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GENERALIZED KNÖRRER’S PERIODICITY THEOREM

JI-WEI HE, XIN-CHAO MA AND YU YE

Abstract. Let A be a noetherian Koszul Artin-Schelter regular algebra, and let f ∈
A2 be a central regular element of A. The quotient algebra A/(f) is usually called a

(noncommutative) quadric hypersurface. In this paper, we use the Clifford deformation

to study the quadric hypersurfaces obtained from the tensor products. We introduce a

notion of simple graded isolated singularity and proved that, if B/(g) is a simple graded

isolated singularity of 0-type, then there is an equivalence of triangulated categories

mcmA/(f) ∼= mcm(A⊗B)/(f + g) of the stable categories of maximal Cohen-Macaulay

modules. This result may be viewed as a generalization of Knörrer’s periodicity theorem.

As an application, we study the double branch cover (A/(f))# = A[x]/(f + x2) of a

noncommutative conic A/(f).

0. Introduction

In noncommutative projective geometry, Artin-Schelter regular algebras are usually re-

garded as the coordinate rings of noncommutative projective spaces. Let A be a noether-

ian Koszul Artin-Schelter regular algebra, and let f ∈ A2 be a central regular element of

A. The quotient algebra A/(f) is usually called a noncommutative quadric hypersurface.

Noncommutative quadric hypersurfaces have got lots of attentions in recent years (see

[SVdB, CKMW, MU1, MU2, HU, HMM, Ue1, Ue2], etc). To study the graded Cohen-

Macaulay modules of A/(f), Smith and Van den Bergh introduced in [SVdB] a finite

dimensional algebra C(A/(f)), and proved that there is an equivalence of triangulated

categories

mcmA/(f) ∼= Db(modC(A/(f))),

where mcmA/(f) is the stable category of graded maximal Cohen-Macaulay modules

over A/(f) and Db(modC(A/(f))) is the bounded derived category of finite dimensional

modules over C(A/(f)). It is proved in [HMM] that C(A/(f)) is a Morita invariant.

Hence, in some sense, the Cohen-Macaulay representations of A/(f) are determined by

C(A/(f)).
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However, one cannot recover the properties of A/(f) completely from C(A/(f)). For

instance, let A = C[x, y], A′ = C−1[x, y] and f = x2+y2. Then C(A/(f)) ∼= C(A′/(f)) and

mcmA/(f) ∼= mcmA′/(f) ∼= Db(modC2). But if we consider the double branched covers of

A/(f) and A′/(f) respectively, there will be a different situation. Indeed, mcm(A/(f))# ∼=
Db(modC) and mcm(A′/(f))# ∼= Db(modC4).

In [HY], we introduced the notion of Clifford deformation of a Koszul Frobenius alge-

bra. Associated to every noncommutative quadric hypersurface A/(f), there is a Clifford

deformation CA!(θf), which is a strongly Z2-graded algebra. It turns out that the degree

zero part of CA!(θf ) is isomorphic to the finite dimensional algebra C(A/(f)) as introduced

in [SVdB]. The Z2-graded algebra CA!(θf ) may recover enough information of A/(f). For

instance, the reason that mcm(A/(f))# differs from mcm(A′/(f))# in the previous para-

graph, is because the Z2-graded algebra CA!(θf ) associated to A/(f) is a simple graded

algebra, while CA′!(θf ) is not a simple graded algebra (see Examples 2.7, 2.9).

In this paper, we use the Clifford deformation to study the quadric hypersurfaces ob-

tained from the tensor products of Koszul Artin-Schelter regular algebras. Let A and B be

Koszul Artin-Schelter regular algebras, and let f ∈ A2, g ∈ B2 be central regular elements.

Suppose that A ⊗ B is noetherian. We prove that (A ⊗ B)/(f + g) is a graded isolated

singularity provided both A/(f) and B/(g) are graded isolated singularities (see Theorem

2.5). We introduce a notion of a simple graded isolated singularity in Section 2 and then

prove a generalized version of Knörrer’s Periodicity Theorem (see Theorem 2.15). In par-

ticular, it will recover the classical Knörrer’s Periodicity Theorem of quadric singularities

(see Remark 2.16). As an application, we study the double branch cover (A/(f))# of a

noncommutative conic A/(f) classified in [HMM] and proved that, in noncommutative

case, mcm(A/(f))# ∼= mcm(A/(f))×mcm(A/(f)) (see Corollary 3.6).

We assume the ground field k = C, and all the vector spaces and algebras are over C.

1. Morita theory of Z2-graded algebras revisited

In this section, we will recall some Morita type properties of Z2-graded algebras.

Let E = E0 ⊕ E1 be a finite dimensional Z2-graded algebras. Denote grZ2
E to be the

category whose objects are finite dimensional graded right E-modules, and whose hom-

sets are denoted by HomgrZ2 E(M,N) consisting of right E-module homomorphisms which

preserve the gradings. We use modE to denote the category whose objects are all the

finite dimensional right E-modules (ignoring the grading of E), and whose hom-sets are

denoted by HomE(M,N) consisting of all the right E-module homomorphisms. Note that

if M is finite dimensional, then HomE(M,N) is a Z2-graded vector space.
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We say that E is graded semisimple if E is a direct sum of simple objects in grZ2
E.

Let Jg(M) be the graded Jacobson radical of M , which is the intersection of all graded

maximal submodules of M , it is clear that Jg(EE) = Jg(EE) is a two-sided nilpotent

graded ideal and E is graded semisimple if and only if Jg(E) = 0.

A Z2-graded algebra E is called a graded division algebra if each non-zero homogeneous

element of E is invertible.

Let F be another finite dimensional Z2-graded algebra. Denote E⊗̂F to be the twisted

tensor product of E and F . The multiplications of elements in E⊗̂F is defined by

(x⊗̂y)(x′⊗̂y′) = (−1)|y||x
′|xx′⊗̂yy′,

where x, x′ ∈ E and y, y′ ∈ F are homogeneous elements, and |x′| denotes the degree of

x′. Note that E⊗̂F is also a Z2-graded algebra.

We say a Z2-graded algebra E is graded Morita equivalent to F if there is a finitely

generated Z2-graded bimodule FPE such that HomE(P,−) : grZ2
E −→ grZ2

F is an

equivalence of abelian categories.

The following results are well known (see [Z, Lemmas 3.4, 3.10] and [NVO, Theorem

2.10.10]).

Lemma 1.1. Let E and F be Z2-graded algebras.

(i) Assume that E and F are graded Morita equivalent to E ′ and F ′ respectively. Then

E⊗̂F is graded Morita equivalent to E ′⊗̂F ′.

(ii) (Z2-graded version of Wedderburn-Artin Theorem) If E is Z2-graded semisimple,

then E is isomorphic, as a graded algebra, to a direct product of finitely many

matrix algebras over some division algebras.

Since the ground field is C, there are only two classes of finite dimensional graded

division algebras. Let G = {1, σ} be a group of order 2, and let CG be the group algebra.

Then CG is a Z2-graded algebra by setting |σ| = 1 and |1| = 0.

Lemma 1.2. Let E be a finite dimensional Z2-graded division algebra over C. Then E

is isomorphic to either CG or C, where C is viewed as a Z2-graded algebra concentrated

in degree 0.

Proof. Since E0 is a finite dimensional division algebra over C, hence E0 = C. If E1 6= 0,

for any non-zero elements x, y ∈ E1, we have x−1y ∈ C and x = λy for some λ ∈ C.

Therefore, dimE1 = 1 and E is isomorphic to the skew group algebra C#G. The action

of σ ∈ G is ±1, and both of them are isomorphic to the group algebra CG. �
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For a Z2-graded algebra E, we write gldimZ2
E for the graded right global dimension

of E.

Lemma 1.3. [HY, Corollary 7.4] Let E be a Z2-graded algebra. Then

gldimZ2
E = gldimZ2

E⊗̂CG.

Proposition 1.4. Let E be a Z2-graded algebra over C, and let F be a Z2-graded semi-

simple algebra over C. Then gldimZ2
E⊗̂F = gldimZ2

E. In particular, E⊗̂F is graded

semisimple if and only if E is graded semisimple.

Proof. By the Z2-graded version of Wedderburn-Artin Theorem, F is isomorphic to a

direct product of finitely many matrix algebras over some graded division algebras. Note

that a matrix algebra over a graded division algebra (with possible degree shifts) is graded

Morita equivalent to a graded division algebra, and hence a matrix algebra over a graded

division algebra is graded Morita equivalent to either CG or C by Lemma 1.2. Then the

result follows from Lemma 1.1(i) and Lemma 1.3. �

We have the following Morita cancellation type property (see [LWZ]).

Proposition 1.5. Let E and F be Z2-graded algebras. Then E⊗̂CG is graded Morita

equivalent to F ⊗̂CG if and only if E is graded Morita equivalent to F .

Proof. Suppose that E⊗̂CG is graded Morita equivalent to F ⊗̂CG. By Lemma 1.1(i),

E⊗̂CG⊗̂CG is graded Morita equivalent to F ⊗̂CG⊗̂CG. By [HY, Lemma 7.2], the Z2-

graded algebra E⊗̂CG⊗̂CG is graded Morita equivalent to E, and F ⊗̂CG⊗̂CG is graded

Morita equivalent to F . Hence E is graded Morita equivalent to F . The other direction

is a consequence of Lemma 1.1(i). �

We next focus on strongly Z2-graded algebras. Recall that a Z2-graded algebra E is

said to be strongly graded if E1E1 = E0. Let E and F be strongly Z2-graded algebras.

Then E⊗̂F is also a strongly Z2-graded algebra.

Proposition 1.6. Let E be a finite dimensional strongly Z2-graded algebra. Then there

is an equivalence of abelian categories

grZ2
E⊗̂CG ∼= modE,

where modE is the category of finite dimensional right E-modules (ignoring the grading

of E).

Proof. As a vector space, the degree 0 part of E⊗̂CG is equal to

E1 ⊗ Cσ ⊕ E0 ⊗ C = E1 ⊗ Cσ ⊕ E0,
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and the multiplication of (E⊗̂CG)0 is given as following (we temporarily write the mul-

tiplication of E⊗̂CG by the symbol “∗”): for a, b ∈ E1, c, d ∈ E0, we have

(a⊗ σ) ∗ (b⊗ σ) = −ab, (a⊗ σ) ∗ c = ac⊗ σ,

c ∗ (a⊗ σ) = ca⊗ σ, c ∗ d = cd.

We temporarily write E♮ for the ungraded algebra obtained from E by ignoring the grad-

ing. Define a linear map

Ξ : (E⊗̂CG)0 −→ E♮,

by setting Ξ(a⊗σ) =
√
−1a if a ∈ E1, and Ξ(a) = a if a ∈ E0. Then it is straightforward

to check that Ξ is an isomorphism of algebras.

Since E is strongly graded, E⊗̂CG is also strongly graded and there is an equivalence of

abelian categories grZ2
E⊗̂CG ∼= mod(E⊗̂CG)0, which is in turn equivalent to modE♮. �

2. Products of quadric hypersurfaces

Let us recall some notations and terminologies. An N-graded algebra A = ⊕n∈NAn

is called a connected graded algebra if A0 = C. A connected graded algebra is said to

be locally finite, if dimAn < ∞ for all n. Let GrA denote the category whose objects

are graded right A-modules, and whose morphisms are right A-module morphisms which

preserve the gradings of modules. For a graded right A-module X and an integer l, we

write X(l) for the graded right A-module whose ith component is X(l)i = Xi+l.

A locally finite connected graded algebra A is called a Koszul algebra (see [P]) if the

trivial module kA has a linear free resolution; i.e.,

· · · −→ P n −→ · · · −→ P 1 −→ P 0 −→ C −→ 0,

where P n is a graded free module generated in degree n for each n ≥ 0. Note that a Koszul

algebra is a quadratic algebra, that is, A ∼= T (V )/(R), where V is a finite dimensional

vector space and R ⊆ V ⊗ V . If A is a Koszul algebra, the quadratic dual of A is the

quadratic algebra A! = T (V ∗)/(R⊥), where V ∗ is the dual vector space and R⊥ ⊆ V ∗⊗V ∗

is the orthogonal complement of R.

For graded right A-modules X and Y , denote HomA(X, Y ) =
⊕

i∈Z HomGrA(X, Y (i)).

Then HomA(X, Y ) is a Z-graded vector space. We write ExtiA for the ith derived functor

of HomA. Note that ExtiA(X, Y ) is also a Z-graded vector space for each i ≥ 0.

Definition 2.1. [AS] A connected graded algebra A is called an Artin-Schelter Gorenstein

algebra of injective dimension d if

(i) A has finite injective dimension injdim AA = injdimAA = d < ∞,
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(ii) ExtiA(CA, AA) = 0 for i 6= d, and ExtdA(CA, AA) ∼= AC(l),

(iii) the left version of (ii) holds.

If further, A has finite global dimension, then A is called an Artin-Schelter regular algebra.

An Artin-Schelter regular algebra A is called a quantum polynomial algebra if (i) A is a

noetherian domain, (ii) A is a Koszul algebra with Hilbert series

Ht(A) :=
∑

i≥0

tn dim(An) =
1

(1− t)d

for some d > 0.

Let A be a noetherian Artin-Schelter Gorenstein algebra. Let X be a graded right

A-module, and let Γ(X) = {x ∈ X|xA if finite dimensional}. We obtain a functor Γ :

GrA −→ GrA. We write RiΓ for the ith right derived functor of Γ. Assume that

injdim AA = injdimAA = d. A finitely generated graded right A-module X is called

a maximal Cohen-Macaulay module if RiΓ(X) = 0 for all i 6= d. Let mcmA be the

subcategory of GrA consisting of all the maximal Cohen-Macaulay modules. Let mcmA

be the stable category of mcmA. Then mcmA is a triangulated category.

Let V and U be finite dimensional vector spaces, and let A = T (V )/(RA) and B =

T (U)/(RB) be Koszul algebras. Let us consider the tensor algebra A ⊗ B. We view A

and B as graded subalgebras of A⊗B through the injective maps A →֒ A⊗B, a 7→ a⊗ 1

and B →֒ A⊗B, b 7→ 1⊗ b respectively. Also, we identify A1 with V and B1 with U . So,

the generating space of A⊗B is W = V ⊕ U , and A⊗B ∼= T (W )/(RA⊗B), where

(2.1.1) RA⊗B = RA ⊕ [V, U ]⊕ RB,

in which (see [M, Chapter 3])

[V, U ] = {v ⊗ u− u⊗ v|v ∈ V, u ∈ U}.

Moreover, A⊗ B is also a Koszul algebra. Let A! and B! be the quadratic dual algebras

of A and B respectively. The quadratic dual algebra of A ⊗ B is the following graded

algebra [M, 3.5]

(A⊗ B)! = A!⊗̂B!.

Now we assume both A and B are Koszul Artin-Schelter regular algebras. Then A!

and B! are graded Frobenius (see [Sm, Proposition 5.1]). It is easy to see that the graded

tensor product A!⊗̂B! is also a graded Frobenius algebra. Hence by [Sm, Proposition 5.1]

again, A⊗ B is an Artin-Schelter regular algebra.

In this section, we are interested in the quadric hypersurfaces obtained from A⊗ B.
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Now assume both A and B are noetherian Koszul Artin-Schelter regular algebras, fur-

ther more, A⊗ B is also noetherian. The following lemma is clear.

Lemma 2.2. Let f ∈ A2 and g ∈ B2 be central regular elements of A and B respectively.

View f and g as elements in A⊗B. Then h = f+g is a central regular element of A⊗B.

By the Rees Lemma [Le, Proposition 3.4(b)], (A⊗B)/(h) is a noetherian Koszul Artin-

Schelter Gorenstein algebra. We are going to consider the Cohen-Macaulay modules over

(A⊗ B)/(h). Let us recall some notations from [SVdB, HY].

Let E = T (X)/(RE) be a Koszul Frobenius algebra. A linear map θ : RE → C is called

a Clifford map (see [HY, Definition 2.1]) if

(θ ⊗ 1− 1⊗ θ)(X ⊗ RE ∩RE ⊗X) = 0.

Given a Clifford map θ : RE → C, define an associative algebra

(2.2.1) CE(θ) = T (X)/(r − θ(r) : r ∈ R).

The algebra CE(θ) is called the Clifford deformation of E associated to θ. We may

view T (X) as a Z2-graded algebra by taking T (X)0 = C ⊕ (
⊕

n≥1X
⊗2n) and T (X)1 =

⊕

n≥1X
⊗2n−1. Since the definition relations of CE(θ) lie in degree 0 component of T (X),

we may view CE(θ) as a Z2-graded algebra.

Now let S = T (Y )/(RS) be a noetherian Koszul Artin-Schelter regular algebra. Denote

by π : T (Y ) → S the natural projection map. Let z ∈ S2 be a central regular element

of S. Pick an element r0 ∈ Y ⊗ Y such that π(r0) = z. Let S ! = T (Y ∗)/(R⊥
S ) be the

quadratic dual algebra of S. Define a linear map

(2.2.2) θz : R
⊥
S → C, by setting θz(α) = α(r0), ∀α ∈ R⊥

S .

Note that the map θz is independent of the choice of r0. The following results were proved

in [HY, SVdB].

Theorem 2.3. Retain the notions as above.

(i) θz is a Clifford map of S !;

(ii) The Clifford deformation CS!(θz) is a finite dimensional strongly Z2-graded Frobe-

nius algebra;

(iii) There is an equivalence of triangulated categories

mcmS/(z) ∼= Db(grZ2
CS!(θz)) ∼= Db(modCS!(θz)0),

where mcmS/(z) is the stable category of graded maximal Cohen-Macaulay modules

of S/(z), and grZ2
CS!(θz) is the category of finite dimensional right Z2-graded

modules of CS!(θz).
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Now let us go back to the quadric hypersurface (A ⊗ B)/(h). Recall f ∈ A2, g ∈ B2

and h = f + g, and A = T (V )/(RA) and B = T (U)/(RB). Then A! = T (V ∗)/(R⊥
A),

B! = T (U∗)/(R⊥
B) and (A⊗B)! = T (V ∗⊕U∗)/(R⊥

A⊗B). By Theorem 2.3, we have Clifford

maps

(2.3.1) θf : R⊥
A → C,

(2.3.2) θg : R
⊥
B → C,

(2.3.3) θh : R⊥
A⊗B → C.

Lemma 2.4. Retain the notations as above. we have an isomorphism of Z2-graded alge-

bras

C(A⊗B)!(θh) ∼= CA!(θf )⊗̂CB!(θg).

Proof. Let πA : T (V ) → A, πB : T (U) → B and πA⊗B : T (V ⊕U) → A⊗B be the natural

projection maps. Pick elements r1 ∈ V ⊗ V and r2 ∈ U ⊗ U such that πA(r1) = f and

πB(r2) = g. Then πA⊗B(r1 + r2) = f + g = h. Let us compute the generating relations of

C(A⊗B)!(θh). By (2.2.1), C(A⊗B)!(θh) = T (V ∗ ⊕ U∗)/I, where I is generated by the space

R := {α− θh(α)|α ∈ R⊥
A⊗B} ⊆ (V ∗ ⊕ U∗)⊗ (V ∗ ⊕ U∗).

Note that RA⊗B = RA ⊕ [V, U ]⊕RB. It follows

R⊥
A⊗B = R⊥

A ⊕ [V ∗, U∗]+ ⊕ R⊥
B,

where R⊥
A ⊆ V ∗ ⊗ V ∗, R⊥

B ⊆ U∗ ⊗ U∗ and [V ∗, U∗]+ = {α ⊗ β + β ⊗ α|α ∈ V ∗, β ∈ U∗}.
Hence

(2.4.1) R = {α− α(f)|α ∈ R⊥
A}+ {β − β(g)|β ∈ R⊥

B}+ [V ∗, U∗]+.

On the other hand, CA!(θf )⊗̂CB!(θg) = T (V ∗ ⊕U∗)/J , where J is generated by the space

R̂ := {α− θf (α)|α ∈ R⊥
A}+ {β − θg(β)|β ∈ R⊥

B}+ [V ∗, U∗]+.

Since θf(α) = α(f) and θg(β) = θ(g) by (2.2.2), it follows that R = R̂. Hence

C(A⊗B)!(θh) ∼= CA!(θf )⊗̂CB!(θg).

�

Let A be a noetherian graded algebra. Denote grA for the category of finitely generated

graded right A-modules, and torsA for the category of finite dimensional graded right A-

modules. Let qgrA = grA/ torsA. Recall that A is called a graded isolated singularity if

qgrA has finite global dimension. Lemma 2.4 implies the following result.
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Theorem 2.5. Let A and B be noetherian Koszul Artin-Schelter regular algebras. Sup-

pose that A ⊗ B is also noetherian. Assume that f ∈ A and g ∈ B are central regular

homogeneous elements of degree 2. Suppose that B is a graded isolated singularity. Then

(A⊗ B)/(f + g) is a graded isolated singularity if and only if A/(f) is.

Proof. Let h = f + g. By Lemma 2.4, we have an isomorphism of Z2-graded algebras

C(A⊗B)!(θh) ∼= CA!(θf )⊗̂CB!(θg).

By assumption, B/(f) is a graded isolated singularity. Hence, by [HY, Theorem 6.3],

CB!(θg) is a Z2-graded semisimple algebra.

By Proposition 1.4, C(A⊗B)!(θh), which is isomorphic to CA!(θf )⊗̂CB!(θg), is a Z2-graded

semisimple algebra if and only if CA!(θf ) is a Z2-graded semisimple algebra. Applying [HY,

Theorem 6.3] again, we obtain that (A ⊗ B)/(f) is a graded isolated singularity if and

only if A/(f) is. �

Definition 2.6. Let A be a noetherian Koszul Artin-Schelter regular algebra, and let

f ∈ A2 be a central regular element. If the Z2-graded algebra CA!(θf) is a simple Z2-

graded algebra, then we call A/(f) is a simple graded isolated singularity.

Since the ground field is C, there are two classes of simple graded algebras: matrix

algebras over the Z2-graded algebra CG, and matrix algebras over the Z2-graded algebra

C. In the above definition, if CA!(θf ) is a matrix algebra over the Z2-graded C, then we

further call A/(f) is a simple graded isolated singularity of 0-type; if CA!(θf) is a matrix

algebra over the Z2-graded CG, then we further call A/(f) is a simple graded isolated

singularity of 1-type. It is not hard to see that, if both A/(f) and B/(g) are simple

graded isolated singularities of 1-type and A⊗B is also noetherian, then (A⊗B)/(f + g)

is a simple graded isolated singularity of 0-type.

Example 2.7. Let A = C[x, y], and f = x2 + y2. Then

CA!(θf ) ∼= C−1[u, v]/(u
2 − 1, v2 − 1) ∼= CG⊗̂CG ∼= M2(C),

where M2(C) is the 2×2-matrix algebra which is viewed as a Z2-graded algebra by setting

M2(C)0 =

[

C 0

0 C

]

, M2(C)1 =

[

0 C

C 0

]

.

Hence C[x, y]/(x2 + y2) is a simple graded isolated singularity of 0-type.

Example 2.8. Let A = C[x], and f = x2. Then

CA!(θf ) ∼= C[x]/(x2 − 1) ∼= CG.

Therefore A/(f) is a simple graded isolated singularity of 1-type.
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Example 2.9. Let A = C−1[x, y], and f = x2 + y2. Then

CA!(θf) ∼= C[u, v]/(u2 − 1, v2 − 1) ∼= CG× CG.

Hence A/(f) is not a simple graded isolated singularity.

Lemma 2.10. If CA!(θf )0 is a simple algebra, then A/(f) is a simple graded isolated

singularity of 1-type.

Proof. Since CA!(θf )0 is simple and CA!(θf ) is strongly graded, we obtain that CA!(θf ) is

simple graded. If CA!(θf ) is a matrix over C, it must concentrate in degree 0 since CA!(θf)0
is simple. But in this case, CA!(θf ) can not be strongly graded. Therfore, CA!(θf ) must

be a matrix over CG. �

The next is an example of noncommutative simple graded isolated singularities.

Example 2.11. Let A = C〈x1, . . . , x5〉/(r1, . . . , r10), where the generating relations are

as follows:

r1 = x1x2 − x2x1, r2 = x1x3 + x3x1, r3 = x1x4 + x4x1,

r4 = x1x5 + x5x1, r5 = x2x3 − x3x2, r6 = x2x4 + x4x1,

r7 = x2x5 + x5x2, r8 = x3x4 − x4x3, r9 = x3x5 + x5x3, r10 = x4x5 + x5x4.

Let f = x2
1 + · · ·+ x2

5. By [MU2, Section 5.4.2], mcmA/(f) ∼= Db(C). Hence CA!(θf )0 is

simple and A/(f) is a simple graded isolated singularity of 1-type by Lemma 2.10.

Lemma 2.12. Let A be a quantum polynomial algebra of global dimension n, and let

f ∈ A2 be a central regular element, then dimCA!(θf ) = 2n. Moreover

(i) If A/(f) is a simple graded isolated singularity of 0-type, then n is even.

(ii) If A/(f) is a simple graded isolated singularity of 1-type, then n is odd.

Proof. Since A has Hilbert series 1/(1− t)n, the Hilbert series of A! is (1+ t)n. Therefore,

dimA! = 2n. Note that a Clifford deformation dose not change the dimension, we have

dimCA!(θf) = 2n. If A/(f) is a simple graded isolated singularity of 0-type, then CA!(θf )

is a matrix over C and dimCA!(θf) is a square of an integer, so n must be even. If A/(f)

is a simple graded isolated singularity of 1-type, then CA!(θf) is a matrix over CG, so n

must be odd. �

Remark 2.13. We don’t know by now when A/(f) is a simple isolated singularity. It

seems that the rank of f introduced by Mori-Ueyama in [MU2] is a candidate tool. Let

A be a quantum polynomial algebra of global dimension n, and let f ∈ A2 be a central
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regular element. The rank of f (see [MU2, Definition 5.5]) is defined by

rankf = min
{

r ∈ N
+ | f =

r
∑

i=1

uivi, ui, vi ∈ A1

}

.

It has been proved that CA!(θf)0 has no non-zero modules of dimension less than rankf

(see [MU2, Lemma 5.10]). Since dimCA!(θf )0 = 2n−1, if n is odd and rankf ≥ 2
n−1

2 , then

CA!(θf )0 is a matrix over C and A/(f) is a simple isolated singularity of 1-type by Lemma

2.10. For example, we can choose A = C[x, y, z] and f = x2 + y2 + z2, then n = 3 and

rankf = 2. In this case, CA!(θf)0 = M2(C) and CA!(θf ) = M2(CG).

Proposition 2.14. Let A be a noetherian Koszul Artin-Schelter regular algebra, and let

f ∈ A2 be a central regular element.

(i) If A/(f) is a simple graded isolated singularity of 0-type, then A/(f) has two in-

decomposable nonprojective graded Cohen-Macaulay modules (up to isomorphisms

and degree shifts);

(ii) If A/(f) is a simple graded isolated singularity of 1-type, then A/(f) has one

indecomposable nonprojective graded Cohen-Macaulay module (up to isomorphisms

and degree shifts).

Proof. (i) Since A/(f) is a simple graded isolated singularity of 0-type, then CA!(θf ) is

a matrix algebra over the Z2-graded algebra C. Then CA!(θf ) ∼= EndC(C
s ⊕ (C(1))t) for

some s, t ≥ 1, where C(1) is the graded Z2-graded C-module by putting C in degree 1.

By Theorem 2.3(ii), CA!(θf ) is a strongly Z2-graded algebra. Hence t 6= 0. Therefore

CA!(θf )0 ∼= Ms(C)×Mt(C), where Ms(C) (resp. Mt(C)) is the s× s (resp. t× t) matrix

algebra over the field C. By Theorem 2.3(iii), mcmA/(f) ∼= Db(CA!(θf )0) since CA!(θf )

is strongly graded. Since CA!(θf )0 has two nonisomorphic simple modules, A/(f) has two

nonprojective indecomposable graded Cohen-Macaulay modules (up to isomorphisms and

degree shifts).

(ii) If A/(f) is a simple graded isolated singularity of 1-type, then CA!(θf) is a matrix

algebra over the Z2-graded algebra CG. Then CA!(θf )0 is a matrix algebra over C. There-

fore CA!(θf)0 has one nonisomorphic simple module. By Theorem 2.3(iii) again, A/(f) has

one nonprojective indecomposable graded Cohen-Macaulay module (up to isomorphisms

and degree shifts). �

Theorem 2.15. Let A and B be noetherian Koszul Artin-Schelter regular algebras, and

let f ∈ A2 and g ∈ B2 be central regular elements. Suppose that A⊗ B is noetherian.
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(i) If B/(g) is a simple graded isolated singularity of 0-tpye, then there are equivalences

of triangulated categories

mcm(A⊗B)/(f + g) ∼= Db(modCA!(θf )0) ∼= mcmA/(f);

(ii) If B/(g) is a simple graded isolated singularity of 1-type, there is an equivalence of

triangulated categories

mcm(A⊗ B)/(f + g) ∼= Db(modCA!(θf )).

Proof. (i) Since B/(g) is a simple graded isolated singularity of 0-type, CB!(θg) is a matrix

algebra over the Z2-graded algebra C, and hence is graded Morita equivalent to C. By

Lemma 1.1, CA!(θf)⊗̂CB!(θg) is graded Morita equivalent to CA!(θf )⊗̂C ∼= CA!(θf ), and

the later one is isomorphic to CA!(θf ). Hence by Theorem 2.3(iii) and Lemma 2.4, we

have equivalences of triangulated categories

mcm(A⊗ B)/(f + g) ∼= Db(grZ2
C(A⊗B)!(θf+g))

∼= Db
(

grZ2

(

CA!(θf )⊗̂CB!(θg)
))

∼= Db(grZ2
CA!(θf ))

∼= mcmA/(f).

Since CA!(θf ) is a strongly Z2-graded, D
b(grZ2

CA!(θf )) ∼= Db(modCA!(θf )0) as triangu-

lated categories. Hence the statement (i) follows.

(ii) As in the proof of (i), we have an equivalence of triangulated categories

mcm(A⊗ B)/(f + g) ∼= Db
(

grZ2

(

CA!(θf )⊗̂CB!(θg)
))

.

Since B/(g) is a simple graded isolated singularity of 1-type, CB!(θg) is a matrix algebra

over the Z2-graded algebra CG, and hence is graded Morita equivalent to CG. By Lemma

2.4 again, Db
(

grZ2

(

CA!(θf )⊗̂CB!(θg)
)) ∼= Db

(

grZ2

(

CA!(θf )⊗̂CG
))

. By Proposition 1.6,

Db
(

grZ2

(

CA!(θf)⊗̂CG
)) ∼= Db(modCA!(θf )). Hence the statement (ii) follows. �

Remark 2.16. Theorem 2.15(i) may be viewed as a generalization of Knörrer’s periodicity

theorem (see [K, Theorem 3.1], which has been generalized to noncommutative algebras

in [CKMW, HY, MU2]). Indeed, let B = C[x, y] and g = x2 + y2. By Example 2.7,

B/(g) is a simple graded isolated singularity of 0-type. Let A be a noetherian Koszul

Artin-Schelter regular algebra, and let f ∈ A2 be a central regular element. The second

double branch cover of A/(f) is defined to be the quotient algebra [K, CKMW]

(A/(f))## = A[x, y]/(f + x2 + y2).

Since A[x, y] ∼= A ⊗ B is noetherian and A[x, y]/(f + x2 + y2) ∼= (A ⊗ B)/(f + g), by

Theorem 2.15(i), mcm(A/(f))## ∼= mcmA/(f).
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3. Double branch covers of noncommutative conics

Noncommutative conics in Calabi-Yau quantum planes were recently classified by Hu-

Matsuno-Mori in [HMM]. In this section, we will study the double branch covers of the

noncommutative conics obtained in [HMM, Corollary 3.8].

We say that A/(f) is a noncommutative conic (see [HMM, Definition 1.3]) if A is a

3-dimensional Calabi-Yau quantum polynomial algebra, and f ∈ A2 is a central regular

element. The double branch cover of A/(f) is defined to be

(A/(f))# = A[x]/(f + x2).

By Theorem 2.15(ii), we also have

mcm(A/(f))# ∼= Db(modCA!(θf)).

If A/(f) is commutative, by [HMM, Corollary 3.8(i)], A/(f) is isomorphic to one of the

following algebras:

C[x, y, z]/(x2), C[x, y, z]/(x2 + y2), C[x, y, z]/(x2 + y2 + z2),

and we have the following table:

Table 1. Commutative case.

A/(f) CA!(θf ) CA!(θf)0

C[x, y, z]/(x2) C−1[x, y, z]/(x
2 − 1, y2, z2)

∧

(u, v)

C[x, y, z]/(x2 + y2) C−1[x, y, z]/(x
2 − 1, y2 − 1, z2) C−1[u, v]/(u

2 − 1, v2)

C[x, y, z]/(x2 + y2 + z2) M2(CG) M2(C)

If A/(f) is noncommutative, by [HMM, Corollary 3.8(ii)], A/(f) is isomorphic to

S(α,β,γ)/(ax2 + by2 + cz2)

for some α, β, γ ∈ C and (a, b, c) ∈ P2, where

S(α,β,γ) = C〈x, y, z〉/(yz + zy + αx2, zx+ xz + βy2, xy + yx+ γz2).

In this case, CA!(θf ) is commutative.

Next, we focus on the noncommutative case. We need some preparations.

Let G be a finite group with identity e, and let E be a finited dimensional G-graded

algebra. A G-element x is an invertible homogeneous element of E such that xi 7→ |x|i is
an injective group homomorphism from 〈x〉 to G. Here, we use |x| to denote the degree

of x and 〈x〉 is a cyclic group generated by x via multiplication in E.
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Example 3.1. C[x]/(xn) graded by Zn has no Zn-element for positive degrees and CG

graded by G has G-elemets for every degree.

Example 3.2. Let E = M3(C) graded by Z2, where

E0 =







C C 0

C C 0

0 0 C






, E1 =







0 0 C

0 0 C

C C 0






.

Then E is strongly graded (E1E1 = E0), but E has no Z2-element in degree 1.

Remark 3.3. Let x ∈ E be a G-element. Consider the skew group algebra Ee#〈x〉: as a
vector space Ee#〈x〉 = Ee ⊗ C〈x〉, and the multiplication of Ee#〈x〉 is defined by

(ae#g)(be#h) = ae(gbeg
−1)#gh.

One sees that Ee#〈x〉 may be regarded as a graded subalgebra of E via (ae, x
i) 7→ aex

i.

The Moreover, if G ∼= 〈x〉, then E ∼= Ee#〈x〉.

Lemma 3.4. Assume that I is a nilpotent homogeneous ideal of E, then any G-element

x of E/I can be lifted into E.

Proof. Assume x ∈ E is a homogemeous preimage of x. Since xn = 1 for some n ≥ 0,

there is an element r ∈ I such that xn = 1 + r. Note that r is a nilpotent element of

degree e, so 1 + r is invertible.

More precisely, since |xn| = e, r = xn − 1 ∈ Ie and commutative with x. If I2 = 0, then

x′ := x(1− r/n) is a lifting of x. In fact, x′ is homogeneous,

x′n = xn(1− r/n)n = (1 + r)(1− r) = 1

and x− x′ = (x/n)r ∈ I.

For general case, the result follows from the induction on the exact sequence

0 → I2
k−1

/I2
k → E/I2

k → E/I2
k−1 → 0.

�

Proposition 3.5. Let E be a finite dimensional commutative algebra graded by Z2, if A

is strongly graded, then A ∼= A0 ×A0 as ungraded algebras.

Proof. Since E is finite dimensional, the graded radical Jg(E) is nilpotent and E/Jg(E)

is graded semisimple. The condition that E is strongly graded implies that E/Jg(E) is

also strongly graded, hence E/Jg(E) is a product of some copies of CG by Lemma 1.1(ii)
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and has a Z2-element in degree 1. By Lemma 3.4, this Z2-element can be lifted into E,

denoted by g. Now, E0#〈g〉 is a subalgebra of E, and as ungraded algebras

E0#〈g〉 ∼= E0[x]/(x
2 − 1) ∼= E0 × E0.

For surjective, note that if a1 ∈ E1, then a1 = (a1g)g ∈ E0#〈g〉. �

Corollary 3.6. Let A/(f) be a noncommutative conic. If A/(f) is noncommutative, then

mcm(A/(f))# ∼= mcm(A/(f))×mcm(A/(f)).

Example 3.7. Let A = C〈x, y, z〉/(yz + zy + x2, zx + xz + y2, xy + yx) and f = 3x2 +

3y2 + 4z2. Then

A! = C[x, y, z]/(yz − x2, zx− y2, z2),

CA!(θf ) = C[x, y, z]/(yz − x2 + 3, zx− y2 + 3, z2 − 4).

Since (yz−x2 +3)− (zx− y2+3) = 0, we have (x− y)(x+ y+ z) = 0. One can compute

that Spec(CA!(θf )) has 4 points and CA!(θf ) is a product of 4 commutative local rings.

Let R = C[z]/(z2 − 4), then

CA!(θf) ∼= R[x, y]/(yz − x2 + 3, zx− y2 + 3) ∼= A′ × A′′

where A′ = C[x, y]/(2y−x2+3, 2x−y2+3) and A′′ = C[x, y]/(−2y−x2+3,−2x−y2+3).

In A′, we have

y4 = (2x+ 3)2 = 4x2 + 12x+ 9 = 4(2y + 3) + 6(y2 − 3) + 9 = 6y2 + 8y + 3.

Hence, y4−6y2−8y−3 = (y+1)3(y−3) = 0, which implies A′ ∼= C[u]/(u3)×C. A similar

computation shows that A′ ∼= A′′. Therefore, CA!(θf )0 is also isomorphic to C[u]/(u3)×C

by Propsition 3.5.

By Remark 2.13, rankf must be 1. In fact, f = 3x2 + 3y2 + 4z2 = (−x− y + 2z)2.

Acknowledgments. J.-W. He was supported by NSFC (No. 11971141). Y. Ye was
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