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ON CENTERS AND DIRECT SUM DECOMPOSITIONS OF

HIGHER DEGREE FORMS

HUA-LIN HUANG, HUAJUN LU, YU YE AND CHI ZHANG

Abstract. Higher degree forms are homogeneous polynomials of degree d > 2, or equivalently symmetric
d-linear spaces. In this paper we investigate direct sum decompositions of higher degree forms, namely
expressing as sums of forms in disjoint sets of variables, by their centers. Let Vn,d denote the affine space of
n-variate degree d forms. We show that within Vn,d the central forms, a priori absolutely indecomposable,
make a dense open subset. The algebraic structure of the centers of higher degree forms is studied. We
show that the center algebra of almost every form is semisimple, and that the center algebra of a form is
nonsemisimple if and only if the form is a limit of direct sums form. We also emphasize that the problem of
direct sum decompositions of higher degree forms can be boiled down to some standard tasks of linear algebra,
in particular the simultaneous upper-triangularization of a set of commuting matrices. Simple criteria and
algorithms for direct sum decompositions of higher degree forms are also provided.

1. Introduction

One of the central problems of classical invariant theory is the equivalence of higher degree forms under
linear changes of variables. Direct sum decomposition is a natural step of dimension reduction as it provides
the separation of variables. Direct sum decomposition of higher degree forms also plays important roles in
many problems of such subjects as commutative algebra, geometric invariant theory, multilinear algebra and
computational complexity.

In his pioneering work [3], Harrison initiated to generalize Witt’s algebraic theory of quadratic forms to
the higher degree situation. One of his important results is that any nondegenerate higher degree form
admits a unique decomposition into a direct sum of indecomposable forms. For each nondegenerate higher
degree form f a commutative algebra Z(f), the so-called center, was introduced to deal with its direct sum
decomposition.

Centers of higher degree forms, possibly in different terminologies, with connection to their direct sum
decompositions were rediscovered independently several times by other authors, for example [12, 14, 8]. Direct
sum decompositions of homogeneous polynomials are also considered in depth in the so-called Sebastiani-
Thom type problems of algebraic geometry, where a decomposable polynomial is called of Sebastiani-Thom
type. In [18], some sufficient conditions are provided for the direct sum decomposability of homogeneous
polynomials via their Jacobian ideals.

On the other hand, recently direct sum decompositions of higher degree forms are also approached through
apolarity, see for example [8, 1, 17]. In [2], the direct sum decomposition of a smooth form is interpreted in
terms of the product factorization of its associated form and an algorithm for computing direct sum decom-
positions is provided. In these aforementioned works, criteria and algorithms of direct sum decompositions
of higher degree forms involve sophisticated tools of Gröbner bases and associated forms.

The main aim of the present paper is to stress that the theory of Harrison’s centers is highly effective for
direct sum decompositions of higher degree forms both theoretically and computationally. There are many
research works (see e.g. [7, 10, 11, 13, 15]) along the line of [3, 4], however general algebraic structures of
centers and algorithms for direct sum decompositions via centers were not systematically pursued before.
We show that almost all forms have trivial center (i.e. isomorphic to the ground field), a priori absolutely
indecomposable. We also prove that the center algebra of a higher degree form is semisimple if and only if
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the form is not a limit of direct sums form [1]. As limit of direct sums forms are nullforms [2, 9], almost
all higher degree forms have semisimple center. For forms with semisimple center, we give an elementary
criterion for the direct sum decomposability which is equivalent to computing the rank of a finite set of
vectors. Moreover, we show through a simple algorithm that direct sum decompositions for arbitrary higher
degree forms can be boiled down to some standard tasks of linear algebra, specifically the computations of
eigenvalues and eigenvectors for which there are efficient algorithms and well-established softwares. Some
complicated examples treated in [1, 2, 17] are easily rehandled by this approach.

The rest of the paper is organized as follows. Section 2 is devoted to some preliminaries on centers and
direct sum decompositions of higher degree forms. Main results are presented in Section 3. We conclude
the paper with some examples in Section 4. Throughout, let d ≥ 3 be an integer and let k be a field with
chark = 0, or chark > d.

2. Preliminaries

A form of degree d in n variables is an element of the polynomial ring k[x1, · · · , xn] which is a sum of
monomials of degree d. A form f is called a direct sum if, after an invertible linear change of variables, it can
be written as a sum of t ≥ 2 nonzero forms in disjoint sets of variables as follows

(2.1) f = f1(x1, · · · , xa1
) + · · ·+ ft(xat−1+1, · · · , xn).

If this is not the case, then f is said to be indecomposable. On the other extreme, if the fi’s are forms in
only one variable, then f is said to be diagonalizable.

For convenience, a general form of degree d in n variables is written in the symmetric way:

(2.2) f(x1, · · · , xn) =
∑

1≤i1,··· ,id≤n

ai1···idxi1 · · ·xid

where the ai1···id ’s are symmetric in the sense that they remain unchanged under any permutation of their
subscripts. The resulting symmetric d-tensor A = (ai1···id)1≤i1,··· ,id≤n is called the symmetric tensor of f.

Corresponding to forms of degree d there are associated symmetric d-linear spaces. Let V be a vector
space over k of dimension n with a basis e1, · · · , en. Define Θ: V ×· · ·×V −→ k by Θ(ei1 , · · · , eid) = ai1···id .
The pair (V,Θ) is called the associated symmetric d-linear space of f under the basis e1, · · · , en. One can
recover the form f from (V,Θ) as

f(x1, · · · , xn) = Θ





∑

1≤i≤n

xiei, . . . ,
∑

1≤i≤n

xiei



 .

Nonzero subspaces V1, · · · , Vt of (V,Θ) are said to be orthogonal, if Θ(v1, · · · , vd) = 0 unless all the vi’s are in
the same Vs for some 1 ≤ s ≤ t. If V = V1 ⊕ · · · ⊕ Vt for t ≥ 2 nonzero orthogonal subspaces, then call (V,Θ)
decomposable. Otherwise, call (V,Θ) indecomposable. Clearly, the orthogonal decompositions of (V,Θ) are
in bijection with the direct sum decompositions of its associated form f.

A form f is said to be nondegenerate, if no variable can be removed by an invertible linear change of
variables. This is equivalent to saying, in terms of symmetric d-linear spaces, that Θ(u, v2, · · · , vd) = 0 for
all v2, · · · , vd ∈ V implies u = 0. For the associated symmetric d-tensor A, let Ai1 denote the (d − 1)-tensor
A = (ai1···id)1≤i2,··· ,id≤n. Then f is nondegenerate if and only if the Ai1 ’s are linearly independent in the
space of (d − 1)-tensors. Moreover, the form f involves essentially Rank{A1, · · · , An} variables. See [6] for
more details.

According to [3, 4], the center of a higher degree form can be defined in the following three equivalent

ways. Suppose f is a form of degree d in n variables. By H we denote its Hessian matrix ( ∂2f
∂xi∂xj

)1≤i, j≤n.

Then the center of f is defined as

(2.3) Z(f) := {X ∈ kn×n | (HX)T = HX}.
Let A = (ai1···id)1≤i1,··· ,id≤n be the associated symmetric d-tensor of f and A(i3···id) the n × n matrix
(ai1i2i3···id)1≤i1,i2≤n. Then the center of A is defined by

(2.4) Z(A) := {X ∈ kn×n | XTA(i3···id) = A(i3···id)X, ∀1 ≤ i3, · · · , id ≤ n}.
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In terms of the associated symmetric d-linear space, the center is defined as

(2.5) Z(V,Θ) := {φ ∈ End(V ) | Θ(φ(v1), v2, · · · , vd) = Θ(v1, φ(v2), · · · , vd), ∀v1, v2, · · · , vd ∈ V }.

The following are some useful facts about centers and direct sum decompositions of higher degree forms
obtained in [3].

Proposition 2.1. Suppose f is a nondegenerate form of degree d in n variables. Then

(1) The center Z(f) is a commutative subalgebra of the full matrix algebra kn×n.
(2) There is a one-to-one correspondence between direct sum decompositions of f and complete sets of

orthogonal idempotents of Z(f).
(3) The decomposition of f into a direct sum of indecomposable forms is unique up to equivalence and

permutation of indecomposable summands.
(4) If K/k is a field extension, by fK it is meant treating f ∈ K[x1, · · · , xn], then Z(fK) ∼= Z(f)⊗

k

K.

Proof. For later applications, we include a proof of item (2). Proofs of other items can be found in [3]. It is
enough to prove the correspondence between direct sum decompositions into two terms and complete sets of
pairwise orthogonal idempotents. This can be easily extended to the general situation.

Suppose f(x1, · · · , xn) = f1(x1, · · · , xa) + f2(xa+1, · · · , xn) is a direct sum decomposition. Let (V,Θ) be
the associated symmetric d-linear space with basis e1, · · · , en. Under these assumptions, we have

f1(x1, · · · , xa) = Θ

(

a
∑

i=1

xiei, · · · ,
a
∑

i=1

xiei

)

,

f2(xa+1, · · · , xn) = Θ

(

n
∑

i=a+1

xiei, · · · ,
n
∑

i=a+1

xiei

)

.

Note in particular that

(2.6) Θ(ei1 , ei2 , · · · , eid) = 0 unless 1 ≤ i1, i2, · · · , id ≤ a or a+ 1 ≤ i1, i2, · · · , id ≤ n.

Let V1 (resp. V2) be the subspace of V spanned by e1, · · · , ea (resp. ea+1, · · · , en) and let ǫi : V ։ Vi be the
natural projections. Then for each v ∈ V, we have v = ǫ1(v) + ǫ2(v). Clearly 1 = ǫ1 + ǫ2. It remains to prove
that ǫi ∈ Z(V,Θ). Indeed, with (2.6) and the d-linearity of Θ we have

Θ(ǫ1(v1), v2, · · · , vd) = Θ(ǫ1(v1), ǫ1(v2) + ǫ2(v2), · · · , ǫ1(vd) + ǫ2(vd))

= Θ(ǫ1(v1), ǫ1(v2), · · · , ǫ1(vd))
= Θ(ǫ1(v1) + ǫ2(v1), ǫ1(v2), · · · , ǫ1(vd) + ǫ2(vd))

= Θ(v1, ǫ1(v2), · · · , vd).

Similarly, we have ǫ2 ∈ Z(V,Θ).

Conversely, suppose {ǫ1, ǫ2} is a pair of orthogonal idempotents of the center Z(V,Θ) and 1 = ǫ1 + ǫ2. Let
Vi = ǫi(V ). Then it is clear that V = V1 ⊕ V2. Assume that e1, · · · , ea (resp. ea+1, · · · , en) are a basis of V1

(resp. V2). As ǫ1, ǫ2 ∈ Z(V,Θ), it follows by the definition of centers that (2.6) holds. Now under the basis
e1, · · · , en we have

f(x1, · · · , xa, xa+1, · · · , xn) = Θ

(

n
∑

i=1

xiei, · · · ,
n
∑

i=1

xiei

)

= Θ

(

a
∑

i=1

xiei, · · · ,
a
∑

i=1

xiei

)

+Θ

(

n
∑

i=a+1

xiei, · · · ,
n
∑

i=a+1

xiei

)

.

This gives rise to a direct sum decomposition of f. �
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3. Main Results

We are mainly concerned about the algebraic structure of the center algebra of an arbitrary higher degree
forms and the application to the problem of direct sum decompositions. First of all, there is no loss of
generality in assuming that the forms are nondegenerate. In order to take advantage of tools of algebraic
geometry and for simplicity, we assume further that the ground field k is algebraically closed. For forms over
an arbitrary ground field k, one may study their direct sum decompositions on the algebraic closure k first.
Then by Harrison’s uniqueness result of decompositions, detect the exact situation on the original ground
field directly. Examples will be provided in the next section to elucidate the procedure. From now on, let
Vn,d ⊂ k[x1, · · · , xn] denote the linear space of forms of degree d in n variables. The synonymous notions of
higher degree forms and symmetric multilinear spaces are used interchangeably.

We start with computing Z(f) via equation (2.2). It is well known that the matrix equations therein can
be transformed to standard linear equations in the following way. Given an n × n matrix X, let Xv be the
n2-dimensional column vector







X1

...
Xn







whereXi is the i-th column ofX. LetXT
v denote the corresponding vector ofXT and let P be the permutation

matrix such thatXT
v = PXv. Then the matrix equationXTA(i3···id) = A(i3···id)X is equivalent to the following

linear equations

[In ⊗A(i3···id) − (A(i3···id) ⊗ In)P ]Xv = 0.

Let B denote the nd × n2 matrix of coefficients of the previous linear equations, that is

(3.1) B =











In ⊗A(1···11) − (A(1···11) ⊗ In)P
In ⊗A(1···12) − (A(1···12) ⊗ In)P

...

In ⊗A(n···n) − (A(n···n) ⊗ In)P











.

Then clearly Z(f) is obtained by putting the solution space of the linear equations

(3.2) BXv = 0

back to the form of n× n matrices.

Recall that a higher degree form f is called central if Z(f) = k. A form is called absolutely indecomposable
if it remains indecomposable under every field extension of the ground field k. Thanks to items (2) and (4)
of Proposition 2.1, a central form is absolutely indecomposable. It was showed in [6] that a general higher
degree form is central. In the following we give another interpretation of this fact in terms of elementary
algebraic geometry [5].

Proposition 3.1. The set of central forms is an open subset of Vn,d .

Proof. According to (3.2), a form f is central if and only the associated matrix B has rank n2− 1. Therefore,
the set of central forms in Vn,d is a union of all the principal open sets defined by the n2− 1 minors of B. �

In the following we give an explicit example of central forms in Vn,d for arbitrary n, d.

Example 3.2 (A central form). For any integers n ≥ 2, d ≥ 3, let f = x1x
d−1
2 + · · ·+ xn−1x

d−1
n + xnx

d−1
1 .

Then ∂2f
∂xi∂xj

= 0 for all 1 ≤ i, j ≤ n unless

∂2f

∂xj−1∂xj

= (d− 1)xd−2
j ,

∂2f

∂x2
j

= (d− 1)(d− 2)xj−1x
d−3
j ,

∂2f

∂xj+1∂xj

= (d− 1)xd−2
j+1

(by abuse of notation we consider n + 1 = 1 here). Let P = (pij) ∈ Z(f). Then HP is symmetric, and
consequently we have

(3.3) pi−1,jx
d−2
i + (d− 2)pijxi−1x

d−3
i + pi+1,jx

d−2
i+1 = pj−1,ix

d−2
j + (d− 2)pjixj−1x

d−3
j + pj+1,ix

d−2
j+1 .
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When d ≥ 4, the term xi−1x
d−3
i can not appear in the right hand side of the above equality unless i = j.

Hence pij = 0 for i 6= j. When i = j + 1, the above equality also shows that pjj = pj+1,j+1. So the matrix P
is a scalar matrix and f is a central form.

When d = 3, the equality (3.3) becomes

pi−1,jxi + pijxi−1 + pi+1,jxi+1 = pj−1,ixj + pjixj−1 + pj+1,ixj+1.

By comparing the coefficients of the xi’s, we have

• if |i− j| ≥ 3, then pij = 0;
• if i = j − 2, then pj−1,j−2 = pj−2,j = 0;
• if i = j − 1, then pj−1,j = pj+1,j−1 = 0, pjj = pj−1,j−1.

Therefore, the matrix P is a scalar matrix and f is a central form.

Now it follows easily that

Corollary 3.3. The set of central forms is dense in Vn,d .

In other words, almost all forms in Vn,d are central, a priori indecomposable.

Remark 3.4. A similar result was obtained in [18]. It was shown that the set of indecomposable forms is an
open algebraic subset in the projective space P(Vn,d).

Next we consider the semisimplicity of the center algebras of higher degree forms. This turns out to be
related to the geometric property of forms. Recall that a form f(x1, · · · , xn) is called smooth, or nonsingular,
if the simultaneous equations

∂f

∂x1
= · · · = ∂f

∂xn

= 0

have no nonzero solutions. There is also a notion of regularity of forms (see [4]) which generalizes and
unifies the nondegeneracy and smoothness. That is, in terms of symmetric spaces, (V,Θ) is called l-regular if
Θ(u, · · · , u, vl+1, · · · , vd) = 0 for all vl+1, · · · , vd ∈ V implies u = 0. Suppose f is associated to (V,Θ) under
the basis e1, · · · , en. If u = a1e1 + a2e2 + · · ·+ anen, then it can be checked (see [3]) that

(3.4) Θ



u,
∑

1≤i≤n

xiei, · · · ,
∑

1≤i≤n

xiei



 =
1

d

∑

1≤i≤n

ai
∂f

∂xi

.

With this it is clear that for corresponding multilinear symmetric spaces and higher degree forms 1-regular
= nondegenerate, (d− 1)-regular = smooth and l-regular implies (l − 1)-regular.

It was noticed in [3, 4] that the condition of 2-regularity for forms imposes very strong restriction, namely
the semisimpleness, on their centers. For completeness, we include a proof here.

Lemma 3.5. Suppose f is 2-regular. Then Z(f) is semisimple.

Proof. It is enough to prove that if φ ∈ Z(f) is nilpotent, then φ = 0. Otherwise, suppose there was a nonzero
nilpotent element φ ∈ Z(f) with φm+1 = 0 while φm 6= 0 for some m ≥ 1. Then there is some v ∈ V such
that φm(v) 6= 0. Hence

Θ(φm(v), φm(v), v3, · · · , vd) = Θ(φ2m(v), v, v3, · · · , vd) = Θ(0, v, v3, · · · , vd) = 0

for all v3, · · · , vd ∈ V as 2m ≥ m + 1. Now the 2-regularity of f forces φm(v) = 0. This leads to a desired
contradiction. �

Remark 3.6. There are non-2-regular higher degree forms whose center algebras are semisimple. For exam-
ple, the determinant of a generic square matrix is non-2-regular as any rank 1 matrix is a common zero of
its all degree n− 2 differentials. However the generic determinant has trivial center, namely k, see [1, 2, 17]
and Example 4.3 for more details.

For a complete description of the semisimplicity of center algebras, we need the notion of limit of direct
sums forms introduced in [1].
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Definition 3.7. A higher degree form f is said to be a limit of direct sums (LDS) form if after a reversible
linear change of variables,

(3.5) f(x1, · · · , xn) =

l
∑

i=1

xi

∂h(xl+1, · · · , x2l)

∂xl+i

+ g(xl+1, · · · , xn),

where h and g are forms of the same degree as f, in l and n− l variables respectively.

The terminology is justified by the following

f(x1, · · · , xn) = lim
t→0

1

t
[h(tx1 + xl+1, · · · , txl + x2l)− h(xl+1, · · · , x2l)

+tg(tx1 + xl+1, · · · , txl + x2l, x2l+1, · · · , xn)].

Theorem 3.8. Suppose f is a nondegenerate higher degree form. Then the center Z(f) is nonsemisimple if
and only if f is an LDS form.

Proof. Suppose f(x1, · · · , xn) =
∑l

i=1 xi
∂h(xl+1,··· ,x2l)

∂xl+i
+ g(xl+1, · · · , xn) is an LDS form. Then the Hessian

matrixH of f is





0 Hh 0
Hh

0
Hg



 whereHg andHh are the Hessian matrices of g and h respectively. Let

N denote the block matrix





0 Il 0
0 0 0
0 0 0



 which is clearly nilpotent. It is easy to verify that (HN)T = HN.

This implies that Z(f) is nonsemisimple.

Conversely, suppose Z(f) is nonsemisimple. Then take a nontrivial nilpotent element φ ∈ Z(f) satisfying
φ2 = 0. This is possible as Z(f) is a commutative algebra. Let (V,Θ) be the associated symmetric d-linear
space of f. Assume Rankφ = l. Let e1, · · · , el be a basis of Imφ and choose el+i ∈ V such that φ(el+i) = ei
for all 1 ≤ i ≤ l. Then e1, · · · , e2l are linearly independent and we extend them to a basis e1, · · · , en of V.
Note that φ(ej) = 0 whenever j ≤ l or j ≥ 2l+ 1. It follows that Θ(ei1 , · · · , eid) = 0 whenever there are two
indices is, it ∈ [1, l] or is ∈ [1, l] and it ∈ [2l+ 1, n]. Then, under this basis, the form f becomes

f(x1, · · · , xn) = Θ

(

n
∑

i=1

xiei, · · · ,
n
∑

i=1

xiei

)

=

l
∑

i=1

xi

∑

1≤i2,··· ,id≤l

Θ(ei, el+i2 , · · · , el+id)xl+i2 · · ·xl+id

+
∑

l+1≤j1,··· ,jd≤n

Θ(ej1 , · · · , ejd)xj1 · · ·xjd .

Let g(xl+1, · · · , xn) =
∑

l+1≤j1,··· ,jd≤n Θ(ej1 , · · · , ejd)xj1 · · ·xjd and

hi(xl+1, · · · , x2l) =
∑

1≤i2,··· ,id≤l

Θ(ei, el+i2 , · · · , el+id)xl+i2 · · ·xl+id

for all 1 ≤ i ≤ l. Note that hi =
∂f
∂xi

and thus by (3.4) one has

∂hi

∂xl+j

=
∂2f

∂xi∂xl+j

= d(d− 1)Θ

(

ei, el+j ,

2l
∑

k=l+1

xkek, · · · ,
2l
∑

k=l+1

xkek

)

= d(d− 1)Θ

(

φ(el+i), el+j ,

2l
∑

k=l+1

xkek, · · · ,
2l
∑

k=l+1

xkek

)

= d(d− 1)Θ

(

el+i, φ(el+j),

2l
∑

k=l+1

xkek, · · · ,
2l
∑

k=l+1

xkek

)

= d(d− 1)Θ

(

el+i, ej ,

2l
∑

k=l+1

xkek, · · · ,
2l
∑

k=l+1

xkek

)
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= d(d− 1)Θ

(

ej , el+i,

2l
∑

k=l+1

xkek, · · · ,
2l
∑

k=l+1

xkek

)

=
∂2f

∂xj∂xl+i

=
∂hj

∂xl+i

.

Then by the well known Euler’s identity, the following degree d form

h(xl+1, · · · , x2l) =
1

d

∑

1≤i≤l

xl+ihi(xl+1, · · · , x2l)

satisfies ∂h
∂xl+i

= hi for all 1 ≤ i ≤ l. Now we have shown that

f(x1, · · · , xn) =

l
∑

i=1

xi

∂h(xl+1, · · · , x2l)

∂xl+i

+ g(xl+1, · · · , xn).

That is to say, f is an LDS form. �

Corollary 3.9. Suppose f is not an LDS form. Then Z(f) ∼= k× · · · ×k and the number of indecomposable
direct summands of f is exactly dimZ(f). In particular, f is indecomposable if and only if Z(f) ∼= k.

Proof. By the previous theorem, Z(f) is semisimple since f is not an LDS form. Then according to the well
known Wedderburn-Artin Theorem, the center algebra Z(f) ∼= k × · · · × k. The rest statements are direct
consequences of Proposition 2.1. �

Remarks 3.10. Keep the assumption that f is a nondegenerate higher degree form.

(1) The previous corollary gives an elementary criterion for direct sum decomposability of higher degree
forms with semisimple center algebras. Suppose Z(f) is semisimple. Then f is indecomposable (i.e.
not a direct sum) if and only if dimZ(f) = 1, if and only if RankB = n2 − 1 where B is as in (3.1).
Thus this is equivalent to computing the rank of a finite set of vectors. Note that smooth forms have
semisimple centers by Lemma 3.5, so our criterion contains the cases treated in [1, 2, 18].

(2) If f is not an LDS form, then dimZ(f) ≤ n as the number of direct summands is not greater than
the number of variables. In the specific case of dimZ(f) = n, the form f is equivalent to the sum of
d-th power of n linear forms. These are the so-called diagonalizable forms and have been investigated
in our previous paper [6] via the theory of Harrison’s centers.

(3) There is also a very simple algorithm for direct sum decompositions of higher degree forms with
semisimple centers. Given a nondegenerate form f, the first step is to solve the linear equations (3.2)
and take a basis of solution space. The second step is to diagonalize simultaneously the chosen basis.
Note that Z(f) is semisimple if and only if each X ∈ Z(f) is diagonalizable. This can be detected via
the minimal polynomial of any basis element, using Euclid algorithm to see whether the polynomial
has multiple roots. This seems computationally cheaper than the Jacobian criterion of detecting the
smoothness. The third step is to find out diagonal idempotent matrices from linear combinations of
the obtained set of diagonal matrices. Finally determine a set of primitive orthogonal idempotents
and decompose the form f accordingly.

(4) It was observed in [2] that if f is an LDS form, then f is a nullform, or GIT unstable. The converse
is not true. For example, the binary form f = x2y3 + xy4 + y5 is a nullform (see e.g. [9]), however
Z(f) ∼= k. It would be interesting to investigate the intrinsic difference between the nilpotency of Z(f)
and the unstableness of f.

(5) In the literature, it is considered very difficult to understand the nature of central higher degree forms,
see for example [13]. Now by Theorem 3.8 and Corollary 3.9, we may interpret a central form as an
indecomposable non LDS form. The previous item says that an indecomposable but not central form
is extremely singular. It would be very interesting to unravel the connection between the nilpotency
of Z(f) and the singularity of f.

(6) It was conjectured in [10] that dimZ(f) ≤ n for all nondegenerate f ∈ Vn,d . As LDS forms are
extremely singular, this means that the dimension conjecture of O’Ryan-Shapiro holds for almost all
nondegenerate forms. There do exist forms whose center algebras have dimension greater than n, for

instance the Keet-Saxena cubic forms have dimension of magnitude O(n
3
2 ), see [7, 15]. In [15] Saxena
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also tried to amend the O’Ryan-Shapiro conjecture as: dimZ(f) ≤ (d − 1)n for all nondegenerate
f ∈ Vn,d . As a matter of fact, this is also disproved by the same Keet-Saxena cubic forms.

So far the exact upper bound of the dimensions of center algebras is not known yet. By the preceding
items (2) and (6), we should focus on LDS forms for such bound. One may also approach this via the inverse
problem proposed in [10]: which commutative subalgebras of kn×n are expressible as the center of some
nondegenerate form in n variables? Since the upper bound is our primary goal, we start with a try on Schur’s
well known maximal commutative subalgebras in kn×n.

In 1905 Schur [16] proved that the dimension of a commutative subalgebra of the full matrix algebra kn×n

does not exceed [n
2

4 ] + 1 = m2 + 1 if n = 2m and = m(m− 1) + 1 if n = 2m− 1. The bound is attained by
the following local algebra

Sn := λIn +

(

0 A
0 0

)

,

where A = km×m if n = 2m and = km×(m−1) if n = 2m− 1.

Proposition 3.11. The algebra Sn is not the center of any nondegenerate forms in k[x1, · · · , xn].

Proof. Otherwise, suppose Z(f) = Sn for some nondegenerate form f ∈ k[x1, · · · , xn]. Let H be the Hessian

matrix of f and partition it into the shape

(

H1 H2

H3 H4

)

of those in Sn. By (2.3), the matrix

(

H1 H2

H3 H4

)(

0 A
0 0

)

=

(

0 H1A
0 H3A

)

is symmetric. This forces H1 = 0 and H3 = 0 = H2, as A is arbitrary and H is symmetric. It follows that
the variables x1, · · · , xm do not appear in f and so it is degenerate. This is a contradiction. �

Finally we provide an algorithm, purely in terms of linear algebra, for the direct sum decompositions of
any higher degree forms.

Algorithm 3.12. Take an arbitrary f ∈ Vn,d . Denote the associated symmetric tensor by A.

Step 1. Compute Rank{A1, · · · , An}. If it is n, then f is nondegenerate and continue; otherwise, take
a linearly independent set of maximal size, reduce variables and make f nondegenerate in lower dimension
situation, then continue.

Step 2. Solve the linear equations (3.2) and get a basis (Pi)1≤i≤dimZ(f) of the center Z(f).

Step 3. Upper-triangularize (Pi)1≤i≤dimZ(f) simultaneously, and get a set of uppertriangular matrices
(Qi)1≤i≤dimZ(f). Let Z

′ = ⊕1≤i≤dimZ(f)kQi denote the conjugate algebra of Z(f).

Step 4. Take the diagonal αi of each Qi. By the well known theorem of Jordan decomposition, αi is a
polynomial of Qi and so an element of Z ′. Determine a complete set of primitive orthogonal idempotents of
Z ′ which are linearly spanned by the αi’s. Write each αi as a row vector and put them into a matrix C.
Then a set of primitive orthogonal idempotents are obtained by a row echelon reduction of C. By the reverse
conjugation of Step 3, get a complete set of primitive orthogonal idempotents, denoted by (ǫj)1≤j≤dimZ(f), of
Z(f).

Step 5. Decompose the form f according to the complete set (ǫj)1≤j≤dimZ(f) of primitive orthogonal
idempotents.

Remark 3.13. The previous algorithm shows that the direct sum decompositions of higher degree forms
can be boiled down to some standard tasks of linear algebra, specifically the computations of eigenvalues and
eigenvectors for which there are efficient algorithms and well-established softwares. Our algorithm seems
more elementary than those in some previous works [1, 2, 17] which involve sophisticated tools of Gröbner
bases and associated forms.
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4. Examples

In the following we provide some examples to elucidate the proposed criteria and algorithms. Examples 4.1
and 4.2 are taken form [2]. It turns out they can be easily worked out by hand without involving computers.
Example 4.3 was considered in [1, 2, 17] by apolarity. Example 4.4 is about Cayley’s hyperdeterminant
and seems new. Example 4.5 is the Keet-Saxena cubic form which provides the best upper bound of the
dimension of centers so far. These seemingly very complicated forms can all be handled by the approach of
center without difficulty. Note that the examples are over not necessarily algebraically closed ground fields.
Thus our approach works as well for direct sum decompositions of forms over arbitrary fields.

Example 4.1. [2, Example 6.4] Consider the rational form f(x1, x2, x3) = x3
1 + 3x2

1x2 + 3x1x
2
2 + 2x3

2 +
3x2

1x3 + 6x1x2x3 + 4x2
2x3 + 3x1x

2
3 + 4x2x

2
3 + 2x3

3 ∈ Q[x1, x2, x3]. Let

A(1) =





1 1 1
1 1 1
1 1 1



 , A(2) =





1 1 1
1 2 4

3
1 4

3
4
3



 , A(3) =





1 1 1
1 4

3
4
3

1 4
3 2



 .

Then by direct calculation, Z(f) = {X ∈ Q3×3 | A(i)X = XTA(i), 1 ≤ i ≤ 3} =
⊕

1≤i≤3QXi, where

X1 =





1 1 1
0 0 0
0 0 0



 , X2 =





0 −1 −1
0 1 0
0 0 1



 , X3 =





0 1 3
0 0 1
0 −1 −4



 .

It is clear that X1 and X2 are a pair of orthogonal idempotents. According to the proof of Proposition 2.1,
take the change of variables

y1 = x1 + x2 + x3, y2 = x2, y3 = x3

and decompose the form as

y31 + (y32 + y22y3 + y2y
2
3 + y33).

Let g(y2, y3) = y32 + y22y3 + y2y
2
3 + y33 . Then one can read from the Xi’s that

Z(g) = Q

(

1 0
0 1

)

⊕Q
(

0 1
−1 −4

)

∼= Q[
√
3].

It follows by Proposition 2.1 that g is indecomposable over Q as Q[
√
3] is a field. However it is not absolutely

indecomposable. Over any field extension K/Q with
√
3 ∈ K, one has easily Z(g)⊗

Q

K ∼= K ×K and g can
be further decomposed as

2

(

3 +
√
3

6
y2 +

3−
√
3

6
y3

)3

+ 2

(

3−
√
3

6
y2 +

3 +
√
3

6
y3

)3

.

To summarize, f can be diagonalized over K as

f(x1, x2, x3) = (x1 + x2 + x3)
3
+ 2

(

3 +
√
3

6
x2 +

3−
√
3

6
x3

)3

+ 2

(

3−
√
3

6
x2 +

3 +
√
3

6
x3

)3

.

Example 4.2. [2, Example 6.6] Consider the following rational quaternary quartic

f =x4
1 + 4x3

1x2 + 6x2
1x

2
2 + 4x1x

3
2 + 2x4

2 + 8x3
1x3 + 24x2

1x2x3 + 24x1x
2
2x3 + 8x3

2x3 + 24x2
1x

2
3

+ 48x1x2x
2
3 + 24x2

2x
2
3 + 32x1x

3
3 + 32x2x

3
3 + 17x4

3 − 12x3
1x4 − 36x2

1x2x4 − 36x1x
2
2x4

− 12x3
2x4 − 72x2

1x3x4 − 144x1x2x3x4 − 72x2
2x3x4 − 144x1x

2
3x4 − 144x2x

2
3x4 − 96x3

3x4

+ 54x2
1x

2
4 + 108x1x2x

2
4 + 54x2

2x
2
4 + 216x1x3x

2
4 + 217x2x3x

2
4 + 216x2

3x
2
4 − 108x1x

3
4

− 108x2x
3
4 − 216x3x

3
4 + 82x4

4.

Let A be the associated symmetric tensor of f and for all 1 ≤ i3, i4 ≤ 4 let A(i3i4) = (ai1i2i3i4)1≤i1,i2≤4. Note
that

A(22) −A(11) =









0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









, 12A(23) − 24A(11) =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1









,
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12A(24) + 36A(11) =









0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0









, A(33) − 4A(11) =









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0









,

12A(34) + 72A(11) =









0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0









, 12A(44) − 144A(23) + 180A(11) =









0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0









.

With the preceding observation it is easy to compute that Z(f) = {X ∈ Q4×4 | A(ij)X = XTA(ij), 1 ≤ i, j ≤
4} = QX1 ⊕QX2 where

X1 =









1 1 2 −3
0 0 0 0
0 0 0 0
0 0 0 0









, X2 =









0 −1 −2 3
0 1 0 0
0 0 1 0
0 0 0 1









.

Clearly X1 and X2 are a pair of primitive orthogonal idempotents and Z(f) ∼= Q × Q. As the previous
example, we have the following direct sum decomposition

f = (x1 + x2 + 2x3 − 3x4)
4 + (x4

2 + x4
3 + x2x3x

2
4 + x4

4).

In conclusion, f is the direct sum of two absolutely indecomposable forms over Q.

Example 4.3 (Determinant-like polynomials). Let n ≥ 3. Consider the determinant-like polynomial

D :=
∑

σ∈Sn

cσx1,σ(1)x2,σ(2) · · ·xn,σ(n),

where cσ ∈ k∗. Denote Dij,kl :=
∂2D

∂xij∂xkl
. Arrange the indeterminates xij lexicographically via their indices.

Assume A = (ast,uv) ∈ Z(D). Take an arbitrary pair of indices ij and kl with i 6= k, j 6= l. Then by (2.3) we
have

∑

st

Dij,stast,kl =
∑

uv

Dkl,uvauv,ij .

Note that Dij,st = Dkl,uv 6= 0 if and only if s = k, t = l, u = i, v = j. It follows that aij,ij = akl,kl and
ast,kl = 0 for any other st with s 6= i, t 6= j. By varying ij and kl, it can be checked that A is a scalar
matrix. That is, Z(D) ∼= k and thus D is absolutely indecomposable. One can also consider pfaffian-like and
hafnian-like polynomials in the same manner.

Example 4.4 (Cayley’s hyperdetermiant). The well known Cayley’s hyperdetermiant (of 2 × 2 × 2 matrix)
is the following 8-variate degree 4 form:

f(x1, · · · , x8) = x2
1x

2
8 + x2

2x
2
7 + x2

3x
2
6 + x2

4x
2
5

−2(x1x2x7x8 + x1x3x6x8 + x1x4x5x8 + x2x3x6x7 + x2x4x5x7 + x3x4x5x6)
+4(x1x4x6x7 + x2x3x5x8).

Let A = (ai1i2i3i4) be the associated symmetric 4-tensor of f and let A(i,j) be the 8×8 matrix (ai1i2ij)1≤i1,i2≤8.
By Ei,j we denote the 8 × 8 matrix with (i, j)-entry 1 and other entries 0. Suppose T = (Tij) ∈ Z(f). We
have the following observations.

• A(i,i) = E9−i,9−i for all 1 ≤ i ≤ 8. By (2.3), it follows easily that the matrix T is diagonal, written
simply as diag(t1, t2, . . . , t8);

• A(1,j) = − 1
6 (E9−j,8 + E8,9−j) for j = 2, 3, 4. It follows that t5 = t6 = t7 = t8;

• A(k,8) = − 1
6 (E9−k,1 + E1,9−k) for j = 4, 6, 7. It follows that t1 = t2 = t3 = t5;

• A(5,8) = − 1
6 (E4,1 + E1,4) +

1
3 (E3,2 + E2,3). It follows that t1 = t4.

Thus the matrix T must be a scalar matrix. Hence Cayley’s hyperdetermiant is a central form and so absolutely
indecomposable.
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Example 4.5 (The Keet-Saxena cubic forms). Let f =
n
∑

i=1

aiiX
2
i +

∑

1≤i<j≤n

2aijXiXj be a polynomial in the

indeterminates aij , Xi with 1 ≤ i ≤ j ≤ n. Then f is a cubic form in n(n+3)
2 variables. Compute the second

order partial derivatives of f to get

∂2f

∂aij∂ai′j′
= 0,

∂2f

∂Xi∂Xj

= 2aij ,
∂2f

∂aij∂Xk

=











0, k 6= i, j;

2Xj, k = i;

2Xi, k = j.

Arrange the aij ’s by lexicographic order. Then the Hessian matrix of f looks like

H =

(

0 X
XT A

)

where X is an n(n+1)
2 ×n matrix, XT is the transpose of X and A is the generic n×n symmetric matrix. For

any P ∈ Z(f), partition it

(

P1 P2

P3 P4

)

as H. As HP =

(

XP3 XP4

XTP1 +AP3 XTP2 +AP4

)

is symmetric and

A is generic, it follows easily that P3 = 0 and

(

P1 0
0 P4

)

is a scalar matrix. Note that the (k1, k2)-entry

of XTP2 is

2(X1P1k1,k2
+ · · ·+Xk1

Pk1k1,k2
+Xk1+1Pk1 k1+1,k2

+ · · ·+XnPk1n,k2
),

where P2 = (Pij,k)1≤i≤j≤n, 1≤k≤n. Then XTP2 is symmetric if and only if
∑

i≤k1

Pik1,k2
Xi +

∑

i>k1

Pk1i,k2
Xi =

∑

i≤k2

Pik2,k1
Xi +

∑

i>k2

Pk2i,k1
Xi

for all 1 ≤ k1 6= k2 ≤ n. By comparing the coefficients of X ′
is, we have that

• if i ≤ min{k1, k2}, then Pik1,k2
= Pik2,k1

;
• if k1 < i < k2, then Pk1i,k2

= Pik2,k1
;

• if k2 < i < k1, then Pik1,k2
= Pk2i,k1

;
• if i ≥ max{k1, k2}, then Pk1i,k2

= Pk2i,k1
.

Therefore, we have Pi1j1,k1
= Pi2j2,k2

if and only if the triples {i1, j1, k1} = {i2, j2, k2} counting with the
multiplicities, and if and only if Xi1Xj1Xk1

= Xi2Xj2Xk2
as monomials. It is well known that the number of

degree 3 monomials in n variables is
(

n+2
3

)

. Hence we have dimZ(f) = 1+C3
n+2 = 1+ (n+2)(n+1)n

6 . Moreover,
Z(f) is a local algebra with square zero radical. Therefore, the Keet-Saxena cubic f is an indecomposable
LDS form.
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