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ON THE HARISH-CHANDRA HOMOMORPHISM FOR QUANTUM

SUPERALGEBRAS

YANG LUO, YONGJIE WANG, AND YU YE

Abstract. In this paper, we introduce the Harish-Chandra homomorphism for the quantum
superalgebra Uq(g) associated with a simple basic Lie superalgebra g and give an explicit de-
scription of its image. We use it to prove that the center of Uq(g) is isomorphic to a subring of
the ring J(g) of exponential super-invariants in the sense of Sergeev and Veselov, establishing
a Harish-Chandra type theorem for Uq(g). As a byproduct, we obtain a basis of the center of
Uq(g) with the aid of quasi-R-matrix.
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1. Introduction

Harish-Chandra introduced a homomorphism, known as the Harish-Chandra homomorphism,
for semisimple Lie algebras in the study of unitary representations of semisimple Lie groups in
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1951 [19]. Later on, the Harish-Chandra homomorphism was developed for infinite dimensional
Lie algebras [28, 36], Lie superalgebras [28, 40, 41] and quantum groups [3, 8, 24, 38, 43].

Knowledge about the invariants and the center of quantum superalgebras is not merely of math-
ematical interest but is also physically important. On one hand, the study of the centralizer of
a (quantized) universal enveloping (super)algebra is an indispensable part of its representation
theory. On the other hand, the study of physical theories to a large extent involves the explo-
ration of the invariants of the symmetry algebras, which usually correspond to certain physical
observables. The Harish-Chandra homomorphism reveals many connections between the center
of the enveloping (super)algebras or their quantization and the (super)symmetric polynomials as
well as the highest weight representations of the corresponding algebras, and it has been one of
the most inspiring themes in Lie theory.

Let g be a semisimple Lie algebra (resp., a basic Lie superalgebra) over C with triangular
decomposition g = n− ⊕ h ⊕ n+, where h is a Cartan subalgebra and n+ (resp., n−) is the
positive (resp., negative) part of g corresponding to a positive root system Φ+. By the PBW
Theorem, we have the decomposition U(g) = U(h) ⊕ (n−U(g) + U(g)n+). Let π : U(g) → U(h) =
S(h) be the associated projection. The restriction of π to the center Z(U(g)) of U(g) is an
algebra homomorphism, and the composite γ−ρ ◦ π : Z(U(g)) → S(h) of π with a “shift” by the
Weyl vector ρ is called the Harish-Chandra homomorphism of U(g). The famous Harish-Chandra
isomorphism theorem says that γ−ρ◦π induces an isomorphism from Z(U(g)) to the algebra ofW -
invariant polynomials if g is a semisimple Lie algebra or the algebra ofW -invariant supersymmetric
polynomials if g is a classical Lie superalgebra. More details can be found in [6, Chapter 11] for
classical Lie algebras, and [7, Section 2.2], [35, Chapter 13] for classical Lie superalgebras.

Quantum groups, first appearing in the theory of quantum integrable system, were formalized
independently by Drinfeld and Jimbo as certain special Hopf algebras around 1984 [11, 25], in-
cluding deformations of universal enveloping algebras of semisimple Lie algebras and coordinate
algebras of the corresponding algebraic groups. In 1990, by the aid of the Universal R-matrix,
Rosso [38] defined a significant ad-invariant bilinear form on Uq(g) at a generic value q of the
parameter. The form, often referred to as the Rosso form or quantum Killing form, could also be
obtained by using Drinfeld double construction. Tanisaki [44, 43] described this form by skew-Hopf
pairing between the positive part and the negative part of the quantum algebra and obtained the
quantum analogue of the Harish-Chandra isomorphism between Z(Uq(g)) and the subalgebra of
W -invariant Laurent polynomials. As an application, the generators and the defining relations for
Z(Uq(g)) have been obtained in [4, 9, 33].

Associated with the generalization of Lie algebras to Lie superalgebras, many researchers have
investigated the quantization of universal enveloping superalgebras in recent years. Drinfeld-Jimbo
quantum superalgebras [45, 50] are a class of quasi-triangular Hopf superalgebras, depending on
the choice of Borel subalgebras, which were introduced in the early 1990s. As a supersymmetric
version of quantum groups, quantum superalgebras have a natural connection with supersymmetric
integrable lattice models and conformal field theories. They have been found applications in various
areas, including in the study of the solution of quantum Yang-Baxter equation [18], construction
of topological invariants of knots and 3-mainfolds [52, 48, 49] and so on. Quantum superalgebras
have been investigated extensively by many authors from different perspectives in aspects such
as Serre relations, PBW basis, universal R-matrix [45, 46], crystal bases [30, 31], invariant theory
[32], highest weight representations [15, 53, 54] and so on.

Comparing to Lie (super)algebras and quantum groups, the following questions for quantum
superalgebras are natural and fundamental: What is the Harish-Chandra isomorphism for quan-
tum superalgebras? How to determine the center of quantum superalgebras? The purpose of the
present work is to answer these questions.

Let g be a simple basic Lie superalgebra, except for A(1, 1), with root system Φ = Φ0̄ ∪ Φ1̄,

and let U = Uq(g) be the associated quantum superalgebra over k = K(q
1
2 ), where K is a field

of characteristic 0 and q is an indeterminate. The Weyl group and Weyl vector are defined by W

and ρ, respectively. Let Λ =
{
λ ∈ h∗

∣∣∣2(λ,α)(α,α) ∈ Z, ∀α ∈ Φ0̄

}
be the integral weight lattice, where



ON THE HARISH-CHANDRA HOMOMORPHISM FOR QUANTUM SUPERALGEBRAS 3

h∗ is the dual space of the cartan subalgebra h. In this paper, all finite-dimensional U-modules
are of type 1 with the weights contained in 1

2ZΦ.

The Cartan subalgebra U0 is the group ring of ZΦ with basis {Kµ|µ ∈ ZΦ} and multiplication
KµKν = Kµ+ν for all µ, ν ∈ ZΦ. For each λ ∈ Λ, we define an automorphism γλ : U

0 → U0 by

γλ(Kµ) = q(λ,µ)Kµ for all µ ∈ ZΦ.
Let Π be the simple roots of distinguished borel subalgebra if g = A(n, n) with n 6= 1, and let

ZΦ̃ be the free abelian group with Z-basis Π. We set

Q =

{
ZΦ̃, for g = A(n, n),

ZΦ, otherwise.

Thus, the root system of A(n, n) is ZΦ = ZΦ̃/Zγ for some γ. Define the standard partial order
relation on Q by λ 6 µ⇔ µ− λ ∈

∑
i∈I

Z+αi.

There is a triangular decomposition U = U−U0U+, where U− and U+ are the negative and
positive parts of U, respectively. Clearly U, U− and U+ are all Q-graded algebras. The triangular
decomposition implies a direct sum decomposition

U0 = U0 ⊕
⊕

ν>0

U−
−νU

0U+
ν ,

where U0 is the component of degree 0 of U, and U+
ν (resp., U−

−ν) is the component of degree ν
(resp., −ν) of U+ (resp., U−) for ν > 0. Note that the projection map π : U0 → U0 is an algebra
homomorphism. From now on, we do not make a distinction between the element in ZΦ and Q if
no confusion emerges.

We observe that the center Z(Uq(g)) of Uq(g) is contained in U0 by Corollary 3.7. Inspired
by the quantum group case, we define the Harish-Chandra homomorphism HC of Uq(g) to be the
composite

HC : Z(Uq(g)) →֒ U0
π
−→ U0 γ−ρ

−−→ U0.

To establish the Harish-Chandra type theorem for quantum superalgebras, we need to describe
the image of HC. Recall that a root α ∈ Φ is isotropic if (α, α) = 0, and the set of isotropic roots
is denoted by Φiso. Set

(U0
ev)

W
sup =

{
∑

µ∈2Λ∩ZΦ

aµKµ ∈ U0

∣∣∣∣∣awµ = aµ, ∀w ∈W ;
∑

µ∈Aα
ν

aµ = 0, ∀α ∈ Φiso with (ν, α) 6= 0

}
,

where Aαν = {ν + nα |n ∈ Z} for each v ∈ Λ and α ∈ Φiso. The notation is consistent with the
one in quantum groups [23, Section 6.6] and the one in classical Lie superalgebras [7, Subsection
2.2.4]. Then the image of HC is contained in (U0

ev)
W
sup, which is essentially derived from character

formulas of Verma modules and simple modules of Uq(g), certain automorphisms of Uq(g) and
nontrivial homomorphisms between Verma modules; see Lemmas 5.2, 5.3, 5.4.

Now we can state our main theorem.

Theorem A. The Harish-Chandra homomorphism HC for the quantum superalgebra Uq(g) as-
sociated to a simple basic Lie superalgebra g induces an isomorphism from Z(Uq(g)) to (U0

ev)
W
sup.

The Lie superalgebra g = A(1, 1) is very special, and the image of HC is contained in (U0
ev)

W
sup,

we think HC is not an isomorphism; see Remark 5.8.
We noticed that Batra and Yamane have introduced the generalized quantum group U(χ, π)

associated with a bi-character χ and established a Harish-Chandra type theorem for describing its
(skew) center in [3]. While the quantum superalgebra Uq(s) of a basic classical Lie superalgebra

s has been identified with a subalgebra of Ûσ involving a new generator σ, so does the image
of Harish-Chandra homomorphism (see [3]). It is not known whether one can derive the Harish-
Chandra type theorem for quantum superalgebra Uq(s) from [3].

As an application, we obtain a basis of Z(Uq(g)) by using quasi-R-matrix.
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Theorem B. The center Z(Uq(g)) has a basis, which is constructed by using quasi-R-matrix
and parametrized by

{
λ ∈ Λ ∩ 1

2ZΦ
∣∣ dimL(λ) <∞

}
, where L(λ) is an irreducible module of Lie

superalgebra g with the highest weight λ.

To prove Theorem A, it suffices to prove HC is injective and the image HC is equal to (U0
ev)

W
sup.

For the injectivity, we establish a key Proposition 3.4 by using the character formula of typical
finite-dimensional modules of Uq(g), which is a super version of Tanisaki’s result for quantum
algebras [43, Section 3.2].

The difficulty is proving the image of HC is equal to (U0
ev)

W
sup. With the help of the well-known

classical Lie theory of semisimple Lie algebras, one can prove the surjectivity for quantum groups
by using induction on the weights. However, the similar technique does not apply to quantum
superalgebras, where one encounters two main obstacles:

1): There are infinite dominant weights less than a given dominant weight with respect to the
standard partial order if g is of type I.

2): Besides the condition of the Φ+
0̄
-dominant integral, an extra condition for the finiteness of

the dimension of an irreducible g-module L(λ) is that λ satisfies the hook partition if g is of type
II.

We notice that the close connection between K(g), J(g) and K(Uq(g)) will help us to overcome
the obstacles, where K(g) and K(Uq(g)) are the Grothendieck rings of g and Uq(g), respectively,
and J(g) is the ring of Laurent supersymmetric polynomials (also called ring of exponential super-

invariants in [42]). Recall Sergeev and Veselov’s isomorphism [42] Sch: K(g)
∼
−→ J(g), where

Sch is the supercharater map, and the injective algebra homomorphism  : K(g) →֒ K(Uq(g)) is
induced by taking deformation, which is implicitly given by Geer in [15]. The main ingredient of
our proof can be illustrated in the following commutative diagram:

k ⊗Z K(Uq(g)) k ⊗Z K(g)? _
k⊗Zoo

∼=
k⊗ZSch

''◆◆
◆◆

◆◆
◆◆

◆◆
◆

k⊗ZKev(Uq(g))
*



88♣♣♣♣♣♣♣♣♣♣

ΨR &&▼
▼

▼
▼

▼
▼

k ⊗Z Kev(g)
)
	

77♥♥♥♥♥♥♥♥♥♥♥♥
? _oo

∼=
''❖

❖
❖

❖
❖

❖
k⊗ZJ(g)

Z(Uq(g))
HC //❴❴❴❴❴❴❴❴ (U0

ev)
W
sup = k ⊗Z Jev(g)

*

 ι

88♣
♣

♣
♣

♣
♣

First, we identify (U0
ev)

W
sup with a subring of k⊗ZJ(g) by some ι, and the key idea is to refor-

mulate (U0
ev)

W
sup as k ⊗Z Jev(g), which embeds into k⊗ZJ(g) in a natural way; see Equation 3.2

and Proposition 5.6. One can prove that under the isomorphism k ⊗Z Sch, the ring (U0
ev)

W
sup is

isomorphic to k⊗ZKev(g), whereKev(g) is a subring ofK(g) consisting of modules with all weights
contained in Λ ∩ 1

2ZΦ.
Second,  induces an injection k⊗ZKev(g) →֒ k⊗ZKev(Uq(g)), where Kev(Uq(g)) is the subring

of K(Uq(g)) consisting of modules with all weights contained in Λ ∩ 1
2ZΦ.

Third, analogous to quantum groups [23, Chapter 6], [38, 44], by using the Rosso form and the
quantum supertrace for quantum superalgebras, we define a linear map ΨR : k⊗ZKev(Uq(g)) →
Z(Uq(g)); see Proposition 5.7. This involves lengthy computations and some subtle constructions.
We remark that ΨR is an algebra isomorphism, but not in an obvious way.

Now the surjectivity of HC follows from the commutative diagram easily. Moreover, we show
that HC ◦ΨR is injective, and combined with the injectivity of HC, we can prove that homomor-
phisms occurring in the bottom left parallelogram are all isomorphisms of algebras. Consequently,
the restriction  : Kev(g) → Kev(Uq(g)) is an isomorphism.

By definition, k⊗ZKev(g) has a basis
{
[L(λ)]| λ ∈ Λ ∩ 1

2ZΦ, dimL(Λ) <∞
}
and k⊗ZKev(Uq(g))

has a basis
{
[Lq(λ)]| λ ∈ Λ ∩ 1

2ZΦ, dimLq(Λ) <∞
}
, where L(Λ) and Lq(Λ) are the irreducible

g-module and the irreducible Uq(g)-module with the highest weight λ, respectively. We remark
that if λ ∈ Λ ∩ 1

2ZΦ, then dimL(Λ) < ∞ if and only if dimLq(Λ) < ∞. Then the desired basis
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of Z(Uq(g)) in Theorem B is obtained by applying the isomorphism ΨR, and here we rely heavily
on an alternating construction of ΨR by using quasi-R-matrix as in [17].

The paper is organized as follows: In Section 2, we review some basic facts related to contragre-
dient Lie superalgebras and quantum superalgebras. In Section 3, we show several useful results
on representations of quantum superalgebras, which seem to be well-known among experts. In
particular, we give a super version of a Tanisaki’s result for quantum superalgebras (see Propo-
sition 3.4), which has been used to prove the injectivity of HC. In Section 4, we recall that the
quantum superalgebra can be realized as a Drinfeld double. As a consequence, a non-degenerate
ad-invariant bilinear form on Uq(g) (Theorem 4.6) is obtained, which serves for proving the sur-
jectivity of HC. In Section 5, first we define the Harish-Chandra homomorphism for quantum
superalgebras and prove its injectivitity. Then we prove that the image of HC is contained in
(U0

ev)
W
sup and then explicitly describe its image Jev(g), which will be used to prove our main the-

orem for quantum superalgebras; see Theorem A. In Section 6, we construct an explicit central
element CM associated with each finite-dimensional Uq(g)-moduleM by using the quasi-R-matrix
of quantum superalgebras. As an application of the Harish-Chandra theorem, we obtain a basis
for the center of quantum superalgebras.

Notations and terminologies:

Throughout this paper, we will use the standard notations Z, Z+ and N that represent the sets
of integers, non-negative integers and positive integers, respectively. The Kronecker delta δij is
equal to 1 if i = j and 0 otherwise.

We write Z2 = {0̄, 1̄}. For a homogeneous element x of an associative or Lie superalgebra,
we use |x| to denote the degree of x with respect to the Z2-grading. Throughout the paper,
when we write |x| for an element x, we will always assume that x is a homogeneous element and
automatically extend the relevant formulas by linearity (whenever applicable). All modules of Lie
superalgebras and quantum superalgebras are assumed to be Z2-graded. The tensor product of
two superalgebras A and B carries a superalgebra structure by

(a1 ⊗ b1) · (a2 ⊗ b2) = (−1)|a2||b1|a1a2 ⊗ b1b2.

2. Lie superalgebras and quantum superalgebras

2.1. Lie superalgebras. Let g = g0̄ ⊕ g1̄ be a finite-dimensional complex simple Lie superal-
gebra of type A-G such that g1̄ 6= 0, and let Π = {α1, α2, . . . αr}, with r the rank of g, be the
simple roots of g. Also let (A, τ) be the corresponding Cartan matrix, where A = (aij) is a r × r
matrix and τ is a subset of I = {1, 2, . . . , r} determining the parity of the generators. Kac showed
that the Lie superalgebra g(A, τ) is characterized by its associated Dynkin diagrams (equivalent
Cartan matrix A, and a subset τ); see [26]. These Lie superalgebras are called basic. For conve-
nience (see remark 2.3), we will restrict our attention to the simplest case and only consider root
systems related to a special Borel sub-superalgebra with at most one odd root, called distinguished
root system, denoted by g(A, {s}) or simply g in no confusion. The explicit description of root
systems can be found in Appendix A. The Cartan matrix A is symmetrizable, that is, there exist
non-zero rational numbers d1, d2, . . . dr such that diaij = djaji. Without loss of generality, we
assume d1 = 1, since there exists a unique (up to constant factor) non-degenerate supersymmet-
ric invariant bilinear form (-, -) on g and the restriction of this form to Cartan subalgebra h is
also non-degenerate. Let Φ be the root system of g, and define the sets of even and odd roots,
respectively, to be Φ0̄ and Φ1̄. In order to define quantum superalgebra associated with a Lie
superalgebra g(A, {s}), we first review the generators-relations presentation of Lie superalgebra
g(A, {s}) given by Yamane [46] and Zhang [55].

Definition 2.1. [55, Theorem 3.4] Let (A, {s}) be the Cartan matrix of a contragredient Lie
superalgebra in the distinguished root system. Then U(g(A, {s})) (simplify for U(g)) is generated
by ei, fi, hi(i = 1, 2, . . . r) over C, where es and fs are odd and the rest are even, subject to the
quadratic relations:

[hi, hj ] = 0, [hi, ej ] = aijej , [hi, fj ] = −aijfj , [ei, fj ] = δijhj ,(2.1)
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and the additional linear relation
r∑
i=1

Jihi = 0 if g = A
(
r−1
2 , r−1

2

)
for odd r, where J =

(J1, J2, · · · , Jr) such that JA = 0 (more explicitly, J =
(
1, 2, · · · , r+1

2 ,− r−1
2 ,− r−3

2 , · · · ,−1
)
),

and the standard Serre relations

e2s = f2
s = 0, if (αs, αs) = 0,

(adei)
1−aij ej = (adfi)

1−aijfj = 0, if i 6= j, with aii 6= 0, or aij = 0,

and higher order Serre relations

[es, [es−1, [es, es+1]]] = 0, [fs, [fs−1, [fs, fs+1]]] = 0,(2.2)

if the Dynkin diagram of A contains a full sub-diagram of the form

✐
s − 1

⊗
s

✐
s + 1

, or ✐
s − 1

⊗
s

> ✐
s + 1

.

We refer the reader to [55] for undefined terminology and the presentation for each simple basic
Lie superalgebra in an arbitrary root system.

2.2. Quantum superalgebras. Let k = K(q
1
2 ), where K is a field of characteristic 0 and q is

an indeterminate, and we set qi = qdi , then q
aij
i = q

aji
j for all i, j = 1, 2, . . . , r. Define

[
m
n

]

q

=





n∏
i=1

(qm−i+1−qi−m−1)
(qi−q−i) , if m > n > 0,

1, if n = m, 0.

Definition 2.2. [14, 32, 45] Let (A, {s}) be the Cartan matrix of a simple basic Lie superalgebra g
in the distinguished root system. The quantum superalgebra Uq(g) is defined over k in q generated

by K±1
i ,Ei,Fi, i ∈ I (all generators are even except for Es and Fs, which are odd), subject to the

following relations:

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,(2.3)

KiEjK
−1
i = q(αi,αj)Ej , KiFjK

−1
i = q−(αi,αj)Fj,(2.4)

EiFj − (−1)|Ei||Fi|FiEi = δij
Ki −K−1

i

qi − q−1
i

,(2.5)

1−aij∑

k=0

(−1)k
[
1− aij
k

]

qi

E
1−aij−k
i EjE

k
i = 0, if i 6= j, with aii 6= 0, or aij = 0,(2.6)

1−aij∑

k=0

(−1)k
[
1− aij
k

]

qi

F
1−aij−k
i FjF

k
i = 0, if i 6= j, with aii 6= 0, or aij = 0,(2.7)

(Es)
2 = (Fs)

2 = 0, if ass = 0,(2.8)

and higher order quantum Serre relations, and

r∏

i=1

K
diJi

i = 1 if g = A

(
r − 1

2
,
r − 1

2

)
for odd r.

For the distinguished root data [55, Appendix A.2.1], higher order Serre relations appear if the
Dynkin diagram contains a sub-diagram of the following types:

(i) ✐
s − 1

⊗
s

✐
s + 1

, the higher order quantum Serre relations are

EsEs−1,s,s+1 + Es−1,s,s+1Es = 0, FsFs−1,s,s+1 + Fs−1,s,s+1Fs = 0;(2.9)

(ii) ✐
s − 1

⊗
s

> ✐
s + 1

, the higher order quantum Serre relations are

EsEs−1;s;s+1 + Es−1;s;s+1Es = 0, FsFs−1;s;s+1 + Fs−1;s;s+1Fs = 0;(2.10)



ON THE HARISH-CHANDRA HOMOMORPHISM FOR QUANTUM SUPERALGEBRAS 7

(iii) ✐
s − 1

⊗
s

✟
✟

❍
❍

✐
s + 1

✐
s + 2

, the higher order quantum Serre relations are

EsEs−1;s;s+1 + Es−1;s;s+1Es = 0, FsFs−1;s;s+1 + Fs−1;s;s+1Fs = 0,

EsEs−1;s;s+2 + Es−1;s;s+2Es = 0, FsFs−1;s;s+2 + Fs−1;s;s+2Fs = 0;
(2.11)

where

Es−1;s;j =Es−1

(
EsEj − q

ajs
j EjEs

)
− q

as−1,s

s−1

(
EsEj − q

ajs
j EjEs

)
Es−1,

Fs−1;s;j =Fs−1

(
FsFj − q

ajs
j FjFs

)
− q

as−1,s

s−1

(
FsFj − q

ajs
j FjFs

)
Fs−1.

For the other root data of g, the higher order quantum Serre relations vary considerably with the
choice of the root datum; thus, we will not spell them out explicitly here.

Remark 2.3. The definition of the quantum superalgebra above is dependent on the choice of
the Borel subalgebras. Although the quantum superalgebras defined by non-conjugacy Borel
subalgebras of a Lie superalgebra are not isomorphic as Hopf superalgebras, they are isomorphic
as superalgebras; see [29] or [47, Proposition 7.4.1].

There is a unique automorphism ω of Uq(g) such that ω(Ei) = (−1)|Ei|Fi, ω(Fi) = Ei and

ω(Ki) = K−1
i for i ∈ I. The quantum superalgebra Uq(g) has the structure of a Z2-graded Hopf

algebra. The co-multiplication

∆: Uq(g) → Uq(g)⊗Uq(g)

is given by

∆(Ei) = Ki ⊗ Ei + Ei ⊗ 1, ∆(Fi) = 1⊗ Fi + Fi ⊗K−1
i , ∆(K±1

i ) = K±1
i ⊗K±1

i ,(2.12)

for i ∈ I and the co-unit ε : Uq(g) → k is defined by

ε(Ei) = ε(Fi) = 0, ε(K±1
i ) = 1, for i ∈ I,

then the corresponding antipode S : Uq(g) → Uq(g) is given by

S(Ei) = −K−1
i Ei, S(Fi) = −FiKi, S(K±1

i ) = K∓1
i , for i ∈ I,(2.13)

which is a Z2-graded algebra anti-automorphism, i.e., S(xy) = (−1)|x||y|S(y)S(x).
Denote by U>0 (resp., U60) the sub-superalgebra of Uq(g) generated by all Ei,K

±1
i (resp.,

Fi,K
±1
i ), set U0 equal to the sub-superalgebra of Uq(g) generated by all K±1

i , and denote by U+

(resp., U−) the sub-superalgebra of Uq(g) generated by all Ei (resp., Fi), it is well-known that
U+ ⊗U0 ∼= U>0 (resp., U− ⊗U0 ∼= U60) by the multiplication map. And the multiplication map
U− ⊗U0 ⊗U+ → U is an isomorphism as super vector spaces.

Remark 2.4. Analogous to the quantum group, the quantum Serre relations and the higher order
quantum Serre relations can be explained from the view of skew primitive elements in the quantum
superalgebras. For example,

∆(u+ij) = u+ij ⊗ 1 +K
1−aij
i Kj ⊗ u+ij , ∆(u−ij) = u−ij ⊗K

aij−1
i K−1

j + 1⊗ u−ij ,

∆(u+B) = u+B ⊗ 1 +Km−1K
3
m ⊗ u+B, ∆(u−B) = 1⊗ u−B + u−B ⊗K−1

m−1K
−3
m ,

∆(u+) = u+ ⊗ 1 +Km−1K
2
mKm+1 ⊗ u+, ∆(u−) = 1⊗ u− + u− ⊗K−1

m−1K
−2
m K−1

m+1.

where u±ij (resp. u±B) is on the left side of equations (2.6) and (2.7) for i 6= j and even αi (resp.,

for non-isotropic odd root αi with aij 6= 0 for i 6= j), and u± is on the left side of equations
(2.9)-(2.11).

Define Kµ =
r∏
i=1

K
mi

i if µ =
r∑
i=1

miαi ∈ ZΦ. Thus, KµKµ′ = Kµ+µ′ for all µ, µ′ ∈ ZΦ. Therefore,

{Kµ}µ∈ZΦ spans U0 as a vector space, and

KµEiK
−1
µ = q(µ,αi)Ei, KµFiK

−1
µ = q−(µ,αi)Fi.
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The quantum superalgebra Uq(g) is ZΦ-graded. And the gradation is given by

deg Kµ = 0, deg Ei = αi, deg Fi = −αi,

for all µ ∈ ZΦ and i ∈ I. We denote that Uν is the ν ∈ ZΦ-component if g 6= A(n, n).
Note that if g = A(n, n), the simple roots for distinguished Borel subalgebra are not linearly

independent (that is, γ =
2n+1∑
i=1

diJiαi = 0). This causes some technical difficulties. However, the

quantum superalgebra Uq(g) is also ZΦ̃-graded, where ZΦ̃ is a free abelian group generated by all

simple roots α1, α2, · · · , α2n+1. Obviously, ZΦ = ZΦ̃/Zγ.
Define U|µ (resp. Uν) as the µ-component (resp. ν-component) with respect to ZΦ-gradation

(resp. ZΦ̃-gradation). From now on, we do not make a distinction between the elements in ZΦ

and ZΦ̃ if no confusion emerges. Hence, U|µ =
⊕
k∈Z

Uµ+kγ . Set

Q =

{
ZΦ̃, for g = A(n, n),

ZΦ, otherwise.

Note that h∗ = CΦ. If g 6= A(n, n), define the standard partial order relation on h∗ by
λ 6 µ ⇔ µ − λ ∈

∑
i∈I

Z+αi. This breaks down if g = A(n, n) because γ = 0 and diJi ∈ Z+ for

all i ∈ I. However, we can define a similar partial order on CΦ̃. From now on, we will use the
partial order on CΦ̃ if necessary for g = A(n, n).

Remark 2.5. The Lie superalgebra A(n, n) is rather special, and the restriction of the Harish-
Chandra projection determined by the distinguish triangular decomposition to the zero weight
space (with respect to ZΦ-gradation) is not an algebra homomorphism; for more details, see [16,
Section 6.1.4]. For this reason, we do not expect that the projection from U|0 to U0 is an algebra
homomorphism. However, the projection π : U0 → U0 is an algebra homomorphism. Fortunately,
we can prove that Z is contained in U0; see Corollary 3.7. Therefore, we can establish the Harish-
Chandra homomorphism for g = A(n, n).

3. Representation of quantum superalgebras

3.1. Representations. We will recall some basic facts about the representation theory of the
quantum superalgebra Uq(g). The bilinear form (-, -) on ZΦ can be linearly extended to h∗.

For any λ, µ ∈ h∗, denote 〈λ, µ〉 = 2(λ,µ)
(µ,µ) . Let Λ = {λ ∈ h∗| 〈λ, α〉 ∈ Z, ∀α ∈ Φ0̄} be the integral

weight lattice, and denote Λ+ =
{
λ ∈ h∗| 〈λ, α〉 ∈ Z+, ∀α ∈ Φ+

0̄

}
to be the set of dominant integral

weights. In this paper, all modules are of type 1 with the weights contained in 1
2ZΦ.

A Uq(g)-module M is called a weight module if it admits a weight space decomposition

M =
⊕

λ∈h∗

Mλ, where Mλ =
{
u ∈M |Kiu = q(λ,αi)u, ∀i ∈ I

}
.(3.1)

Define by wt(M) the set of weights of the finite-dimensional Uq(g)-module M . A weight module
M is called a highest weight module with the highest weight λ if there exists a unique non-zero
vector vλ ∈ M , which is called a highest weight vector such that Kivλ = q(λ,αi), Eivλ = 0 for all
i ∈ I and M = Uq(g)vλ.

Let Jλ =
r∑
i=1

Uq(g)Ei +
r∑
i=1

Uq(g)(Ki − q(λ,αi)) for λ ∈ Λ, and set ∆q(λ) = Uq(g)/Jλ. This is

a Uq(g)-module generated by the coset of 1; also denote this coset by vλ. Obviously, Eivλ = 0

and Kivλ = q(λ,αi)vλ for i ∈ I. We call ∆q(λ) the Verma module of the highest weight λ. It
has the following universal property: If M is an Uq(g)-module with the highest weight vector
v ∈Mλ, then there is a unique homomorphism of Uq(g)-modules ϕ : ∆q(λ) →M with ϕ(vλ) = v.
The Verma module ∆q(λ) has a unique maximal submodule, thus, ∆q(λ) admits a unique simple
quotient Uq(g)-module Lq(λ).

Lemma 3.1. Let λ ∈ Λ with (λ, αs) = 0. Then there is a homomorphism of Uq(g)-modules
ϕ : ∆q(λ− αs) → ∆q(λ) with ϕ(vλ−αs ) = Fsvλ.
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Proof. We have Fsvλ ∈ ∆q(λ)λ−αs . Therefore, the universal property of ∆q(λ − αs) implies that
it is enough to show that EjFsvλ = 0 for all j ∈ I. This is obvious for j 6= s because Ej and Fs

commute. For j = s, we have EsFsvλ = [Es,Fs]vλ − FsEsvλ =
Ks−K

−1
s

qs−q
−1
s
vλ − 0 = 0. �

The finite-dimensional irreducible representations of Uq(g) can be classified into two types:
typical and atypical. The representation theory of Uq(g) at generic q is rather similar to the Lie
superalgebra g, as well. Geer proved the theorem that each irreducible highest weight module of a
Lie superalgebra of Type A-G can be deformed to an irreducible highest weight module over the
corresponding Drinfeld-Jimbo algebra; see [15, Theorem 1.2]. We also refer to [53, Proposition 3],
[54, Proposition 1] and [30, Theorem 4.2] for quantum superalgebras of type Uq(glm|n), Uq(osp2|2n)

and Uq(ospm|2n), respectively.

Theorem 3.2. For λ ∈ h∗, let L(λ) be the irreducible highest weight module over g of highest
weight λ. Then there exists an irreducible highest weight module Lq(λ) of highest weight λ which is
a deformation of L(λ). Moreover, the classical limit of Lq(λ) is L(λ), and their (super)characters
are equal 1.

3.2. Grothendieck ring. Let A-mod be the category of finite-dimensional modules of a super-
algebra A. There is a parity reversing functor on this category. For an A-module M =M0̄ ⊕M1̄,
define

Π(M) = Π(M)0̄ ⊕Π(M)1̄, Π(M)i = Π(M)i+1̄, ∀i ∈ Z2.

Then Π(M) is also an A-module with the action am = (−1)|a|m. Let Π be a 1-dimensional odd
vector space with basis {π}, then Π(M) ∼= Π ⊗M . Clearly, Π2 = 1. Define the Grothendieck
group K(A) of A-mod to be the abelian group generated by all objects in A-mod subject to the
following two relations: (i) [M ] = [L]+ [N ]; (ii) [Π(M)] = −[M ], for all A-modules L,M,N which
satisfying a short exact sequence 0 → L→M → N → 0 with even morphisms.

It is easy to see that the Grothendieck group K(A) is a free Z-module with the basis corre-
sponding to the classes of the irreducible modules. Furthermore, if A is a Hopf superalgebra, then
for any A-modules M and N , one can define the A-module structure on M ⊗N . Using this, we
define the product on K(A) by the formula

[M ][N ] = [M ⊗N ].

Since all modules are finite-dimensional, this multiplication is well-defined on the Grothendieck
groupK(A) and introduces the ring structure on it. The corresponding ring is called theGrothendieck
ring of A. The Grothendieck ring of U(g) is denoted by K(g). Let Kev(g) (resp. Kev(Uq(g))) be
the subring of K(g) (resp. K(Uq(g))) generated by all objects in U(g)-mod (resp. Uq(g)-mod),
whose weights are contained in Λ ∩ 1

2ZΦ.
Let M be a finite-dimensional representation of g or Uq(g). We define the character map and

the supercharacter map as:

ch(M) =
∑

λ

dimMλe
λ, Sch(M) =

∑

λ

sdimMλe
λ,

where sdim is the superdimension defined for any Z2-graded vector space W = W0 ⊕W1 as the
difference of usual dimensions of graded components: sdimW = dimW0 − dimW1.

Proposition 3.3. There is an injective ring homomorphism  : K(g) → K(Uq(g)), which preserves
(super)characters.

Proof. By Theorem 3.2, we can define ([L(λ)]) = [Lq(λ)] for all finite-dimensional irreducible g-
modules L(λ). This then induces an abelian group homomorphism from K(g) to K(Uq(g)). The
map preserves (super)characters, so  is a ring homomorphism. Suppose there exist nonzero ai ∈ Z

and distinct λi ∈ h∗ for i = 1, 2 · · · , n such that (
n∑
i=1

ai[L(λi)]) = 0. Then Sch(
n∑
i=1

ai[L(λi)]) = 0.

1However, the inverse of the theorem is not true in general [2]. For example, there are many finite-dimensional
irreducible modules (spinorial modules) of quantum superalgebras of type Uq(osp1|2) without classical limit; see

[51] for more details.
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Choose λj maximal in {λi ∈ h∗|i = 1, 2, · · · , n} for some j, then aj = 0 since dim(L(λi))λj = δij .

This contradicts aj 6= 0. Thus,
n∑
i=1

ai[L(λi)] = 0. �

Sergeev and Veselov proved that the Grothendieck ring K(g) is isomorphic to the ring of
exponential super-invariants J(g) =

{
f ∈ Z[P0]

W0
∣∣Dαf ∈ (eα − 1) for any isotropic root α

}
for

g 6= A(1, 1), where Dα(e
λ) = (λ, α)eλ,

{
eλ
∣∣λ ∈ P0

}
is a Z-free basis of Z[P0], and here P0 = Λ

and W0 =W , more details could be found in [42].
Define

Jev(g) =

{
∑

µ∈2Λ∩ZΦ

aµKµ ∈ U0

∣∣∣∣∣awµ = aµ, ∀w ∈W ; Dα(u) ∈ (K2
α − 1), ∀α ∈ Φiso

}
,(3.2)

where Dα(Kµ) = (µ, α)Kµ.
Obviously, there is an injective algebra homomorphism ι : Jev(g) → k ⊗Z J(g) with ι(Kµ) =

e−µ/2. This induces an isomorphism from Kev(g) to Jev(g), hence we have the following commu-
tative diagram:

K(Uq(g)) K(g)? _
oo ∼=

Sch
// J(g)

Kev(Uq(g))
?�

OO

Kev(g)
?�

OO

? _oo ∼= //❴❴❴❴❴ Jev(g)
?�

ι

OO✤
✤

✤

We remark that the above diagram is not true for g = A(1, 1). In Appendix B, we describe Jev(g)
in sense of Sergeev and Veselov [42] and illustrate why Kev(g) ≇ Jev(g) if g = A(1, 1).

3.3. Some important propositions. In this subsection, we investigate some important propo-
sitions, which show that the center of Uq(A(n, n)) is contained in U0 and will be used to prove
the injectivity of HC.

If g is of type II, there exists a unique δ ∈ Φ+
0̄
such that (Π\{αs})∪{δ} is a simple root system

of Φ+
0̄
. By writing δ =

r∑
i=1

ciαi, we can get cs = 2. The following proposition is a super version of

[43, Section 3.2] for quantum superalgebra Uq(g) associated with a simple basic Lie superalgebra.

Proposition 3.4. Set β =
r∑
i=1

miαi ∈ Z+Π, and let Lq(λ) be a typical finite-dimensional irre-

ducible module. Suppose λ satisfies
(i) 〈λ, αi〉 > mi for all i 6= s;
(ii) an extra condition 2〈λ+ ρ, δ〉 > ms + 1 when g is of type II,
then U−

−β → Lq(λ)λ−β with u 7→ uvλ is bijective.

Proof. In the proof of this proposition, we choose λ ∈ C⊗ZQ since the Verma module and simple
module can be viewed as Q-graded modules. Notice that the partial order is well-defined on Q.

The canonical map from ∆q(λ) to Lq(λ) is surjective, which follows that every finite-dimensional
irreducible module is a quotient of a Verma module. So we only need to prove dim∆q(λ)λ−β =

dimLq(λ)λ−β , since dimU−
−β = dim∆q(λ)λ−β . The dim∆q(λ)λ−β is the coefficient of eλ−β in

ch∆q(λ), and dimLq(λ)λ−β is the coefficient of eλ−β in chLq(λ).
The following character formulas of a Verma module and a typical finite-dimensional irreducible

Uq(g)-module with the highest weight λ are given by [27, Theorem 1] and Theorem 3.2:

ch∆q(λ) =
Πα∈Φ+

1̄
(1 + e−α)

Πβ∈Φ+
0̄
(1− e−β)

eλ, chLq(λ) =
Πα∈Φ+

1̄
(1 + e−α)

Πβ∈Φ+
0̄
(1− e−β)

∑

w∈W

(−1)l(w)ew(λ+ρ)−ρ.

Hence, it is sufficient to show w(λ + ρ)− ρ− (λ − β) /∈ Z+Π for all w 6= 1. Let us prove it by
induction on l(w).

If g is of type I and l(w) = 1, then we have w = si for some i 6= s, and hence

w(λ + ρ)− ρ− (λ− β) = −(〈λ, αi〉+ 1)αi + β /∈ Z+Π.
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Assume that l(w) > 2. There exist some j 6= s and w′ ∈ W such that w = sjw
′ with l(w′) =

l(w)− 1, and then it is known that w′−1(αj) ∈ Φ+
0̄
. We have

w(λ + ρ)− ρ− (λ− β) = w′(λ + ρ)− ρ− (λ− β)− 〈λ+ ρ, w′−1(αj)〉αj ,

w′(λ+ ρ)− ρ− (λ− β) /∈ Z+Π by induction and 〈λ+ ρ, w′−1(αj)〉 > 0 since λ+ ρ is dominant, so
w(λ + ρ)− ρ− (λ− β) /∈ Z+Π for all w 6= 1.

If g is of type II and l(w) = 1, then we have w = si for some i 6= s or w = sδ. By the same
argument as above, we only need to consider w = sδ. Indeed,

w(λ + ρ)− ρ− (λ− β) = −〈λ+ ρ, δ〉δ + β /∈ Z+Π.

Assume l(w) > 2. There exist some j 6= s and w′ ∈ W such that w = sjw
′ or w = sδw

′ with
l(w′) = l(w) − 1. Then it is known that w′−1(αj) or w

′−1(δ) belongs to Φ+
0̄
. The proof is similar

to type I when w = sjw
′, so we omit it here. If w = sδw

′, then

w(λ + ρ)− ρ− (λ− β) = w′(λ+ ρ)− ρ− (λ− β)− 〈λ+ ρ, w′−1(δ)〉δ.

Once again, w′(λ+ ρ)− ρ− (λ− β) /∈ Z+Π by induction and 〈λ+ ρ, w′−1(αj)〉 > 0 since λ+ ρ is
dominant, so w(λ + ρ)− ρ− (λ− β) /∈ Z+Π for all w 6= 1. �

Let λ ∈ Λ be a typical weight such that Lq(λ) is finite-dimensional, then we can define a
twisted action on Lq(λ) via the automorphism ω of Uq(g), denoted by Lωq (λ). Set vλ by v′λ when

considered as an element of Lωq (λ). We then have Kµv
′
λ = q−(µ,λ)v′λ for all µ ∈ ZΦ. Furthermore,

we have Fiv
′
λ = 0 for all i ∈ I, and x 7→ xv′λ maps each U+

ν onto Lωq (λ)−λ+ν .
Similarly, if 〈λ, αi〉 > mi, ∀i 6= s and λ satisfies an extra condition 2〈λ + ρ, δ〉 > ms + 1 for g

is of type II, then the map U+
ν → Lωq (λ)−λ+ν with x 7→ xv′λ is bijective.

Theorem 3.5. Let u ∈ U. If u annihilates all finite-dimensional U-modules, then u = 0.

Proof. For any typical weights λ, λ′ ∈ Λ such that Lq(λ) and Lωq (λ
′) are finite-dimensional, the

tensor product Lq(λ)⊗Lωq (λ
′) is also a finite-dimensional Uq(g)-module. Suppose that u ∈ Uq(g)

annihilates all these tensor products, in particular u(vλ ⊗ v′λ′) = 0 for all λ and λ′. We show that
this implies u = 0.

Choose bases {xi} of U+ and {yj} of U− consisting of homogeneous weight vectors. This means

xi ∈ U+
ν(i) and yj ∈ U−

−ν′(j) with µ(i) and ν
′(j) in Z+Π. Write

u =
∑

j

∑

µ

∑

i

aj,µ,iyjKµxi

with aj,µ,i ∈ k, which is a finite sum. Suppose that u 6= 0. Let ν0 ∈ Z+Π be maximal among the
weights ν such that there exist i, µ, j with aj,µ,i 6= 0 and ν = ν(i).

So we have

Kµxi(vλ ⊗ v′λ′ ) = q(ν(i),λ)+(µ,λ−λ′+ν(i))vλ ⊗ xiv
′
λ′ .

Each ∆(yj) is equal to yj ⊗K−1
ν′(j) plus a sum of terms in U− ⊗U0U−

<0. This implies that

yjKµxi(vλ ⊗ v′λ′) = q(ν(i),λ)+(µ,λ−λ′+ν(i))−(ν′(j),−λ′+ν(i))yjvλ ⊗ xiv
′
λ′ + (∗),

where (∗) is a sum of terms from a certain Lq(λ)⊗ Lωq (λ
′)−λ′+ν with ν 6= ν(i).

The maximality of ν0 implies that yjKµxi(vλ ⊗ v′λ′ ) has a component in Lq(λ)⊗ Lωq (λ
′)−λ′+ν0

only for ν(i) = ν0. Therefore, the projection of u(vλ ⊗ v′λ′ ) onto Lq(λ)⊗ Lωq (λ
′)−λ′+ν0 is equal to

∑

j,µ,i;ν(i)=ν0

aj,µ,iq
(ν0,λ)(µ,λ−λ

′+ν0)−(ν′(j),−λ′+ν0)yjvλ ⊗ xiv
′
λ′ ,(3.3)

since we assume that u(vλ ⊗ v′λ′ ) = 0, this projection is also equal to 0.
We can find an integer N > 0 such that

ν0 <
∑

α∈Π

Nα and ν′(j) <
∑

α∈Π

Nα
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for all j. Set

Λ+
N =

{
λ ∈ Λ

∣∣∣∣
λ is typical, Lq(λ) is finite-dimensional, 〈λ, αi〉 > N for all i 6= s
and plus an extra condition 2〈λ+ ρ, δ〉 > N + 1 if g is of type II

}
.

By the same argument before the proposition, we know that the map U+
ν0 → Lωq (λ

′)λ′−ν0 , x 7→ xv′λ′

is bijective for all λ′ ∈ Λ+
N . Thus, the elements xiv

′
λ′ with ν(i) = ν0 are linearly independent.

Therefore, the vanishing of the sum in (3.3) implies (for all λ′ ∈ Λ+
N)

∑

j,µ

aj,µ,iq
(ν0,λ)+(µ,λ−λ′+ν0)−(ν′(j),−λ′+ν0)yjvλ = 0,(3.4)

for all i with ν(i) = ν0.
The statement before this theorem implies that all yjvλ with nonzero coefficients aj,µ,i occuring

in (3.4) are linearly independent for all λ ∈ Λ+
N . So we get from (3.4)

∑

µ

aj,µ,iq
(ν0,λ)+(µ,λ−λ′+ν0)−(ν′(j),−λ′+ν0) = 0,(3.5)

for all i, j with ν(i) = ν0. We can cancel the (nonzero) factor q(ν0,λ)−(ν′(j),−λ′+ν0) in (3.5), which
does not depend on µ, and get

∑

µ

aj,µ,iq
(µ,ν0−λ

′)q(µ,λ) = 0,(3.6)

for all i, j with ν(i) = ν0 and all λ, λ′ ∈ Λ+
N . Now, fix λ′ and notice that (-, -) on ZΦ × Λ+

N is

non-degenerate in the first component for all N , thus the coefficients aj,µ,iq
(µ,ν0−λ

′) in (3.6) are
all equal to 0. This implies that aj,µ,i = 0 for all i, j, µ with ν(i) = ν0, contradicting the choice of
ν0. Therefore, u = 0. �

One can check Proposition 3.4 and Theorem 3.5 hold if g = A(n, n) since ZΦ̃ has a partial
order. Next, we strengthen Theorem 3.5 for g = A(n, n).

Theorem 3.6. Let u ∈ Uq(A(n, n)). If u annihilates all typical finite-dimensional irreducible
Uq(A(n, n))-modules, then u = 0.

Proof. It is known that if a typical irreducible module Lq(λ) is a composition factor of a finite-
dimensional module M , then Lq(λ) is a direct summand of M . By the proof of Theorem 3.5, we
only need to prove the following claim.

For all N > n, there exists λ ∈ Λ+
N such that the set

{
λ′ ∈ Λ+

N

∣∣Lq(λ)⊗ Lωq (λ
′) is completely reducible

}

could linearly span h∗.
If it is true, then Lq(λ) ⊗ Lωq (λ

′) is completely reducible if all weights in λ + wt
(
Lωq (λ

′)
)

are typical. Because the composition factors of Lq(λ) ⊗ Lωq (λ
′) are the form of Lq(λ̄) with λ̄ ∈

λ+wt
(
Lωq (λ

′)
)
[39, Corollary 5.2].

Proof of the claim: Let λ̃ =
n+1∑
i=1

(
(n+1−i)(N+2)+2

)
εi−

n∑
j=1

(j−1)(N+2)δj−(nN+4n+2)δn+1 ∈

Λ+
N+1. Then λ̃+αi ∈ Λ+

N for all i ∈ I. There exists a positive integer κ such that it is bigger than

±(µ, εj) and ±(µ, δk) for any µ ∈ wt
(
Lωq (λ̃ + αi)

)
with i ∈ I, j, k = 1, 2, · · · , n + 1. Let a = 8κ

and λ =
n+1∑
i=1

(n + 5
2 − i)aεi −

n∑
j=1

jaδj −
3(n+1)

2 aδn+1 ∈ Λ. Then λ ∈ Λ+
N and λ + µ are typical

weights for all µ ∈ wt
(
Lωq (λ̃+αi)

)
with i ∈ I. So Lq(λ)⊗Lωq (λ̃+αi) are completely reducible for

all i ∈ I. Since {λ̃+ αi|i ∈ I} could linearly span h∗, the claim holds. �

Corollary 3.7. The Center Z(Uq(g)) is contained in U0.
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Proof. If g 6= A(n, n), note that Z(Uq(g)) is ZΦ-graded since Uq(g) is ZΦ-graded. Assuming that
Z(Uq(g))∩Uq(g)ν 6= 0 for some ν ∈ ZΦ, we will show that ν = 0. Pick 0 6= z ∈ Z(Uq(g))∩Uq(g)ν .

Then z = KizK
−1
i = q(ν,αi)z for all i ∈ I; hence (ν, αi) = 0 for all i ∈ I, and ν = 0 since (-, -) is

non-degenerate.
For g = A(n, n), the quantum superalgebra Uq(g) is ZΦ̃-graded. Similar to the argument above,

if Z(Uq(g)) ∩ Uq(g)ν 6= 0 with ν ∈ ZΦ̃, then ν is contained in the radical of (-, -). Thus, ν = kγ
for some k ∈ Z. We need to prove k = 0. Otherwise assume k 6= 0. Let M be an arbitrary
finite-dimensional irreducible module with the highest weight λ and highest weight vector vλ and
lowest weight λ′ and lowest weight vector vλ′ . Then zvλ ∈ Mλ+kγ = 0 if k > 0 since kγ > 0.
Furthermore, zvλ′ ∈ Mλ′+kγ = 0 if k < 0 since kγ < 0. Thus zM = 0 and hence z = 0 by
Theorem 3.6, which contradicts the choice of z. �

4. Drinfeld double and ad-invariant bilinear form

4.1. The Drinfeld double. In order to establish the Harish-Chandra homomorphism for quan-
tum superalgebras, we need to construct the quantum Killing form or Rosso form for quantum
superalgebras. Our approach to obtaining this takes advantage of the Drinfeld double for Z2-
graded Hopf algebras [18].

Definition 4.1. A bilinear mapping ( , ) : B × A 7→ k is called a skew-pairing of the Z2-graded
Hopf algebras A and B over k if for all a, a′ ∈ A and b, b′ ∈ B we have

(b, 1) = ε(b), (1, a) = ε(a),

(bb′, a) = (−1)|b
′||a(1)|

∑
(b, a(1))(b

′, a(2)), (b, aa′) =
∑

(b(1), a
′)(b(2), a).(4.1)

Proposition 4.2. ([18, Proposition 4]) Let A and B be Z2-graded Hopf algebras equipped with
a skew-pairing ( , ) : B × A 7→ k. Then the vector space A ⊗ B becomes a superalgebra with
multiplication defined by

(4.2) (a⊗ b)(a′ ⊗ b′) =
∑

(−1)(|a
′

(1)|+|a′(2)|)(|b(2)|+|b(3)|)(S(b(1)), a
′
(1))(b(3), a

′
(3))aa

′
(2) ⊗ b(2)b

′,

for a, a′ ∈ A and b, b′ ∈ B. With the tensor product co-algebra and antipode S(a⊗b) = (−1)|a||b|(1⊗
S(b))(S(a) ⊗ 1) structure of A⊗ B, this superalgebra is also a Z2-graded Hopf algebra, called the
Drinfeld double of A and B and denoted it by D(A,B).

The existence of a dual pairing of U>0 and (U60)op was observed by Drinfeld [11]. In our
exposition, we followed Tanisaki [44, Proposition 2.1.1] for quantum groups and Lehrer, Zhang,
Zhang [32, Section 3] for quantum superalgebra Uq(glm|n). We have the following proposition.

Proposition 4.3. There is a unique non-degenerate skew-pairing between the Z2-graded Hopf
algebras U>0 and U60 with

(Ki,Kj) = q−(αi,αj), (Fi,Ej) = −δij
1

qi − q−1
i

and (Ki,Ej) = 0, (Fi,Kj) = 0.(4.3)

Proof. The well-defineness follows from [14] or Remark 2.4, and the non-degeneracy of skew-pairing
can be obtained from the following: for µ ∈ ZΦ with µ > 0 and u ∈ U−

−µ with [Ei, u] = 0 for all

i ∈ I, then u = 0. Similarly, if u ∈ U+
µ with [Fi, u] = 0 for all i ∈ I, then u = 0. The fact can be

proven in a similar way to Lemma 5.1, which we omit here. �

Remark 4.4. Geer [14] extend Lusztig’s [34] results to the Etingof-Kazhdan quantization of Lie
superalgebras UDJh (g) and check directly that the extra quantum Serre-type relations are in the
radical of the bilinear form. Indeed, the radical of the bilinear form is generated by the extra
quantum Serre-type relations and higher order Serre relations.

Corollary 4.5. As a superalgebra, D(U>0,U60) is generated by elements Ei,Ki,K
−1
i ,Fi,K

′
i, K

′−1
i .

The defining relations are the relations for the generators Ei,Ki,K
−1
i , (resp. , Fi,K

′
i,K

′−1
i ) of the
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superalgebra U>0 (resp. U60), and the following cross relations:

K′
iEjK

′−1
i = q(αi,αj)Ej , KiFjK

−1
i = q−(αi,αj)Fj ,(4.4)

KiK
′
j = K′

jKi, EiFj − (−1)|Ei||Fj|FjEi = δij
Ki −K′−1

i

qi − q−1
i

.(4.5)

It is known [14, 18] that the sub-superalgebras U>0 and U60 of the quantum superalgebras
Uq(g) form a skew-pairing, and Uq(g) is a quotient of quantum double of D(U>0,U60). More

precisely, we set I to be the two-sided ideal generated by the elements Ki −K′−1
i , which is also a

Z2-graded Hopf ideal, and we have canonical isomorphism D(U>0,U60)/I ∼= Uq(g) as Z2-graded
Hopf algebras. Recently, Drinfeld doubles have been studied by various authors as a useful tool
to recover the quantum groups (see, e.g., [5, 12, 13, 20, 21, 22]).

4.2. Rosso form. Now we can define an ad-invariant and non-degenerate bilinear form on quan-
tum superalgebras by using skew-pairing between U>0 and U60.

Theorem 4.6. Define a bilinear form 〈 , 〉 : Uq(g)×Uq(g) → k with

(4.6) 〈(yKν)Kλx, (y
′Kν′)Kλ′x′〉 = (−1)|y|(y′, x)(y, x′)q(2ρ,ν)q

−(λ,λ′)/2

,

for x ∈ U+
µ , x

′ ∈ U+
µ′ , y ∈ U−

−ν , y
′ ∈ U−

−ν′ , λ, λ′ ∈ ZΦ and µ, µ′, ν, ν′ ∈ Q. The bilinear form is

ad-invariant, i.e., 〈ad(u)v, v′〉 = (−1)|u||v|〈v, ad(S(u))v′〉.

By the use of the duality pairing, Tanisaki [44] describes the Killing form of the quantum
algebra, which is first constructed by Rosso [38], then uses it to investigate the center of quantum
algebra. Similar techniques could be applied in the case when g is a Lie superalgebra of type A-G.
Perhaps the proof of this theorem is known by several specialists, but it seems difficult to find in
the existing literature. It is fundamental to prove the surjectivity of Harish-Chandra throughout
this paper, so we write down the details to make the paper more accessible. Here we need some
tedious computations, which are also essential for Section 6.

For x ∈ U+
µ and y ∈ U−

−µ, we know ∆(x) ∈
⊕

06ν6µ

U+
µ−νKν ⊗ U+

ν and ∆(y) ∈
⊕

06ν6µ

U−
−ν ⊗

U−
−(µ−ν)K

−1
ν , thus for each αi ∈ Π, we can define elements ri(x), r

′
i(x) in U+

µ−α and ri(y), r
′
i(y) in

U−
−(µ−α) to satisfy the following equations:

∆(x) = x⊗ 1 +
r∑
i=1

ri(x)Ki ⊗ Ei + · · · = Kµ ⊗ x+
r∑
i=1

EiKµ−αi ⊗ r′i(x) + · · · , and

∆(y) = y ⊗K−1
µ +

r∑
i=1

ri(y)⊗ FiK
−1
µ−αi

+ · · · = 1⊗ y +
r∑
i=1

Fi ⊗ r′i(y)K
−1
αi

+ · · · .

Then for all x ∈ U+
µ , x

′ ∈ U+
µ′ and y ∈ U−, we have

ri(xx
′) = xri(x

′) + (−1)|Ei||x
′|q(µ

′,αi)ri(x)x
′, r′i(xx

′) = (−1)|x||Ei|q(µ,αi)xr′i(x
′) + r′i(x)x

′,

(Fiy, x) = (−1)|r
′

i(x)||Ei|(Fi,Ei)(y, r
′
i(x)), (yFi, x) = (−1)|Fi||ri(x)|(Fi,Ei)(y, ri(x)).

Similarly, for all y ∈ U−
−µ, y

′ ∈ U−
−µ′ and x ∈ U+, we have

ri(yy
′) = q(µ,αi)yri(y

′) + (−1)|Fi||y
′|ri(y)y

′, r′i(yy
′) = (−1)|y||Fi|yr′i(y

′) + q(µ
′,αi)r′i(y)y

′,
(y,Eix) = (Fi,Ei)(ri(y), x), (y, xEi) = (Fi,Ei)(r

′
i(y), x).

Thus, we have the following lemma.

Lemma 4.7. For all x ∈ U+
µ and y ∈ U−

−µ, we have

[x,Fi] = xFi − (−1)|x||Fi|Fix = (qi − q−1
i )−1

(
ri(x)Ki − (−1)|r

′

i(x)||Fi|K−1
i r′i(x)

)
,(4.7)

[Ei, y] = Eiy − (−1)|y||Ei|yEi = (qi − q−1
i )−1

(
(−1)|Ei||ri(y)|Kiri(y)− r′i(y)K

−1
i

)
.(4.8)
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Proof. We only prove Equation (4.8), and Equation (4.7) is similar. For y = 1 and y = Fi the
formula follows from definition, so it is enough to show that if Equation (4.8) holds for y ∈ U−

−µ

and y′ ∈ U−
−µ′ , then Equation (4.8) holds for yy′. This can be derived as follows.

(qi − q−1
i )[Ei, yy

′] = (qi − q−1
i )
(
[Ei, y]y

′ + (−1)|Ei||y|y[Ei, y
′]
)

=(−1)|Ei||ri(y)|
(
Kiri(y)− r′i(y)K

−1
i

)
y′ + (−1)|Ei||y|y

(
(−1)|Ei||ri(y

′)|Kiri(y
′)− r′i(y

′)
)
K−1
i

=(−1)|Ei||ri(yy
′)|Ki

(
(−1)|Ei||y

′|ri(y)y
′ + q(µ,αi)yri(y

′)
)
−
(
q(µ

′,αi)r′i(y)y
′ + (−1)|Ei||y|yr′i(y

′)
)
K−1
i

=(−1)|Ei||ri(yy
′)|Kiri(yy

′)− r′i(yy
′)K−1

i .

�

Combining the above lemma, we get the following equations, which are very useful when proofing
Theorem 4.6.

ad(Ei)(yKλx) =EiyKλx− (−1)|Ei|(|x|+|y|)KiyKλxK
−1
i Ei

=[Ei, y]Kλx+ (−1)|y||Ei|yEiKλx− (−1)|Ei|(|x|+|y|)KiyKλxK
−1
i Ei

=(qi − q−1
i )−1

(
(−1)|Ei||ri(y)|Kiri(y)Kλx− r′i(y)K

−1
i Kλx

)

+ (−1)|y||Ei|q(λ,−αi)yKλEix− (−1)|Ei|(|x|+|y|)q(µ−ν,αi)yKλxEi

=(qi − q−1
i )−1

(
(−1)|Ei||ri(y)|q(ν−αi,−αi)ri(y)Kλ+αix− r′i(y)Kλ−αix

)

+ (−1)|y||Ei|q(λ,−αi)yKλEix− (−1)|Ei|(|x|+|y|)q(µ−ν,αi)yKλxEi.

Now, we are ready to prove Theorem 4.6.
Proof of Theorem 4.6: It is enough to take u to be generators, i.e., Ei,Fi and Ki. Furthermore,

we may assume that

v = (yKν)Kλx and v′ = (y′Kν′)Kλ′x′,

with λ, λ′ ∈ ZΦ and x ∈ U+
µ , x

′ ∈ U+
µ′ , y ∈ U−

−ν , y
′ ∈ U−

−ν′ with weights µ, µ′, ν, ν′ ∈ Q.
It is obvious for u = Ki. For u = Ei, then

ad(Ei)(v) = (qi − q−1
i )−1

(
(−1)|Ei||ri(y)|q(ν−αi,−αi)ri(y)Kλ+ν+αix− r′i(y)Kλ+ν−αix

)

+ (−1)|y||Ei|q(λ+ν,−αi)yKλ+νEix− (−1)|Ei|(|x|+|y|)q(µ−ν,αi)yKλ+νxEi, and

ad(S(Ei))(v
′) = −ad(K−1

i )ad(Ei)(v
′) = −q(µ

′+αi−ν
′,−αi)ad(Ei)(v

′)

=(qi − q−1
i )−1

(
− (−1)|Ei||ri(y

′)|q(µ
′,−αi)ri(y

′)Kλ′+ν′+αix
′ + q(µ

′+αi−ν
′,−αi)r′i(y

′)Kλ′+ν′−αix
′
)

− (−1)|y
′||Ei|q(λ

′+µ′+αi,−αi)y′Kλ′+ν′Eix
′ + (−1)|Ei|(|x

′|+|y′|)q(αi,−αi)y′Kλ′+ν′x′Ei.

Now the problem can be split into two cases. First, if µ = ν′ and µ′ + αi = ν, then

〈ad(Ei)v, v
′〉 = (−1)|ri(y)|(qi − q−1

i )−1(y′, x)q(2ρ,v−αi),

·
(
(−1)|Ei||ri(y)|q(v−αi,−αi)−1/2(λ+2αi,λ

′)(ri(y), x
′)− q−1/2(λ,λ′)(r′i(y), x

′)
)
,

and

〈v, ad(S(Ei))v
′〉 =(−1)|y|(y′, x)q(2ρ,ν)

(
− (−1)|y

′||Ei|q(λ
′+µ′+αi,−αi)−1/2(λ,λ′)(y,Eix

′)

+ (−1)|Ei|(|x
′|+|y′|)q(αi,−αi)−1/2(λ,λ′)(y, x′Ei)

)
.

Therefore, 〈ad(Ei)v, v
′〉 = (−1)|Ei||v|〈v, ad(S(Ei))v

′〉.
Second, if µ+ αi = ν′ and µ′ = ν, then

〈ad(Ei)v, v
′〉 =(−1)|y|q(2ρ,ν)(y, x′) ·

(
(−1)|y||Ei|q(λ+ν,−αi)−1/2(λ,λ′)

· (y′,Eix)− (−1)|Ei|(|x|+|y|)q(µ−ν,αi)−1/2(λ,λ′)(y′, xEi)
)
,
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and

〈v, ad(S(Ei))v
′〉 =(−1)|y|(qi − q−1

i )−1q(2ρ,ν)(y, x′) ·
(
− (−1)|Ei||ri(y

′)|q(µ
′,−αi)−1/2(λ,λ′+2αi)

· (ri(y
′), x) + q(µ

′+αi−ν
′,−αi)−1/2(λ,λ′)(r′i(y

′), x)
)
.

Therefore, 〈ad(Ei)v, v
′〉 = (−1)|Ei||v|〈v, ad(S(Ei))v

′〉. Using a similar procedure, we can check for
u = Fi. Thus, we prove the ad-invariance of the bilinear form.

Proposition 4.8. Let u ∈ Uq(g). If 〈v, u〉 = 0 for all v ∈ Uq(g), then u = 0.

Proof. Notice that Uq(g) is the direct sum of all U−
−νU

0U+
µ = U−

−νKνU
0U+

µ as vector space.

Therefore, it is sufficient to show that if u ∈ U−
−νU

0U+
µ with 〈v, u〉 = 0 for all v ∈ U−

−µU
0U+

ν , then
u = 0.
Since the skew-pairing between U− and U+ is non-degenerate, we can choose an arbitrary basis
uµ1 , u

µ
2 , · · · , u

µ
r(µ) of U+

µ and dual basis vµ1 , v
µ
2 , · · · , c

µ
r(µ) of U−

−µ for any µ ∈ Q with respect to

skew-pairing, i.e., (vµi , u
µ
j ) = δij for all 1 6 i, j 6 r(µ), where r(µ) = dimU+

µ .

For any µ, ν ∈ Q, we know that
{
(vνi Kν)Kλu

µ
j

∣∣ for all λ ∈ ZΦ and 1 6 i 6 r(ν), 1 6 j 6 r(µ)
}

is a basis of U−
−νU

0U+
µ . From equation (4.6), we have

(4.9) 〈(vµhKµ)Kλ′uνl , (v
ν
i Kν)Kλu

µ
j 〉 = δhjδli(−1)|µ|(q1/2)−(λ,λ′)q(2ρ,µ).

Write u =
∑
i,j,λ

aijλ(v
ν
i Kν)Kλu

µ
j . The assumption 〈v, u〉 = 0 for all v yields

(4.10)
∑

λ∈ZΦ

(−1)|ν|aijλ(q
1/2)−(λ,λ′) = 0, for all i, j, λ′.

Thus, each aijλ = 0; hence, u = 0 as well. �

4.3. Quantum supertrace. Let (A,∆, ε, S) be a Z2-graded Hopf algebra over field k and M,N
be two A-modules. ThenM∗ is an A-module with the action (af)(m) = (−1)|a||f |f(S(a)m) for all
m ∈M,a ∈ A, f ∈M∗. M ⊗N is an A-module with the action a(m⊗n) =

∑
(−1)|a(2)||m|a(1)m⊗

a(2)n for all a ∈ A,m ∈ M,n ∈ N where ∆(a) =
∑
a(1) ⊗ a(2). Homk(M,N) is an A-module

with the action (af)(m) =
∑

(−1)|a(2)||f |a(1)f(S(a(2))m) for all a ∈ A,m ∈M, f ∈ Homk(M,N).
Supposing that M is finite-dimensional, we take {mi} to be a homogeneous basis of M and {fi}
to be the dual basis with respect to {mi}. Then we have |mi| = |fi| for all i and the following
isomorphism of A-modules:

ΦM,N : N ⊗M∗ → Hom(M,N), n⊗ f 7→ ϕf,n,(4.11)

with inverse homomorphism ΨM,N : g 7→
∑
g(mi)⊗fi, where ϕf,n(m) = f(m)n for all f ∈M∗, g ∈

Hom(M,N),m ∈ M,n ∈ N . We also have a homomorphism of A-modules εM : M∗ ⊗M → k
with εM (f ⊗m) = f(m) for all f ∈M∗,m ∈M .

In particular, A is the quantum superalgebra Uq(g). Then we have S2(u) = K−1
2ρ uK2ρ since

(ρ, αi) = 2(αi, αi) for all i ∈ I. We obtain a homomorphism of A-modules ψM : M → (M∗)∗ with

(4.12)
(
ψM (m)

)
(f) = (−1)|f ||m|f(K−1

2ρm).

Combined with the previous statements, we have the following homomorphisms of A-modules

(4.13) StrMq : End(M)
ΨM,M // M ⊗M∗ ψM⊗1M∗ // (M∗)∗ ⊗M∗ εM∗ // k.

This composition is the so-called quantum supertrace (we simply replace StrMq with Strq if no
confusion appears). More precisely, if g ∈ End(M), then

Strq(g) =εM∗ ◦ (ψM ⊗ 1M∗) ◦ΨM,M (g) = (−1)|g(mi)||fi|
∑

i

fi
(
K−1

2ρ g(mi)
)

=(−1)mi

∑

i

fi
(
g(K−1

2ρmi)
)
.
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Let A be a Z2-graded Hopf algebra and define the adjoint representation of A as follows: ad(a)(b) =∑
(−1)|b||a(2)|a(1)bS(a(2)). The map adM : A→ End(M), which takes a ∈ A to the action of a on

M , is a homomorphism of A-modules and we have

(4.14) Strq ◦ adM (u) = (−1)|mi|
∑

i

fi
(
u(K−1

2ρmi)
)
.

Indeed, this is the supertrace of uK−1
2ρ acting on M . In particular, we have

ad(Ei)u = Eiu− (−1)|u||ei|KiuK
−1
i Ei,(4.15)

ad(Fi)u = (Fiu− (−1)|u||fi|uFi)Ki,(4.16)

ad(Ki)u = KiuK
−1
i .(4.17)

4.4. Construct central elements. In this subsection, we construct central elements for certain
finite-dimensional Uq(g)-modules following Jantzen’s book [23].

Let ϕ : U−
−µ × U+

ν → k be a bilinear map and λ ∈ ZΦ. There is a unique element u ∈

(U−
−νKν)KλU

+
µ = U−

−νKν+λU
+
µ such that for all x ∈ U+

ν , y ∈ U−
−ν , λ

′ ∈ ZΦ

(4.18) 〈(yKν)Kλ′x, u〉 = ϕ(y, x)(q1/2)−(λ,λ′).

Indeed, u =
∑

(−1)|y|ϕ(vµj , u
ν
i )q

−(2ρ,µ)(vνi KνKλu
µ
j ) will work and be unique according to Propo-

sition 4.8.

Lemma 4.9. Let M be a finite-dimensional Uq(g)-module such that all weights λ of M satisfy
2λ ∈ ZΦ. Then there is for each m ∈ M and f ∈ M∗ a unique element u ∈ Uq(g) such that
f(vm) = 〈v, u〉 for all v ∈ Uq(g).

Proof. The uniqueness follows from Proposition 4.8. To prove the existence of u, we may assume
that f and m are weight vectors, since f(·m) depends linearly on f and m. Suppose that there are
two weights λ and λ′ ofM with m ∈Mλ and f ∈ (M∗)λ′ ; i.e., with f(Mλ′′) = 0 for all λ′′ 6= λ. We
have U+

νm ∈Mλ+ν for all ν. As M has only finitely many weights, there are only finitely many ν
with U+

ν m 6= 0. Since U−
−µU

0U+
ν m ⊆ Mλ+ν−µ for all µ and ν, we get f(U−

−µU
0U+

ν m) = 0 unless

λ′ = λ+ν−µ. This shows that there are only finitely many pairs (µ, ν) with f(U−
−µU

0U+
ν m) 6= 0.

For all x ∈ U+
ν , y ∈ U−

−µ and η ∈ ZΦ,

(4.19) f(yKµKηxm) = q(η,λ+ν)f(yKµxm) = (q1/2)(η,2λ+2ν)f(yKµxm).

For all µ and ν, the function (y, x) 7→ f(yKµxm) is bilinear. We now use that 2(λ+ ν) ∈ ZΦ. We

get an element uνµ ∈ U−
−µU

0U+
ν with 〈v, uνµ〉 = f(vm) for all v ∈ U−

−µU
0U+

ν . Then u =
∑
uνµ

will satisfy our claim. �

Lemma 4.10. Let M be a finite-dimensional Uq(g)-module such that all weights λ of M satisfy
2λ ∈ ZΦ. Then there is a unique element zM ∈ Uq(g) such that 〈u, zM 〉 is equal to the supertrace

of uK−1
2ρ acting on M for all u ∈ Uq(g). The element zM is contained in the center Z(Uq(g)) of

Uq(g).

Proof. Let {m1,m2, · · · ,mr} be a homogeneous basis of M and {f1, f2, · · · , fr} is the dual basis

of M∗, then the supertrace of uK−1
2ρ acting on M is equal to

r∑
i=1

(−1)|mi|fi(uK
−1
2ρmi) = 〈u, zM 〉.

In this way, the existence and uniqueness of zM follows from Lemma 4.9. Recall that the map
adM : Uq(g) → End(M) is a homomorphism of Uq(g)-modules. We notice that StrMq ◦ adM (u)

is the supertrace of uK−1
2ρ acting on M for all u ∈ Uq(g); i.e., Str

M
q ◦ adM (u) = 〈u, zM 〉 for all

u ∈ Uq(g) by (4.14). This means that for all u, v ∈ Uq(g),

(4.20) ε(v)〈u, zM 〉 = v · (StrMq ◦ adM (u)) = 〈ad(v)u, zM 〉 = (−1)|v||u|〈u, ad(S(v))zM 〉.

Hence, ε(v)zM = (−1)|v|(|v|+|zM |)ad(S(v))zM = (−1)|v|ad(S(v))zM for all v ∈ Uq(g) by Proposi-

tion 4.8. We also have (−1)|v|ad(v)zM = ε(v)zM by ε ◦ S = ε. Now (4.15)-(4.17) easily yield that
zM commutes with all Ki,Ei,Fi and is therefore central in Uq(g). �
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5. Harish-Chandra homomorphism of quantum superalgebras

5.1. The Harish-Chandra homomorphism. In the previous section, we used the Drinfeld
double to construct an ad-invariant bilinear form in Theorem 4.6, which was also non-degenerate
(see Proposition 4.8). By using this form and quantum supertrace, we can construct the central
elements of Uq(g), which contributed to establish the Harish-Chandra isomorphism for quantum
superalgebras Uq(g). Now we are ready to define the Harish-Chandra homomorphism.

For each λ ∈ Λ, there is an algebra homomorphism, also denoted by λ : U0 → C, λ(Kµ) = q(λ,µ)

for all µ ∈ ZΦ. Obviously, (λ + λ′)(h) = λ(h)λ′(h) for h ∈ U0 and λ, λ′ ∈ Λ.
The triangular decomposition of quantum superalgebra Uq(g) implies a direct sum decomposi-

tion as follows:

U0 = U0 ⊕
⊕

ν>0

U−
−νU

0U+
ν .

Let π : U0 → U0 be the projection with respect to this decomposition. One can check that⊕
ν>0

U−
−νU

0U+
ν is a two-sided ideal of U0. Thus, π is an algebra homomorphism. Denoting the

center of Uq(g) by Z(Uq(g))
2, we have Z(Uq(g)) ⊆ U0 by Proposition 3.7. Let z ∈ Z(Uq(g)) and

write z =
∑
ν>0

zν where each zν ∈ U−
−νU

0U+
ν , thus π(z) = z0. If we take vλ ∈ ∆q(λ)λ, then zvλ =

z0vλ = λ(z0)vλ. Since z is the center element of Uq(g), this implies zv = λ(z0)v, ∀ v ∈ ∆q(λ), so
it acts as scalar λ(z0) = λ(π(z)) on ∆q(λ). We set χλ : Z(Uq(g)) → k by χλ(z) = λ(π(z)).

For λ ∈ Λ, we define an algebra automorphism

γλ : U
0 → U0 by γλ(h) = λ(h)h, for all h ∈ U0.

Then

γλ(Kµ) = q(λ,µ)Kµ, for all λ ∈ Λ, µ ∈ ZΦ.

Obviously, γ0 is the identity map, and

γλ ◦ γλ′ = γλ+λ′ and λ′(γλ(h)) = (λ+ λ′)(h), for all λ, λ′ ∈ Λ, h ∈ U0.

Inspired by the quantum group case, we define the Harish-Chandra homomorphism HC of Uq(g)
to be the composite

HC : Z(Uq(g)) →֒ U0
π
−→ U0 γ−ρ

−−→ U0.

Assume that h = HC(z) = γ−ρ ◦ π(z), we have χλ(z) = λ(π(z)) = λ(γρ(h)) = (λ + ρ)(h) for all
λ ∈ Λ.

Lemma 5.1. The Harish-Chandra homomorphism HC is injective.

Proof. Suppose z =
∑
µ>0

zµ ∈ Z(Uq(g)) with HC(z) = γ−ρ ◦ π(z) = 0 where zµ ∈ U−
−µU

0U+
µ , then

z0 = π(z) = 0 since γ−ρ is an algebra automorphism. If we assume z 6= 0, then there exists zµ 6= 0
for some µ ∈ Q. Let β ∈ Q be a minimal element satisfying β > 0 and zβ 6= 0. Let {yi} and {xk}
be sets of bases of U−

−β and U+
β , respectively, and write

zβ =
∑

j,k

yjhjkxk, hjk ∈ U0.

For all x ∈ U+
γ , h ∈ U0, y ∈ U−

−γ we have [Ei, yhx] = [Ei, y]hx + (−1)|y||Ei|y[Ei, hx] with

[Ei, y]hx ∈ U−
−(γ−αi)

U0U+
γ and y[Ei, hx] ∈ U−

−γU
0U+

γ+αi
by equation (4.8). Since [Ei, z] = 0,

we have
∑
j,k

[Ei, yj ]hjkxk = 0 by the minimality of β. Hence
∑
j

[Ei, yj ]hjk = 0 for any k. Write

2In general, the center of the Lie superalgebra and quantum superalgebra is Z2-graded [7, Section 2.2]. Similar
to the basic Lie superalgebra case, the center of Uq(g) consists of only even elements. However, the center contains

odd part is also interesting in some aspects; e.g., the skew center of generalized quantum groups [3].
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β =
r∑
i=1

miαi, and let Lq(λ) be a finite-dimensional module with the highest weight vector vλ.

Then we have

Ei

(∑

j

λ(hjk)yjvλ

)
=
∑

j

[Ei, yj]hjkvλ = 0,

for all i ∈ I. So
∑
j

λ(hjk)yjvλ generates a proper submodule of Lq(λ), and we get
∑
j

λ(hjk)yjvλ =

0. The linear map U−
−β → Lq(λ) given by y 7→ yvλ is bijective if λ satisfies the condition of

Proposition 3.4. Hence,
∑
j

λ(hjk)yj = 0. Therefore, hjk = 0 for any j, k, and zβ = 0. This

contradicts the choice of β with zβ 6= 0. Thus, z = 0 and HC is injective. �

5.2. Description of the image of the HC. The image of the HC is much more complicated.
We split it into the following three lemmas. Recall that the Weyl group W acts naturally on U0

as w(Kµ) = Kwµ for all w ∈W and µ ∈ ZΦ. We have (wλ)(wh) = λ(h) for all w ∈W,λ ∈ Λ, and
h ∈ U0.

Lemma 5.2. The restriction of the image of Harish-Chandra homomorphism on the center of
quantum superalgebra Uq(g) is contained in the W -invariant of U0; i.e., HC

(
Z(Uq(g))

)
⊂ (U0)W .

Proof. The character of the Verma module ∆q(λ) with the highest weight λ ∈ Λ is given by

ch∆q(λ) =
1
D e

µ+ρ where D =
∏

β∈Φ+
1̄

(eβ/2 − e−β/2)/
∏

α∈Φ+
0̄

(eα/2 − e−α/2) owing to [27, Theorem 1]

and Theorem 3.2.
Since the character of a module is equal to the sum of the characters of its composition factors,

we have

ch∆q(λ) =
∑

µ

bλµchLq(λ)

where bλµ ∈ Z+ and bλλ = 1. Since ∆q(λ) is a highest weight module, bλµ 6= 0 ⇒ λ−µ ∈
∑
i

Z+αi

and also χλ = χµ. Hence, we have

chLq(λ) =
∑

µ

aλµch∆q(λ) and DchLq(λ) =
∑

µ

aλµe
µ+ρ

where aλµ ∈ Z with aλλ = 1, and aλµ = 0 unless λ− µ ∈
∑
i

Z+α and χλ = χµ.

Assume for now that L(λ) is finite-dimensional. Then Lq(λ) is a semisimple g0̄-module, and

chLq(λ) is W -invariant as a result. On the other hand, w(D) = (−1)l(w)D for all w ∈ W , and
hence DchLq(λ) can be written as

∑

µ∈X

aλµ
∑

w∈W

(−1)l(w)ew(µ+ρ),

where X consists of Φ+
0̄
-dominant integral weights such that aλµ 6= 0. Moreover, aλ,w(λ+ρ)−ρ =

(−1)l(w)aλλ = (−1)l(w). Hence, we have χλ = χw(λ+ρ)−ρ for all w ∈ W,λ ∈ Λf.d., where Λf.d. =
{λ ∈ Λ|dimLq(λ) <∞}.

For z ∈ Z(Uq(g)), we set h = HC(z). Assuming that λ ∈ Λ and Lq(λ) is finite-dimensional, we
get (λ+ρ)(h) = χλ(z) = χw(λ+ρ)−ρ(z) = (w(λ+ρ))(h) = (λ+ρ)(wh). Hence λ(wh−h) = 0 for all

w ∈W . Fix w and write wh−h =
∑
µ
aµKµ. Then λ

(∑
µ
aµKµ

)
=
∑
µ
aµq

(λ,µ) = 0 for all λ ∈ Λf.d..

Thus, wh − h = 0 and h ∈ (U0)W because the bilinear form on Λf.d. × ZΦ is non-degenerate in
the second component. �

Set

(5.1) (U0
ev)

W =

{
∑

µ

aµKµ

∣∣∣∣∣µ ∈ 2Λ ∩ ZΦ and aµ = awµ, ∀w ∈ W

}
.
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Lemma 5.3. The Harish-Chandra homomorphism HC maps Z(Uq(g)) to (U0
ev)

W .

Proof. Take an arbitrary z ∈ Z(Uq(g)), we can write HC(z) =
∑
µ
aµKµ with awµ = aµ for any

w ∈W . We only need to prove 〈µ, α〉 ∈ 2Z for all µ ∈ ZΦ with aµ 6= 0, α ∈ Φ0̄.
For each group homomorphism σ : ZΦ → {±1}, we can define an automorphism σ̃ of Uq(g) by

σ̃(Kµ) = σ(µ)Kµ, σ̃(Ei) = Ei, σ̃(Fi) = σ(αi)Fi.

Obviously, σ̃ maps the center Z(Uq(g)) to itself. One can check that HC = γ−ρ ◦π commutes with
σ̃. We already have HC(σ̃(z)) = σ̃

(∑
µ
aµKµ

)
=
∑
µ
aµσ(µ)Kµ. Since σ̃(z) is central, the sum is in

(U0)W ; so we have aµσ(µ) = awµσ(wµ) = aµσ(wµ) for all w ∈ W . This means: if aµ 6= 0, then
σ(µ) = σ(wµ) for all w ∈ W . Thus, σ(µ − sαµ) = 1 for all α ∈ Φ+

0̄
, µ ∈ ZΦ. For each α, we can

choose σ such that σ(α) = −1. Therefore, (−1)〈µ,α〉 = 1 and 〈µ, α〉 ∈ 2Z. �

For v ∈ Λ and α ∈ Φiso, we set Aαν = {ν + nα|n ∈ Z}. Clearly, Λ =
⋃
ν∈Λ

Aαν . Let

(5.2) (U0
ev)

W
sup =

{
∑

µ

aµKµ ∈ (U0
ev)

W

∣∣∣∣∣
∑

µ∈Aα
ν

aµ = 0, ∀α ∈ Φiso with (ν, α) 6= 0

}
.

Lemma 5.4. The Harish-Chandra homomorphism HC maps Z(Uq(g)) to (U0
ev)

W
sup.

Proof. We claim that if α ∈ Φiso and (λ + ρ, α) = 0, then χλ = χλ−kα for any k ∈ Z. Indeed,
if α = αs and (λ, αs) = 0, then we get a non-trivial homomorphism ϕ : ∆q(λ − αs) → ∆q(λ)
according to Lemma 3.1. In this way, z ∈ Z(Uq(g)) acts by the same constant on both modules;
i.e., χλ(z) = (λ + ρ)(h) = (λ − αs + ρ)(h) = χλ−αs(z) where h = HC(z) = γ−ρ ◦ π(z). Thus,
χλ = χλ−αs .

For any α ∈ Φiso, if (λ + ρ, α) = 0, then there exists w ∈ W such that w(α) = αs. Based on
the W -invariance of (·, ·), we have

(
w(λ + ρ), w(α)

)
= (λ+ ρ, α) = 0, so

χλ = χw(λ+ρ)−ρ = χw(λ+ρ)−α−ρ = χλ−α.

This implies χλ = χλ−α, so we conclude that χλ = χλ−kα for all k ∈ Z.
Now suppose h = γ−ρ ◦ π(z) =

∑
µ
aµKµ for some z ∈ Z(Uq(g)) and α ∈ Φiso, by χλ(z) =

(λ+ ρ)
(∑
µ
aµKµ

)
and χλ = χλ−α for all (λ+ ρ, α) = 0. We know

(5.3) (λ + ρ+ α)

(∑

µ

aµKµ

)
= (λ+ ρ)

(∑

µ

aµKµ

)
,

for all (λ + ρ, α) = 0, hence

(5.4)
∑

µ

aµq
(λ+ρ,µ)

(
q(µ,α) − 1

)
= 0.

Notice that (λ + ρ, ν) = (λ + ρ, ν′) and (µ, α) = (ν′, α) if Aαν = Aαν′ . There is a finite subset
X ⊂ Λ such that Aν 6= Aν′ for all ν, ν′ ∈ X and Supp(h) ⊂

⋃
ν∈X

Aαν , where Supp(h) is the set of

µ ∈ 2Λ ∩ ZΦ for which aµ is nonzero. This means we can rewrite Equation (5.4) as

∑

ν∈X

( ∑

µ∈Aα
ν

aµ

)(
q(ν,α) − 1

)
q(λ+ρ,ν) = 0.

Since (α, α) = 0 and the bilinear form on Λ × ZΦ is non-degenerate, there is a λ + ρ ∈ Λ such
that (λ + ρ, α) = 0 and (λ + ρ, ν) 6= (λ + ρ, ν′) for all ν 6= ν′ with ν, ν′ ∈ X . Let {nν}ν∈X be
positive integers that are distinct. We get

∑

ν′∈X

( ∑

µ∈Aα
ν′

aµ

)(
q(ν

′,α) − 1
)
q(nν(λ+ρ),ν

′) = 0,
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for all ν ∈ X and the square matrix
(
q(nν(λ+ρ),ν

′)
)
νν′

is invertible. Therefore,

(5.5)

( ∑

µ∈Aα
ν

aµ

)(
q(ν,α) − 1

)
= 0,

for all ν ∈ X , and
∑

µ∈Aα
ν

aµ = 0 if (ν, α) 6= 0. �

Example 5.5. We give some explicit elements in (U0
ev)

W
sup when g is of small rank.

(i) Let g = A(1, 0). In such a case, Φ+
1̄
= {α2, α1 + α2} and 2Λ∩ZΦ = Zα1 + 2Zα2. If λ =

k1α1 + 2k2α2 is a dominant weight, then we have k1 > k2 and k1, k2 ∈ Z. Furthermore,
Wλ = {λ, λ − 2(k1 − k2)α1}. Thus kλ = Kλ − Kλ−2α2 − Kλ−2α1−2α2 + Kλ−2α1−4α2 +
Kλ−2(k1−k2)α1

−Kλ−2(k1−k2)α1−2α2
−Kλ−2(k1−k2)α1−2α1−2α2

+Kλ−2(k1−k2)α1−2α1−4α2
∈

(U0
ev)

W
sup.

(ii) Let g = C(2). As a result, Φ+
1̄

= {α1, α1 + α2} and 2Λ ∩ ZΦ = 2Zα1 + Zα2. If λ =
2k1α1 + k2α2 is a dominant weight, then we have k2 > k1 and k1, k2 ∈ Z. Furthermore,
Wλ = {λ, λ − 2(k2 − k1)α2}. Thus kλ = Kλ − Kλ−2α1 − Kλ−2α1−2α2 + Kλ−4α1−2α2 +
Kλ−2(k2−k1)α2

−Kλ−2(k2−k1)α2−2α1
−Kλ−2(k2−k1)α2−2α1−2α2

+Kλ−2(k2−k1)α2−4α1−2α2
∈

(U0
ev)

W
sup.

(iii) Let g = B(1, 1). In this case, the positive isotropic roots of g are {α1, α1 + 2α2} and
2Λ ∩ ZΦ = 2Zα1 + Zα2. If λ = λ1δ1 + µ1ε1 ∈ 2Λ ∩ Q is a dominant weight, then we
have λ1 6= 0, λ1 − 2, 2µ1 ∈ 2Z+. Furthermore, Wλ = {±λ1δ1 ± µ1ε1}. Thus kλ =∑
w∈W

w(Kλ −Kλ−2α1 −Kλ−2α1−4α2 +Kλ−4α1−4α2) ∈ (U0
ev)

W
sup.

5.3. Proof of Theorem A. In order to prove the surjectivity of HC, we need to investigate the
Grothendieck rings K(g) of finite-dimensional representations of the basic classical Lie superalge-
bras g. In the following proposition, we identify the algebra (U0

ev)
W
sup with Jev(g), which plays a

crucial role on the surjectivity of HC.

Proposition 5.6. (U0
ev)

W
sup = Jev(g).

Proof. For h =
∑
µ
aµKµ ∈ (U0

ev)
W
sup, we define Supp(h) as the set of µ ∈ 2Λ ∩ ZΦ for which aµ is

nonzero. For any α ∈ Φiso, take a finite set X such that Supp(h) ⊂
⋃
ν∈X

(ν + Z+α). Furthermore,

Supp(h) ⊂
⋃
ν∈X

(ν + 2Z+α) since there is an even root β such that 2(α,β)
(β,β) = 1. Then

Dα(h) =
∑

µ

aµ(µ, α)Kµ =
∑

ν∈X

∑

k∈Z+

aν+2kα(ν, α)Kν+2kα(5.6)

and ∑

k∈Z+

aν+2kα(ν, α)Kν+2kα ∈ (K2
α − 1), for all ν ∈ X

because
∑
k∈Z+

aν+kα = 0 for all ν ∈ X with (ν, α) 6= 0 and
∑
k∈Z+

aν+2kα(ν, α)Kν+2kα = 0 for all

ν ∈ X with (ν, α) = 0.
On the other hand, take an element h =

∑
µ
aµKµ ∈ Jev(g), then

Dα(h) =
∑

µ

aµ(µ, α)Kµ =
∑

ν∈X

∑

k∈Z+

aν+kα(ν, α)Kν+kα ∈ (Kα − 1),

for any α ∈ Φiso. Therefore,
∑
k∈Z+

aν+kαKν+kα ∈ (Kα − 1) for any ν ∈ X with (ν, α) 6= 0. This

implies that
∑

µ∈Aα
ν

aµ =
∑
k∈Z+

aν+kα = 0. �

Proposition 5.7. There is a linear map ΨR : k⊗ZKev(Uq(g)) → Z(Uq(g)) such that the diagram
in the introduction commutes.
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Proof. Define a map from ΨR : k ⊗Z Kev(Uq(g)) → Z(Uq(g)) with ΨR([M ]) = zM where zM is
defined in Lemma 4.10. We need to prove the well-defineness of ΨR and ι ◦ HC(zM ) = Sch([M ])
for all M in U-mod with all weights contained in Λ ∩ 1

2ZΦ.
Choose a homogeneous basis {m1, · · · ,mk, · · · ,ml} ofM such that {m1, · · · ,mk} is a basis of L

and {m̄k+1, · · · , m̄l} is a basis of N . Let {f1, · · · , fl} be the dual basis ofM , then {f1, · · · , fk} and
{f̄k+1, · · · , f̄l} can be viewed as dual bases of L and N , respectively. So {π⊗m1, · · · , π⊗ml} (resp.
{π⊗f1, · · · , π⊗fl}) is the basis (resp. dual bases) of wt(M), and |π⊗fi| = |π⊗mi| = −|mi| = −|fi|
for all i. Hence,

〈u, zM 〉 =
l∑

i=1

(−1)|mi|fi(uK
−1
2ρmi)

=

k∑

i=1

(−1)|mi|fi(uK
−1
2ρmi) +

l∑

i=k+1

(−1)|mi|fi(uK
−1
2ρmi)

=

k∑

i=1

(−1)|mi|fi(uK
−1
2ρmi) +

l∑

i=k+1

(−1)|m̄i|f̄i(uK
−1
2ρ m̄i)

= 〈u, zL〉+ 〈u, zN〉 = 〈u, zL + zN 〉;

〈u, zM 〉 =

l∑

i=1

(−1)|mi|fi(uK
−1
2ρmi) = −

l∑

i=1

(−1)|π⊗mi|(π ⊗ fi)
(
uK−1

2ρ (π ⊗mi)
)

= −〈u, zΠ(M)〉.

Therefore, zL − zM + zN = 0 and zM + zΠ(M) = 0 according to Proposition 4.8.

Since zM is central, we have zM =
∑
µ>0

zM,µ where zM,µ ∈ U−
−µU

0U+
µ . Write zM,0 =

∑
ν
aνKν .

Then we have

〈Kµ′ , zM 〉 = 〈Kµ′ , zM,0〉 =
∑

ν

aν

(
q1/2

)−(ν,µ′)

,

for all µ′ ∈ ZΦ. On the other hand, this is the supertrace of Kµ′−2ρ acting on M . This means it
is equal to

∑

λ′

sdimMλ′q(λ
′,µ′−2ρ) =

∑

λ′

sdimMλ′q−2(λ′,ρ)
(
q1/2

)(2λ′,µ′)

.

A comparison of these two formulas shows that

zM,0 =
∑

λ′

sdimMλ′q(−2λ′,ρ)K−2λ′ .

We have zM,0 = π(zM ), hence

(5.7) γ−ρ ◦ π(zM ) =
∑

λ′

sdimMλ′K−2λ′ ,

and ι ◦ HC(zM ) =
∑
λ′

sdimMλ′eλ
′

= Sch([M ]). �

Proof of Theorem A:

k ⊗Z Kev(Uq(g))

ΨR

��✤
✤

✤
k ⊗Z Kev(g)? _oo

∼=

��✤
✤

✤

Z(Uq(g))
HC //❴❴❴❴❴ (U0

ev)
W
sup k ⊗Z Jev(g)

The injectivity of HC follows from 5.1, so we only need to prove ImHC = (U0
ev)

W
sup. Based on

Proposition 5.7, the above diagram is commutative, so ImHC = (U0
ev)

W
sup. �
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By using ι ◦ HC ◦ ΨR([M ]) = Sch([M ]) for all [M ] ∈ Kev(Uq(g)), we get ΨR is injective. All
morphisms in the diagram above are algebra isomorphisms as a result. Furthermore, for any
[M ] ∈ Kev(Uq(g)), there exists

∑
i

ai[L(λi)] with ai ∈ k such that (
∑
i

ai[L(λi)]) = [M ], and these

λi are distinct. Let X = {λi|ai /∈ Z}. Supposing that X is nonempty and taking a maximal
element λt in X for some t, we get dimMλt =

∑
i

aidimL(λi)λt ∈ Z and dimL(λi)λt = δit. Thus

at = dimMλt is an integer, contradicting λt ∈ X . Therefore, X is empty and ai ∈ Z for all i.
Thus, Kev(g) →֒ Kev(Uq(g)) is an isomorphism induced by .

Remark 5.8. In Appendix B, we describe the Jev(g) in the sense of Sergeev and Veselov [42] and
illustrate whyKev(g) ≇ Jev(g) if g = A(1, 1) since u−v = K1+K−1

1 −K3−K−1
3 ∈ (U0

ev)
W
sup = Jev(g)

and u− v /∈ J(A(1, 1)). Therefore, J(A(1, 1)) ⊆ Im(HC) ⊆ Jev(g). However, the image of HC for
g = A(1, 1) has not yet determined.

6. Center of quantum superalgebras

6.1. Quasi-R-matrix. In Section 5, we established theHC for quantum superalgebras and proved
that the center Z(Uq(g)) is isomorphic to (U0

ev)
W
sup, the subalgebra of the ring of exponential super-

invariants Jev(g). This section studies the structural theorem for the center. Our approach to
obtaining a structural theorem for quantum superalgebras takes advantage of the quasi-R-matrix,
which is inspired by [48, 49]. Recently, based on main results [33], Dai ang Zhang [9] used the
similar method to investigate explicit generators and relations for the center of the quantum group.
They proved that the center Z(Uq(g)) of quantum group Uq(g) is isomorphic to the subring of
Grothendieck algebra K(Uq(g)).

For each µ ∈ Q, we take uµ1 , u
µ
2 , · · · , u

µ
r(µ) to be a basis of U+

µ . Since the skew-pairing between

the U+ and U− is non-degenerate, we can take the dual basis vµ1 , v
µ
2 , · · · , v

µ
r(µ) of U

−
−µ, with respect

to (vµi , u
µ
j ) = δij , for all possible i, j. We have the following proposition.

Proposition 6.1. Set Θµ =
r(µ)∑
i=1

vµi ⊗ uµi ∈ U⊗U. Then Θµ does not depend on the choice of the

basis (uµi )i and

(Ei ⊗ 1)Θµ + (Ki ⊗ Ei)Θµ−αi = Θµ(Ei ⊗ 1) + Θµ−αi(K
−1
i ⊗ Ei),(6.1)

(1⊗ Fi)Θµ + (Fi ⊗K−1
i )Θµ−αi = Θµ(1⊗ Fi) + Θµ−αi(Fi ⊗Ki),(6.2)

(Ki ⊗Ki)Θµ = Θµ(Ki ⊗Ki).(6.3)

Proof. It is easy to check Θµ does not depend on the choice of the basis (uµi )i and (6.3). For (6.1),
we have

(Ei ⊗ 1)Θµ −Θµ(Ei ⊗ 1) =

r(µ)∑

j=1

[Ei, v
µ
j ]⊗ uµj

=

r(µ)∑

j=1

(qi − q−1
i )−1

(
(−1)|Ei||ri(v

µ
j )|Kiri(v

µ
j )− r′i(v

µ
j )K

−1
i

)
⊗ uµj

=

r(µ)∑

j=1

r(µ−αi)∑

k=1

(qi − q−1
i )−1

(
(−1)|Ei||ri(v

µ
j )|Ki

(
ri(v

µ
j ), u

µ−αi

k

)
vµ−αi

k −
(
r′i(v

µ
j ), u

µ−αi

k

)
vµ−αi

k K−1
i

)
⊗ uµj

=

r(µ)∑

j=1

r(µ−αi)∑

k=1

(
− (−1)|Ei||ri(v

µ
j )|Ki(Fi,Ei)

(
ri(v

µ
j ), u

µ−αi

k

)
vµ−αi

k + (Fi,Ei)
(
r′i(v

µ
j ), u

µ−αi

k

)
vµ−αi

k K−1
i

)
⊗ uµj

=

r(µ)∑

j=1

r(µ−αi)∑

k=1

(
− (−1)|Ei||ri(v

µ
j )|Ki(v

µ
j ,Eiu

µ−αi

k )vµ−αi

k + (vµj , u
µ−αi

k Ei)v
µ−αi

k K−1
i

)
⊗ uµj
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=

r(µ−αi)∑

k=1

−(−1)|Ei||ri(v
µ
j )|Kiv

µ−αi

k ⊗ Eiu
µ−αi

k + vµ−αi

k K−1
i ⊗ uµ−αi

k Ei

=− (Ki ⊗ Ei)Θµ−αi +Θµ−αi(K
−1
i ⊗ Ei).

Thus, (6.1) holds. Because the proof for Equation (6.2) is similar to that for Equation (6.1), we
omit it here. �

There is an algebra automorphism φ of Uq(g)⊗Uq(g) defined by

φ(Ki ⊗ 1) = Ki ⊗ 1, φ(Ei ⊗ 1) = Ei ⊗K−1
i , φ(Fi ⊗ 1) = Fi ⊗Ki,

φ(1 ⊗Ki) = 1⊗Ki, φ(1 ⊗ Ei) = K−1
i ⊗ Ei φ(1 ⊗ Fi) = Ki ⊗ Fi,

and φ can be extended to Uq(g)⊗̂Uq(g), which is a completion of the tensor product Uq(g)⊗Uq(g).

Then the quasi-R-matrix is
∑
µ>0

Θµ ∈ Uq(g)⊗̂Uq(g)
3 and it is invertible. Its inverse is denoted by

R. Then, by Proposition 6.1, we have

R∆(u) = φ
(
∆op(u)

)
R, and Rop∆op(u) = φ

(
∆(u)

)
Rop.

The universal R-matrix can be derived from the quasi-R-matrix, which is significant because it can
induce solutions of the quantum Yang-Baxter equation on any of its modules. This approach is
prominent in the study of integrable systems, knot invariants and so on. The following proposition
is essential for us to construct the explicit central elements, named Casimir invariants, which
have been used to construct a family of Casimir invariants for quantum groups [9], quantum
superalgebras Uq(glm|n) and Uq(ospm|2n).

6.2. Constructing central elements using quasi-R-matrix.

Proposition 6.2. [10, Proposition 3.1] Given an operator ΓM ∈ End(M)⊗Uq(g) satisfying

(6.4) [ΓM ,∆(u)] = 0 for all u ∈ Uq(g),

the elements

(6.5) C
(k)
M := Str1

(
(ζ ⊗ 1)(K2ρ ⊗ 1)(ΓM )k

)

are central in Uq(g), where Str1(f ⊗ u) = Str(f)u for f ∈ End(M) and u ∈ Uq(g).

Proof. We only need to prove [C
(k)
M ,Ki] = [C

(k)
M ,Ei] = [C

(k)
M ,Fi] = 0 for all i ∈ I. Assume

(ΓM )k =
∑
j

Aj ⊗Bj , then

0 = Str1
(
(K2ρK

−1
i ⊗ 1)[(ΓM )k,∆(Ki)]

)

= Str1

(
(K2ρK

−1
i ⊗ 1)

[∑

j

Aj ⊗Bj ,Ki ⊗Ki

])

=
∑

j

Str(K2ρK
−1
i AjKi)BjKi −

∑

j

Str(K2ρAj)KiBj

= [C
(k)
M ,Ki],

3More properties about quasi-R-matrix in a super setting can be deduction follows [34, Chapter 4]. For example,

R̄ = R−1, where the automorphism ¯ of U⊗̂U is defined in [34, Chapter 4].
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where the last equation holds by Str([x, y]) = 0 for all x, y ∈ End(M). And,

0 =Str1
(
(K2ρ ⊗ 1)[(ΓM )k,∆(Fi)]

)

=Str1

(
(K2ρ ⊗ 1)

[∑

j

Aj ⊗Bj ,Fi ⊗K−1
i + 1⊗ Fi

])

=Str1

(
(K2ρ ⊗ 1)

∑

j

(
(−1)|Bj||Fi|AjFi ⊗BjK

−1
i +Aj ⊗BjFi

− (−1)|Fi|(|Aj |+|Bj|)FiAj ⊗K−1
i Bj − (−1)|Fi||Bj |Aj ⊗ FiBj

))

=[C
(k)
M ,Fi],

where the last equation follows from
[∑
j

Aj ⊗ Bj ,Ki ⊗ Ki

]
= 0 and Str([x, y]) = 0 for all x, y ∈

End(M). �

Define by ζ : Uq(g) → End(M) the linear representation. Let PMη : M →Mη be the projection
from M to Mη and define the following element in End(M)⊗Uq(g) as

(6.6) KM =
∑

η∈wt(M)

PMη ⊗K2η.

Using the definition of φ, we obtain

(6.7) KM (ζ ⊗ 1)
(
φ2(∆(u))

)
= (ζ ⊗ 1)(∆(u))KM , ∀u ∈ Uq(g).

Define RM = (ζ ⊗ 1)(R) and RopM = (ζ ⊗ 1)(Rop), we have

KMφ(R
op
M )RM (ζ ⊗ 1)(∆(u)) = KM (ζ ⊗ 1)

(
φ(Rop)R∆(u)

)

=KM (ζ ⊗ 1)
(
φ2(∆(u))φ(Rop)R

)
= KM (ζ ⊗ 1)

(
φ2(∆(u))

)
φ(RopM )RM

=(ζ ⊗ 1)(∆(u))KMφ(R
op
M )RM , ∀u ∈ Uq(g).

If we take

(6.8) ΓM = KMφ(R
op
M )RM ,

then [ΓM , (ζ ⊗ 1)(∆(u))] = 0, for all u ∈ Uq(g).

Example 6.3. Let U = Uq(A(1, 0)) and ζ : U → End(M) = End(Lq(ε1)) be the vector represen-
tation. Let v1 be its highest weight vector with weight λ1, and let v2 = F1v1, v3 = F2F1v1 and
λ2, λ3 be the corresponding weights associated with v2, v3, respectively. {v1, v2, v3} is a basis of M .
By using of (4.1) and (4.3), {−(qi− qi)

−1Fi} and {Ei} are two basis-dual basis pairs of U−
−αi

and
U+
αi

for i = 1, 2 and

{(q − q−1)F1F2, (q
−1 − q)F2F1} and {qE1E2 − E2E1,E1E2 − qE2E1}

is a basis-dual basis pair of U−
−α1−α2

and U+
α1+α2

with respect to the Drinfeld double. We have

R =
∑
µ>0

Θµ, which is a generalization of [34, Corollary 4.1.3]. Then

(6.9)

RM = (ζ⊗1)(1⊗1+

2∑

i=1

(qi−q
−1
i )Fi⊗Ei−(q−1−q)F2F1⊗(E1E2−q

−1E2E1)−(q−q−1)F1F2⊗(q−1E1E2−E2E1))

and

φ(Rop
M ) =(ζ ⊗ 1)(1 ⊗ 1 + (q−1 − q)(E1E2 − q−1E2E1)K2K1 ⊗K−1

2 K−1
1 F2F1

+

2∑

i=1

(−1)δi2(qi − q−1
i )EiKi ⊗K−1

i Fi + (q − q−1)(q−1E1E2 − E2E1)K1K2 ⊗K−1
2 K−1

1 F1F2).

(6.10)
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because ζ(U−
−ν) = 0 if ν 6= α1, α2, α1 +α2. Substitute (6.6), (6.9) and (6.10) into (6.8) and (6.5).

As a result,

C
(1)
M =Str1

(
(ζ ⊗ 1)(K2ρ ⊗ 1)KMφ(R

op
M )RM

)

=

3∑

i=1

(−1)|vi|q(2ρ,λi)K2λi +

2∑

i=1

(qi − q−1
i )2(−1)|vi|q(αi,λi+1)+(2ρ,λi)K2λiK

−1
i FiEi

+(q − q−1)2q(2ρ,λ1)+(α1+α2,λ3)K2λ1K
−1
2 K−1

1 (F2F1 − q−1F1F2)(E1E2 − q−1E2E1)

=K−2
2 + q−2K−2

1 K−2
2 − q−2K−2

1 K−4
2 + (q − q−1)2(q−1K−1

1 K−2
2 F1E1 + q−1K−2

1 K−3
2 F2E2)

+(q − q−1)2qK−1
1 K−3

2 (F2F1 − q−1F1F2)(E1E2 − q−1E2E1),

by using

2ρ = α1 − α2 − (α1 + α2) = −2α2;

λ1 = ε1 = −ε2 + δ1 = −α2;

λ2 = ε2 = −ε1 + δ1 = −α1 − α2;

λ3 = δ1 = −ε1 − ε2 + 2δ1 = −α1 − 2α2.

There is a k-algebra anti-automorphism τ of U defined by τ(Ei) = Fi, τ(Fi) = Ei, τ(K
±1
i ) = K±1

i

for i = 1, 2. It is obvious that C
(1)
M commutes with K1 and K2. One can check directly that C

(1)
M

commutes with E1 and E2. Because C
(1)
M is τ-invariant, C

(1)
M commutes with F1 and F2. Therefore,

C
(1)
M ∈ Z(Uq(g)).

6.3. Proof of Theorem B. In the previous subsection, we used the quasi-R-matrix to construct
an explicit ΓM associated with a finite-dimensional Uq(g)-module M satisfying Proposition 6.8.
Thus, we obtained a family of central elements of Uq(g). Now, we are ready to prove Theorem B.

For convenience, we simplify CLq(λ) for C
(1)
Lq(λ)

.

Theorem 6.4. {CLq(λ) | λ ∈ Λ ∩ 1
2ZΦ and L(λ) finite-dimensional } is a basis of Z(Uq(g)) if

g 6= A(1, 1).

Proof. Applying the HC to CLq(λ)∗ results in

HC
(
CLq(λ)∗

)
= HC

(
Str1

((
ζ(K2ρ)⊗ 1

)
ΓLq(λ)∗

))
= γ−ρ ◦ π

(
Str1

((
ζ(K2ρ)⊗ 1

)
KLq(λ)∗

))

=
∑

η∈wt(Lq(λ)∗)

γ−ρ

(
Str(q(2ρ,η)PLq(λ)

∗

η )K2η

)
=
∑

µ

sdimLq(λ)µK−2µ = HC
(
zLq(λ)

)
.

According to Theorem A (i.e., the HC = γ−ρ ◦ π is an algebra isomorphism), zLq(λ) = CLq(λ)∗ .

Furthermore,
{
[Lq(λ)]|λ ∈ Λ ∩ 1

2ZΦ and Lq(λ) is finite-dimensional
}

is a basis of Kev(Uq(g)).

Hence,
{
CLq(λ)∗

∣∣λ ∈ Λ ∩ 1
2ZΦ and Lq(λ) is finite-dimensional

}
is a basis of Z(Uq(g)). So is{

CLq(λ)

∣∣λ ∈ Λ ∩ 1
2ZΦ and L(λ) is finite-dimensional

}
. �

Remark 6.5. One can define a new quantum superalgebra Ũ = Ũq(g) associated with a simple Lie
superalgebra g, except for A(1, 1), by replacing the cartan subalgebra of quantum superalgebra g

with the group ring kΓ if ZΦ ⊆ Γ ⊆ Λ, WΓ = Γ and q(γ,λ) ∈ k for all γ ∈ Γ, λ ∈ Λ. Using the
same procedure, we can establish the Harish-Chandra isomorphism between Z(Ũ) and (Ũ0

ev)
W
sup,

where

(Ũ0
ev)

W
sup =

{
∑

µ∈2Λ∩Γ

aµKµ ∈ U0

∣∣∣∣∣awµ = aµ, ∀w ∈ W ;
∑

µ∈Aα
ν

aµ = 0, ∀α ∈ Φiso with (ν, α) 6= 0

}
.

In particular, K(g) ∼= KΛ(Ũ), where KΛ(Ũ) is the subring of K(Ũ) generated by all objects in

Ũ-mod whose weights are contained in Λ if Γ = Λ.
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Remark 6.6. Our approach to obtaining the Harish-Chandra type theorem for quantum superal-
gebras of type A-G takes advantage of the Rosso form, which cannot be applied to quantum queer
superalgebra Uq(qn) [37] or quantum perplectic superalgebra Uq(pn) [1]. One immediate problem
is to establish the Harish-Chandra type theorems for these quantum superalgebras. We hope to
return to these questions in future.

Appendix A. Dynkin diagrams in distinguished root systems

The Dynkin diagrams in the distinguished root systems of a simple basic Lie superalgebra of
type A-G are listed below, where r is the number of nodes and s is the element of τ . Note that
the form of Dynkin diagrams in the distinguished root systems is quite uniform in the literature.

A(m,n) case : Let h∗ be a vector space spanned by {εi − εi+1, εm+1 − δ1, δj − δj+1|1 6 i 6

m, 1 6 j 6 n} satisfies

(ε1 + . . .+ εm+1)− (δ1 + . . .+ δn+1) = 0.

We equip the dual h∗ with a bilinear form (·, ·) such that

(εi, εj) = δij , (εi, δj) = (δj , εi) = 0, (δi, δj) = −δij for all possible i, j.

The distinguished fundamental system Π = {α1, . . . , αm+n+1} is given by

{ε1 − ε2, . . . , εm,−εm+1, εm+1 − δ1, δ1 − δ2, . . . , δn − δn+1}.

The Dynkin diagram associated with Π is depicted as follows:

✐
ε1 − ε2

✐
ε2 − ε3

. . . ✐
εm − εm+1

⊗εm+1 − δ1

✐
δ1 − δ2

. . . ✐
δn − δn+1.

In this case r = m + n + 1, s = m + 1. The distinguished positive system Φ+ = Φ+
0̄
∪ Φ+

1̄
corresponding to the distinguished Borel subalgebra for A(m,n) is

{εi − εj , δk − δl|1 6 i < j 6 m+ 1, 1 6 k < l 6 n+ 1} ∪ {εi − δj |1 6 i 6 m+ 1, 1 6 j 6 n+ 1}.

The Weyl group W ∼= Sm+1 ×Sn+1.

B(m,n) case: Let h∗ be a vector space with basis {εi, δj |1 6 i 6 m, 1 6 j 6 n}. We equip

the dual h∗ with a bilinear form (·, ·) such that

(εi, εj) = δij , (εi, δj) = (δj , εi) = 0, (δi, δj) = −δij for all possible i, j.

The distinguished fundamental system Π = {α1, . . . , αm+n} is given by

{δ1 − δ2, . . . , δn−1 − δn, δn − ε1, ε1 − ε2, . . . , εm−1 − εm, εm}.

The Dynkin diagram associated with Π is depicted as follows:

✐
δ1 − δ2

... ✐
δn−1 − δn

⊗δn − ε1

✐
ε1 − ε2

... ✐
εm−1 − εm

> ✐
εm.

In this case r = m+n, s = n+1. The distinguished positive system Φ+ = Φ+
0̄
∪Φ+

1̄
corresponding

to the distinguished Borel subalgebra is

{δi ± δj , 2δp, εk ± εl, εq} ∪ {δp ± εq, δp},

where 1 6 i < j 6 n, 1 6 k < l 6 m, 1 6 p 6 n, 1 6 q 6 m. The Weyl group W ∼=
(Sn ⋉ Zn2 )× (Sm ⋉ Zm2 ).

B(0, n) case: Let h∗ be a vector space with basis {δi|1 6 i 6 n}. We equip the dual h∗ with

a bilinear form (·, ·) such that

(δi, δj) = −δij for all possible i, j.

The distinguished fundamental system Π = {α1, . . . , αn} is given by

{δ1 − δ2, . . . , δn−1 − δn, δn}.

The Dynkin diagram associated with Π is depicted as follows:
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❥
δ1 − δ2

❥
δ2 − δ3

... ❥
δn−1 − δn

> ③
δn.

In this case, r = s = n. The distinguished positive system Φ+ = Φ+
0̄
∪Φ+

1̄
corresponding to the

distinguished Borel subalgebra is

{δi ± δj, 2δp|1 6 i < j 6 n, 1 6 p 6 n} ∪ {δp|1 6 p 6 n}.

The Weyl group W ∼= (Sn ⋉ Zn2 ).

C(n+ 1) case: Let h∗ be a vector space with basis {ε, δi|1 6 i 6 n}. We equip the dual h∗

with a bilinear form (·, ·) such that

(ε, ε) = 1, (ε, δi) = (δi, ε) = 0, (δi, δj) = −δij for all possible i, j.

The distinguished fundamental system Π = {α1, . . . , αn+1} is given by

{ε− δ1, δ1 − δ2, . . . , δn−1 − δn, 2δn}.

The Dynkin diagram associated with Π is depicted as follows:

⊗
ε − δ1

✐
δ1 − δ2

... ✐
δn−2 − δn−1

✐
δn−1 − δn

< ✐
2δn.

In this case r = n+ 1, s = 1. The distinguished positive system Φ+ = Φ+
0̄
∪ Φ+

1̄
corresponding

to the distinguished Borel subalgebra is

{δi ± δj , 2δp|1 6 i < j 6 n, 1 6 p 6 n} ∪ {ε± δp|1 6 p 6 n}.

The Weyl group W ∼= (Sn ⋉ Zn2 ).

D(m,n) case: Let h∗ be a vector space with basis {εi, δj |1 6 i 6 m, 1 6 j 6 n}. We equip

the dual h∗ with a bilinear form (·, ·) such that

(εi, εj) = δij , (εi, δj) = (δj , εi) = 0, (δi, δj) = −δij for all possible i, j.

The distinguished fundamental system Π = {α1, . . . , αm+n} is given by

{δ1 − δ2, . . . , δn−1 − δn, δn − ε1, ε1 − ε2, . . . , εm−1 − εm, εm−1 + εm}.

The Dynkin diagram associated with Π is depicted as follows:

✐
δ1 − δ2

... ✐
δn−1 − δn

⊗δn − ε1

✐
ε1 − ε2

... ✐
εm−2 − εm−1

✟
✟

❍
❍

✐
εm−1 − εm

✐
εm−1 + εm.

In this case r = m+n, s = n+1. The distinguished positive system Φ+ = Φ+
0̄
∩Φ+

1̄
corresponding

to the distinguished Borel subalgebra is

{δi ± δj , 2δp, εk ± εl, } ∪ {δp ± εq},

where 1 6 i < j 6 n, 1 6 k < l 6 m, 1 6 p 6 n, 1 6 q 6 m. The Weyl group W ∼=
(Sn ⋉ Zn2 )× (Sm ⋉ Zm−1

2 ).

D(2, 1;α) case : Let h∗ be a vector space with basis {ε1, ε2, ε3}. We equip the dual h∗ with

a bilinear form (·, ·) with

(ε1, ε1) = −(1 + α), (ε2, ε2) = 1, (ε3, ε3) = α and (εi, εj) = 0 for all 1 6 i 6= j 6 3.

The distinguished fundamental system

Π = {α1 = ε1 + ε2 + ε3, α2 = −2ε2, α3 = −2ε3}.

The Dynkin diagram associated with Π is depicted as follows:



ON THE HARISH-CHANDRA HOMOMORPHISM FOR QUANTUM SUPERALGEBRAS 29

©

©⊗

❍
❍❍

✟
✟✟

−2ε2

−2ε3.

ε1 + ε2 + ε3

In this case r = 3, s = 1. The distinguished positive system Φ+ = Φ+
0̄
∩ Φ+

1̄
corresponding to the

distinguished Borel subalgebra is

Φ+
0̄
= {2ε1,−2ε2,−2ε3}, Φ+

1̄
= {ε1 ± ε2 ± ε3}.

The Weyl group W ∼= Z3
2.

F (4) case : Let h∗ be a vector space with basis {δ, ε1, ε2, ε3}.We equip the dual h∗ with a

bilinear form (·, ·) such that

(δ, δ) = −3, (εi, δ) = (δ, εi) = 0, (εi, εj) = δij for all i.

The distinguished fundamental system

Π =

{
α1 =

1

2
(δ − ε1 − ε2 − ε3), α2 = ε3, α3 = ε2 − ε3, α4 = ε1 − ε2

}
.

The Dynkin diagram associated with Π is depicted as follows:

⊗
1
2 (δ − ε1 − ε2 − ε3)

❥
ε3

< ❥
ε2 − ε3

❥
ε1 − ε2.

In this case r = 4, s = 1. The distinguished positive system Φ+ = Φ+
0̄
∩ Φ+

1̄
corresponding to

the distinguished Borel subalgebra is

{δ, εp, εi ± εj |1 6 i < j 6 3, 1 6 p 6 3} ∪

{
1

2
(δ ± ε1 ± ε2 ± ε3)

}
,

The Weyl group W = Z2 × (S3 ⋉ Z3
2).

G(3) case : Let h∗ be a vector space with basis {δ, ε1, ε2} and ε3 = −ε1 − ε2. We equip the

dual h∗ with a bilinear form (·, ·) such that

(δ, δ) = −(εi, εi) = −2, (εi, δ) = (δ, εi) = 0, (εi, εj) = −1, for all 1 6 i 6= j 6 3.

The distinguished fundamental system

Π = {α1 = δ + ε3, α2 = ε1, α3 = ε2 − ε1}.

The Dynkin diagram associated with Π is depicted as follows:

⊗δ + ε3

❥
ε1

< ❥
ε2 − ε1.

In this case r = 3, s = 1. The distinguished positive system Φ+ = Φ+
0̄
∩ Φ+

1̄
corresponding to

the distinguished Borel subalgebra is

{2δ, ε1, ε2, ε2 ± ε1, ε1 − ε3, ε2 − ε3} ∪ {δ, δ ± εi|i = 1, 2, 3},

The Weyl group W = Z2 ×D6, where D6 is the dihedral group of order 12.

Appendix B. Explicit description of the rings Jev(g)

Now we give the explicit description of the rings Jev(g) for quantum superalgebras, which
is inspired by Sergeev and Veselov’s description for Lie superalgebras [42, Section 7, 8]. Let
xi = K−εi/2 and yj = K−δj/2 formally. First we need to review the rings J(g) for g is of type A.
Let

P0 =

{m+1∑

i=1

aiεi +
n+1∑

j=1

bjδj

∣∣∣∣ai, bj ∈ C and ai − ai+1, bj − bj+1 ∈ Z, ∀i, j

}/
Cγ
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be the weights of slm+1|n+1, where γ = ε1 + · · · + εm+1 − δ1 − · · · − δn+1 and xi = eεi , yj =

eδj for all possible i, j be the elements of the group ring of C[P0]. For convenience, we set
C[x±, y±] = C[x±1

1 , · · · , x±1
m+1, y

±1
1 , · · · , y±1

n+1], Z[x±, y±] = Z[x±1
1 , · · · , x±1

m+1, y
±1
1 , · · · , y±1

n+1] and
then for (m,n) 6= (1, 1)

J(slm+1|n+1) =

{
f ∈ Z[P0]

W

∣∣∣∣yj
∂f

∂yj
+ xi

∂f

∂xi
∈ (xi − yj)

}

=
⊕

a∈C/Z

J(slm+1|n+1)a,

where

J(slm+1|n+1)a = (x1 · · ·xm+1)
a
∏

i,p

(
1−

xi
yp

)
Z[x±1, y±1]

Sm+1×Sn+1

0

if a /∈ Z;

J(slm+1|n+1)0 =

{
f ∈ Z[x±1, y±1]

Sm+1×Sn+1

0

∣∣∣∣xi
∂f

∂xi
+ yj

∂f

∂yj
∈ (xi − yj)

}

and Z[x±1, y±1]
Sm+1×Sn+1

0 is the quotient of the ring Z[x±1, y±1]Sm+1×Sn+1 by the ideal generated
by x1 · · ·xm+1 − y1 · · · yn+1.

J(A(n, n)) =
n
⊕
i=0

J(A(n, n))i for n 6= 1, where for i 6= 0

J(A(n, n))i =

{
f = (x1 · · ·xn+1)

i
n+1

n+1∏

j,p

(
1−

xj
yp

)
g

∣∣∣∣g ∈ Z[x±1, y±1]
Sn+1×Sn+1

0 , deg g = −i

}

and J(A(n, n))0 is the subring of J(sln+1|n+1)0 consisting of elements of degree 0.

J(A(1, 1)) = {c+(u−v)2g|c ∈ Z, g ∈ Z[u, v]} where u =
(
x1

x2

) 1
2

+
(
x2

x1

) 1
2

, v =
(
y1
y2

) 1
2

+
(
y2
y1

) 1
2

.

A(m,n),m 6= n case: Define

Jm|n =

{
f ∈ C[x±1, y±1]Sm+1×Sn+1

∣∣∣∣xi
∂f

∂xi
+ yj

∂f

∂yj
∈ (xi − yj)

}

and

J
m|n
k =

{
f ∈ Jm|n

∣∣∣ deg f = k
}
.

Thus, Jm|n =
⊕
k∈Z

J
m|n
k .

For any element λ ∈ h∗, we write λ =
m+1∑
i=1

aiεi +
n+1∑
j=1

bjδj , then we have

ZΦ =

{
λ ∈ h∗

∣∣∣∣ai, bj ∈ Z, ∀i, j and

m+1∑

i=1

ai +

n+1∑

j=1

bj = 0

}
,

and

Λ =

{
λ ∈ h∗

∣∣∣∣ai, bj ∈ Q, ai − ai+1, bj − bj+1 ∈ Z, ∀i 6 m, j 6 n and
m+1∑

i=1

ai +
n+1∑

j=1

bj = 0

}
.
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By direct computation, we know that

2Λ ∩ ZΦ =





2ZΦ + Z

(
m+1∑
i=1

(−1)i+1εi +
n+1∑
j=1

(−1)jδj

)
, if m = 2k, n = 2l,

2ZΦ + Z
n+1∑
j=1

(−1)jδj , if m = 2k, n = 2l+ 1,

2ZΦ + Z
m+1∑
i=1

(−1)i+1εi, if m = 2k + 1, n = 2l,

2ZΦ + Z
m+1∑
i=1

(−1)i+1εi + Z
n+1∑
j=1

(−1)jδj , if m = 2k + 1, n = 2l+ 1,

for some non-negative integers k, l. Then the algebra

Jev(g) =





J
m|n
0 ⊕

∏
i

x
1
2

i

∏
j

y
1
2

j J
m|n
−(k+l+1), if m = 2k, n = 2l,

J
m|n
0 ⊕

∏
j

y
1
2

j J
m|n
−(l+1), if m = 2k, n = 2l+ 1,

J
m|n
0 ⊕

∏
i

x
1
2

i J
m|n
−(k+1), if m = 2k + 1, n = 2l,

J
m|n
0 ⊕

∏
i

x
1
2

i J
m|n
−(k+1) ⊕

∏
j

y
1
2

j J
m|n
−(l+1) ⊕

∏
i

x
1
2

i

∏
j

y
1
2

j J
m|n
−(k+l+2), if m = 2k + 1, n = 2l+ 1.

for some non-negative integers k, l. So it can be viewed as a subalgebra of k⊗ZJ(g) by ι : Jev(g) →
k ⊗Z J(g) with Ki 7→ e−αi/2 and its image is coincide with k ⊗ Sch(Kev(g)).

A(n, n) (n 6= 1) case: In this case, we set

J(n)0 =

{
f ∈ C[x±1, y±1]

Sn+1×Sn+1

0,0

∣∣∣∣xi
∂f

∂xi
+ yj

∂f

∂yj
∈ (xi − yj)

}

where C[x±1, y±1]0,0 is the quotient of the ring C[x±1, y±1] with degree 0 by the ideal I =〈
x1···xn+1

y1···yn+1
− 1
〉
. Then we have

Jev(g) =





J(n)0 if n is even,

J(n)0 ⊕

{
−→x

1
2

∏
j,p

(
1−

xj

yp

)
g + I

∣∣∣∣g ∈ C[x±1, y±1]W , deg g = −n+1
2

}
if n is odd,

where −→x = x1x2 · · ·xn+1 andW = Sn+1×Sn+1. It can be viewed as a subalgebra by ι : Jev(g) →
k ⊗Z J(g) with Ki 7→ e−αi/2 and its image is coincide with k ⊗ Sch(Kev(g)).

A(1, 1) case: We have Jev(A(1, 1)) = {c+ (u − v)g |g ∈ C[u, v]} where u =
(
x1

x2

) 1
2

+
(
x2

x1

) 1
2

, v =
(
y1
y2

) 1
2

+
(
y2
y1

) 1
2

. And u− v = K1 +K−1
1 −K3 −K−1

3 ∈ Jev(A(1, 1)), but u− v /∈ J(A(1, 1)).

B(m,n),m, n > 0 case: We set λ =
m∑
i=1

λiεi +
n∑
j=1

µjδj ∈ h∗, then in this case

ZΦ = {λ ∈ h∗ |λi, µj ∈ Z, ∀i, j } and Λ =

{
λ ∈ h∗

∣∣∣∣µj ∈ Z, ∀j and all λi ∈ Z or all λi ∈ Z+
1

2

}
.

So 2Λ ∩ ZΦ = 2Λ. Let ui = xi + x−1
i and vj = yj + y−1

j for all possible i, j, then we have

Jev(g) = J(g)0 ⊕ J(g)1/2, where

J(g)0 =

{
f ∈ C[u1, · · · , um, v1, · · · , vn]

Sm×Sn

∣∣∣∣ui
∂f

∂ui
+ vj

∂f

∂vj
∈ (ui − vj)

}
,

and

J(g)1/2 =

{ m∏

i=1

(x
1/2
i + x

−1/2
i )

m∏

i=1

n∏

j=1

(ui − vj)g

∣∣∣∣g ∈ C[u1, · · · , um, v1, · · · , vn]
Sm×Sn

}
.
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B(0, n) case: In this case Λ = ZΦ =
{ n∑
j=1

µjδj

∣∣∣µj ∈ Z, ∀j
}
, so 2Λ ∩ ZΦ = 2Λ and this

algebra Jev(g) = C[v1, v2, · · · , vn]
Sn , where the notation vi are the same as above.

C(n+ 1) case: In this case

Λ =

{
λε+

n∑

j=1

µjδj

∣∣∣∣λ ∈ C, µj ∈ Z, ∀j

}

and

ZΦ =

{
λε+

n∑

j=1

µjδj

∣∣∣∣λ, µj ∈ Z, ∀j and λ+

n∑

j=1

µj is even

}
.

So 2Λ ∩ ZΦ =
{
λε+

n∑
j=1

µjδj

∣∣∣λ, µj ∈ 2Z, ∀j
}
and the algebra

Jev(g) =

{
f ∈ C[x±1, y±1

1 , · · · , y±1
n+1]

W

∣∣∣∣yj
∂f

∂yj
+ x

∂f

∂x
∈ (x − yj)

}
.

D(m,n),m > 1, n > 0 case: Let λ =
m∑
i=1

λiεi +
n∑
j=1

µjδj ∈ h∗ and ui, vj are as above, then

Λ =

{
λ ∈ h∗

∣∣∣∣µj ∈ Z, ∀j and all λi ∈ Z or all λi ∈ Z+
1

2

}

and

ZΦ =

{
λ ∈ h∗

∣∣∣∣λi, µj ∈ Z, ∀i, j and

m∑

i=1

λi +

n∑

j=1

µj is even

}
.

So

2Λ ∩ ZΦ =




2ZΦ+ Z

(
n∑
i=1

εi

)
+ 2Zεn, if m = 2k,

2ZΦ+ 2Zεn, if m = 2k + 1,

for some positive integer k. Thus the algebra Jev(g) is, respectively, equal to J(g)0 ⊕ J(g)1/2 for
m = 2k and J(g)0 for m = 2k + 1, where

J(g)0 =

{
f ∈ C[x±1

1 , · · · , x±1
m , y±1

1 , · · · , y±1
n ]W

∣∣∣∣xi
∂f

∂xi
+ yj

∂f

∂yj
∈ (xi − yj)

}
,

and

J(g)1/2 =

{∏

i,j

(ui − vj)
(
(x1x2 · · ·xm)1/2C[x±1

1 , · · · , x±1
m , y±1

1 , · · · , y±1
n ]
)W}

.

D(2, 1, α) case: In this case,

Λ =

{ 3∑

i=1

λiεi

∣∣∣∣λi ∈ Z, ∀i

}
, and ZΦ =

{ 3∑

i=1

λiεi

∣∣∣∣λi ∈ Z and λi − λj ∈ 2Z, ∀i, j

}
.

So 2Λ ∩ ZΦ = 2Λ. Thus the algebra

Jev(g) =

{{
c+∆h|c ∈ C, h ∈ C[u1, u2, u3]

}
, if α is not rational,{

g(wα) + ∆h|g ∈ C[ω], h ∈ C[u1, u2, u3]
}
, if α = p/q with p ∈ Z, q ∈ N,

where

∆ = u21 + u22 + u23 − u1u2u3 − 4, ui = xi + x−1
i , for i = 1, 2, 3,

and

ωα = (x1 + x−1
1 − x2x3 − x−1

2 x−1
3 )

(xp2 − x−p2 )(xq3 − x−q3 )

(x2 − x−1
2 )(x3 − x−1

3 )
+ xp2x

−q
3 + x−p2 xq3.
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F (4) case: In this case,

Λ =

{
µδ +

3∑

i=1

λiεi

∣∣∣∣all λi ∈ Z or all λi ∈ Z+
1

2
, 2µ ∈ Z

}
,

and

ZΦ =

{
µδ +

3∑

i=1

λiεi

∣∣∣∣all λi, µ ∈ Z or all λi, µ ∈ Z+
1

2

}
.

So 2Λ ∩ ZΦ = 2Λ, and the algebra

Jev(g) =
{
g(ω1, ω2) + ∆h

∣∣∣h ∈ C[x±2
1 , x±2

2 , x±2
3 , (x1x2x3)

±1, y±1]W , g ∈ C[ω1, ω2]
}
,

where

∆ =
(
y + y−1 − x1x2x3 − x−1

1 x−1
2 x−1

3

) 3∏

i=1

(
y + y−1 −

x1x2x3
x2i

−
x2i

x1x2x3

)
,

and

ωk =
∑

16i<j63

(
x2ki + x−2k

i +
1

2

)(
x2kj + x−2k

j +
1

2

)
−

3

4
+ y2k + y−2k − (yk + y−k)

3∏

i=1

(
xki + x−ki

)

with k = 1, 2, and W = Z2 × (S3 ⋉ Z3
2).

G(3) case: In this case, Λ = ZΦ =
{
λ1ε1 + λ2ε2 + µδ|λ1, λ2, µ ∈ Z

}
. So 2Λ ∩ ZΦ = 2Λ, and

the algebra

Jev(g) =

{
g(ω) +

3∏

i=1

(v − ui)h

∣∣∣∣h ∈ C[v, u1, u2, u3]
S3 , g ∈ C[ω]

}
,

where

ω = v2 − v(u1 + u2 + u3 + 1) + u1u2 + u1u3 + u2u3.

and the notations ui, v are the same as above.
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