CLIFFORD DEFORMATIONS OF KOSZUL FROBENIUS ALGEBRAS AND NONCOMMUTATIVE QUADRICS

JI-WEI HE AND YU YE

ABSTRACT. Let E be a Koszul Frobenius algebra. A Clifford deformation of E is a finite dimensional \mathbb{Z}_2 -graded algebra $E(\theta)$, which corresponds to a noncommutative quadric hypersurface $E^!/(z)$, for some central regular element $z \in E_2^!$. It turns out that the bounded derived category $D^b(\operatorname{gr}_{\mathbb{Z}_2} E(\theta))$ is equivalent to the stable category of the maximal Cohen-Macaulay modules over $E^!/(z)$ provided that $E^!$ is noetherian. As a consequence, $E^!/(z)$ is a noncommutative isolated singularity if and only if the corresponding Clifford deformation $E(\theta)$ is a semisimple \mathbb{Z}_2 -graded algebra. The preceding equivalence of triangulated categories also indicates that Clifford deformations of trivial extensions of a Koszul Frobenius algebra are related to the Knörrer Periodicity Theorem for quadric hypersurfaces. As an application, we recover Knörrer Periodicity Theorem without using of matrix factorizations.

0. Introduction

Let S be a Koszul Artin-Schelter regular algebra, and let $z \in S_2$ be a central regular element of S. The quotient algebra A = S/(z) is a Koszul Artin-Schelter Gorenstein algebra, which is usually called a quadric hypersurface algebra. Smith and Van den Bergh introduced in [SvdB] a finite dimension algebra C(A) associated to the hypersurface algebra A, which determines the representations of the singularities of A. In particular, if ProjA is the noncommutative projective scheme (cf. [AZ]), then the simplicity of C(A) implies the smoothness of ProjA (cf. [SvdB, Proposition 5.2]).

Let $E = S^!$ be the quadratic dual algebra of S. Then E is a Koszul Frobenius algebra. The dimension of C(A) is equal to the one of the even degree part of E (cf. [SvdB, Lemma 5.1]). As the key observation of this paper, we notice that C(A) may be obtained from some Poincaré-Birkhoff-Witt (PBW) deformation of E.

Write the above Koszul Frobenius algebra E as E = T(V)/(R) for some finite dimensional vector space V over a field \mathbbm{k} and $R \subseteq V \otimes V$. Let $\theta \colon R \to \mathbbm{k}$ be a linear map. If $(\theta \otimes 1 - 1 \otimes \theta)(V \otimes R \cap R \otimes V) = 0$, then θ defines a PBW deformation $E(\theta)$ of E (cf. [PP, Proposition 1.1, Chapter 5]). We call θ a Clifford map and $E(\theta)$ a Clifford deformation of E (more precisely, see Definition 2.1). In particular, if E is the exterior algebra generated by V, then the classical Clifford algebras are obtained from suitable Clifford maps in our sense (cf. Example 2.3).

For every Clifford map θ , the algebra $E(\theta)$ has a natural \mathbb{Z}_2 -graded structure. Note that every Clifford map θ corresponds to a central element $z \in S_2$ (cf. Remark 2.10). It turns out that the degree 0 part $E(\theta)_0$ coincides with the preceding finite dimensional algebra C(A) provided z is regular (cf. Proposition 4.3). Hence the structure of $E(\theta)$ will determine the representations of singularities of A.

Let $\operatorname{gr}_{\mathbb{Z}_2} E(\theta)$ be the category of finite dimensional right \mathbb{Z}_2 -graded $E(\theta)$ -modules. Let $\operatorname{\underline{mcm}} A$ be the stable category of graded maximal Cohen-Macaulay modules over A. The main observation of the paper is the following result (cf. Theorem 5.1(iii)).

Theorem 0.1. Let S be a Koszul Artin-Schelter regular algebra and let $z \in S_2$ be a central regular element. Set A = S/(z) and let $E = S^!$ be the quadratic dual algebra of S. Let θ_z be the Clifford map corresponding to z. Then there is an equivalence of triangulated categories

$$D^b(\operatorname{gr}_{\mathbb{Z}_2} E(\theta_z)) \cong \underline{\operatorname{mcm}} A.$$

Let gr A be the category of finitely generated right graded A-modules. Let tor A be the category of finite dimensional right graded A-modules. Let $\operatorname{qgr} A = \operatorname{gr} A/\operatorname{tor} A$ be the quotient category, where $\operatorname{gr} A$ is the category of finitely generated right graded A-modules, and tor A is the full subcategory of $\operatorname{gr} A$ consisting of finite dimensional modules. If the abelian category $\operatorname{qgr} A$ has finite global dimension, then A is called a noncommutative isolated singularity (cf. [Ue]). As a consequence of the above theorem, we have the following result (cf. Theorem 6.3).

Theorem 0.2. Retain the notation as Theorem 0.1, and assume $gldim(S) \ge 2$. A is a noncommutative isolated singularity if and only if $E(\theta)$ is a semisimple \mathbb{Z}_2 -graded algebra.

Note that the sufficiency part of the above theorem is a consequence of [SvdB, Proposition 5.2(2)]. Moreover, if S is a Koszul Artin-Schelter regular algebra with Hilbert series $(1-t)^{-4}$, then a similar result was proved in [SvdB, Theorem 5.6]. In this case, the corresponding algebra C(A) is of dimension 8, and the proof of [SvdB, Theorem 5.6] depends on a detailed analysis of the representations of C(A). We mention that the method we use to prove Theorem 0.2 is totally different from that of [SvdB, Theorem 5.6], and our method works for general Koszul Artin-Schelter regular algebras.

The equivalence in Theorem 0.1 provides a new explanation of Knörrer's Periodicity Theorem (cf. [K, Theorem 3.1], and noncommutative case [CKMW, Theorem 1.7]). The method used in [K] or in [CKMW] are matrix factorizations (more generally, see [MU]). In our observation, Knörrer's Periodicity Theorem for quadric hypersurfaces may be explained by Clifford deformations of trivial extensions of Koszul Frobenius algebras (cf. Section 7).

Let $\widetilde{E}:=E\oplus_{\epsilon}E(-1)$ be the trivial extension of E (precisely, see Section 7). Then \widetilde{E} is also a Koszul Frobenius algebra. A Clifford map θ of E induces a Clifford map $\widetilde{\theta}$ of \widetilde{E} . Iterate the trivial extensions, we obtain a Koszul algebra $\widetilde{\widetilde{E}}$ and a Clifford map $\widetilde{\widetilde{\theta}}$ of $\widetilde{\widetilde{E}}$. Assume that the base field $\mathbb{k}=\mathbb{C}$. Then we have the following periodic property (cf. Proposition 7.9).

Proposition 0.3. There is an equivalence of abelian categories $\operatorname{gr}_{\mathbb{Z}_2} \widetilde{\widetilde{E}}(\widetilde{\widetilde{\theta}}) \cong \operatorname{gr}_{\mathbb{Z}_2} E(\theta)$.

Retain the notation of Theorem 0.1, and assume \mathbb{R} is the field of complex numbers. A double branched cover of A is defined to be the Artin-Schelter Gorenstein algebra $A^{\#} = S[v]/(z+v^2)$ and the second double branched cover of A is defined to be the Artin-Schelter Gorenstein algebra $A^{\#\#} = S[v_1, v_2]/(z+v_1^2+v_2^2)$ (cf. [LW, Chapter 8], and [CKMW]). The above periodic property of Clifford deformations of iterate trivial extensions of Koszul Frobenius algebras implies the following Knörrer Periodicity Theorem for noncommutative quadric hypersurfaces (cf. Theorems 8.1 and 8.2).

Theorem 0.4. Retain the notation as above. Assume that gldim $A \ge 2$. Then

- (i) A is a noncommutative isolated singularity if and only if so is $A^{\#}$.
- (ii) there is an equivalence of triangulated categories $mcmA \cong mcmA^{\#\#}$.

In this paper, we require that $z \in S_2$ is a center regular element rather than a normal regular element of S. In fact, if z is a normal regular element of S, as pointed out in [SvdB], we may replace S by a suitable Zhang twist S^{σ} , in which z is a central element (cf. [Zh]).

1. Preliminaries

Let k be a field of characteristic zero. A \mathbb{Z} -graded algebra $A = \bigoplus_{n \in \mathbb{Z}} A_n$ is called a *connected* graded algebra if $A_n = 0$ for n < 0 and $A_0 = k$. Let $\operatorname{Gr} A$ denote the category whose objects are right graded A-modules, and whose morphisms are right A-module morphisms which preserve the gradings of modules. Let $\operatorname{gr} A$ denote the full subcategory of $\operatorname{Gr} A$ consisting of finitely generated graded A-modules. For a right graded A-module M and an integer l, we write M(l) for the right graded A-module whose ith part is $M(l)_i = M_{i+l}$.

For right graded A-modules M and N, denote $\underline{\operatorname{Hom}}_A(M,N)=\bigoplus_{i\in\mathbb{Z}}\operatorname{Hom}_{\operatorname{Gr} A}(M,N(i))$. Then $\underline{\operatorname{Hom}}_A(M,N)$ is a \mathbb{Z} -graded vector space. Write $\underline{\operatorname{Ext}}_A^i$ for the ith derived functor of $\underline{\operatorname{Hom}}_A$. Hence $\underline{\operatorname{Ext}}_A^i(M,N)$ is also a \mathbb{Z} -graded vector space for each $i\geq 0$. We mention that if A is Noetherian and M is finitely generated, then $\underline{\operatorname{Ext}}_A^i(M,N)\cong\operatorname{Ext}_A^i(M,N)$, the usual extension group in the category of right A-modules.

Definition 1.1. [AS] A noetherian connected graded algebra A is called an Artin-Schelter Goren-stein algebra of injective dimension d if

- (i) A has finite injective dimension injdim $_AA = \operatorname{injdim} A_A = d < \infty$,
- (ii) $\underline{\mathrm{Ext}}_{A}^{i}(\mathbb{k}, A) = 0$ for $i \neq d$, and $\underline{\mathrm{Ext}}_{A}^{d}(\mathbb{k}, A) \cong \mathbb{k}(l)$,
- (iii) the left version of (ii) holds.

The number l is called the *Gorenstein parameter*. If further, A has finite global dimension, then A is called an Artin-Schelter regular algebra.

We need the following lemma, which follows from the Rees-Lemma [Le, Proposition 3.4(b)], or the Base-change for the spectral sequence [We, Exercise 5.6.3].

Lemma 1.2. Let A be an Artin-Schelter regular algebra of global dimension d with Gorenstein parameter l. Let $z \in A_k$ be a central regular element of A. Then A/Az is an Artin-Schelter Gorenstein algebra of injective dimension d-1 with Gorenstein parameter l-k.

A locally finite connected graded algebra A is called a Koszul algebra (cf. [P]) if the trivial module \mathbb{k}_A has a free resolution

$$\cdots \longrightarrow P^n \longrightarrow \cdots \longrightarrow P^1 \longrightarrow P^0 \longrightarrow \mathbb{k} \longrightarrow 0.$$

where P^n is a graded free module generated in degree n for each $n \geq 0$. Locally finite means that each A_i is of finite dimension. A Koszul algebra is a quadratic algebra in sense that $A \cong T(V)/(R)$, where V is a finite dimensional vector space and $R \subseteq V \otimes V$. For a Koszul algebra A, the quadratic

dual of A is the quadratic algebra $A^! = T(V^*)/(R^{\perp})$, where V^* is the dual vector space and $R^{\perp} \subseteq V^* \otimes V^*$ is the orthogonal complement of R. Note that $A^!$ is also a Koszul algebra.

A \mathbb{Z} -graded finite dimensional algebra E is called a graded Frobenius algebra if there is an isomorphism of right graded E-modules $E \cong E^*(l)$ for some $l \in \mathbb{Z}$, or equivalently, there is a nondegenerate associative bilinear form $\langle -, - \rangle \colon E \times E \to \mathbb{R}$ such that for homogeneous elements $a \in E_i, b \in E_j$, $\langle a, b \rangle = 0$ if $i+j \neq l$. We will freely use the following connections between graded Frobenius algebras and Koszul Artin-Schelter regular algebras.

Lemma 1.3. [Sm, Proposition 5.1] Let A be a noetherian Koszul algebra, and let A! be its quadratic dual. Then A is Artin-Schelter regular if and only if A! is a graded Frobenius algebra.

Conventions. In this paper, without otherwise statement, a graded algebra always means a Z-graded algebra.

2. Clifford deformation of Koszul Frobenius algebras

Let V be a finite dimensional vector space and $R \subseteq V \otimes V$. Suppose that E = T(V)/(R) is a Koszul Frobenius algebra.

Definition 2.1. Let $\theta: R \to \mathbb{k}$ be a linear map. If $(\theta \otimes 1 - 1 \otimes \theta)(V \otimes R \cap R \otimes V) = 0$, then we call θ a *Clifford map* of the Koszul Frobenius algebra E, and call the associative algebra

$$E(\theta) = T(V)/(r - \theta(r) : r \in R)$$

the Clifford deformation of E associated to θ .

We view T(V) as a filtered algebra with the filtration: $F_iT(V) = 0$ for i < 0, $F_iT(V) = \sum_{j=0}^{i} V^{\otimes j}$ for $i \geq 0$. The filtration on T(V) induces a filtration

$$(2.1.1) 0 \subset F_0 E(\theta) \subset F_1 E(\theta) \subset \cdots F_i E(\theta) \subset$$

on $E(\theta)$ making $E(\theta)$ a filtered algebra. Let $grE(\theta)$ be the graded algebra associated to the filtration (2.1.1). The next result is a special case of [PP, Theorem 2.1, Chapter 5].

Proposition 2.2. Let $E(\theta)$ be a Clifford deformation of E. Then $qrE(\theta) \cong E$ as graded algebras.

For later use, we define a linear transformation $\mathfrak c$ of T(V) by setting

$$\mathfrak{c}(v_1 \otimes \cdots \otimes v_n) = \sum_{i=1}^n v_i \otimes \cdots \otimes v_n \otimes v_1 \otimes \cdots \otimes v_{i-1}$$

for $n \geq 2$ and $v_1, \ldots, v_n \in V$, $\mathfrak{c}(v) = v$ for all $v \in V$, and $\mathfrak{c}(1) = 1$.

Example 2.3. Let V be a finite dimensional vector space over the field of real numbers \mathbb{R} with a basis $\{x_1,\ldots,x_n\}$. Consider the exterior algebra $E=\wedge V$. Then E=T(V)/(R), where R is the subspace of $V\otimes V$ spanned by $x_ix_j+x_jx_i$ (for simplicity, we omit the notation \otimes) for all $1\leq i,j\leq n$. Then $V\otimes R\cap R\otimes V$ admits a basis: x_i^3 $(i=1,\ldots,n)$, $\mathfrak{c}(x_i^2x_j)$ for $i\neq j$ $(i,j=1,\ldots n)$, $\mathfrak{c}(x_ix_jx_k+x_jx_ix_k)$ for pair-wise different triples (i,j,k) $(i,j,k=1,\ldots,n)$. Define a linear map $\theta:R\to \mathbb{k}$ by setting $\theta(x_i^2)=-1$ for $1\leq i\leq p$; $\theta(x_i^2)=1$ for $p+1\leq i\leq p+q$ where $p+q\leq n$; $\theta(x_i^2)=0$ for i>p+q and $\theta(x_ix_j+x_jx_i)=0$ for $i\neq j$. Then it is easy to see that θ is a

Clifford map of E, and $E(\theta)$ is a Clifford deformation of the exterior algebra $\wedge V$. In fact, $E(\theta)$ is isomorphic to the Clifford algebra $\mathbb{R}^{p,q}$ (cf. [Po, Proposition 15.5]) defined by the quadratic form $\rho(x) = x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2$.

Example 2.4. Let $V = \mathbb{k}x \oplus \mathbb{k}y$, and let E = T(V)/(R), where $R = \operatorname{span}\{x^2, y^2, xy - yx\}$. Define a map $\theta \colon R \to \mathbb{k}$ by setting $\theta(x^2) = a$, $\theta(y^2) = b$ and $\theta(xy - yx) = 0$, where a, b are arbitrary elements in \mathbb{k} . Note that $V \otimes R \cap R \otimes V = \operatorname{span}\{x^3, y^3, x^2y - xyx + yx^2, xy^2 - yxy + y^2x\} \subseteq V \otimes V \otimes V$. Then it is easy to check that $(\theta \otimes 1 - 1 \otimes \theta)(V \otimes R \cap R \otimes V) = 0$, hence θ is a Clifford map of E and $E(\theta)$ is a Clifford deformation of E.

Example 2.5. Let $V = \mathbb{k}x \oplus \mathbb{k}y$, and let $E = \wedge V$ be the exterior algebra. Then the generating relations of E are $R = \operatorname{span}\{x^2, y^2, xy + yx\}$. Define a map $\theta \colon R \to \mathbb{k}$ by setting $\theta(x^2) = a$, $\theta(y^2) = b$ and $\theta(xy + yx) = c$, where a, b, c are arbitrary elements in \mathbb{k} . By Example 2.3, we have $V \otimes R \cap R \otimes V = \operatorname{span}\{x^3, y^3, x^2y + xyx + yx^2, xy^2 + yxy + y^2x\}$. It is not hard to check that θ is a Clifford map of $\wedge V$.

Example 2.6. Let $V = \mathbb{k}x \oplus \mathbb{k}y \oplus \mathbb{k}z$, and let E = T(V)/(R), where R is the subspace of $V \otimes V$ spanned by $xz - zx, yz - zy, x^2 - y^2, z^2, xy, yx$. Then E is a Koszul Frobenius algebra. Indeed it is the quadratic dual algebra of the Artin-Schelter regular algebra of type S_2 (cf. [AS, Table 3.11, P.183]). One may check that $\dim(V \otimes R \cap R \otimes V) = 10$ and $V \otimes R \cap R \otimes V$ has the following basis

$$z^{3} = z^{3},$$

$$yxy = yxy,$$

$$xyx = xyx,$$

$$(x^{2}z - xzx) - (y^{2}z - yzy) + (zx^{2} - zy^{2}) = -(xzx - zx^{2}) + (yzy - zy^{2}) + (x^{2}z - y^{2}z),$$

$$(xyz - xzy) + zxy = -(xzy - zxy) + xyz,$$

$$(x^{3} - xy^{2}) - y^{2}x = (x^{3} - y^{2}x) - xy^{2},$$

$$(yxz - yzx) + zyx = -(yzx - zyx) + yxz,$$

$$xz^{2} - (zxz - z^{2}x) = z^{2}x + (xz^{2} - zxz),$$

$$yz^{2} - (zyz - z^{2}y) = z^{2}y + (yz^{2} - zyz),$$

$$x^{2}y + (yx^{2} - y^{3}) = yx^{2} + (x^{2}y - y^{3}),$$

where the elements on the left hand side are written as elements in $V \otimes R$, and the elements on the right hand side in $R \otimes V$. Define a map $\theta \colon R \to \mathbb{k}$ by setting $\theta(z^2) = 1$, $\theta(xy) = 1$, $\theta(yx) = 1$, $\theta(x^2 - y^2) = 1$ and $\theta(\text{others}) = 0$. It is not hard to check that θ is a Clifford map of E, and hence $E(\theta)$ is a Clifford deformation of E.

The next example shows that not every Koszul Frobenius algebra admits a nontrivial Clifford deformation.

Example 2.7. Let $V = kx \oplus ky$, and let E = T(V)/(R), where $R = \text{span}\{y^2, xy + yx, yx + x^2\}$. Then E is a Koszul Frobenius algebra, which is the quadratic dual algebra of Jordan plane (cf. [AS, Introduction]). The space $V \otimes R \cap R \otimes V$ admits a basis

$$\{y^3, xy^2 + yxy + y^2x, 2y^2x + xyx + yx^2 + yxy + x^2y, xyx + x^3 + 2y^2x + 2yx^2\}.$$

Let $\theta: R \to \mathbb{R}$ be a Clifford map defined by $\theta(y^2) = a$, $\theta(xy + yx) = b$, $\theta(ys + x^2) = c$. Then the equations $(\theta \otimes 1 - 1 \otimes \theta)(2y^2x + xyx + yx^2 + yxy + x^2y) = 0$ and $(\theta \otimes 1 - 1 \otimes \theta)(xyx + x^3 + 2y^2x + 2yx^2) = 0$ imply that a = b = c = 0.

Clifford maps of a Koszul Frobenius algebra are corresponding to the central elements of degree 2 of its quadratic dual algebra. Let E = T(V)/(R) be a Koszul Frobenius algebra. Let $E^! = T(V^*)/(R^{\perp})$ be the quadratic dual algebra of E. We may view R^* as a subspace of $V^* \otimes V^*$, and we identify R^* with $E_2^!$. The next lemma is a special case of [PP, Proposition 4.1, Chapter 5].

Lemma 2.8. Retain the notation as above. A linear map $\theta: R \to \mathbb{R}$ is a Clifford map of E if and only if θ , when viewed as an element in $E_2^!$, is a central element of $E^!$.

Since $E_2^! \cong R^*$, the above lemma shows that the set of the Clifford maps of E is in one to one correspondence with the set of the central elements in $E_2^!$.

By Lemma 1.3, every Koszul Frobenius algebra is dual to a Koszul Artin-Schelter regular algebra. Let S = T(U)/(R) be a Koszul Artin-Schelter regular algebra, and let $E := S^! = T(U^*)/(R^{\perp})$. Denote by $\pi_S : T(U) \to S$ the natural projection map.

Let $z \in S_2$ be a central element of S. Pick an element $r_0 \in U \otimes U$ such that $\pi_S(r_0) = z$. Since $R^{\perp} \subseteq U^* \otimes U^*$, the element r_0 defines a map

(2.8.1)
$$\theta_z \colon R^{\perp} \to \mathbb{R}$$
, by setting $\theta_z(\alpha) = (\alpha)(r_0), \ \forall \alpha \in R^{\perp}$.

Lemma 2.8 implies the following result.

Lemma 2.9. Retain the notation as above. The map $\theta_z \colon R^{\perp} \to \mathbb{k}$ is a Clifford map of the Koszul Frobenius algebra $E = T(U^*)/(R^{\perp})$.

Remark 2.10. Note that the Clifford map θ_z is independent of the choice of r_0 . In fact, if $r'_0 \in V \otimes V$ is another element such that $\pi_S(r'_0) = z$, then for every element $\alpha \in R^{\perp}$, one has $r_0(\alpha) = r'_0(\alpha)$. Henceforth, we say that θ_z is the Clifford map of $E(=S^!)$ corresponding to the central element z.

3. Clifford deformations as \mathbb{Z}_2 -graded Frobenius algebras

Let G be a group, and let $A = \bigoplus_{g \in G} A_g$ be a G-graded algebra. Set $A^* := \bigoplus_{g \in G} (A_g)^*$. Then A^* is a G-graded A-bimodule, whose degree g component is $(A_{g^{-1}})^*$. Let M be a left G-graded A-module. For $g \in G$, let M(g) be the left G-graded A-module whose degree h-component $M(g)_h$ is equal to M_{hg} .

Similar to \mathbb{Z} -graded Frobenius algebras, a G-graded algebra A is called a G-graded Frobenius algebra (cf. [DNN] for instance) if there is an element $g \in G$ and an isomorphism $\varphi \colon A \to A^*(g)$ of left G-graded A-modules. Equivalently, there is a homogenous bilinear form $\langle \ , \ \rangle \colon A \times A \longrightarrow \mathbb{k}(g)$ such that $\langle ab, c \rangle = \langle a, bc \rangle$, where $\mathbb{k}(g)$ is the G-graded vector space concentrated in degree g^{-1} .

Let E = T(V)/(R) be a Koszul Frobenius algebra. Let $\theta \colon R \to \mathbb{k}$ be a Clifford map of E. We may view the \mathbb{Z} -graded algebra T(V) as a \mathbb{Z}_2 -graded algebra by setting $T(V)_0 = \mathbb{k} \oplus \bigoplus_{n \geq 1} V^{\otimes 2n}$ and $T(V)_1 = \bigoplus_{n \geq 1} V^{\otimes 2n-1}$.

Consider the Clifford deformation $E(\theta) = T(V)/(r - \theta(r) : r \in R)$. Since $R \subseteq V \otimes V$, it follows that $\widetilde{R} = \{r - \theta(r) | r \in R\}$ is a subspace of $T(V)_0$. Hence the ideal (\widetilde{R}) is homogeneous. Therefore we have the following observation.

Lemma 3.1. Retain the notation as above. The Clifford deformation $E(\theta)$ is a \mathbb{Z}_2 -graded algebra.

Remark 3.2. Note that the filtration (2.1.1) induces a homomorphism ψ : gr $E(\theta) \to E$ of \mathbb{Z} -graded algebras. By Proposition 2.2, ψ is an isomorphism. By the definition of the \mathbb{Z}_2 -grading of $E(\theta)$, we see dim $E(\theta)_0 = \dim(\bigoplus_{i>0} E_{2i})$ and dim $E(\theta)_1 = \dim\bigoplus_{i>0} E_{2i+1}$.

Assume that the Frobenius algebra E is of Loevy length n, that is, $E_n \neq 0$ and $E_i = 0$ for all i > n. Since E is \mathbb{Z} -graded Frobenius, dim $E_n = 1$. Fix a nonzero map $\xi \colon E_n \to \mathbb{k}$. Let $\phi \colon E(\theta) \to \mathbb{k}$ be the composition of the following maps

(3.2.1)
$$\phi \colon E(\theta) \xrightarrow{\pi} E/F_{n-1}E(\theta) \xrightarrow{\psi} E_n \xrightarrow{\xi} \mathbb{k},$$

where $F_{n-1}E(\theta)$ is the (n-1)-th part in the filtration (2.1.1), and π is the projection. Define a bilinear form $\langle , \rangle : E(\theta) \times E(\theta) \longrightarrow \mathbb{k}$ by setting

$$\langle a, b \rangle = \phi(ab)$$

for all $a, b \in E(\theta)$.

Lemma 3.3. Retain the notation as above. The bilinear form $\langle \ , \ \rangle$ is nondegenerated, and hence $E(\theta)$ is a Frobenius algebra.

Proof. For a nonzero element $a \in E(\theta)$, assume that $a \in F_i E(\theta)$ but $a \notin F_{i-1} E(\theta)$. Write \overline{a} for the corresponding element in $F_i E(\theta)/F_{i-1} E(\theta)$. Then $\overline{a} \neq 0$. Since E is a Koszul Frobenius algebra, there is an element $b' \in E_{n-i}$ such that $\psi(\overline{a})b' \neq 0$. Let $\overline{b} = \psi^{-1}(b') \in F_{n-i} E(\theta)/F_{n-i-1} E(\theta)$. Pick an element $b \in F_{n-i} E(\theta)$ which is corresponding to the element $\overline{b} \in F_{n-i} E(\theta)/F_{n-i-1} E(\theta)$. Then $\langle a,b\rangle = \phi(ab) = \xi \psi(\overline{ab}) = \xi (\psi(\overline{a})\psi(\overline{b})) = \xi (\psi(\overline{a})b') \neq 0$. Similarly, there is an element $c \in E(\theta)$ such that $\langle c,a\rangle \neq 0$. Hence $\langle c,a\rangle \neq 0$ is nondegenerated.

Remark 3.4. That $E(\theta)$ is selfinjective follows from a more general theory. In fact, gr $E(\theta)$ is a Frobenius algebra, then by Lemma 6.11 and Theorem 6.12 in [LvO, Chapter I], $E(\theta)$ is selfinjective. Lemma 3.3 above shows that the bilinear form on $E(\theta)$ indeed inherits from the bilinear form of E.

Proposition 3.5. Retain the notation as above. The bilinear form defined in (3.2.2) is compatible with the \mathbb{Z}_2 -grading of $E(\theta)$, and hence $E(\theta)$ is a \mathbb{Z}_2 -graded Frobenius algebra.

Proof. Assume that the Loevy length of E is n. Note that the filtration (2.1.1) is compatible with the \mathbb{Z}_2 -grading. Then the map ϕ as defined by (3.2.1) is homogeneous, that is, $\phi \colon E(\theta) \to \mathbb{k}(g)$, where $g \in \mathbb{Z}_2$ such that g = 1 if n is odd, or g = 0 if n is even. Since the $\langle \ , \ \rangle$ is the composition of the multiplication of $E(\theta)$ and the map ϕ , it follows that $\langle \ , \ \rangle \colon E(\theta) \times E(\theta) \to \mathbb{k}(g)$ with g = 1 if n is odd, or g = 0 if n is even.

Recall from the definition of the \mathbb{Z}_2 -grading on $E(\theta)$ that $E(\theta)_0$ is the quotient space of $\mathbb{K} \oplus \bigoplus_{k\geq 1} V^{\otimes 2k}$. Since the generating relations \widetilde{R} of $E(\theta)$ is concentrated in degree 0 part, we may view V as a subspace of $E(\theta)_1$. Hence each element $a \in E(\theta)_0$ may be written as a = b + k where b is a sum of products of elements in V, and $k \in \mathbb{K}$. Now assume that the Clifford map θ is non-trivial, and

assume that $\theta(r) = k \neq 0$ for some $r \in R \subseteq V \otimes V$. Suppose $r = \sum_{i=1}^{l} x_i \otimes y_i$. Then $\sum_{i=1}^{l} x_i y_i = k$ in $E(\theta)_0$. Hence $E(\theta)_0 = E(\theta)_1 E(\theta)_1$. In summary, we have the following result. Recall that a G-graded algebra $B = \bigoplus_{g \in G} B_g$ is said to be strongly graded [NvO] if $B_g B_h = B_{gh}$ for all $g, h \in G$.

Proposition 3.6. If the Clifford map θ is nontrivial, then the \mathbb{Z}_2 -graded algebra $E(\theta)$ is a strongly graded algebra.

4. Clifford deformations from localizations

Let E be a Koszul Frobenius algebra. Let B be a graded algebra which is generated in degree 1. Assume that B is a graded extension of E by a central regular element of degree 2, that is, B is a quadratic graded algebra, and there is a central regular element $z \in B_2$ such that E = B/Bz. It follows that the degree 1 part of E and B are equal. Since E is a Koszul algebra, B is also a Koszul algebra (cf. [ST, Theorem 1.2]).

Assume B = T(V)/(R) with $R \subseteq V \otimes V$. Let $\pi : T(V) \to B$ be the projection map. Pick an element $r_0 \in V \otimes V$ such that $\pi(r_0) = z$. Since E = B/Bz, it follows $E = T(V)/(kr_0 + R)$. Let $R' = kr_0 \oplus R$. Define a map

$$(4.0.1) \theta: R' \to \mathbb{k}, r_0 \mapsto 1, r \mapsto 0 \text{ for all } r \in R.$$

Let us check the elements in $R' \otimes V \cap V \otimes R'$. Assume that $\{r_1, \ldots, r_t\}$ is a basis of R. For each element $\alpha \in R' \otimes V \cap V \otimes R'$, we have

$$(4.0.2) \qquad \qquad \alpha = v_0 \otimes r_0 + \sum_{i=1}^t v_i \otimes r_i = r_0 \otimes v_0' + \sum_{i=1}^t r_i \otimes v_i',$$

where $v_0, ..., v_t, v_0', ..., v_t' \in V$.

Lemma 4.1. In Equation (4.0.2), $v_0 = v'_0$.

Proof. Assume $v'_0 = v_0 + u$, for some $u \in V$. By Equation (4.0.2), we have

$$v_0 \otimes r_0 + \sum_{i=1}^t v_i \otimes r_i = r_0 \otimes v_0 + r_0 \otimes u + \sum_{i=1}^t r_i \otimes v_i'.$$

Hence

$$r_0 \otimes v_0 - v_0 \otimes r_0 + r_0 \otimes u = \sum_{i=1}^t v_i \otimes r_i - \sum_{i=1}^t r_i \otimes v_i'.$$

Since the right hand side of the above equation lies in $R \otimes V + V \otimes R$, we have the following identity in the algebra B:

$$\pi(r_0)\pi(v_0) - \pi(v_0)\pi(r_0) - \pi(r_0)\pi(u) = 0.$$

Note that $z = \pi(r_0)$ and z is a central regular element in B. It follows that $\pi(u) = 0$. Since π is injective when it is restricted to V, it follows that u = 0.

Lemma 4.2. Retain the above notation. The map θ as defined in (4.0.1) is a Clifford map of E.

Proof. By Lemma 4.1, each element $\alpha \in V \otimes R \cap R \otimes V$ may be written as $\alpha = v_0 \otimes r_0 + \sum_{i=1}^t v_i \otimes r_i = r_0 \otimes v_0 + \sum_{i=1}^t r_i \otimes v_i'$ for some $v_0, \ldots, v_t, v_1', \ldots, v_t' \in V$. Then it is easy to see $(\theta \otimes 1 - 1 \otimes \theta)(\alpha) = 0$.

Let $\widetilde{R} = \mathbb{k}(r_0 - 1) \oplus R$. Then the Clifford deformation of E may be written as $E(\theta) = T(V)/(\widetilde{R})$. Since B = T(V)/(R), we have a natural algebra morphism $f \colon B \to E(\theta)$ such that the diagram

commutes, where π_{θ} is the projection map. Then $f(z) = f(\pi(r_0)) = \pi_{\theta}(r_0) = 1$.

Note that z is a central regular element of B. Let $B[z^{-1}]$ be the localization of B by the multiplicative set $\{1, z, z^2, \ldots\}$. Since $f: B \to E(\theta)$ is an algebra morphism such that f(z) = 1, it induces an algebra morphism $\tilde{f}: B[z^{-1}] \to E(\theta)$ such that the following diagram

$$B \xrightarrow{f} E(\theta)$$

$$\downarrow \qquad \qquad \downarrow \\ B[z^{-1}]$$

commutes, where ι is the inclusion map. Note that the algebra $B[z^{-1}]$ is a \mathbb{Z} -graded algebra, and $E(\theta)$ is a \mathbb{Z}_2 -graded algebra. The next result show that the degree zero parts $B[z^{-1}]_0$ and $E(\theta)_0$ are isomorphic as algebras, which is motivated by [SvdB, Lemma 5.1].

Proposition 4.3. The algebra morphism \tilde{f} induces an isomorphism of algebras $B[z^{-1}]_0 \cong E(\theta)_0$.

Proof. Since z is of degree 2, it follows that $B[z^{-1}]_0 = \sum_{i \geq 0} B_{2i} z^{-i}$. Then

$$\tilde{f}(B[z^{-1}]_0) = \sum_{i>0} f(B_{2i}) = E(\theta)_0$$

by the definition of $E(\theta)$ and the hypothesis E = B/Bz. Hence the restriction of \tilde{f} to $B[z^{-1}]_0$ is an epimorphism. By Remark 3.2, $\dim E(\theta)_0 = \dim(\bigoplus_{i \geq 0} E_{2i})$. By Lemma [SvdB, Lemma 5.1(3)] and its proof, we have $\dim B[z^{-1}]_0 = \dim(\bigoplus_{i \geq 0} E_{2i}) = \dim E(\theta)_0$. Hence the restriction of \tilde{f} to $B[z^{-1}]_0$ yields an isomorphism of algebras $B[z^{-1}]_0 \cong E(\theta)_0$.

We end this section with a computation of degree zero part of a Clifford deformation.

Example 4.4. We continue the computations in Example 2.6. Let $\theta: R \to \mathbb{R}$ be the Clifford map defined as in Example 2.6. As a vector space, $E(\theta)_0$ has a basis $1, xz, yz, x^2$. Denote $a = xz, b = yz, c = x^2$. The multiplication of $E(\theta)_0$ is given by the following relations: $ab = ba = 1, ac = ca = a + b, bc = cb = a, a^2 = c, b^2 = c - 1, c^2 = c + 1$.

5. Noncommutative quadric hypersurfaces

Let A be a noetherian Artin-Schelter Gorenstein algebra. Let M be a right graded A-module. An element $m \in M$ is called a torsion element, if $mA_{\geq n} = 0$ for some $n \geq 0$. Let $\Gamma(M)$ be the submodule of M consisting of all the torsion elements. Since A is noetherian, we obtain a functor $\Gamma: \operatorname{gr} A \longrightarrow \operatorname{gr} A$. It is easy to see $\Gamma \cong \varinjlim \operatorname{Hom}_A(A/A_{\geq n}, -)$. The ith right derived functor of Γ is written as $R^i\Gamma$.

For a finitely generated right graded A-module M, depth of M is defined to be the number

$$depth(M) = min\{i|R^i\Gamma(M) \neq 0\}.$$

Assume that $\operatorname{injdim}_A A = \operatorname{injdim}_A A = d$. Then M is called a maximal Cohen-Macaulay (or Gorenstein projective) module if $\operatorname{depth}(M) = d$. Let $\operatorname{mcm} A$ be the subcategory of $\operatorname{gr} A$ consisting of all the maximal Cohen-Macaulay modules. The additive category $\operatorname{mcm} A$ is a Frobenius category with enough projectives and injectives. Let $\operatorname{mcm} A$ be the stable category of $\operatorname{mcm} A$. Then $\operatorname{mcm} A$ is a triangulated category.

Now let S = T(V)/(R) be a Koszul Artin-Schelter regular algebra. Let $z \in S_2$ be a central regular element of S. The quotient algebra A = S/Sz is usually called a (noncommutative) quadric hypersurface.

Let $\pi_S \colon T(V) \to S$ be the natural projection map. Pick an element $r_0 \in V \otimes V$ such that $\pi_S(r_0) = z$. Denote the quadratic dual algebra of S by $E = T(V^*)/(R^{\perp})$. Then E is a Koszul Frobenius algebra (cf. Lemma 1.3). Since A = S/Sz, it follows $A \cong T(V)/(\mathbb{k}r_0 + R)$. As before, write R' for the space $\mathbb{k}r_0 + R$. Note that $\mathbb{k}r_0 \cap R = 0$. Then we have $V \otimes V = \mathbb{k}r_0 \oplus R \oplus R''$ for some subspace $R'' \subseteq V \otimes V$. Define a linear map

$$r_0^*: V \otimes V \to \mathbb{k}$$

by setting $r_0^*(r_0) = 1$ and $r_0^*(R') = r_0^*(R'') = 0$. We view r_0^* as an element of $V^* \otimes V^*$.

Consider the quadratic dual algebra $A^! = T(V^*)/(R'^{\perp})$. Note that $R'^{\perp} = (kr_0)^{\perp} \cap R^{\perp}$. On the other hand, $R'^{\perp} + kr_0^* = (kr_0)^{\perp} \cap R^{\perp} + kr_0^* = R^{\perp}$. Let $\pi_{A^!} : T(V^*) \to A^!$ be the projection map. Then

$$w := \pi_{A!}(r_0^*) \neq 0.$$

Since z is a central regular element of S, by Lemma 4.1, we may check that w is a central element of $A^!$. Now, it follows

$$E \cong A^!/A^!w$$
.

Moreover, w is also a regular element of $A^!$ (cf. [SvdB, Lemma 5.1(b)]).

For a \mathbb{Z}_2 -graded algebra B, we write $\operatorname{Gr}_{\mathbb{Z}_2} B$ (resp. $\operatorname{gr}_{\mathbb{Z}_2}$) for the category of right \mathbb{Z}_2 -graded modules (resp. finitely generated \mathbb{Z}_2 -graded modules), whose morphisms are degree 0 right \mathbb{Z}_2 -graded morphisms. We arrive at our main observation of the paper, which is a slight improvement of [SvdB, Proposition 5.2].

Theorem 5.1. Let S = T(V)/(R) be a Koszul Artin-Schelter regular algebra, and let $E := T(V^*)/(R^{\perp})$ be the quadratic dual algebra of S. Assume that $z \in S_2$ is a central regular element of S. Let $\theta_z : R^{\perp} \to \mathbb{R}$ be the map as defined in (2.8.1). We have the following statements.

- (i) θ_z is a Clifford map of E, and hence $E(\theta_z)$ is a Clifford deformation of E.
- (ii) [SvdB, Lemma 5.1(a)] Let A = S/Sz. Then A is a Koszul Artin-Schelter Gorenstien algebra.
- (iii) There is an equivalence of triangulated categories

$$\underline{\operatorname{mcm}} A \cong D^b(\operatorname{gr}_{\mathbb{Z}_2} E(\theta_z)).$$

Proof. (i) follows from Lemma 2.9.

- (ii) By Lemma 1.2, A is Artin-Schelter Gorenstein. Since S is a Koszul algebra and $z \in S_2$ is a central regular element, A is a Koszul algebra (cf. [SvdB, Lemma 5.1(a)]).
- (iii) Retain the notation above the theorem. The element $w = \pi_{A^!}(r_0^*)$ is a central regular element of $A^!$. Let $A^![w^{-1}]$ be the localization of $A^!$ at w. Then $A^![w^{-1}]$ is a \mathbb{Z} -graded algebra. By [SvdB, Proposition 5.2], there is an equivalence of triangulated categories $D^b(A^![w^{-1}]_0) \cong \underline{\text{mcm}}A$.

Note that $R'^{\perp} = (kr_0)^{\perp} \cap R^{\perp}$ and $R^{\perp} = R'^{\perp} + kr_0^*$. Then $\theta_z(R') = 0$ and $\theta_z(r_0^*) = 1$. By Proposition 4.3,

$$(5.1.1) A^![w^{-1}] \cong E(\theta_z)_0.$$

Hence we have

$$D^b (\text{mod } A^! [w^{-1}]_0) \cong D^b (\text{mod } E(\theta_z)_0).$$

By Proposition 3.6, $E(\theta_z)$ is a strongly \mathbb{Z}_2 -graded algebra. It follows that there is an equivalence of abelian categories $\operatorname{gr}_{\mathbb{Z}_0} E(\theta_z) \cong \operatorname{mod} E(\theta_z)_0$ (cf. [NvO, Theorem 3.1.1]). Therefore, $\operatorname{\underline{mcm}} A \cong D^b(\operatorname{gr}_{\mathbb{Z}_2} E(\theta_z))$ as triangulated categories.

6. Noncommutative quadrics with isolated singularities

Let A be a noetherian connected graded algebra. Let $\operatorname{tor} A$ be the full subcategory of $\operatorname{gr} A$ consisting of finite dimensional right graded A-modules. The quotient category

$$\operatorname{qgr} A = \operatorname{gr} A / \operatorname{tor} A$$

is the noncommutative analogue of projective schemes (cf. [AZ, Ve]). For $M \in \operatorname{gr} A$, we write \mathcal{M} for the corresponding objects in $\operatorname{qgr} A$. Recall from [Ue] that A is called a noncommutative isolated singularity if $\operatorname{qgr} A$ has finite global dimension, that is, there is an integer p such that for any objects $\mathcal{M}, \mathcal{N} \in \operatorname{qgr} A$, $\operatorname{Ext}^i_{\operatorname{qgr} A}(\mathcal{M}, \mathcal{N}) = 0$ for all i > p, or equivalently, the noncommutative projective scheme $\operatorname{Proj} A$ is smooth (cf. [SvdB]).

Let S be a Koszul Artin-Schelter regular algebra. Assume that $z \in S_2$ is a central regular element of S. In this section, we investigate when A = S/Sz is a noncommutative isolated singularity.

Let perA be the triangulated subcategory of $D^b(\operatorname{gr} A)$ consisting of bounded complexes of finitely generated right graded projective A-modules. Then we have a quotient triangulated category $D^{gr}_{sq}(A) = D^b(\operatorname{gr} A)/perA$.

Since A is Artin-Schelter Gorenstein, there is an equivalence of triangulated categories [Bu, Theorem 4.4.1(2)]:

$$(6.0.1) D_{sq}^{gr}(A) \cong \underline{\operatorname{mcm}} A.$$

The triangulated category $D_{sg}^{gr}(A)$ is related to $D^b(\operatorname{qgr} A)$ by Orlov's famous decomposition theorem.

Theorem 6.1. [Or, Theorem 2.5] Let A be an Artin-Schelter Gorenstein algebra of Gorenstein parameter l. Then

(i) if l > 0, there are fully faithful functors $\Phi_i : D_{sg}^{gr}(A) \longrightarrow D^b(\operatorname{qgr} A)$ and semiorthogonal decompositions

$$D^{b}(\operatorname{qgr} A) = \langle \pi A(-i-l+1), \dots, \pi A(-i), \Phi_{i}(D_{sa}^{gr}(A)) \rangle,$$

where $\pi : \operatorname{gr} A \to \operatorname{qgr} A$ is the projection functor;

(ii) if l < 0, there fully faithful functors $\Psi_i : D^b(\operatorname{qgr} A) \to D^{gr}_{sg}(A)$ and semiorthogonal decompositions

$$D_{sq}^{gr}(A) = \langle q \mathbb{k}(-i), \dots, q \mathbb{k}(-i+l+1), \Psi_i(D^b(\operatorname{qgr} A)) \rangle,$$

where $q: D^b(\operatorname{gr} A) \to D^{gr}_{sq}(A)$ is the natural projection functor;

(iii) if l = 0, there is an equivalence

$$D_{sg}^{gr}(A) \cong D^b(\operatorname{qgr} A).$$

We have the following special case of Orlov's theorem.

Lemma 6.2. Let S be a Koszul Artin-Schelter regular algebra of global dimension $d \geq 2$, and let $z \in S_2$ be a central regular element of S. Set A = S/Sz. Then there is a fully faithful triangle functor $\Phi : \underline{\operatorname{mcm}} A \longrightarrow D^b(\operatorname{qgr} A)$.

Proof. Since S is a Koszul Artin-Schelter regular algebra of global dimension d, then the Gorenstein parameter of S is equal to d. By Lemma 1.2, A is Artin-Schelter Gorenstein of injective dimension d-1 with Gorenstein parameter $d-2 \ge 0$. The lemma follows from the equivalence (6.0.1) and Theorem 6.1(i,iii).

Now let S = T(V)/(R) be a Koszul Artin-Schelter regular algebra of global dimension $d \geq 2$, and $E = T(V^*)/(R^{\perp})$ its quadratic dual. Assume that $z \in S_2$ is a central regular element of S. Let $E(\theta_z)$ be the Clifford deformation of E corresponding to the central element z (cf. Theorem 5.1).

Theorem 6.3. Retain the notation as above. Then A = S/Sz is a noncommutative isolated singularity if and only if $E(\theta_z)$ is semisimple as a \mathbb{Z}_2 -graded algebra.

Proof. Assume $E(\theta_z)$ is a \mathbb{Z}_2 -graded semisimple algebra. By Proposition 3.6, $E(\theta_z)$ is a strongly \mathbb{Z}_2 -graded algebra. Then $\operatorname{gr}_{\mathbb{Z}_2} E(\theta_z) \cong \operatorname{mod} E(\theta_z)_0$ as abelian categories. Hence $E(\theta_z)_0$ is a semisimple algebra. By Isomorphism (5.1.1) as in the proof of Theorem 5.1, $E(\theta_z)_0 \cong A^![w^{-1}]_0$. Hence $A^![w^{-1}]_0$ is semisimple. By [SvdB, Proposition 5.2(2)], A is a noncommutative isolated singularity.

Conversely, assume A is a noncommutative isolated singularity. Then $\operatorname{qgr} A$ has finite global dimension. Given objects $X,Y\in D^b(\operatorname{qgr} A)$, there is an integer p (depends on X and Y) such that $\operatorname{Hom}_{D^b(\operatorname{qgr} A)}(X,Y[i])=0$ for i>p. Let J be the \mathbb{Z}_2 -graded Jacobson radical of $E(\theta_z)$. Write T for the quotient algebra $E(\theta_z)/J$. By Theorem 5.1, there is an equivalence of triangulated categories $\Psi:D^b(\operatorname{gr}_{\mathbb{Z}_2}E(\theta_z))\longrightarrow \operatorname{\underline{mcm}} A$. Let $\Phi:\operatorname{\underline{mcm}} A\longrightarrow D^b(\operatorname{qgr} A)$ be the fully faithful functor in Lemma 6.2. Then there is an integer q such that for i>q,

$$\operatorname{Ext}^i_{\operatorname{gr}_{\mathbb{Z}_n}E(\theta_z)}(T,T) \cong \operatorname{Hom}_{D^b(\operatorname{gr}_{\mathbb{Z}_n}E(\theta_z))}(T,T[i]) \cong \operatorname{Hom}_{D^b(\operatorname{qgr}A)}(\Phi\Psi(T),\Phi\Psi(T)[i]) = 0.$$

Since $E(\theta_z)$ is finite dimensional, as a right \mathbb{Z}_2 -graded $E(\theta_z)$ -module T is semisimple and each simple right \mathbb{Z}_2 -graded $E(\theta_z)$ -module is a direct summand of T. It follows that the right \mathbb{Z}_2 -graded $E(\theta_z)$ -module T has finite projective dimension in $\operatorname{gr}_{\mathbb{Z}_2} E(\theta_z)$. Hence the \mathbb{Z}_2 -graded algebra $E(\theta_z)$

has finite global dimension. On the other hand, $E(\theta_z)$ is \mathbb{Z}_2 -graded Frobenius algebra by Proposition 3.5. It follows that $E(\theta_z)$ is semisimple as a \mathbb{Z}_2 -graded algebra.

Remark 6.4. The sufficiency part of Theorem 6.3 mainly follows from [SvdB, Proposition 5.2]. Observing that $E(\theta_z)$ is strongly \mathbb{Z}_2 -graded, we obtain an abstract proof of [SvdB, Theorem 5.6].

7. Clifford deformations of trivial extensions of Koszul Frobenius algebras

In this section, we work over the field of complex numbers \mathbb{C} . Let $\mathbb{M}_2(\mathbb{C})$ be the matrix algebra of all the 2×2 -matrices over \mathbb{C} . We may view $\mathbb{M}_2(\mathbb{C})$ as a \mathbb{Z}_2 -graded algebra by setting the degree 0 part consisting of elements of the form $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, and degree 1 part consisting of elements of the form $\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}$.

Let A and B be \mathbb{Z}_2 -graded algebras. The twisting tensor algebra $A \hat{\otimes} B$ is a \mathbb{Z}_2 -graded algebra defined as follows: $(A \hat{\otimes} B)_0 = A_0 \otimes B_0 \oplus A_1 \otimes B_1$ and $(A \hat{\otimes} B)_1 = A_0 \otimes B_1 \oplus A_1 \otimes B_0$ as \mathbb{Z}_2 -graded space; the multiplication is defined as $(a_1 \hat{\otimes} b_1)(a_2 \hat{\otimes} b_2) = (-1)^{|b_1||a_2|}(a_1 a_2 \hat{\otimes} b_1 b_2)$, where b_1 and a_2 are homogeneous elements with degrees $|b_1|$ and $|a_2|$ respectively.

Let $\mathbb{G} = \{1, \alpha\}$ be a group of order 2, and let \mathbb{CG} be the group algebra. Then \mathbb{CG} is naturally a \mathbb{Z}_2 -graded algebra by setting $|\alpha| = 1$ and |1| = 0. Define a linear map

$$\Upsilon: \mathbb{CG} \hat{\otimes} \mathbb{C}G \longrightarrow \mathbb{M}_2(\mathbb{C}),$$

by setting

$$1 \hat{\otimes} 1 \mapsto \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \ 1 \hat{\otimes} \alpha \mapsto \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \ \alpha \hat{\otimes} 1 \mapsto \left(\begin{array}{cc} 0 & \sqrt{-1} \\ -\sqrt{-1} & 0 \end{array} \right), \ \alpha \hat{\otimes} \alpha \mapsto \left(\begin{array}{cc} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{array} \right).$$

The following lemma is well known and is easy to check.

Lemma 7.1. The map Υ is an isomorphism of \mathbb{Z}_2 -graded algebras.

Note that there is an equivalence of abelian categories

$$\operatorname{gr}_{\mathbb{Z}_2} \mathbb{M}_2(\mathbb{C}) \cong \operatorname{gr}_{\mathbb{Z}_2} \mathbb{C},$$

where \mathbb{C} is view a \mathbb{Z}_2 -graded algebra concentrated in degree 0. By the above lemma, we have an equivalence of abelian categories (see also [Z, Lemma 4.11])

$$\operatorname{gr}_{\mathbb{Z}_2}(\mathbb{CG}\hat{\otimes}\mathbb{CG}) \cong \operatorname{gr}_{\mathbb{Z}_2}\mathbb{C}.$$

We have the following result, which should be well known for experts.

Lemma 7.2. Let A be a \mathbb{Z}_2 -graded algebra. Then there is an equivalence of abelian categories

$$\operatorname{gr}_{\mathbb{Z}_2}(A \hat{\otimes} \mathbb{CG} \hat{\otimes} \mathbb{CG}) \cong \operatorname{gr}_{\mathbb{Z}_2} A.$$

Proof. This a direct consequence of [Z, Lemma 3.10].

Lemma 7.3. For $P \in \operatorname{gr}_{\mathbb{Z}_2} A \hat{\otimes} \mathbb{CG}$, P is projective if and only if P is projective as a \mathbb{Z}_2 -graded A-module.

Proof. Note that $A \hat{\otimes} \mathbb{CG}$ is a \mathbb{Z}_2 -graded projective A-module. Hence each \mathbb{Z}_2 -graded $A \hat{\otimes} \mathbb{CG}$ -module is projective as a \mathbb{Z}_2 -graded A-module.

On the contrary, suppose that P is projective as a \mathbb{Z}_2 -graded A-module. Let $f: M \to N$ be an epimorphism of \mathbb{Z}_2 -graded $A \hat{\otimes} \mathbb{C} \mathbb{G}$ -modules, and let $g: P \to N$ be a \mathbb{Z}_2 -graded $A \hat{\otimes} \mathbb{C} \mathbb{G}$ -module morphism. Since P is projective as a graded A-module, there is a graded A-module morphism $h: P \to M$ such that fh = g. Define a morphism $h': P \to M$ by $h'(p) = \frac{1}{2}(h(p) + h(p \cdot \sigma) \cdot \sigma)$, for all $p \in P$. It is straightforward to check that h' is a graded $A \hat{\otimes} \mathbb{C} \mathbb{G}$ -module morphism, and that fh' = g. Hence P is projective in $\operatorname{gr}_{\mathbb{Z}_2} A \hat{\otimes} \mathbb{C} \mathbb{G}$.

Let $\operatorname{gldim}_{\mathbb{Z}_2} A$ be the \mathbb{Z}_2 -graded global dimension of A.

Corollary 7.4. $\operatorname{gldim}_{\mathbb{Z}_2} A = \operatorname{gldim}_{\mathbb{Z}_2} A \hat{\otimes} \mathbb{CG}$.

Proof. Let M be a right \mathbb{Z}_2 -graded $A \hat{\otimes} \mathbb{CG}$ module. Assume that $\operatorname{gldim}_{\mathbb{Z}_2} A = d$. Suppose that

$$\cdots \to P_n \xrightarrow{\delta_n} \cdots \xrightarrow{\delta_1} P_0 \xrightarrow{\delta_0} M \to 0$$

is a projective resolution of M in $\operatorname{gr}_{\mathbb{Z}_2} A \hat{\otimes} \mathbb{CG}$. Since $\operatorname{gldim}_{\mathbb{Z}_2} A = d$, $Q = \ker \delta_{d-1}$ is projective as a graded A-module, and hence Q is projective graded $A \hat{\otimes} \mathbb{CG}$ -module by Lemma 7.3. Therefore, $\operatorname{gldim}_{\mathbb{Z}_2} A \hat{\otimes} \mathbb{CG} \leq \operatorname{gldim}_{\mathbb{Z}_2} A$. Similarly, $\operatorname{gldim}_{\mathbb{Z}_2} A \hat{\otimes} \mathbb{CG} \otimes \mathbb{CG} \leq \operatorname{gldim}_{\mathbb{Z}_2} A \hat{\otimes} \mathbb{CG}$. By Lemma 7.2, $\operatorname{gldim}_{\mathbb{Z}_2} A = \operatorname{gldim}_{\mathbb{Z}_2} A \hat{\otimes} \mathbb{CG} \hat{\otimes} \mathbb{CG}$. Hence the result follows.

Now let E = T(V)/(R) be a Koszul Frobenius algebra, and let M be a graded E-bimodule. Recall that the trivial extension of E by M is the \mathbb{Z} -graded algebra $\Gamma(E, M) = E \oplus M$ with a multiplication defined by $(x_1, m)(x_2, n) = (x_1x_2, x_1n + mx_2)$ for $x_1, x_2 \in E$ and $m, n \in M$.

Let ϵ be the automorphism of E defined by $\epsilon(x) = (-1)^{|x|}x$ for homogeneous element $x \in E$. Let ϵE be the graded E-bimodule with left E-action twisted by ϵ . Denote

(7.4.1)
$$\widetilde{E} = \Gamma(E, \epsilon E(-1)).$$

Lemma 7.5. Let E be a Koszul Frobenius algebra. Then \widetilde{E} is a Koszul Frobenius algebra.

Proof. Let $S=E^!=T(V^*)/(R^\perp)$ be the quadratic dual of E. Then S is a Koszul Artin-Schelter regular algebra by Lemma 1.3. Let $S^{\natural}=S[\alpha]$ be the polynomial algebra with coefficients in S. It is well known that S^{\natural} is a Koszul Artin-Schelter regular algebra. Let $V^{\natural}=V^*\oplus \Bbbk \alpha$ and

$$R^{\natural} = R^{\perp} \oplus \operatorname{span}\{\beta \otimes \alpha - \alpha \otimes \beta | \beta \in V^*\}.$$

The Koszul algebra S^{\natural} may be written as $S^{\natural} = T(V^*)/(R^{\natural})$.

By [HVZ, Proposition 2.2], it follows that \widetilde{E} is the quadratic dual algebra of S^{\natural} . By Lemma 1.3, we obtain that \widetilde{E} is Frobenius.

We may write the trivial extension \widetilde{E} by generators and relations. Let $\widetilde{V} = V \oplus \mathbb{k}z$ and let

$$(7.5.1) \qquad \widetilde{R} = R \oplus R' \oplus kz \otimes z, \text{ where } R' = \operatorname{span}\{x \otimes z + z \otimes x | x \in V\}.$$

Then $\widetilde{E} = T(\widetilde{E})/(\widetilde{R})$.

Assume that $\theta: R \to \mathbb{k}$ is a Clifford map of E. Define a linear map

$$(7.5.2) \widetilde{\theta}: \widetilde{R} \to \mathbb{k},$$

(7.5.3)
$$\widetilde{\theta}(r) = \theta(r)$$
, for $r \in R$; $\widetilde{\theta}(z \otimes z) = 1$; $\widetilde{\theta}(x \otimes z + z \otimes x) = 0$, for $x \in V$.

Lemma 7.6. Retain the notation as above. $\widetilde{\theta}$ is a Clifford map of the Koszul Frobenius algebra \widetilde{E} , and hence $\widetilde{E}(\widetilde{\theta})$ is a Clifford deformation of \widetilde{E} .

Proof. Let $\{x_1, \ldots, x_n\}$ be a basis of V. Then $\{x_i \otimes z - z \otimes x_i | i = 1, \ldots, n\}$ is a basis of R'. We may write

$$\widetilde{V} \otimes \widetilde{R} = (V \otimes R) \oplus (V \otimes R') \oplus (V \otimes z \otimes z) \oplus (z \otimes R) \oplus (z \otimes R') \oplus (\mathbb{k}z \otimes z \otimes z),$$

and similarly,

$$\widetilde{R} \otimes \widetilde{V} = (R \otimes V) \oplus (R' \otimes V) \oplus (z \otimes z \otimes V) \oplus (R \otimes z) \oplus (R' \otimes z) \oplus (\mathbb{k}z \otimes z \otimes z).$$

For an element $w \in \widetilde{V} \otimes \widetilde{R}$, we may write

$$w = w_1 + w_2 + w_3 + w_4 + w_5 + kz \otimes z \otimes z$$

for $w_1 \in V \otimes R$, $w_2 \in V \otimes R'$, $w_3 \in V \otimes z \otimes z$, $w_4 \in z \otimes R$, and $w_5 \in z \otimes R'$. Now assume w is also in $\widetilde{R} \otimes \widetilde{V}$. By comparing the multiplicity of the element z in the tensor products, we see

$$w_1 \in R \otimes V, \ w_2 + w_4 \in R' \otimes V \oplus R \otimes z, \ w_3 + w_5 \in z \otimes z \otimes V \oplus R' \otimes z.$$

Assume $w_2 = \sum_{i,j=1}^n a_{ij} x_i \otimes (x_j \otimes z - z \otimes x_j), w_4 = z \otimes \sum_{i=1}^n b_{ij} x_i \otimes x_j$. Then

$$w_2 + w_4 = \sum_{i,j=1}^n a_{ij} x_i \otimes (x_j \otimes z - z \otimes x_j) + z \otimes \sum_{i=1}^n b_{ij} x_i \otimes x_j$$
$$= \sum_{i,j=1}^n a_{ij} (x_i \otimes x_j) \otimes z + \sum_{i=1}^n \sum_{i=1}^n (-a_{ij} x_i \otimes z + b_{ij} z \otimes x_i) \otimes x_j.$$

Since $w_2 + w_4 \in R' \otimes V \oplus R \otimes z$, we have $\sum_{j=1}^n \sum_{i=1}^n (-a_{ij}x_i \otimes z + b_{ij}z \otimes x_i) \otimes x_j \in R' \otimes V$. Then $a_{ij} = b_{ij}$ for all i, j, and it follows that

$$(1 \otimes \widetilde{\theta})(w_2 + w_4) = \theta(\sum_{i,j=1}^n a_{ij} x_i \otimes x_j) z = (\widetilde{\theta} \otimes 1)(w_2 + w_4).$$

Similarly, we have $(1 \otimes \widetilde{\theta})(w_3 + w_5) = (\widetilde{\theta} \otimes 1)(w_3 + w_5)$. Since θ is a Clifford map of E, $(1 \otimes \theta)(w_1) = (\theta \otimes 1)(w_1)$. Therefore, $(1 \otimes \widetilde{\theta})(w) = (\widetilde{\theta} \otimes 1)(w)$.

Proposition 7.7. Retain the notation as above. There is an isomorphism of \mathbb{Z}_2 -graded algebras $\widetilde{E}(\widetilde{\theta}) \cong E(\theta) \hat{\otimes} \mathbb{CG}$.

Proof. Note that $E(\theta) = T(V)/(R)$ and $\widetilde{E}(\widetilde{\theta}) = T(\widetilde{V})/(\widetilde{R})$. Let $\pi: T(V) \to E(\theta)$ be the projection map. We may define a linear map $\psi: T(\widetilde{V}) \longrightarrow E(\theta) \hat{\otimes} \mathbb{CG}$ by setting $\psi(x) = \pi(x) \hat{\otimes} 1$ for $x \in V$ and $\psi(z) = 1 \hat{\otimes} \alpha$. The map ψ induce an algebra epimorphism $\overline{\psi}: \widetilde{E}(\widetilde{\theta}) \longrightarrow E(\theta) \hat{\otimes} \mathbb{CG}$. Clearly, $\overline{\psi}$ preserves the \mathbb{Z}_2 -grading. Since $E(\theta) \hat{\otimes} \mathbb{CG}$ and $\widetilde{E}(\widetilde{\theta})$ have the same dimension as vector spaces, $\overline{\psi}$ is an isomorphism.

As a special case of Corollary 7.4, we have the following result.

Corollary 7.8. $\operatorname{gldim}_{\mathbb{Z}_2} \widetilde{E}(\widetilde{\theta}) = \operatorname{gldim}_{\mathbb{Z}_2} E(\theta)$.

We may iterate the above construction. By Lemma 7.5, \widetilde{E} is a Koszul Frobenius algebra, and the trivial extension $\widetilde{\widetilde{E}}$ of \widetilde{E} is again a Koszul Frobenius algebra. The Clifford map $\widetilde{\theta}$ of the Koszul algebra \widetilde{E} may be extended to a Clifford map $\widetilde{\widetilde{\theta}}$ of $\widetilde{\widetilde{E}}$ by the way as in (7.5.2) and (7.5.3). Hence we obtain a \mathbb{Z}_2 -graded algebra $\widetilde{\widetilde{E}}(\widetilde{\widetilde{\theta}})$.

Proposition 7.9. There is an equivalence of abelian categories $\operatorname{gr}_{\mathbb{Z}_2} \stackrel{\sim}{\widetilde{E}} (\stackrel{\sim}{\widetilde{\theta}}) \cong \operatorname{gr}_{\mathbb{Z}_2} E(\theta)$.

Proof. By Proposition 7.7, $\widetilde{\widetilde{E}}(\widetilde{\widetilde{\theta}}) \cong \widetilde{E}(\widetilde{\theta}) \hat{\otimes} \mathbb{CG} \cong E(\theta) \hat{\otimes} \mathbb{CG} \hat{\otimes} \mathbb{CG}$. Now the result follows from Lemma 7.2.

8. Knörrer Periodicity for noncommutative quadrics revisited

In this section, the base field is assumed to be \mathbb{C} . Let S = T(V)/(R) be a Koszul Artin-Schelter regular algebra of gldim $A \geq 2$. Let $z \in S_2$ be a central regular element of S, and set A = S/(z). The double branched cover of A is defined to be the algebra (cf. [K, LW, CKMW])

$$A^{\#} := S[v_1]/(z + v_1^2).$$

We write $A^{\#} = T(U)/(R')$, where $U = V \oplus \mathbb{k}v_1$ and $R' = R \oplus \{v \otimes v_1 - v_1 \otimes v | v \in V\}$.

Let $E = S^!$ be the quadratic dual algebra of S, and \widetilde{E} the trivial extension of E as defined by (7.4.1). Then by [HVZ, Proposition 2.2], \widetilde{E} is isomorphic to the quadratic dual algebra $S[v_1]^!$.

Denote by $\pi_S \colon T(V) \to S$ the natural projection map. Pick an element $r_0 \in V \otimes V$ such that $\pi_S(r_0) = z$. Let θ_z be the Clifford map as defined by (2.8.1) (cf. Lemma 2.9), and $E(\theta_z)$ the Clifford deformation of E associated to θ_z .

Let $\pi_{S[v_1]} \colon T(U) \to S[v_1]$ be the projection map. Set $r_0^{\#} = r_0 + v_1 \otimes v_1$. Then $\pi_{S[v_1]}(r_0^{\#}) = z + v_1^2$. Let $\widetilde{\theta_z}$ be the composition $R'^{\perp} \hookrightarrow U^* \otimes U^* \stackrel{r_0^{\#}}{\to} \mathbb{k}$. Then $\widetilde{\theta_z}$ is equal to the map defined in (7.5.3, Section 7), and hence a Clifford map of \widetilde{E} .

The main purpose of this section is to recover Knörrer's Periodicity Theorem in case of quadric hypersurface singularities. Firstly, we recover [K, Corollary 2.8] and [CKMW, Theorem 1.6] for quadrics without using of matrix factorizations.

Theorem 8.1. Retain the notation as above. Then the algebra A is a noncommutative isolated singularity if and only if so is $A^{\#}$.

Proof. By Theorem 6.3, A (resp. $A^{\#}$) is a noncommutative isolated singularity if and only if $E(\theta_z)$ (resp. $\widetilde{E}(\widetilde{\theta_z})$) is a \mathbb{Z}_2 -graded semisimple algebra. By Corollary 7.4, $E(\theta_z)$ is a \mathbb{Z}_2 -graded semisimple algebra if and only if so is $\widetilde{E}(\widetilde{\theta_z})$.

The second double branched cover of A is defined to be the algebra

$$A^{\#\#} := S[v_1, v_2]/(z + v_1^2 + v_2^2).$$

Let $W = V \oplus \mathbb{k}v_1 \oplus \mathbb{k}v_2$. Then $S[v_1, v_2] = T(W)/(R'')$, where

$$R'' = R \oplus \{v \otimes v_1 - v_1 \otimes v | v \in V\} \oplus \{v \otimes v_2 - v_2 \otimes v | v \in V\} \oplus \mathbb{C}(v_1 \otimes v_2 - v_2 \oplus v_1).$$

Let $\pi_{S[v_1,v_2]}: T(W) \to S[v_1,v_2]$ be the projection map. Let $r_0^{\#\#} = r_0 + v_1 \otimes v_1 + v_2 \otimes v_2$. Then $\pi_{S[v_1,v_2]}(r_0^{\#\#}) = z + v_1^2 + v_2^2$. Let $\widetilde{\widetilde{\theta}_z}$ be the composition $R''^{\perp} \hookrightarrow W^* \otimes W^* \stackrel{r_0^{\#\#}}{\to} \mathbb{k}$. Then $\widetilde{\widetilde{\theta}_z}$ is a Clifford map associated to $\widetilde{\widetilde{E}}$, which is equal to the corresponding map obtained in (7.5.3).

We recover the following Knörrer's Periodicity Theorem (cf. [K, Theorem 3.1] and [CKMW, Theorem 1.7]) for quadrics without using matrix factorizations.

Theorem 8.2. Retain the notation as above. Then there is an equivalence of triangulated categories $mcmA \cong mcmA^{\#\#}$.

Proof. By Theorem 5.1(iii), we have equivalences of triangulated categories $\underline{\operatorname{mcm}} A \cong D^b(\operatorname{gr}_{\mathbb{Z}_2} E(\theta_z))$ and $\underline{\operatorname{mcm}} A^{\#\#} \cong D^b(\operatorname{gr}_{\mathbb{Z}_2} \widetilde{\widetilde{E}}(\widetilde{\theta_z}))$. By Proposition 7.9, we have an equivalence of abelian categories $\operatorname{gr}_{\mathbb{Z}_2} E(\theta_z) \cong \operatorname{gr}_{\mathbb{Z}_2} \widetilde{\widetilde{E}}(\widetilde{\theta_z})$. Hence the result follows.

Acknowledgments. The authors thank James J. Zhang and Guisong Zhou for many useful conversations. J.-W. He was supported by ZJNSF (No. LY19A010011), NSFC (Nos. 11571239, 11671351) and a grant from Hangzhou Normal University. Y. Ye was supported by NSFC (No. 11571329).

References

- [AS] M. Artin, W. Schelter, Graded algebras of global dimension 3, Adv. Math. 66 (1987), 171–216.
- [AZ] M. Artin, J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), 228–287.
- [Bu] R.-O. Buchweitz, Maximal Cohen-Macaulay module and Tate-cohomology over Gorenstein rings, unpublished note, 1986.
- [CKMW] A. Conner, E. Kirkman, W. F. Moore, C. Walton, Noncommutative Knörrer periodicity and noncommutative Kleinian singularities, arXiv:1809.06524.
- [DNN] S. Dăscălescu, C. Năstăsescu, L. Năstăsescu, Frobenius algebras of corepresentations and group-graded vector spaces, J. Algebra 406 (2014) 226-250.
- [HVZ] J.-W. He, F. Van Oystaeyen, Y. Zhang, Skew polynomial algebras with coefficients in Koszul Artin-Schelter regular algebras, J. Algebra 390 (2013), 231–249.
- [K] H. Knörrer, Cohen-Macaulay modules on hypersurface singularities I, Invent. Math. 88 (1987), 153-164.
- [Le] T. Levasseur, Some properties of noncommutative regular graded rings, Glasgow Math. J. 34 (1992), 277–300.
- [LW] G. J. Leuschke, R. Wiegand, Cohen-Macaulay representations, Math. Surveys Mongraphs 181, Amer. Math. Soc, Providence, RI, 2012.
- [LvO] H. Li, F. Van Oystaeyen, Zariskian Filtrations, Kluwer Academic Publishers, London, (1996).
- [MU] I. Mori, K. Ueyama, Noncommutative matrix factoriztions with an application to skew exterior algebras, arXiv:1806.07577.
- [NvO] C. Năstăsescu, F. Van Oystaeyen, Methods of Graded Rings, Lect. Notes Math. 1836, Springer, 2004
- [Or] D. Orlov, Derived Categories of Coherent Sheaves and Triangulated Categories of Singularities, in: Algebra, Arithmetic, and Geometry Vol. II, Progress Math. 270 (2009), 503–531, Birkhäuser Boston Inc., Boston.
- [P] S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60
- [PP] A. Polishchuk, C. Positselski, Quadratic Algebras, Univ. Lecture Ser. 37. Amer.Math. Soc., Providence, RI (2005).
- [Po] I. R. Porteous, Clifford algebras and the classical groups, Cambridge Stud. Adv. Math. 50, Cambridge University Press, (1995).
- [ST] B. Shelton, G. Tingey, On Koszul algebras and a new construction of Artin-Schelter regular algebras, J. Algebra 241 (2001), 789–798.

- [Sm] S.P. Smith, Some finite dimensional algebras related elliptic curves, in: CMS Conf. Proc. Vol. 19, Amer. Math. Soc. Providence, RI, 1996, 315–348.
- [SvdB] S. P. Smith, M. Van den Bergh, Noncommutative quadric surfaces, J. Noncommut. Geom. 7 (2013), 817–856.
- [Ue] K. Ueyama, Graded maximal Cohen-Macaulay modules over noncommutative graded Gorenstein isolated singularities, J. Algebra 383 (2013), 85–103.
- [We] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, 1994.
- [Ve] A. B. Verevkin, On the noncommutative analogue of the category of coherent sheaves on a projective scheme, Amer. Math. Soc. Transl. Ser. 2, 151 (1992) 41–53.
- [Zh] J. J. Zhang, Twisted graded algebras and equivalence of graded categories, Proc. London. Math. Soc. 72 (1996), 281–311.
- [Z] D. Zhao, Graded Morita equivalence of Clifford superalgebras, Adv. Appl. Clifford Algebras 23 (2013), 269–281.

HE: DEPARTMENT OF MATHEMATICS, HANGZHOU NORMAL UNIVERSITY, HANGZHOU ZHEJIANG 311121, CHINA E-mail address: jwhe@hznu.edu.cn

YE: SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEFEI ANHUI 230026, CHINA

E-mail address: yeyu@ustc.edu.cn