly important for people to understand the device pair’s contact pat-
tern, especially the intervals between their consecutive contacts (referred to as
inter-contact times). Previous studies [2][3] on this topic are mainly based on
the empirical distribution aggregating inter-contact times of all the device pairs,
with an assumption that the aggregated distribution could represent individ-
ual pair’s contact process. However, [4] suggests that device pairs are in fact
heterogeneous regarding their contacting behavior. In this work, we study both
the aggregated inter-contact time distribution in percentiles and the individual
pair’s distribution.Three real-world datasets with mobility and contact informa-
tion of large numbers of portable wireless devices are exploited to identify and
understand the heterogeneity of device pairs’ contact processes. Finally, we dis-
cuss the implication of the observed heterogeneity on the design of the PSN’s
message forwarding algorithms.

The remainder part of this paper is organized as follows: in Section 2, re-
lated works are surveyed and their relationships with our work are discussed;
in Section 3, real-world datasets are analyzed, in particular, the aggregated dis-
tributions of the device pairs’ inter-contact times are studied in percentiles; we
investigate and classify frequently contacting pairs, and give some interpreta-
tions for the heterogeneity observed in Section 4; in Section 5, the implication
of our observation is discussed; finally in Section 6, we conclude this paper and
discuss the future work.

2 Related Work

Our work focuses on studying the contact pattern of device pairs in PSN net-
works, and we are especially interested in pair’s inter-contact time between con-
secutive contacts. Previous studies on this topic are mostly based on the empir-
ical distribution aggregating the inter-contact times from all the device pairs.
In [2], the authors study aggregated distributions from a number of real-world
datasets, and find that the inter-contact time follows power law and could be
modeled with a truncated Pareto distribution. This finding contradicts the as-
sumption in many works (e.g. [5]) that a pair’s contact process is Poisson with
exponential inter-contact times. In [3], it is reported that a dichotomy exists in
the aggregated inter-contact time distribution: the distribution is power law in
certain range, but it has an exponential tail. A random walk model with infi-
nite sites is used to explain the observed power-law inter-contact time. While in
[6], a random walk model in an unbound domain is applied for the same pur-
pose. This work differs with these works in that we only study the inter-contact
time distribution of an individual pair or the aggregated distribution of pairs
in a small group, and we interpret our findings with well-founded theories and
widely recognized observations.

Only a few works address pair-wise inter-contact times. In [7], the authors
use the Dartmouth dataset for analyzing device pair’s contact process, and draw
a conclusion that for majority of the device pairs, their inter-contact times are
exponentially distributed. In [4], it is shown that the mean inter-contact time
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is heterogeneous, and the inter-contact times for most of the pairs could be
described with a lognormal distribution. Our work differs from these previous
works in that we classify the pairs based on their contact patterns and only
consider the distributions backed up with theoretical or experimental supports
for describing their inter-contact times, and we also discuss the implication of
our observations on the design of PSN’s message forwarding algorithm.

3 A First Look at the Contact Process

For our study, we select three datasets containing long-time mobility and contact
information of a large number of wireless devices, which are the dataset from the
MIT Reality Mining project [8], the Dartmouth dataset [9], and the dataset from
UCSD Wireless Topology Discover project [10]. For the remainder part of this
paper, we simply refer to them as Reality, Dartmouth, and UCSD respectively.
Among the three datasets, devices contacts were recorded in Reality, while for
Dartmouth and UCSD, we considered a contact between two devices happened if
they were associated with a same AP simultaneously, as assumed in the previous
works[2][3].

Table 1. Pairs and contacts in different percentiles

Percentile 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Reality 26.77% 23.88% 15.98% 11.01% 7.36% 5.18% 3.57% 2.93% 2.06% 1.26%
Dartmouth 0.79% 15.30% 32.86% 21.70% 12.78% 6.71% 4.72% 2.67% 1.61% 0.84%
UCSD 3.83% 23.90% 22.40% 15.25% 9.31% 7.64% 4.55% 4.62% 4.87% 3.63%

By investigating the three datasets, we are trying to answer the question that
whether or not the contact processes for all the device pairs could be viewed ho-
mogenous, and if not, in what aspects the heterogeneity exists. For this purpose
we study the aggregated distribution of the pairs’ inter-contact times. However,
unlike previous works (e.g., [2] and [3]), we do not take all the device pairs into
consideration, but group them according to their contact frequencies and study
inter-contact times within each group. Concretely, we sort all the pairs in an
ascending order regarding their mean inter-contact times, and group the pairs in
each ten percentiles. For example, by denoting the percentile group of “10-20”,
we mean the pairs with their mean inter-contact times between the first 10 and
the first 20 percents among all the pairs in this order.

We list in Table 1 the percentage of the contacts made by each group for
the three datasets. One can see that in these datasets, some percentile groups
make much more contacts than other groups. Moreover, it is observed that the
contact number is decreasing very sharply in groups with lower percentiles for
each dataset, but the decreasing becomes smooth in higher percentiles. This
observation indicates that we could roughly categorize these device pairs into
frequently contacting pairs and infrequently contacting ones, and majority of
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the contacts are made by the former. For example, pairs in the three most
contacting percentile groups contribute 66.63%, 69.86%, and 61.55% of the total
contacts in Reality, Dartmouth, and UCSD respectively.
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Fig. 1. Aggregated distributions of inter-contact times for pairs in 0-10, 10-20, 20-30,
30-40, and 40-50 percentiles in (a) Reality, (b) Dartmouth, and (c) UCSD; aggregated
distributions of inter-contact times for pairs in 50-60, 60-70, 70-80, 80-90, and 90-100
percentiles in (d) Reality, (e) Dartmouth, and (f) UCSD.

In Figure 1, we plot the aggregated inter-contact time distribution in com-
plementary cumulative distribution function (CCDF) for pairs in each percentile
group of the three datasets. Please note that for percentiles between 0-50, we use
the log-log scale, as in Figure 1(a-c), while for percentiles between 50-100, we
use the linear-log scale, as in Figure 1(d-f). We also plot the aggregated distribu-
tion of all the pairs for comparison. From these figures, we find that for pairs in
different percentiles, they differ not only in their contact frequencies, but also in
the shape of the empirical distributions of their inter-contact times: From Fig-
ure 1(d-f) one could see that the distribution curves are approximated straight
lines in the linear-log scale, suggesting that the inter-contact times are exponen-
tial. On the other hand, Figure 1(a-c) show that the aggregated distributions of
the inter-contact times have near straight-line curves within the delays shorter
than one day under the log-log scale, indicating that the distributions are more
power-law like. The observation of the distribution shapes suggests that pairs in
different percentile groups may have heterogeneous contact patterns in addition
to their contact frequencies.

Summarizing our findings from Table 1 and Figure 1, we can conclude that
the device pairs in all the three datasets are highly heterogeneous in at least two
aspects: first, we find that contact frequencies of the device pairs are heteroge-
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neous, for example, Table 1 shows that more than 60% of the contacts are made
by only 30% of the most contacting device pairs; more importantly, we find that
pairs have different contact patterns, where the inter-contact times for pairs in
lower percentiles are more power-law like, while the inter-contact times for pairs
in higher percentiles are more exponential. The observed heterogeneity suggests
that it may be inappropriate to use a universal contact process model based
on the aggregated inter-contact time distribution for interpreting all the pairs’
behaviors. On the other hand, as we have seen that a small part of frequently
contacting pairs contribute majority of the contacts, it is highly important for
people to understand these pairs. With focus narrowed on these frequently con-
tacting pairs, a natural question arises as whether or not these pairs’ behaviors
are same. We will answer this question in the next section.

4 Contact Process of Frequently Contacting Pair

4.1 Statistical analysis

In this section, we focus on the frequently contacting device pairs and try to
understand their behaviors. For the first step of our study, we filter out those
infrequently contacting pairs with a threshold. That is, we only consider the
pairs with their contacts more than the threshold. We then use the Cramer-
Smirnov-Von-Mises test[11] to study the frequently contacting pairs filtered out.
The Cramer-Smirnov-Von-Mises test is a statistical method to testify whether
or not the sampled data is compatible with a given distribution function. In our
test, the sampled data is the inter-contact times of the pair under study, and we
consider the following candidate distribution functions.

– Exponential distribution: For this candidate, we use a CDF function as

F (x) = 1− e−λijx, x ≥ 0

where λij is a constant contact rate between the two devices of the pair.
– Pareto distribution: For this candidate, we use a CDF function as

F (x) = 1−
(

x

βij

)−αij

, x ≥ βij

where βij is the minimum inter-contact time observed for this pair and αij

is the slope rate of the empirical CDF curve in the log-log scale.

For obtaining the parameter λij of the empirical exponential distribution,
we simply let λij be the inversion of the mean inter-contact time. While for the
parameters of the empirical Pareto distribution, we use the maximum likelihood
estimator of αij [12] as

α̂ =
n∑n

i=1 ln
xi

β

where n is the number of the samples and xi is the ith data sample.
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Fig. 2. Histograms of slope rates for Type 1 pairs in (a) Reality, (b) Dartmouth, and
(c) UCSD

The reason that we choose the exponential and Pareto distributions is that
they are either supported by well-known theory or widely observed in similar ac-
tivities. For the exponential distribution, it is well known that if a node’s location
process is independent, stationary and ergodic, the long-term contact process be-
tween any two nodes is Poisson[5]. Moreover, it is proved that the exponential
inter-contact time could be generated with popular mobility models such as the
Random Way Point model and the Random Direction model [13]. On the other
hand, recent studies show that for many human activities, the inter-event time is
heavy-tailed and follows a Pareto distribution. These activities include compos-
ing emails[14], visiting websites[15], responding surface mails[16], and performing
financial transactions[17]. Although human contacting is different from these ac-
tivities, however, it is highly possible that there are some similarities, therefore
we also consider the Pareto distribution as our candidate distribution function.

The Cramer-Smirnov-Von-Mises test is a statistical method which compares
the sampled data with the hypothetic candidate distribution, and based on a
rejection level α, it returns a result of positive or negative on whether or not the
sampled data is compatible with the candidate distribution. Here the rejection
level α is the probability of the test to make false positive errors. As we have two
candidate distributions, there are two tests for each pair, which are referred to
as the exponential test and the Pareto test respectively, and for each test we will
have two results. We categorize the pairs into four types based on their testing
results:

– Type 1: pairs passing only the Pareto test;
– Type 2: pairs passing only the exponential test;
– Type 3: pairs passing both tests;
– Type 4: pairs passing none of the tests.

As we are trying to categorize pairs’ behavior patterns, the rejection level α
must be selected carefully: if α is set too large, the tests are very loose, and many
pairs will pass both tests, suggesting that we are actually failed to differentiate
them; if α is too small, the tests are very selective, and we may find many pairs
failing to pass any test just because of the raw nature of the data samples. In our
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study we choose α = 0.01 for Reality and Dartmouth, and α = 0.05 for UCSD.
We also change the threshold of the contact number for each dataset for filtering
out infrequently contacting pairs, and show the test results in percentages of the
pairs falling in each type for the three datasets in Figure2. From the figure, one
can see that for each dataset, when the threshold is small, there are considerable
numbers of pairs falling in all the four types; however, when the threshold gets
increased, Type 3 pairs are filtered out rapidly. Recall that Type 3 pairs are the
pairs passing both tests, it is reasonable to consider these pairs as infrequently
contacting pairs, as they pass both tests simply because there is no sufficient
sampled data for the tests.

We then focus on the other three types, i.e., Type 1, 2, and 4. From the figure
one can see that each type has a persistent portion under test, and the pairs in
the three types are not easily filtered out by increasing the threshold. Based on
this observation, we could consider the Type 1, 2, and 4 pairs as representative
frequently contacting pairs. In other words, we could categorize the frequently
contacting device pairs into the three types, i.e. pairs with exponential inter-
contact time, pairs with Pareto inter-contact time, and pairs not belonging to
the above two.
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Fig. 3. CDFs of the contact rates for Type 1, 2, and 4 pairs in (a) Reality, (b) Dart-
mouth, and (c) UCSD

To have a further understanding of the Type 1, 2, and 4 pairs, we also estimate
a pair’s contact rate by averaging its inter-contact times and taking the inversion.
The distribution of the contact rates for each type of all the three datasets
are plotted in Figure 3. From the figure one can see that although pairs of
all the three types are considered as frequently contacting, there are still some
differences: Type 1 and Type 4 pairs contact obviously more frequently than
Type 2 pairs. We also study the empirical Pareto distribution’s slope rate for
Type 1 pairs in the three datasets, and find that all the slope rates are smaller
than 1 and are concentrating around 0.3 ∼ 0.5.
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4.2 Discussion and interpretation

From the above statistic test results, it is implied that there are at least two con-
tact patterns for the frequently contacting pairs, i.e. the contact pattern produc-
ing Pareto inter-contact time and the one producing exponential time. As shown
in [13], exponential inter-contact time could be caused by device’s independent,
stationary, and ergodic location process, therefore we mark these contacts as
“unintended”, as this kind of contact is a byproduct of a node’s independent
visiting to some locations. For example, neighbors at home or working place
may often make “unintended” contacts, but people do not make these contacts
on purpose. For this reason, we refer to the relationship between the two parties
of a pair producing exponential inter-contact time as “familiar strangers”.

While for the Pareto inter-contact time, we believe they are caused by similar
reasons as the Pareto inter-event time observed in many human activities, such as
the task priority[14] and the human interest[18]. In other words, we believe that
the Pareto inter-contact times could also be explained with objective reasons of
human beings, as human has the interest or urgency to perform the contact on
purpose. Therefore we could mark the contacts with Pareto inter-contact time as
“intended” contacts and could refer to the relationship between the two parties
of such pair as “friends”. Finally, for Type 4 pairs, we explain that these pairs are
both “familiar strangers” and “friends”, and their contacts are a combination of
the two types of the contacts, but none of them dominates. Finally, we observe
that Type 1 pairs contact more frequently than Type 2 pairs, which conforms
to the intuition that close friends meet more often than familiar strangers.

5 Implication on PSN Message Forwarding

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

ρ

S
uc

ce
ss

 r
at

io

0

5

10

15

D
el

ay
 (

da
ys

)

Delay
Success ratio

Fig. 4. Success ratio and delay for PSN message forwarding

From the statistical studies in the above section, we find that frequently
contacting device pairs may have their inter-contact times following exponential
or Pareto distribution. It is well known that for exponential inter-contact times,
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a pair’s contacting frequency indicates its expected next contacting time, due to
the memoryless property of the exponential distribution. However, for the Pareto
inter-contact times, as the distribution has memory, a device pair that has just
contacted is likely to make a contact in near future, while a pair that contacted
long ago is not likely to make a contact very soon. Therefore, to predict how
soon a pair of devices may contact, we should consider the last recent contact
age for the Pareto inter-contacting device pairs as well as the contact frequency
for the exponential inter-contacting one.

To testify our point, we simulate a PSN network using the UCSD dataset,
and examine the success ratios and delivery delays of the network’s message
delivery jobs when nodes apply different forwarding strategies. Figure 4 shows
that when both the node pair’s contact frequency and the last contact age are
considered (corresponding to 0 < ρ < 0 in the figure), performance of PSN’s
message delivery job is better than the cases when only the contact frequency
(corresponding to ρ = 0 in the figure) or the last contact age (corresponding
to ρ = 1 in the figure) is concerned. Please note that when ρ = 0, it is exactly
the “FRESH” algorithm proposed in [19], and for ρ = 0, it is the “Greedy”
algorithm studied in [20].

Moreover, as we have categorize the node pairs into “familiar strangers” and
“friends”, and classify the contact processes into “intended” and “unintended”,
if the relationship of the node pair, or even more, the type of the contact process
is available, PSN’s message forwarding algorithms should make much more accu-
rate predictions in selecting the next hop for message forwarding. Unfortunately,
although we have statistically identified the types for some node pairs and con-
tact processes of the datasets studied in this work, precisely knowing the exact
type of each node pair and contact process is still infeasible using any existing
datasets, therefore we are unable to examine the exact benefits brought by the
awareness of the node pair relationship and contact process type experimentally.

6 Conclusion and Future Work

In this paper, we study three datasets containing contact and mobility informa-
tion of wireless devices, for understanding the device contact process under the
context of PSN networks. We first group pairs into different percentiles based on
their contact frequencies and study their aggregated inter-contact time distri-
butions. We find that pairs are heterogeneous in many aspects, including their
contact frequencies as well as their contact patterns. We then study the pair-wise
inter-contact times, and find that even for the frequently contacting pairs, they
are behaving diversely. We categorize the frequently contacting pairs into three
types by using the Cramer-Smirnov-Von-Mises test, and apply different theo-
ries for interpreting their different contact patterns. Furthermore, we discuss the
implication of our observation on the contact processes for the PSN message
forwarding algorithm, and show that with the awareness of the heterogeneity,
better performance on PSN’s message delivery should be expected.
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Our future work is in two directions. First, more insightful studies are re-
quired to meet the gaps between the empirical observation and the theoretical
model, such as explaining the Type 4 pairs. More importantly, we need to work
on further exploiting the inferred contact pattern for solving critical problems,
such as routing, security, resource management, and quality of service, on PSN
networks. For example, “friends” type node pairs should be considered more
reliable in some mission critical applications.
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