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ABSTRACT. In this paper, we introduce the Harish-Chandra homomorphism for the quantum
superalgebra Ug(g) associated with a simple basic Lie superalgebra g and give an explicit de-
scription of its image. We use it to prove that the center of Ug(g) is isomorphic to a subring of
the ring J(g) of exponential super-invariants in the sense of Sergeev and Veselov, establishing
a Harish-Chandra type theorem for Ug(g). As a byproduct, we obtain a basis of the center of
Uq(g) with the aid of quasi- R-matrix.
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1. INTRODUCTION

Harish-Chandra introduced a homomorphism, known as the Harish-Chandra homomorphism,
for semisimple Lie algebras in the study of unitary representations of semisimple Lie groups in
1
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1951 [19]. Later on, the Harish-Chandra homomorphism was developed for infinite dimensional
Lie algebras [28, 36], Lie superalgebras [28, 40, 41] and quantum groups [3, 8, 24, 38, 43].

Knowledge about the invariants and the center of quantum superalgebras is not merely of math-
ematical interest but is also physically important. On one hand, the study of the centralizer of
a (quantized) universal enveloping (super)algebra is an indispensable part of its representation
theory. On the other hand, the study of physical theories to a large extent involves the explo-
ration of the invariants of the symmetry algebras, which usually correspond to certain physical
observables. The Harish-Chandra homomorphism reveals many connections between the center
of the enveloping (super)algebras or their quantization and the (super)symmetric polynomials as
well as the highest weight representations of the corresponding algebras, and it has been one of
the most inspiring themes in Lie theory.

Let g be a semisimple Lie algebra (resp., a basic Lie superalgebra) over C with triangular
decomposition g = n~ @ b @ nt, where b is a Cartan subalgebra and n* (resp., n™) is the
positive (resp., negative) part of g corresponding to a positive root system ®*. By the PBW
Theorem, we have the decomposition U(g) = U(h) @& (n~U(g) + U(g)nt). Let w: U(g) — U(h) =
S(h) be the associated projection. The restriction of 7 to the center Z(U(g)) of U(g) is an
algebra homomorphism, and the composite v_, o m: Z(U(g)) — S(h) of m with a “shift” by the
Weyl vector p is called the Harish-Chandra homomorphism of U(g). The famous Harish-Chandra
isomorphism theorem says that y_, o induces an isomorphism from Z(U(g)) to the algebra of W-
invariant polynomials if g is a semisimple Lie algebra or the algebra of W-invariant supersymmetric
polynomials if g is a classical Lie superalgebra. More details can be found in [6, Chapter 11] for
classical Lie algebras, and [7, Section 2.2], [35, Chapter 13] for classical Lie superalgebras.

Quantum groups, first appearing in the theory of quantum integrable system, were formalized
independently by Drinfeld and Jimbo as certain special Hopf algebras around 1984 [11, 25], in-
cluding deformations of universal enveloping algebras of semisimple Lie algebras and coordinate
algebras of the corresponding algebraic groups. In 1990, by the aid of the Universal R-matrix,
Rosso [38] defined a significant ad-invariant bilinear form on Ug(g) at a generic value g of the
parameter. The form, often referred to as the Rosso form or quantum Killing form, could also be
obtained by using Drinfeld double construction. Tanisaki [44, 43] described this form by skew-Hopf
pairing between the positive part and the negative part of the quantum algebra and obtained the
quantum analogue of the Harish-Chandra isomorphism between Z(Uy(g)) and the subalgebra of
W-invariant Laurent polynomials. As an application, the generators and the defining relations for
Z(Uq4(g)) have been obtained in [4, 9, 33].

Associated with the generalization of Lie algebras to Lie superalgebras, many researchers have
investigated the quantization of universal enveloping superalgebras in recent years. Drinfeld-Jimbo
quantum superalgebras [45, 50] are a class of quasi-triangular Hopf superalgebras, depending on
the choice of Borel subalgebras, which were introduced in the early 1990s. As a supersymmetric
version of quantum groups, quantum superalgebras have a natural connection with supersymmetric
integrable lattice models and conformal field theories. They have been found applications in various
areas, including in the study of the solution of quantum Yang-Baxter equation [18], construction
of topological invariants of knots and 3-mainfolds [52, 48, 49] and so on. Quantum superalgebras
have been investigated extensively by many authors from different perspectives in aspects such
as Serre relations, PBW basis, universal R-matrix [45, 46], crystal bases [30, 31], invariant theory
[32], highest weight representations [15, 53, 54] and so on.

Comparing to Lie (super)algebras and quantum groups, the following questions for quantum
superalgebras are natural and fundamental: What is the Harish-Chandra isomorphism for quan-
tum superalgebras? How to determine the center of quantum superalgebras? The purpose of the
present work is to answer these questions.

Let g be a simple basic Lie superalgebra, except for A(1,1), with root system & = &5 U D1,
and let U = U,(g) be the associated quantum superalgebra over k = K(q%), where K is a field
of characteristic 0 and ¢ is an indeterminate. The Weyl group and Weyl vector are defined by W

and p, respectively. Let A = {)\ €p* 2(’\—5)) €Z, Va € fIJ(j} be the integral weight lattice, where

(e,
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h* is the dual space of the cartan subalgebra h. In this paper, all finite-dimensional U-modules
are of type 1 with the weights contained in %Zfb.

The Cartan subalgebra U® is the group ring of Z® with basis { K, | € Z®} and multiplication
K, K, = K4, for all y,v € Z®. For each A € A, we define an automorphism ~,: UY — U° by
1 (K,) = ¢gMWK, for all u € ZO.

Let IT be the simple roots of distinguished borel subalgebra if g = A(n,n) with n # 1, and let
Z® be the free abelian group with Z-basis II. We set

Q= 79, for g = A(n,n),
B 7Z®, otherwise.

Thus, the root system of A(n,n) is Z® = Z&)/ZW for some 7. Define the standard partial order
relationon Q by A< pu e p— A€ Zia;.

There is a triangular decomposition U = U~ U%U*, where U~ and U* are the negative and
positive parts of U, respectively. Clearly U, U™ and UT are all Q-graded algebras. The triangular
decomposition implies a direct sum decomposition

Uy =0 e U, Uy,
v>0

where Uy is the component of degree 0 of U, and U} (resp., UZ,) is the component of degree v
(resp., —v) of Ut (resp., U™) for v > 0. Note that the projection map 7: Uy — U° is an algebra
homomorphism. From now on, we do not make a distinction between the element in Z® and Q if
no confusion emerges.

We observe that the center Z(Uy(g)) of Uy(g) is contained in Uy by Corollary 3.7. Inspired
by the quantum group case, we define the Harish-Chandra homomorphism HC of Ug(g) to be the
composite

HC: Z(U,(g)) — Up & U° 12 1O,

To establish the Harish-Chandra type theorem for quantum superalgebras, we need to describe
the image of HC. Recall that a root o € ® is isotropic if (o, @) = 0, and the set of isotropic roots
is denoted by ®is,. Set

(Ugv)ggp = { Z G’HKM € UO

HE2ANZD

Qwp = Gy, YW € W; Z a, =0, Yo € By, with (v, o) # O},
HEAD

where A% = {v +na |n € Z} for each v € A and o € Pyi5,. The notation is consistent with the
one in quantum groups [23, Section 6.6] and the one in classical Lie superalgebras [7, Subsection
2.2.4]. Then the image of HC is contained in (U2, ), which is essentially derived from character
formulas of Verma modules and simple modules of U,(g), certain automorphisms of Uy(g) and
nontrivial homomorphisms between Verma modules; see Lemmas 5.2, 5.3, 5.4.

Now we can state our main theorem.

Theorem A. The Harish-Chandra homomorphism HC for the quantum superalgebra Uq(g) as-
sociated to a simple basic Lie superalgebra g induces an isomorphism from Z(Ug(g)) to (U, .

The Lie superalgebra g = A(1, 1) is very special, and the image of #C is contained in (U2,)%V
we think #C is not an isomorphism; see Remark 5.8.

We noticed that Batra and Yamane have introduced the generalized quantum group U (x, )
associated with a bi-character y and established a Harish-Chandra type theorem for describing its
(skew) center in [3]. While the quantum superalgebra U,(s) of a basic classical Lie superalgebra
5 has been identified with a subalgebra of Ue involving a new generator o, so does the image
of Harish-Chandra homomorphism (see [3]). It is not known whether one can derive the Harish-
Chandra type theorem for quantum superalgebra U,(s) from [3].

As an application, we obtain a basis of Z(Uy(g)) by using quasi-R-matrix.
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Theorem B. The center Z(Uq(g)) has a basis, which is constructed by using quasi-R-matriz
and parametrized by {\ € AN %Zfl)’ dimL()\) < oo}, where L(X) is an irreducible module of Lie
superalgebra g with the highest weight .

To prove Theorem A, it suffices to prove HC is injective and the image HC is equal to (U2, )%

For the injectivity, we establish a key Proposition 3.4 by using the character formula of typical
finite-dimensional modules of U,(g), which is a super version of Tanisaki’s result for quantum
algebras [43, Section 3.2].

The difficulty is proving the image of HC is equal to (U2, )%,. With the help of the well-known
classical Lie theory of semisimple Lie algebras, one can prove the surjectivity for quantum groups
by using induction on the weights. However, the similar technique does not apply to quantum
superalgebras, where one encounters two main obstacles:

1): There are infinite dominant weights less than a given dominant weight with respect to the
standard partial order if g is of type I.

2): Besides the condition of the @g-dominant integral, an extra condition for the finiteness of
the dimension of an irreducible g-module L(\) is that A satisfies the hook partition if g is of type
11

We notice that the close connection between K (g), J(g) and K (Uy(g)) will help us to overcome
the obstacles, where K (g) and K (U,(g)) are the Grothendieck rings of g and U,(g), respectively,
and J(g) is the ring of Laurent supersymmetric polynomials (also called ring of ezponential super-
invariants in [42]). Recall Sergeev and Veselov’s isomorphism [42] Sch: K(g) — J(g), where
Sch is the supercharater map, and the injective algebra homomorphism j: K(g) — K(U,(g)) is
induced by taking deformation, which is implicitly given by Geer in [15]. The main ingredient of
our proof can be illustrated in the following commutative diagram:

k®
k ®z K(Uqg(g)) = ok @7, K (g)
k®ZKCV (Uq (g)) )k ®Z Kcv(g) k@ZJ(g)
~ ~ 7
\I’R\ AN e = . N - “u
Z(UQ(g)) _______ > (Ugv):z/gp =k Xz Jev(g)

First, we identify (U2, )Y with a subring of k®zJ(g) by some ¢, and the key idea is to refor-

ev/sup
mulate (UQ,)%, as k @z Jey(g), which embeds into k®zJ(g) in a natural way; see Equation 3.2
and Proposition 5.6. One can prove that under the isomorphism k ®z Sch, the ring (USV)ZKP is
isomorphic to k®zKey(g), where Ko (g) is a subring of K (g) consisting of modules with all weights
contained in AN %Z@.

Second, j induces an injection k®z Kev(g) — k®2z Kev(Uq(g)), where Ko, (Uq(g)) is the subring
of K(Uq(g)) consisting of modules with all weights contained in A N 3Z®.

Third, analogous to quantum groups [23, Chapter 6], [38, 44], by using the Rosso form and the
quantum supertrace for quantum superalgebras, we define a linear map ¥ : k®z K (Uq(g)) —
Z(Uq4(g)); see Proposition 5.7. This involves lengthy computations and some subtle constructions.
We remark that U is an algebra isomorphism, but not in an obvious way.

Now the surjectivity of HC follows from the commutative diagram easily. Moreover, we show
that HC o Uy is injective, and combined with the injectivity of HC, we can prove that homomor-
phisms occurring in the bottom left parallelogram are all isomorphisms of algebras. Consequently,
the restriction 7: Keyv(g) = Kev(Uy(g)) is an isomorphism.

By definition, k®z Key (g) has a basis { [L(A)]| A € AN $Z®, dim L(A) < co} and k®zKey (Uq(g))
has a basis {[Lq(\)]| A € AN 3Z®, dim Ly(A) < oo}, where L(A) and Lq(A) are the irreducible
g-module and the irreducible Ug(g)-module with the highest weight A, respectively. We remark
that if A € AN 4Z®, then dim L(A) < oo if and only if dim Ly(A) < co. Then the desired basis
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of Z(Uy(g)) in Theorem B is obtained by applying the isomorphism ¥, and here we rely heavily
on an alternating construction of ¥ by using quasi-R-matrix as in [17].

The paper is organized as follows: In Section 2, we review some basic facts related to contragre-
dient Lie superalgebras and quantum superalgebras. In Section 3, we show several useful results
on representations of quantum superalgebras, which seem to be well-known among experts. In
particular, we give a super version of a Tanisaki’s result for quantum superalgebras (see Propo-
sition 3.4), which has been used to prove the injectivity of HC. In Section 4, we recall that the
quantum superalgebra can be realized as a Drinfeld double. As a consequence, a non-degenerate
ad-invariant bilinear form on U,(g) (Theorem 4.6) is obtained, which serves for proving the sur-
jectivity of HC. In Section 5, first we define the Harish-Chandra homomorphism for quantum
superalgebras and prove its injectivitity. Then we prove that the image of HC is contained in
(U2,)%, and then explicitly describe its image Jey(g), which will be used to prove our main the-
orem for quantum superalgebras; see Theorem A. In Section 6, we construct an explicit central
element C)s associated with each finite-dimensional U, (g)-module M by using the quasi-R-matrix
of quantum superalgebras. As an application of the Harish-Chandra theorem, we obtain a basis
for the center of quantum superalgebras.

Notations and terminologies:

Throughout this paper, we will use the standard notations Z, Z and N that represent the sets
of integers, non-negative integers and positive integers, respectively. The Kronecker delta ¢;; is
equal to 1 if ¢ = j and 0 otherwise.

We write Zy = {0,1}. For a homogeneous element z of an associative or Lie superalgebra,
we use |z| to denote the degree of x with respect to the Zs-grading. Throughout the paper,
when we write |z| for an element z, we will always assume that z is a homogeneous element and
automatically extend the relevant formulas by linearity (whenever applicable). All modules of Lie
superalgebras and quantum superalgebras are assumed to be Zs-graded. The tensor product of
two superalgebras A and B carries a superalgebra structure by

(a1 @b1) - (a2 @ by) = (=1)1*21"la; a5 @ bybs.

2. LIE SUPERALGEBRAS AND QUANTUM SUPERALGEBRAS

2.1. Lie superalgebras. Let g = gg @ g7 be a finite-dimensional complex simple Lie superal-
gebra of type A-G such that g7 # 0, and let IT = {ay, a9, ...q,}, with r the rank of g, be the
simple roots of g. Also let (A4, 7) be the corresponding Cartan matrix, where A = (a;;) isar xr
matrix and 7 is a subset of I = {1,2,...,r} determining the parity of the generators. Kac showed
that the Lie superalgebra g(A, ) is characterized by its associated Dynkin diagrams (equivalent
Cartan matrix A, and a subset 7); see [26]. These Lie superalgebras are called basic. For conve-
nience (see remark 2.3), we will restrict our attention to the simplest case and only consider root
systems related to a special Borel sub-superalgebra with at most one odd root, called distinguished
root system, denoted by g(A, {s}) or simply g in no confusion. The explicit description of root
systems can be found in Appendix A. The Cartan matrix A is symmetrizable, that is, there exist
non-zero rational numbers dy,ds, ...d, such that d;a;; = d;a;;. Without loss of generality, we
assume d; = 1, since there exists a unique (up to constant factor) non-degenerate supersymmet-
ric invariant bilinear form (-,-) on g and the restriction of this form to Cartan subalgebra b is
also non-degenerate. Let ® be the root system of g, and define the sets of even and odd roots,
respectively, to be ®5 and ®7. In order to define quantum superalgebra associated with a Lie
superalgebra g(A4, {s}), we first review the generators-relations presentation of Lie superalgebra
9(A, {s}) given by Yamane [46] and Zhang [55].

Definition 2.1. [55, Theorem 3.4] Let (A, {s}) be the Cartan matrix of a contragredient Lie
superalgebra in the distinguished root system. Then U(g(A4, {s})) (simplify for U(g)) is generated
by e;, fi,hi(i = 1,2,...7) over C, where e and f, are odd and the rest are even, subject to the
quadratic relations:

(2.1) [hiy hj]l =0,  [hi,e5] = aijes, [hi, fi] = —aijfj, e, fi] = dijhy,
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r—1
7 PR

and the additional linear relation Y J;h; = 0 if g = A(Tl, = 1) for odd r, where J =

2
i=1
(Ji,Ja2,- -+, Jy) such that JA = 0 (more explicitly, J = —%,--- ,—1)),

and the standard Serre relations
e2=f2=0, if(as,as) =0,
(ade;)' " %ie; = (adf;)' 9 f; = 0, if i # j, with a;; # 0, or a;; =0,
and higher order Serre relations
(2.2) les, [es—1, [es, es1]]] =0, [fs, [fs—1, [fss foxa]]] =0

if the Dynkin diagram of A contains a full sub-diagram of the form

O—®—0, o O—&=0.

s—1 s+1 s— 1 s+1
We refer the reader to [55] for undeﬁned terminology and the presentation for each simple basic

Lie superalgebra in an arbitrary root system.

2.2. Quantum superalgebras. Let k = K(q%), where K is a field of characteristic 0 and ¢ is

an indeterminate, and we set ¢; = ¢%, then ¢/ = q;-lji for all 4,5 =1,2,...,r. Define
L m—itl_ _i—m—1
) .
[m} _ H—qiq T , ifm>n>0,
Mg if n =m,0.

Definition 2.2. [14, 32, 45] Let (A4, {s}) be the Cartan matrix of a simple basic Lie superalgebra g
in the distinguished root system. The quantum superalgebra U,(g) is defined over k in ¢ generated
by K;tl, E;,F,;,i € I (all generators are even except for Eg and Fg, which are odd), subject to the
following relations:

(2.3) KK; = K;K;, KiK' =K'K; =1,
(2.4) KEK; ! = ¢, KF;K; ! =g (@ne)R,
K; - K;*!
25)  EF - (-)PINRE =6 ——
q; — 4;
17(11']‘ 1
(2.6) > (-1)’“{ _k““] E, “ " E;EF =0, if i # j, with ag # 0, or a;; =0,
k=0 qi
17(11']‘ 1
(2.7) > (-1)’“{ _k““] F} =% R, FF = 0, if i # j, with a;; # 0, or a;; =0,
k=0 qi
(28) (ES)2 = (FS)2 = 07 if Ass = 07

and higher order quantum Serre relations, and

T reds s —1r—1
I_I]KEI“J’zlifg:A(r2 ,r2 )foroddr.
i=1

For the distinguished root data [55, Appendix A.2.1], higher order Serre relations appear if the
Dynkin diagram contains a sub-diagram of the following types:

(i) O—&——, the higher order quantum Serre relations are

s—1 s s+ 1

(29) EsEsfl,s,erl + IE4sfl,s,s+lEs = 0; Fstfl,s,erl + IE‘sfl,s,erIIFs = O,

(ii) Q—@i@ the higher order quantum Serre relations are

s+ 1

(210) ESES—I;s;s-i-l + Es—l;s;s+1Es =0, FSFS—].;S;SJ’-]. + Fs—l;s;s-{-lFs =0;
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s+ 1
(iii) Q—®<g , the higher order quantum Serre relations are
s—1 s s+ 2

(2.11) EsEs 16641 + Es— 15641 Es =0, FslFs_1,66401 + Fo1,6501Fs =0,
EsEs 1;6642 + Es_1.5602Es =0, FslFs_ 16642 + Fo1,65402Fs = 0;
where
Bo 1y =Eo1 (BB — ¢ BjEs) — ¢77"" (BB — ¢ EjEq) Eo1,
Fo—1565 =Fs—1 (FsF; — (Jj “F,Fs) —goo)" (FsFy — qj “F;Fs) Fs_1
For the other root data of g, the higher order quantum Serre relations vary considerably with the
choice of the root datum; thus, we will not spell them out explicitly here.

Remark 2.3. The definition of the quantum superalgebra above is dependent on the choice of
the Borel subalgebras. Although the quantum superalgebras defined by non-conjugacy Borel
subalgebras of a Lie superalgebra are not isomorphic as Hopf superalgebras, they are isomorphic
as superalgebras; see [29] or [47, Proposition 7.4.1].

There is a unique automorphism w of U,(g) such that w(E;) = (=1)IFIF;, w(F;) = E; and
w(K;) = K;* for i € I. The quantum superalgebra U,(g) has the structure of a Zy-graded Hopf
algebra. The co-multiplication

A: Uqg(g) = Uglg) @ Uq(g)
is given by
(212)  AE) =K QE+E o1, AF)=10F +FeK;!, AK) =K oK,
for ¢ € I and the co-unit €: Uy(g) — k is defined by
e(By) = e(Fy) =0, (K =1, foriel,
then the corresponding antipode S: U,(g) — U,(g) is given by
(2.13) S(E;) = —K;'E;, S(F;) = -FK;, S(K)=KF, foriel,

which is a Zs-graded algebra anti-automorphism, i.e., S(zy) = (—=1)1!¥1S()S ().

Denote by U0 (resp., USY) the sub-superalgebra of U,(g) generated by all Ei,Kfl (resp.,
F;, K1), set U° equal to the sub-superalgebra of U,(g) generated by all K', and denote by U™t
(resp., U™) the sub-superalgebra of U,(g) generated by all E; (resp., F;), it is well-known that
Ut ®U% = UZ0 (resp., U~ ® U° 2 US?) by the multiplication map. And the multiplication map
U~ ®U°® Ut — U is an isomorphism as super vector spaces.

Remark 2.4. Analogous to the quantum group, the quantum Serre relations and the higher order
quantum Serre relations can be explained from the view of skew primitive elements in the quantum
superalgebras. For example,

+ + l—a; — aij—1lpr—1 —
Aluf) =uf @ 1+ KK, @ uf, Alug) =ug; @K TK +1®ug;,
A(u+):u3®1+Kmfle®UB, Aug) = 1®uB+u§®K_1 K3,
Awr) =ut @1+ Ko K2 K @ut,  Al”)=10u +u 9K, K 2K, L.

where uf; (resp. u3) is on the left side of equations (2.6) and (2.7) for i # j and even a; (resp.,
for non-isotropic odd root a; with a;; # 0 for i # j), and u™* is on the left side of equations

(2.9)-(2.11).

Define K, = H K" if p = E mjcy; € Z®. Thus, K, K, = K, for all pu, i € Z®. Therefore,

i=
{Ku}peza spans UO as a vector space and

K.EK, ' = ¢IE;, KFK; ! = g~ (-9)F,



8 YANG LUO, YONGJIE WANG, AND YU YE

The quantum superalgebra Uy(g) is Z®-graded. And the gradation is given by
deg K, =0, deg E; = oy, deg F; = —ay,

for all 4 € Z® and i € I. We denote that U, is the v € Z®-component if g # A(n,n).

Note that if g = A(n,n), the simple roots for distinguished Borel subalgebra are not linearly
2n+1

independent (that is, v = Y d;J;a; = 0). This causes some technical difficulties. However, the
i=1

quantum superalgebra Uy (g) is also Z®-graded, where Z® is a free abelian group generated by all
simple roots a1, ag, -+, agpy1. Obviously, Z® = Z&)/Zw.

Define U|,, (resp. U,) as the y-component (resp. v-component) with respect to Z®-gradation
(resp. Zé-grada‘cion). From now on, we do not make a distinction between the elements in Z®

and Z® if no confusion emerges. Hence, U|, = @ U, qxy. Set
kEZ

Q= 7®, for g = A(n,n),
B 7Z®, otherwise.

Note that h* = CP. If g # A(n,n), define the standard partial order relation on h* by
A< pe p—XN€e Y 1Ly This breaks down if g = A(n,n) because v = 0 and d;J; € Z, for
all i+ € I. However, we can define a similar partial order on C®. From now on, we will use the
partial order on C® if necessary for g = A(n,n).

Remark 2.5. The Lie superalgebra A(n,n) is rather special, and the restriction of the Harish-
Chandra projection determined by the distinguish triangular decomposition to the zero weight
space (with respect to Z®-gradation) is not an algebra homomorphism; for more details, see [16,
Section 6.1.4]. For this reason, we do not expect that the projection from Uly to U° is an algebra
homomorphism. However, the projection m: Uy — U is an algebra homomorphism. Fortunately,
we can prove that Z is contained in Uy; see Corollary 3.7. Therefore, we can establish the Harish-
Chandra homomorphism for g = A(n,n).

3. REPRESENTATION OF QUANTUM SUPERALGEBRAS

3.1. Representations. We will recall some basic facts about the representation theory of the
quantum superalgebra U,(g). The bilinear form (-,-) on Z® can be linearly extended to h*.

For any A, p € h*, denote (A, u) = 2((::)) Let A = {\ e b*|(\a) € Z, Va € 5} be the integral
weight lattice, and denote AT = {)\ eb*|(\a) € Zy, Yae @g} to be the set of dominant integral
weights. In this paper, all modules are of type 1 with the weights contained in %Z@.

A U,(g)-module M is called a weight module if it admits a weight space decomposition

(3.1) M= @ M, where M, = {u € M|Kiu = ¢>)u, Vi e ]1} .

Aeb*
Define by wt(M) the set of weights of the finite-dimensional U,(g)-module M. A weight module
M is called a highest weight module with the highest weight A if there exists a unique non-zero

vector vy € M, which is called a highest weight vector such that K;vy = q()‘*o‘i), E;vy = 0 for all
i €land M = Uy(g)ua

Let JA—ZU()E —i—ZU()( ; — ™)) for X € A, and set Ay(\) = U,(g)/Jx. This is

a Ug(g)- module generated by the coset of 1; also denote this coset by vy. Obviously, E;ux = 0
and Kyvy = ¢M®)uy, fori € I. We call Aq( ) the Verma module of the highest weight A. Tt
has the following universal property: If M is an U,(g)-module with the highest weight vector
v € My, then there is a unique homomorphism of U, (g)-modules ¢ : Ay(X) = M with p(vy) = v.
The Verma module A, (\) has a unique maximal submodule, thus, Agj(\) admits a unique simple
quotient Ugy(g)-module Lg ().

Lemma 3.1. Let A € A with (A, as) = 0. Then there is a homomorphism of Ug(g)-modules
©: Ag(A— ) = Ag(X) with p(va—a,) = Fsua.
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Proof. We have Fsvx € Ag(A)a—q,. Therefore, the universal property of Agz(A — ;) implies that
it is enough to show that E;Fsvy = 0 for all j € I. This is obvious for j # s because E; and F,

—1
commute. For j = s, we have E;F vy = [Eg, Fgluy — FEgvy = Hjii(fl vy —0=0. O

The finite-dimensional irreducible representations of U,(g) can be classified into two types:
typical and atypical. The representation theory of U,(g) at generic ¢ is rather similar to the Lie
superalgebra g, as well. Geer proved the theorem that each irreducible highest weight module of a
Lie superalgebra of Type A-G can be deformed to an irreducible highest weight module over the
corresponding Drinfeld-Jimbo algebra; see [15, Theorem 1.2]. We also refer to [53, Proposition 3],
[54, Proposition 1] and [30, Theorem 4.2] for quantum superalgebras of type Uq(gl,,|,), Uq(05psya,,)
and Uy (08P, )2, ), Tespectively.

Theorem 3.2. For A € h*, let L(\) be the irreducible highest weight module over g of highest
weight A. Then there exists an irreducible highest weight module Ly(\) of highest weight X which is
a deformation of L(X). Moreover, the classical limit of Ly(\) is L(X), and their (super)characters
are equal *.

3.2. Grothendieck ring. Let A-mod be the category of finite-dimensional modules of a super-
algebra A. There is a parity reversing functor on this category. For an A-module M = Mgz & Mj,
define
(M) =T(M)s @II(M);, HI(M); =1I(M);,1, Vi € Zs.

Then II(M) is also an A-module with the action am = (—1)!%lm. Let II be a 1-dimensional odd
vector space with basis {7}, then II(M) = II ® M. Clearly, I1* = 1. Define the Grothendieck
group K (A) of A-mod to be the abelian group generated by all objects in A-mod subject to the
following two relations: (i) [M] = [L]+ [N]; (ii) [II(M)] = —[M], for all A-modules L, M, N which
satisfying a short exact sequence 0 — L — M — N — 0 with even morphisms.

It is easy to see that the Grothendieck group K(A) is a free Z-module with the basis corre-
sponding to the classes of the irreducible modules. Furthermore, if A is a Hopf superalgebra, then
for any A-modules M and N, one can define the A-module structure on M ® N. Using this, we
define the product on K(A) by the formula

[M][N] = [M & NJ.

Since all modules are finite-dimensional, this multiplication is well-defined on the Grothendieck
group K (A) and introduces the ring structure on it. The corresponding ring is called the Grothendieck
ring of A. The Grothendieck ring of U(g) is denoted by K(g). Let Kev(g) (resp. Kev(Uq(g))) be
the subring of K(g) (resp. K(Uq(g))) generated by all objects in U(g)-mod (resp. U,y(g)-mod),
whose weights are contained in A N %Zfb.

Let M be a finite-dimensional representation of g or Uy (g). We define the character map and
the supercharacter map as:

ch(M) = dimMye*,  Sch(M) =) sdimMye?,
A A
where sdim is the superdimension defined for any Z,-graded vector space W = Wy @& W7 as the
difference of usual dimensions of graded components: sdimW = dimWy — dimWj.

Proposition 3.3. There is an injective ring homomorphism j: K(g) — K(U,(g)), which preserves
(super)characters.

Proof. By Theorem 3.2, we can define j([L(\)]) = [Lq(N)] for all finite-dimensional irreducible g-
modules L(A). This then induces an abelian group homomorphism from K(g) to K (U,(g)). The

map preserves (super)characters, so j is a ring homomorphism. Suppose there exist nonzero a; € Z
n n

and distinct A; € b* for i = 1,2--- ,n such that 3(3° a;[L(A;)]) = 0. Then Sch(>" a;[L(N\;)]) = 0.

i=1 =1

lHowever, the inverse of the theorem is not true in general [2]. For example, there are many finite-dimensional
irreducible modules (spinorial modules) of quantum superalgebras of type Uq(osplm) without classical limit; see

[51] for more details.



10 YANG LUO, YONGJIE WANG, AND YU YE

Choose \; maximal in {\; € b*[i = 1,2,--- ,n} for some j, then a; = 0 since dim(L(\;))x, = ;5.
This contradicts a; # 0. Thus, > a;[L(\;)] = 0. O
i=1

Sergeev and Veselov proved that the Grothendieck ring K(g) is isomorphic to the ring of
exponential super-invariants J(g) = { f € Z[PO]W‘J’ Do f € (e* — 1) for any isotropic root a} for
g # A(1,1), where Do(e?) = (A, a)e*, {e}| A € Py} is a Z-free basis of Z[Py], and here Py = A
and Wy = W, more details could be found in [42].

Define

(3.2)  Ju(g) = { > @K, et
pE2ANZE
where D, (K,,) = (1, @)K,.
Obviously, there is an injective algebra homomorphism ¢: Jo(g) — k ®z J(g) with «(K,) =
e~#/2. This induces an isomorphism from K, (g) to Jey(g), hence we have the following commu-
tative diagram:

Qwp = au, Yw € W; Dy(u) € (K2 — 1), Va € @iso},

J

K(Uy(9)) °K(g) <0 J (Ag)
| ¢
b
Kcv(Uq(g)) ~— Koo (9) — — = = > Jev(9)

We remark that the above diagram is not true for g = A(1,1). In Appendix B, we describe Joy(g)
in sense of Sergeev and Veselov [42] and illustrate why K. (g) 2 Jov(g) if g = A(1,1).

3.3. Some important propositions. In this subsection, we investigate some important propo-
sitions, which show that the center of U,(A(n,n)) is contained in U and will be used to prove
the injectivity of HC.

If g is of type II, there exists a unique d € ® such that (II\\ {a, }) U{d} is a simple root system

T
of fbg. By writing § = Y ¢;a, we can get ¢ = 2. The following proposition is a super version of

i=1
43, Section 3.2| for quantum superalgebra U associated with a simple basic Lie superalgebra.
g q\9 g

K
Proposition 3.4. Set 8 = > mya; € Z, 11, and let Ly()\) be a typical finite-dimensional irre-

ducible module. Suppose \ sc;tiéﬁes

(i) (A o) =m; for all i # s;

(i) an extra condition 2{\+ p,d) = ms + 1 when g is of type II,
then UZ 5 = Lq(A)xa—p with u— uvy is bijective.

Proof. In the proof of this proposition, we choose A € C ®yz @ since the Verma module and simple
module can be viewed as Q-graded modules. Notice that the partial order is well-defined on Q.

The canonical map from Ay () to Lg(A) is surjective, which follows that every finite-dimensional
irreducible module is a quotient of a Verma module. So we only need to prove dimA,(A)x—g =
dimLg(A)a—p, since dimU” 5 = dimAg(A)x—p. The dimAg(A)r—p is the coefficient of A F in
chA,(A), and dimL,(\)s—s is the coefficient of e*~# in chL, ().

The following character formulas of a Verma module and a typical finite-dimensional irreducible
Uq(g)-module with the highest weight X\ are given by [27, Theorem 1] and Theorem 3.2:

chA,(A) = M = M Z (=1)lW)ewte)=p,
Hﬁeég(l — e*ﬁ) Hﬁeég(l — 6*5) ot

Hence, it is sufficient to show w(A+ p) —p— (A = 3) ¢ Z,1I for all w # 1. Let us prove it by
induction on I(w).
If g is of type I and {(w) = 1, then we have w = s; for some ¢ # s, and hence

wA+p) =p—(A=p)==((Aai) + Dai + 5 ¢ Z, 1L

e*,  chLy(\)
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Assume that [(w) > 2. There exist some j # s and w’ € W such that w = s;w’ with I(vw') =
I(w) — 1, and then it is known that w'~!(a;) € ®}. We have

wA+p)—p=(A=B)=w'(A+p)—p— (A=) = A+pw " (a)))ay,
w'(A+p) —p— (A=) ¢ Z, 11 by induction and (A + p,w'"*(e;)) > 0 since A + p is dominant, so
wA+p) —p— (A= B) ¢ Z, 11 for all w # 1.

If g is of type II and I(w) = 1, then we have w = s; for some i # s or w = s5. By the same
argument as above, we only need to consider w = ss. Indeed,

WA+ p) = p— (A= B) = —(A+ p, 0)0 + 8 ¢ Z 1L
Assume [(w) > 2. There exist some j # s and w’ € W such that w = s;w’ or w = ssw’ with

I(w') = l(w) — 1. Then it is known that w'~*(a;) or w'~*() belongs to ®f. The proof is similar
to type I when w = s;w’, so we omit it here. If w = ssw’, then

wA+p)—p—A=B)=w'A+p)—p—(A=p5)— A+ p,w'"1(3))d.

Once again, w' (A + p) — p— (A — B) ¢ Z4 11 by induction and (A + p,w'~!(a;)) = 0 since A + p is
dominant, so w(A + p) —p— (A= 38) ¢ Z,1I for all w # 1. O

Let A € A be a typical weight such that L,()\) is finite-dimensional, then we can define a
twisted action on L,(A) via the automorphism w of Ugy(g), denoted by Lg'()). Set vy by v} when
considered as an element of L¢'(\). We then have K, v} = q~ WMy} for all p € Z®. Furthermore,
we have F;v} =0 for all ¢ € I, and = — 2v) maps each U} onto LE(A) - ato-

Similarly, if (A, a;) > m;, Vi # s and A satisfies an extra condition 2({\ + p,d) > ms + 1 for g
is of type II, then the map U, — L¥(\)_xy, with o +— zv) is bijective.

Theorem 3.5. Let u € U. If u annihilates all finite-dimensional U-modules, then u = 0.

Proof. For any typical weights A\, \" € A such that Ly(\) and L¢'(X') are finite-dimensional, the
tensor product Ly (A) ® L¢ ()') is also a finite-dimensional U,(g)-module. Suppose that u € Uy(g)
annihilates all these tensor products, in particular u(vy ® v},) = 0 for all A and X'. We show that
this implies u = 0.

Choose bases {z;} of Ut and {y;} of U™ consisting of homogeneous weight vectors. This means
z; € Ul s and y; € UZ, ;) with w(i) and v/(j) in Z4I1. Write

v (1)
u = Z Z Z g, iy K@i
Jj ook

with a; ,; € k, which is a finite sum. Suppose that u # 0. Let vy € Z;1I be maximal among the
weights v such that there exist ¢, u, j with a; . ; # 0 and v = v(7).
So we have

K,zi(vx @ vh) = qUONTEA-NH0)y @ 3,01,

Each A(y;) is equal to y; ® K;,l(j) plus a sum of terms in U~ ® UOUQO. This implies that

y; K, zi(vy @vh,) = q(V(i)«\)Jr(u«\—/\/JrV(i))—(l/(j),—/\/+u(i))ij/\ ® xvh, + (%),
where (%) is a sum of terms from a certain L,(\) ® Lg (X') x4, with v # v(i).

The maximality of vo implies that y;K,z;(vx ® v},) has a component in Lq(\) & L' (A) - xr4u,
only for v(i) = vg. Therefore, the projection of u(vy ® v},) onto Ly(A) & L/ (X)) -x4., is equal to
(3.3) Z a4 1q 0N BATN TGy @ 0,

Jotnsv (1)=vo
since we assume that u(vy ® v},) = 0, this projection is also equal to 0.
We can find an integer N > 0 such that

vy < ZN& and I/(j)<ZNa

a€ell acll
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for all j. Set

Aj(,z{)\eA

A is typical, Lq(A) is finite-dimensional, (A, a;) > N for all ¢ # s
and plus an extra condition 2(\ + p,d) > N + 1 if g is of type II

By the same argument before the proposition, we know that the map U — LE(N)x v, ® = 20,
is bijective for all X € Af. Thus, the elements x;v}, with v(i) = v are linearly independent.
Therefore, the vanishing of the sum in (3.3) implies (for all X' € A})

(34) Za] (UO )‘ +(l" A=) +V0) (V ( ) >‘,+V0)ij)\ = O,

for all ¢ with v(i) = v.
The statement before this theorem implies that all y;v5 with nonzero coefficients a;,, ; occuring
in (3.4) are linearly independent for all A € A%;. So we get from (3.4)

(3.5) Z j,.,5q 0D T (A= N 4v0) = (' (1), N o) —

for all 4,5 with v(i) = 1. We can cancel the (nonzero) factor ¢(*o-2)~('(@).=A"+10) in (3.5), which
does not depend on pu, and get

(3.6) Z aj7u7iq(u,uo—>\/)q(u,>\) =0,

for all i, with v(i) = vy and all A\, ) € AL. Now, fix X' and notice that (-,-) on Z® x A} is
non-degenerate in the first component for all NV, thus the coefficients aj7u7iq(””’°_’\/) in (3.6) are

all equal to 0. This implies that a;, ; = 0 for all 4, j,  with v(i) = vy, contradicting the choice of
vg. Therefore, u = 0. O

One can check Proposition 3.4 and Theorem 3.5 hold if g = A(n,n) since Z® has a partial
order. Next, we strengthen Theorem 3.5 for g = A(n,n).

Theorem 3.6. Let u € Uy(A(n,n)). If u annihilates all typical finite-dimensional irreducible
Uy (A(n,n))-modules, then u = 0.

Proof. It is known that if a typical irreducible module L,(\) is a composition factor of a finite-
dimensional module M, then Ly()) is a direct summand of M. By the proof of Theorem 3.5, we
only need to prove the following claim.

For all N > n, there exists A € AJ"{, such that the set

{N e AL Ly(N) ® LY (X)) is completely reducible}

could linearly span bh*.

If it is true, then Lq(A) ® L¥(X) is completely reducible if all weights in A + wt (L& (\))
are typical. Because the composition factors of L,(\) ® Lg(\') are the form of L,()\) with A €
A+ wt (L2 (X)) [39, Corollary 5.2].

~ n+1 n
Proof of the claim: Let A = > ((n+1—i)(N+2)+2)e;— . (j—1)(N+2)8;— (nN+4n+2)b,41 €
i=1 j=1

A}H. Then A+ o; € A} for all ¢ € I. There exists a positive integer « such that it is bigger than

+(u, ;) and £(u, k) for any p € Wt(L;"(S\ + ai)) withi eI, j k=1,2,--- ,n+1. Let a = 8k
n+1 n

and A = > (n+ 3 —i)ag; — Y jad; — WG(S”H € A. Then A € Af; and X + y are typical
i=1 j=1

weights for all p € wt (LY A+ ;) with i € I. So Ly(\) ® L;"(:\ + «;) are completely reducible for
all i € I Since {\ + ;i € I} could linearly span h*, the claim holds. O

Corollary 3.7. The Center Z(Uy(g)) is contained in Ug.
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Proof. If g # A(n,n), note that Z(Uy(g)) is Z®-graded since Uy(g) is ZP-graded. Assuming that
Z(Uq(9))NUy(g)y # 0 for some v € Z®P, we will show that v = 0. Pick 0 # z € Z(U,(g))NUy(g)..
Then z = K;zK; ! = ¢z for all i € I; hence (v,a;) = 0 for all i € I, and v = 0 since (-,-) is
non-degenerate.

For g = A(n,n), the quantum superalgebra U, (g) is Z®-graded. Similar to the argument above,
if Z(U,(g)) NUy(g), # 0 with v € Z®, then v is contained in the radical of (-,-). Thus, v = kv
for some k € Z. We need to prove k = 0. Otherwise assume k # 0. Let M be an arbitrary
finite-dimensional irreducible module with the highest weight A and highest weight vector vy and
lowest weight A\’ and lowest weight vector vy/. Then zvy € Myiry = 0if & > 0 since ky > 0.
Furthermore, zvy € My ypy = 0 if £ < 0 since kv < 0. Thus 2M = 0 and hence z = 0 by
Theorem 3.6, which contradicts the choice of z. O

4. DRINFELD DOUBLE AND AD-INVARIANT BILINEAR FORM

4.1. The Drinfeld double. In order to establish the Harish-Chandra homomorphism for quan-
tum superalgebras, we need to construct the quantum Killing form or Rosso form for quantum

superalgebras. Our approach to obtaining this takes advantage of the Drinfeld double for Zs-
graded Hopf algebras [18].

Definition 4.1. A bilinear mapping (, ): B x A — k is called a skew-pairing of the Zo-graded
Hopf algebras A and B over k if for all a,a’ € A and b,b’ € B we have

(bv 1) = E(b)v (17 CL) = E(CL),
(4.1) (b0, a) = (—1)/¥ el Z(baa(l))(blva@))v (b,aa’) = Z(bu),a/)(b(z),a)-

Proposition 4.2. ([18, Proposition 4]) Let A and B be Zs-graded Hopf algebras equipped with
a skew-pairing (, ): B x A — k. Then the vector space A ® B becomes a superalgebra with
multiplication defined by

(4.2) (@a@b)(d @) = Z(_l)(lail)\+|a£2)|)(|b<z>|+\b(3)\)(S(b(l)), al(l))(b(S)aa/@))aazg) @ by,

fora,a’ € A andb,b' € B. With the tensor product co-algebra and antipode S(a®b) = (—1)14l(1®
S(0))(S(a) ® 1) structure of A® B, this superalgebra is also a Zo-graded Hopf algebra, called the
Drinfeld double of A and B and denoted it by D(A, B).

The existence of a dual pairing of UZ? and (US%)°P was observed by Drinfeld [11]. In our
exposition, we followed Tanisaki [44, Proposition 2.1.1] for quantum groups and Lehrer, Zhang,
Zhang [32, Section 3] for quantum superalgebra U,(gl,,,,). We have the following proposition.

m|n
Proposition 4.3. There is a unique non-degenerate skew-pairing between the Zo-graded Hopf
algebras UZY and USO with

1

¢ —q; "

(43) (K“ KJ) = qi(aiﬁa]‘)v (FMEJ) = _5ij and (KZ,EJ) = Oa (FZ, KJ) =0.

Proof. The well-defineness follows from [14] or Remark 2.4, and the non-degeneracy of skew-pairing
can be obtained from the following: for p € Z® with p > 0 and u € UZ,, with [E;, u] = 0 for all
1 € I, then w = 0. Similarly, if u € U:j with [F;,u] =0 for all ¢ € I, then u = 0. The fact can be
proven in a similar way to Lemma 5.1, which we omit here. O

Remark 4.4. Geer [14] extend Lusztig’s [34] results to the Etingof-Kazhdan quantization of Lie
superalgebras UP7(g) and check directly that the extra quantum Serre-type relations are in the
radical of the bilinear form. Indeed, the radical of the bilinear form is generated by the extra
quantum Serre-type relations and higher order Serre relations.

Corollary 4.5. As a superalgebra, D(U°, USO) is generated by elements E;, K;, K; *, F;, K., K/t
The defining relations are the relations for the generators E;, K;, K;l, (resp. , F;, K., K;fl) of the
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superalgebra UZ° (resp. US?), and the following cross relations:

(4.4) KE;K, ™ = ¢@)E;, KFK;" =g oo0F,
K; — K/™1
(4.5) KK, = K/K;, EF; — (-1)ElINIFE, = §;~ =i
qi — 4q;

It is known [14, 18] that the sub-superalgebras UZ? and US? of the quantum superalgebras
U,(g) form a skew-pairing, and U,(g) is a quotient of quantum double of D(UZY USY). More
precisely, we set Z to be the two-sided ideal generated by the elements K; — K;_l, which is also a
Zs-graded Hopf ideal, and we have canonical isomorphism D(UZ?, USY)/7 = U,(g) as Zs-graded
Hopf algebras. Recently, Drinfeld doubles have been studied by various authors as a useful tool
to recover the quantum groups (see, e.g., [5, 12, 13, 20, 21, 22]).

4.2. Rosso form. Now we can define an ad-invariant and non-degenerate bilinear form on quan-
tum superalgebras by using skew-pairing between UZ? and US?.

Theorem 4.6. Define a bilinear form (, ): Ug(g) x Uq(g) — k with

(4.6) (K Koz, (5 KoKy = (~1)M (Y ) (g 2" )g ",
forz € Uf,a’ € U Ly eU,y eU”, ,\XN € Z® and p,p' v,V € Q. The bilinear form is
ad—invamant, ie., (ad( Yo, 0"y = (=) g ad(S(u))v').

By the use of the duality pairing, Tanisaki [44] describes the Killing form of the quantum
algebra, which is first constructed by Rosso [38], then uses it to investigate the center of quantum
algebra. Similar techniques could be applied in the case when g is a Lie superalgebra of type A-G.
Perhaps the proof of this theorem is known by several specialists, but it seems difficult to find in
the existing literature. It is fundamental to prove the surjectivity of Harish-Chandra throughout
this paper, so we write down the details to make the paper more accessible. Here we need some
tedious computations, which are also essential for Section 6.

Forz € U} andy € UZ,, we know A(z) € @ U K, ®Uf and A(y) e P U, ®
osrsp o<y

U:(#ﬂ,)K;l, thus for each «; € TI, we can define elements 7;(z), 7 (x) in U:,a and 7;(y), 7 (y) in

’h

U:(y—a) to satisfy the following equations:

Alz) =21+ Y (@)K QE +-- =K, @z + Y EK, o ®7(x) +---, and
i=1 =1
Aly) =y K, '+ Zri(y)e@FiK;lm +o=1oy+ L Fory)K +---.
i=1 =1

Then for all x € U;’[, ' e U:Lr, and y € U™, we have

ri(@r’) = ari(@) + (=DIEN W ey (@)a!, ri(za’) = (1)l gD zr (27) + i (x)a!

(Fiy, @) = (=) @IEI(F, ) (y, 7 (2)), (yFi, ) = (~1)'" Hh(z)‘(FivEi)(vai(I))'
Similarly, for all y € UZ ;3" € U_ , and = € U*, we have

ri(yy') = quyri(y) + (=)W (y)y, iy ) ( )'y”F‘yT( )+q(“ “Dri(y)y's
Thus, we have the following lemma.

Lemma 4.7. For all xz € UJr andy € UZ ,, we have

(4.7) [ Fi] = aF; = () Fiz = (i = ¢ ) 7 (ri(@)Ks — (=)@K (),
(4.8) [Ei,y] = Eiy — (~1)PIEIE; = (¢; — ¢ ) 7 (=DM Kri (y) - ri(9)K; ).
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Proof. We only prove Equation (4.8), and Equation (4.7) is similar. For y = 1 and y = F; the
formula follows from definition, so it is enough to show that if Equation (4.8) holds for y € U,
and y' € U ,, then Equation (4.8) holds for yy’. This can be derived as follows.

(0 = DEsyy'] = (@ — g ) ([Ei yly’ + (=1) =Wy [E, 5]
=(= 1) B O (K (y) — v ()K" )y + (=D E Wy (1) B OO () = vl () K
(— )l OIR, (=) =Wy () + g P Dyri(y')) — (¢4 07 (m)y’ + (=) FWyri(y) K
(=) Bl s (yy') — 7 (K
O

Combining the above lemma, we get the following equations, which are very useful when proofing
Theorem 4.6.

ad(E;) (yKyz) =E;yKyz — (_1)lEiKMH‘yDKz‘yK)\IK;lEi
=[E;, yJKpz + (—~1)VIByEK o — (—1) Bl (e DK KoK UE;
=(gi — q; )" ((—=)EN IR s () Koz — i (y)K; ' Kaz)
+ (=) WIBl gAma) g By — (—1) B2l D g—ren) gk | o,
=(qi — qi_l)%((—1)“&'m(y)'q(l’*ai’*ai)ri(?J)K/\Jraifﬂ — 7 (y)Kr—a,7)
4 (1)l gAman) R R — (—1) e+ yD gu—rian) g R,

Now, we are ready to prove Theorem 4.6.
Proof of Theorem 4.6: 1t is enough to take u to be generators, i.e., E;, F; and K;. Furthermore,
we may assume that

v=(yK,)Kyz and o' = (yK, )Kyz',

with A, € Z® and z € UI, ' e U:,,y € UZ,,y € UZ,, with weights p, p/, v,/ € Q.
It is obvious for u = K;. For u = E;, then

ad(B:)(0) = (@ = g7 ((CDPI0 g0 (K 0 = () K-, 2)
+ (=D)WIElOtr—ai ey R — (—1) Bty g(e—raidy gy 2R, and
ad(S(E:)) (v) = —ad(K; ad(E:)(v') =~ = ad(Ey)(+)
=(q; — q{l)—l( _ (_1)|]Ez'||m(y')\q(u i) () Ky o+ q(u toi—v —ai),. 'y )K/\,_W,_alx/)
— (—D)W Bl N w o —an) g R 4 (— 1) B0 D glai—edy gy, /R,
Now the problem can be split into two cases. First, if © = v/ and y/ + a; = v, then
(ad(Ei)v,v') = (=)W (g; — ¢ ) 7 (g, w)g B0,
(1) Bl lgle-ana) 120N 1y y), ') — g OV 11 (y), 1)),
and
(v, 2d(S(E)v") =(=1)(y, )q>) ( — (= 1) I1B:l N ' i —a) =1/2000) () i 1)
+ (_1)IJEi\(\w’lﬂy’\)q(aiﬁai)*lﬂ(%)\’)(y7 2'E;)).
Therefore, (ad(E;)v,v’) = (=1)EllVl(v ad(S(E;))v').
Second, if p + «o; = v' and ' = v, then
(ad(E;)v, v') =(=1)lge) (y o) - ((_1)IyIIJEi\q(vaai)fl/?(/\A’)

( Eiz) — (— 1)l (oD g <1720 (o 4,
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and
(0, d(SE) =(-1) g — g7 g 3, - (— (1) B e 1/20 520
. (Ti(y/),l') + q(ul+ai_Ul’_ai)_l/2(>\7)\/)(T;(y/)u ZC))

Therefore, (ad(E;)v,v') = (—1)/Ell*I(v, ad(S(E;))v’). Using a similar procedure, we can check for
u = F;. Thus, we prove the ad-invariance of the bilinear form.

Proposition 4.8. Let u € Uy(g). If (v,u) =0 for all v € Uy(g), then u=0.

Proof. Notice that Uy(g) is the direct sum of all U7, UU = U~ K,U%U;} as vector space.

Therefore, it is sufficient to show that if u € U, UU}} with (v,u) = 0 for all v € U~ UU}f, then
u = 0.
Since the skew-pairing between U~ and U™ is non-degenerate, we can choose an arbitrary basis

uljuby, - ,uﬁf(#) of U} and dual basis v/, vy, - - ,cﬁf(#) of UZ, for any p € Q with respect to
skew-pairing, i.e., (vj’,u}) = d;; for all 1 < 4,5 < r(u), where r(u) = dimU}.

For any u,v € @), we know that {(val,)KAuﬂ forall A\ € Z® and 1 <i <r(v),1 <j<r(p)}
is a basis of UZ, UU}. From equation (4.6), we have

(4.9) (VKK , (0 Ky )Kaul) = 85581:(—1) 141 (q1/2) = OA) g e,
Write u = 37 aijx(vf K, )Kyu. The assumption (v,u) = 0 for all v yields
LA
(4.10) > (—1)Vaga (@)= =0, for all i, j, X
AELD
Thus, each a;;, = 0; hence, u = 0 as well. [l

4.3. Quantum supertrace. Let (4, A, ¢, S) be a Zs-graded Hopf algebra over field k& and M, N
be two A-modules. Then M* is an A-module with the action (af)(m) = (—1)1*ll/ f(S(a)m) for all
meM,a€ A, f € M*. M®N is an A-module with the action a(m®@n) = E(—l)"Z(?)Hm'a(l)m@
a@yn for all a € A;m € M,n € N where A(a) = > a1y ® aiz). Homg(M, N) is an A-module
with the action (af)(m) = Y (—1)le@flaq) f(S(ag))m) for all a € A,m € M, f € Homy (M, N).
Supposing that M is finite-dimensional, we take {m;} to be a homogeneous basis of M and {f;}

to be the dual basis with respect to {m;}. Then we have |m;| = |f;| for all ¢ and the following
isomorphism of A-modules:
(4.11) Sy n: N@M* — Hom(M,N), n® fw— ¢fn,

with inverse homomorphism ¥ n: g — Y g(m;)® fi, where pr,,(m) = f(m)nforall f € M*, g €
Hom(M,N),m € M,n € N. We also have a homomorphism of A-modules ep;: M* @ M — k
with ey (f @ m) = f(m) for all f € M*, me M.

In particular, A is the quantum superalgebra U,(g). Then we have S%(u) = K3, plqup since
(py i) = 2(;, ;) for all 4 € I. We obtain a homomorphism of A-modules ¢ M — (M*)* with

(4.12) (2 (m)) (f) = (=)L f (K5, m).
Combined with the previous statements, we have the following homomorphisms of A-modules

Prr @1 prx

. M End(M) 222 M @ M MA@ M* -2 k.
4.13 Stry’: End(M

This composition is the so-called quantum supertrace (we simply replace Stré‘/[ with Stry if no
confusion appears). More precisely, if g € End(M), then

Strg(g) =ear- o (Yar @ 1ar+) 0 Warar(g) = (1)WY £5(K; Vg (m)

—(1)™ 3 fig(Km)).
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Let A be a Zy-graded Hopf algebra and define the adjoint representation of A as follows: ad(a)(b) =
S (=1)lllelqybS(ag)). The map adas: A — End(M), which takes a € A to the action of a on
M, is a homomorphism of A-modules and we have

(4.14) Strq o adps(u) 1)lmal Z fi(u K2p m;))

Indeed, this is the supertrace of uKQ_ , acting on M. In particular, we have

(4.15) ad(Ej)u = Eju — (1) el K uK R,
(4.16) ad(Fi)u = (Fiu — (=) luF,)K;,
(4.17) ad(K;)u = KuK; .

4.4. Construct central elements. In this subsection, we construct central elements for certain
finite-dimensional Ugy(g)-modules following Jantzen’s book [23].

Let ¢ : UZ, X U} — k be a bilinear map and A € Z®. There is a unique element u €
(UZ,K,)K U} = UZ K, 12U} such that for all 2 € U,y € U_,, X € Z®

(4.18) (WK Ky, u) = p(y, z)(q/2) =),

Indeed, u = Z(—l)'mgp(v;‘, u ) g~ 2P (vf K, Kyu¥) will work and be unique according to Propo-
sition 4.8.

Lemma 4.9. Let M be a finite-dimensional Ug(g)-module such that all weights A of M satisfy
2\ € Z®. Then there is for each m € M and f € M* a unique element u € Uy(g) such that
flvm) = (v,u) for all v € Uy(g).

Proof. The uniqueness follows from Proposition 4.8. To prove the existence of u, we may assume
that f and m are weight vectors, since f(-m) depends linearly on f and m. Suppose that there are
two weights A and X of M with m € M) and f € (M*)x; ie., with f(My/) =0 for all " # X\. We
have U}rm € My, for all v. As M has only finitely many weights, there are only finitely many v
with Ufm # 0. Since UZ,U°Ufm € My, for all p and v, we get f(UZ,UU;fm) = 0 unless
N = A+v — u. This shows that there are only finitely many pairs (u, v) with f(U:#UOUj‘m) #0.
For all z € U,y € UZ, and n € Z®,

(4.19) FKuKyam) = ¢ fyKam) = (¢2) P22 f(yKam).
For all p and v, the function (y,z) — f(yK,zm) is bilinear. We now use that 2(A +v) € Z®. We

get an element u,, € UZ,U°U} with (v,u,,) = f(um) for all v € UZ,UU;. Then u = Y uy,
will satisfy our claim. O

Lemma 4.10. Let M be a finite-dimensional Uy (g)-module such that all weights X of M satisfy
2\ € Z®. Then there is a unique element zyr € Uy(g) such that (u, zpr) is equal to the supertrace
of uK;pl acting on M for all u € Uy(g). The element zp is contained in the center Z(Ugy(g)) of

Uqy(g).
Proof. Let {m1,ma, -+ ,m,} be a homogeneous basis of M and {f1, f2, -, fr} is the dual basis

of M*, then the supertrace of qupl acting on M is equal to Y (—1)‘mi‘fi(uK;p1mi) = (u, z2p)-
i=1

In this way, the existence and uniqueness of z); follows from Lemma 4.9. Recall that the map

adar: Uy(g) — End(M) is a homomorphism of U,(g)-modules. We notice that Stréw o adps(u)

is the supertrace of qupl acting on M for all u € Ugy(g); ie., Stréw oadpy(u) = (u,zp) for all

u € Uy(g) by (4.14). This means that for all u,v € Ugy(g),

(4.20) e(v)(u, zar) = v+ (Strp’ o adar(u)) = (ad(v)u, 2ar) = (1)1, ad(S(v))2ar).

Hence, £(v)zpr = (—1)PUvIFl2Dad(S(v)) 2z = (—1)1"1ad(S(v))zas for all v € Uy(g) by Proposi-
tion 4.8. We also have (—1)lad(v)zyr = e(v)za by e0S = . Now (4.15)-(4.17) easily yield that
zy commutes with all K;, E;, F; and is therefore central in Ugy(g). O
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5. HARISH-CHANDRA HOMOMORPHISM OF QUANTUM SUPERALGEBRAS

5.1. The Harish-Chandra homomorphism. In the previous section, we used the Drinfeld
double to construct an ad-invariant bilinear form in Theorem 4.6, which was also non-degenerate
(see Proposition 4.8). By using this form and quantum supertrace, we can construct the central
elements of Ug,(g), which contributed to establish the Harish-Chandra isomorphism for quantum
superalgebras U, (g). Now we are ready to define the Harish-Chandra homomorphism.

For each A € A, there is an algebra homomorphism, also denoted by A: U? — C, AMK,) = g
for all u € Z®. Obviously, (A + X)(h) = A(R)X (h) for h € U° and A\, X € A.

The triangular decomposition of quantum superalgebra U,(g) implies a direct sum decomposi-
tion as follows:

Uy =0 Pu-,uu;.
v>0

Let m: Uy — UY be the projection with respect to this decomposition. One can check that

@ U-,UU} is a two-sided ideal of Uy. Thus, 7 is an algebra homomorphism. Denoting the
v>0

center of U,(g) by Z(U,(g))?, we have Z(U,(g)) € Uy by Proposition 3.7. Let z € Z(U,(g)) and
write z = Y 2, where each z, € UZ, UU, thus 7(2) = 2o. If we take vy € Ay(\)x, then zvy =
v>0
20Ux = A(z0)va. Since z is the center element of U,(g), this implies zv = A(2z9)v, V v € Ay(N), so
it acts as scalar A(zp) = A(w(2)) on Ag(A). We set xa: Z(Uq(g)) — & by xa(2) = AMn(2)).
For A € A, we define an algebra automorphism

Y U2 = U% by ~a(h) = A(h)h, for all h € U°.
Then
K, = ¢MK,, forall A €A, u€ 7.
Obviously, 7 is the identity map, and

oyn =Yaen  and N (ya(h)) = A+ N)(h), for all A, N € A, h € U°.

Inspired by the quantum group case, we define the Harish-Chandra homomorphism HC of Ug(g)
to be the composite

HC: Z(U,y(g)) — Up = U® 122 1O,

Assume that h = HC(z) = y—, o m(z), we have xi(2) = A(7(2)) = A(7,(h)) = (A + p)(h) for all
AeA.

Lemma 5.1. The Harish-Chandra homomorphism HC is injective.

Proof. Suppose z = Y z, € Z(Uy(g)) with HC(z) =y, on(z) = 0 where z, € UZ,U°U}, then
nz=0

zp = m(z) = 0 since y_, is an algebra automorphism. If we assume z # 0, then there exists z,, # 0

for some p € Q. Let 8 € Q be a minimal element satisfying § > 0 and zg # 0. Let {y;} and {zx}

be sets of bases of U_ 5 and UE, respectively, and write
z2g = Zyjhjkxk, hjk S Uo.
gk

For all z € Ul ,h € Uy € U_, we have [E;,yhz] = [E;ylhz + (—=1)WIEdy (R, ha] with

[E;, ylhx € U:(,onﬁ)UOU,‘YF and y[E;, hx] € U:,YUOU,JYZFQI, by equation (4.8). Since [E;, z] = 0,

we have Y [E;,y;]hjrxr = 0 by the minimality of 5. Hence Y [E;,y;]hjr = 0 for any k. Write
Jik J

°In general, the center of the Lie superalgebra and quantum superalgebra is Zs-graded [7, Section 2.2]. Similar
to the basic Lie superalgebra case, the center of Ug(g) consists of only even elements. However, the center contains
odd part is also interesting in some aspects; e.g., the skew center of generalized quantum groups [3].
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B = > myay, and let Ly(\) be a finite-dimensional module with the highest weight vector vy.
i=1
Then we have

J

]Ei(z)\(hjk)ijx\) =D [Ei,yslhjuon =0,

for alli € I. So > A(hjk)y;va generates a proper submodule of Ly(X), and we get Y A(hjx)y;vx =
J J

0. The linear map U”; — Lg(A) given by y — yovy, is bijective if A satisfies the condition of
Proposition 3.4. Hence, Y A(hjx)y; = 0. Therefore, hji, = 0 for any j,k, and zz = 0. This

J
contradicts the choice of § with zg # 0. Thus, z = 0 and HC is injective. O

5.2. Description of the image of the #C. The image of the HC is much more complicated.
We split it into the following three lemmas. Recall that the Weyl group W acts naturally on U°
as w(K,) = Ky, for all w € W and p € Z®. We have (w\)(wh) = A(h) for all w € W, X € A, and
h € U°.

Lemma 5.2. The restriction of the image of Harish-Chandra homomorphism on the center of
quantum superalgebra U,(g) is contained in the W -invariant of U%; i.e., HC(Z(Ugy(g))) C (UH)W.

Proof. The character of the Verma module A,(\) with the highest weight A € A is given by
chA;(A) = HeitP where D = [ (e#/2—e=8/2)/ T (e®/? — e=%/2) owing to [27, Theorem 1]
pedt acd]
and Theorem 3.2.
Since the character of a module is equal to the sum of the characters of its composition factors,
we have

chAg(A) = bauchLy(N)

where by, € Z4 and byy = 1. Since Ag4()) is a highest weight module, by, #0 = A—p € > Zi oy

and also x» = x,. Hence, we have

chLy(X) =Y anuchAg(A) and  DchLy(A) =Y ar,e*”
Iz Iz

where ay, € Z with ayy =1, and ay, = 0 unless A — . € S Zyia and x) = Xp-

Assume for now that L(\) is finite-dimensional. Then L,(\) is a semisimple gg-module, and
chL,()\) is W-invariant as a result. On the other hand, w(D) = (=1)!"™)D for all w € W, and
hence DchL,()) can be written as

Z Ay Z (=1 ewlnte)
pneXx weW

where X consists of @g—dominant integral weights such that ay, # 0. Moreover, ay (xtp)—p =
(=) gy = (=1)"®), Hence, we have y) = Xw(Ap)—p for all w € WX € Ay 4, where Ay g =
{A € AldimL,()) < co}.

For z € Z(Uq(g)), we set h = HC(z). Assuming that A € A and Lg(\) is finite-dimensional, we
get (A+p)(h) = xa(2) = Xwrtp)—p(2) = (W(A+p))(h) = (A+p)(wh). Hence A(wh —h) = 0 for all
w € W. Fix w and write wh—h = 3" a,K,. Then A\(}a,K,) = > a,q™*" =0forall X\ € Ay q.

T 7 T

Thus, wh —h = 0 and h € (U)W because the bilinear form on Afq x Z® is non-degenerate in
the second component. O

Set

(5.1) (Ug)" = {ZauKu

w€2ANZP and ay = ayy, Yw € W}
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Lemma 5.3. The Harish-Chandra homomorphism HC maps Z(U,(g)) to (U)W
Proof. Take an arbitrary z € Z(Uq(g)), we can write HC(z) = Y @, K, with a,, = a, for any

w
w € W. We only need to prove (u, o) € 2Z for all p € Z® with a, # 0, a € @j.
For each group homomorphism ¢: Z® — {£1}, we can define an automorphism & of Uy(g) by
0(Ku) = o(wKy, 0(E:) =Ei, 6(F:) = o()F.
Obviously, ¢ maps the center Z(U,(g)) to itself. One can check that HC = vy_, o7 commutes with
&. We already have HC(5(z)) =6 (X a,K,) = Y auo(p)K,. Since 5(z) is central, the sum is in
1 Iz

(UNOW: so we have a,0 (i) = ay,o(wp) = ayo(wp) for all w € W. This means: if a, # 0, then
o(p) = o(wp) for all w € W. Thus, o(p — sap) = 1 for all a € ®F, i € Z®. For each a, we can

choose o such that o(a) = —1. Therefore, (—1)** =1 and (u, a) € 27Z. O
For v € A and « € i, we set AS = {v + najn € Z}. Clearly, A = |J AZ. Let
veEA

Z a, =0, Yo € $i with (v, ) # 0}.

HEALZ

(52) (Ugv)zu/p = {ZGHKH € (U(CJV)W

Lemma 5.4. The Harish-Chandra homomorphism HC maps Z(U,(g)) to (U)W

sup*

Proof. We claim that if a € ®i50 and (A + p,a) = 0, then xx» = Xr—ka for any k € Z. Indeed,
if @ = as and (A, a5) = 0, then we get a non-trivial homomorphism ¢: Ay(A — as) — Ag(N)
according to Lemma 3.1. In this way, z € Z(U,(g)) acts by the same constant on both modules;
fe, xa(2) = A+ p)(h) = AN —as + p)(h) = Xr—a,(z) where h = HC(z) = v, o w(2). Thus,
XA = Xh—as-

For any a € @iy, if (A + p,a) = 0, then there exists w € W such that w(a) = a,s. Based on
the W-invariance of (-,-), we have (w(X + p), w(®)) = (A + p,a) =0, so

XX = Xw(A+p)—p = XwMp)—a—p = XA—a-

This implies xx = Xx—«, 50 we conclude that xx = xa—ko for all k € Z.
Now suppose h = v_, o7(z) = Y a,K, for some z € Z(U,(g)) and a € Piy, by xa(z) =
n

A+ p)(za#K#) and xx = Xa_q for all (A4 p,a) = 0. We know
w

(5.3) (A—i—p—i—a)(ZaMKM) = (A—i—p)(ZaMKH),
for all (A + p, ) = 0, hence ’ ’

(5.4) Z%q(/\ﬂ),u) (q(u,a) _ 1) -0
w

Notice that (A + p,v) = (A + p,v/) and (u,a) = (VV',«a) if AY = A%, There is a finite subset

X C A such that 4, # A, for all v,/ € X and Supp(h) C |J A, where Supp(h) is the set of
veX
€ 2A NZ® for which a, is nonzero. This means we can rewrite Equation (5.4) as

(5 ) -o
veX “pcAg

Since (o, @) = 0 and the bilinear form on A x Z® is non-degenerate, there is a A + p € A such
that (A + p,a) = 0 and (A + p,v) # (A + p, V') for all v # v/ with v,/ € X. Let {n,},ex be
positive integers that are distinct. We get

> ( 3 a#) (g = 1) glre0+0) ~ g,

v'eX “peAs,
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for all ¥ € X and the square matrix (q("v()‘“’)’”l)) is invertible. Therefore,

2%

(5.5) < 3 a#) (4 ~1) =0,

HeEAY
forallv € X, and Y a,=0if (v,a) #0. O
HEAY
Example 5.5. We give some explicit elements in (Ugv)ggp when g is of small rank.

(i) Let g = A(1,0). In such a case, @} = {a2, 01 + a2} and 2ANZ® = Zayy + 2Zaa. If X =
kiog + 2ksas is a dominant weight, then we have k1 > ko and k1, ks € Z. Furthermore,
WX = {\X—=2(ki — k2)ax}. Thus kx = Ky — Kx_20, — Ka—2a;-20a5 + Ka—20;—das +
Kx—2(k1 —k2)or — Ka—2(ky —k2)a1—202 — Ka—2(k1 —k2)ar —2a1 —202 + K20k —k2)a1 —2a1 —das €
(Ugv):z‘/lil/p'

(ii) Let g = C(2). As a result, @ = {1, 01 + a2} and 2A N Z® = 2Zon + Zog. If X =
2k1aq + ko is a dominant weight, then we have ko > k1 and k1, ks € Z. Furthermore,
WX = {\X—=2(k2 — k1)az}. Thus kx = Ky — Kx_20;, — Ka—2a;-2a5 + Ka—da;-2a, +
Kx—2(ko—k1)as = Ka—2(ko—k1)as—201 — Ka—2(ka—k1)as—2a1—2as T KA_2(ks—k1)as—4a1—2as €
(Ugv):z‘/lil/p'

(i) Let g = B(1,1). In this case, the positive isotropic roots of g are {a1,a1 + 202} and
2ANZP = 2Zay + Zag. If A = A161 + p1e1 € 2ANQ is a dominant weight, then we
have A\ # 0, \y — 2,2u1 € 2Zy. Furthermore, WA = {£M\61 £ pier}. Thus ky =

ZWW(K)\ - K)\72o¢1 - K)\72a174a2 + KA7404174042) € (Ugv>;/gp
we
5.3. Proof of Theorem A. In order to prove the surjectivity of HC, we need to investigate the
Grothendieck rings K (g) of finite-dimensional representations of the basic classical Lie superalge-
bras g. In the following proposition, we identify the algebra (Ugv)ggp with Jey(g), which plays a
crucial role on the surjectivity of HC.

Proposition 5.6. (U)W = J..(g).

sup

Proof. For h =% a,K, € (U, , we define Supp(h) as the set of x € 2A N Z® for which a,, is
w
nonzero. For any a € @i, take a finite set X such that Supp(h) C |J (v + Zt«). Furthermore,
veX

Supp(h) € U (v + 2Z+«) since there is an even root 3 such that 2((6(1;(5)) = 1. Then
veXx ’

(56) Da(h) = Za#(U7 O‘)K,u = Z Z au+2ka(V7 Q)Ku+2ka

veEX kEZy
and
Z aytoka(V, @)Ky poke € (K2 —1), forallve X
keZy
because Y. aypike = 0 for all v € X with (v,a) # 0 and Y aytoka(V, @)Kyioke = 0 for all
]CEZ+ kZEZ+

v e X with (v,a) = 0.
On the other hand, take an element h = Y a,K, € Jev(g), then

o
Dy (h) = Zau(ﬂao‘)Ku = Z Z Ay tka (VK o € (Ko — 1),
w veX k€Z4
for any a € ®iso. Therefore, > apipaKitira € Ky — 1) for any v € X with (v,a) # 0. This
kEZ+
implies that ) a, = Y. Guyka =0. O
HEAY kEZ4
Proposition 5.7. There is a linear map Y : k®yz Key(Uq(g)) = Z(Uq(g)) such that the diagram
in the introduction commutes.
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Proof. Define a map from Ur: k @z Kcv(Ug(g)) — Z(Uq(g)) with W ([M]) = zm where zas is
defined in Lemma 4.10. We need to prove the well-defineness of U and ¢ o HC(zp) = Sch([M])
for all M in U-mod with all weights contained in A N %Zfb.

Choose a homogeneous basis {my,- -+ ,mg,--- ,m;} of M such that {my,--- ,my} is a basis of L
and {Mmy41,--- ,my} is a basis of N. Let {f1, -+, fi} be the dual basis of M, then {f1,---, fi.} and
{fe+1, -, fi} can be viewed as dual bases of L and N, respectively. So {r®@my, -, 7®@m;} (resp.

{m®f1,-- ,7®fi}) is the basis (resp. dual bases) of wt(M), and |7® f;| = |7@m;| = —|m;| = —| fi|
for all 7. Hence,

<u72M> = (_1)Imi‘fi(UK5plmi)

-

N
Il
-

l
(_1)|mi\fi(uK§plmi)+ Z (_1)\mi|fi(uK5p1mi)
i=k+1
!
(D)™ fi Ky ma) + > (1™ f (K, )
i=k+1
u,zr) + (u, zn) = (u, 2, + 2N );
! l
(s 2ar) = SO (1) fi(aG ) = — S (n o f) (k) (5 @ )
i=1 i=1
= _<uaZH(M)>'

Il I
.
= M -~
A

Il
-

o~ .

Therefore, zr, — zpr + 2y = 0 and zps + zri(m) = 0 according to Proposition 4.8.
Since z)s is central, we have z); = ;0 2z, where zpr, € U:MUOU;’. Write zpr0 = Y aK,.
/"L/ v
Then we have
—(v,u”)

Ky zm) = Ky 2m0) = Z ay (ql/z) )

v
for all i/ € Z®. On the other hand, this is the supertrace of K,/_2, acting on M. This means it

is equal to
] ;o ] oy (2X,u1")
stlmM,\/q(’\ H=2p0) — stlmM,\/q 2(\p) (ql/Q)
N N
A comparison of these two formulas shows that

ZM,0 = Z SdimM)\/q(72X’p)K,2)\/.

A/
We have zpr0 = m(zar), hence
(5.7) Y_pom(zm) = Z sdimMy K_ay/,
>\/
and 1o HC(zp) = S sdimMyer = Sch([M]). O
)\/
Proof of Theorem A:
k ®Z Kev(Uq (g)) )k ®Z Kev(g)
I |
YR | =
Y He A
Z(Uq(9)) === == (Ut == k @z Jev(g)

The injectivity of HC follows from 5.1, so we only need to prove ImHC = (UJ,)! . Based on

Proposition 5.7, the above diagram is commutative, so Im#C = (U2, )} . O
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By using ¢ o HC o Ur([M]) = Sch([M]) for all [M] € Kc.(Uq(g)), we get Ug is injective. All
morphisms in the diagram above are algebra isomorphisms as a result. Furthermore, for any
[M] € Key(Ug(g)), there exists Y a;[L(A;)] with a; € k such that 33" a;[L(A;)]) = [M], and these

A; are distinet. Let X = {)\;|a; ¢ Z}. Supposing that X is nonempty and taking a maximal
element \; in X for some t, we get dimMy, = > a;dimL(\;)x, € Z and dimL(\;)x, = d;. Thus

a; = dimM), is an integer, contradicting A\, € X. Therefore, X is empty and a; € Z for all i.
Thus, Key(g) = Kev(Uy(g)) is an isomorphism induced by ;.

Remark 5.8. In Appendix B, we describe the Jey(g) in the sense of Sergeev and Veselov [42] and
illustrate why Key(g) 2 Jev(g) if g = A(1,1) since u—v = K1 +K; ' =Kz —K5 ' € (U)W = Jev(g)
and u — v ¢ J(A(1,1)). Therefore, J(A(1,1)) C Im(HC) C Jov(g). However, the image of HC for
g = A(1,1) has not yet determined.

6. CENTER OF QUANTUM SUPERALGEBRAS

6.1. Quasi-R-matrix. In Section 5, we established the HC for quantum superalgebras and proved
that the center Z(U,(g)) is isomorphic to (U2, ), the subalgebra of the ring of exponential super-
invariants Jey(g). This section studies the structural theorem for the center. Our approach to
obtaining a structural theorem for quantum superalgebras takes advantage of the quasi-R-matrix,
which is inspired by [48, 49]. Recently, based on main results [33], Dai ang Zhang [9] used the
similar method to investigate explicit generators and relations for the center of the quantum group.
They proved that the center Z(Uy(g)) of quantum group Ug(g) is isomorphic to the subring of
Grothendieck algebra K (U,(g)).

For each p € Q, we take uf,ub, - ,uff(#) to be a basis of Uf. Since the skew-pairing between

the UT and U~ is non-degenerate, we can take the dual basis v{’, v, - - - ,vf(#) of UZ,,, with respect
o

to (vl uly) = d;5, for all possible i, j. We have the following proposition.

r(p)
Proposition 6.1. Set ©, = Y vl'@ul € U U. Then ©,, does not depend on the choice of the
i=1

basis (uf'); and

(6.1) (E; ©1)0, 4+ (K; @ E)O,—a, = Ou(EBi 1) + 0,0, (K, @ E;),
(6.2) (1@F)0,+ (9K N0, 0, = 0,(18F,) + 0, . (F; ®K,),
(6.3) K; ®K;)0, = 0,(K; ®K;).

Proof. 1t is easy to check ©, does not depend on the choice of the basis (u!'); and (6.3). For (6.1),
we have

r(p)
(Bi® 1), -~ OuE ®1) = ) [Eivj]©uf
j=1
r(p) B
=Y (@ - o) (DB K o) — (K @
j=1
r(p) r(p—oy) .
— Z (qi — q[l)*l((—l)mi”“(vﬂ')‘Ki(n(vf),ugfm)v,‘;fm - (Tz{(vf)augim)”ffalﬂ{;l) ® uf
j=1 k=1
r(p) r(p—oy) B
=20 X (- IR E B (o), ok o (B B (), e Yol @
j=1 k=1
r(p) r(p—oy)

(= (~D)EIm IR, (o By ™ ol ™ + (o uft ™ Ea)ol K ") ® uf

<

I
-
S

Il
A
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r(p—oy) .
= > —(-)EImCOIK Y @ Bl ™ 4+ ol YK @ uf TV E;
k=1
== (Ki ®E)Op—a; +Opu—a, (K @ Ey).

Thus, (6.1) holds. Because the proof for Equation (6.2) is similar to that for Equation (6.1), we
omit it here. 0

There is an algebra automorphism ¢ of Uy(g) ® Ug(g) defined by
pKi®1)=K;®1, ¢E®1)=EK;", ¢F cl)=FackK,,
p(10K;) =10K;, ¢(1®E)=K;'®E, ¢(1®F)=K;®F,
and ¢ can be extended to U, (g)®U,(g), which is a completion of the tensor product U,(g) @ U, (g).
Then the quasi-R-matrix is > 0, € U,(g)®U,(g)® and it is invertible. Its inverse is denoted by

n=0
R. Then, by Proposition 6.1, we have

RA(u) = ¢(AP(u))R, and RPAP(u) = ¢(A(u))RP.

The universal R-matrix can be derived from the quasi-R-matrix, which is significant because it can
induce solutions of the quantum Yang-Baxter equation on any of its modules. This approach is
prominent in the study of integrable systems, knot invariants and so on. The following proposition
is essential for us to construct the explicit central elements, named Casimir invariants, which
have been used to construct a family of Casimir invariants for quantum groups [9], quantum
superalgebras Uq(gl,,),,) and Ug(08p,,(2,,)-

6.2. Constructing central elements using quasi-R-matrix.

Proposition 6.2. [10, Proposition 3.1] Given an operator Iy € End(M) ® Uq(g) satisfying
(6.4) Car, A(w)] =0 for all u € Uy(g),

the elements

(6.5) O = Str1 ((C ® 1) (Kap © 1)(Tar)*)

are central in Uy(g), where Str1(f ® w) = Str(f)u for f € End(M) and u € Uy(g).

Proof. We only need to prove [C](\f[),Ki] = [C](\f[),IEi] = [C](\f[),IFi] = 0 for all i € I. Assume
(FM)k e ZAJ ® Bj, then
J
0= Strl((Kngi_l & 1)[(1—‘M)k, A(Kl)])
= Str (KoK 0 1) 4,0 By K 9K )
J
= Z Str(KngflAjKi)BjKi — Z Stl‘(Kgij)KiBj

J J

k

3More properties about quasi-R-matrix in a super setting can be deduction follows [34, Chapter 4]. For example,
% = R~L, where the automorphism ~ of URU is defined in [34, Chapter 4].
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where the last equation holds by Str([z,y]) = 0 for all z,y € End(M). And,
0 =Str1 (K2, @ D[(Tar)*, A(F,)])
=$tr1 ((Kzp 0 )| Y- 4; @ B, R0 K +10F,) )
J

=str) ((Kap @ 1) Y ((C)PIF AR, @ B + 4, @ BF,

J
— (=D)IFIAHBIR A, @ K71B; — (—1)FlIBil4; @ EBJ-))

=[C} i,
where the last equation follows from [ZAj ® B;,K; @ Kz} = 0 and Str([z,y]) =0 for all z,y €
J
End(M). O

Define by ¢: Ugy(g) — End(M) the linear representation. Let P,;W: M — M, be the projection
from M to M, and define the following element in End(M) ® Uy(g) as

(6.6) Ku= Y PMeKy,
newt(M)
Using the definition of ¢, we obtain
(6.7) K (¢ @ 1) (¢*(A(w)) = (¢ @ D(A)KCar,  Yu € Uy(g).
Define Ry = (¢ ® 1)(R) and R} = (¢ ® 1)(9R°P), we have
K (R R (C® 1)(A(u) = Kar(¢ @ 1) ($(R7F)RA(u))
=K (¢ 1) (¢*(A())p(RP)R) = Kar(¢ @ 1) (¢°(A(w))) $(RY]) Rt
=@ D(AW)Knd(Ry) Ry,  Vu € Uy(g).
If we take
(6.8) I'nr = Ky (R R
then [Tz, (¢ ® 1)(A(w))] =0, for all u € Uy(g).

Example 6.3. Let U = Uy(A(1,0)) and ¢(: U — End(M) = End(Lg(e1)) be the vector represen-
tation. Let v1 be its highest weight vector with weight A1, and let vo = Fivy,v3 = FolFiv1 and
A2, A3 be the corresponding weights associated with vy, v3, respectively. {vi,va,v3} is a basis of M.
By using of (4.1) and (4.3), {—(qi — ;)" 'Fi} and {E;} are two basis-dual basis pairs of U~ and
Ul fori=1,2 and

{(¢— ¢ HF1F2, (¢ — q)F2F1} and {qE:Es — EoEy, E By — gE2E, }

is a basis-dual basis pair of U_, _,, and U;LNLOQ with respect to the Drinfeld double. We have
R =3 O,, which is a generalization of [34, Corollary 4.1.3]. Then
nz=0
(6.9)
2
Ry = (C@l)(1®1+2(%‘—qi_l)Fi@)Ei—(q_l—Q)FzFl®(E1E2—q_1E2E1)—(q—q_l)F1F2®(q_1E1E2—E2E1))
i=1
and
PR =(C@ )1 @1+ (¢" — q)(E1Ez — ¢ 'EoE1) KoKy ® K; 'Ky 'FolFy
(6.10)

2
+3 (12 (g — g DEK; @ K 'Fi + (¢ — ) (¢ ' Ea By — BoEy)Ki K @ K 'Ky ' F Fa).
=1
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because ((UZ,) = 0 if v # a1, ag, a1 + aa. Substitute (6.6), (6.9) and (6.10) into (6.8) and (6.5).
As a result,

iy =Str1 (¢ @ 1)(Ksp @ 1>/CM¢<R3*;>RM)

Z |’Uz‘ 2p Ai )K 2 + Z )2(_1)"UI|q(al,>\1+1)+(2p,)\l)K2>\K:lFZEZ
i=1 =1
+(q—q )2q(2p’h)+(a1+a2’)‘3)K2>\1Kglel(F2F1 — ¢ 'F1F2) (B By — ¢ 'EaEy)

:K2_2 4 q72K1—2K2—2 _ q72K1—2K2—4 4 (q _ q71)2(q71K1—1K2—2]F1]E1 4 q71K1—2K2—3F2E2)
+(a —a7)?qK; Ky P (FoF1 — ¢ 'FiFa) (B Ep — ¢ 'Eoy),

by using
2p = a1 —az — (1 + az) = —2as;
Al = €1 = —€2 + 01 = —ag;
Ay = g3 = —€1 +01 = —a1 — Qg;

A3 =01 = —€1 — €2+ 201 = —a1 — 2as.

There is a k-algebra anti-automorphism T of U defined by 7(E;) = Fy, 7(F;) = E;, 7(KF!) = K
fori=1,2. It is obvious that C'](Vl[) commutes with K; and Ko. One can check directly that C'](Vl[)
commutes with Eq and Eo. Because C'J(\}) 18 T-invariant, C'J(\}) commutes with 1y and Fy. Therefore,
Cii’ € Z(Uy(g)-

6.3. Proof of Theorem B. In the previous subsection, we used the quasi-R-matrix to construct

an explicit 'y associated with a finite-dimensional U, (g)-module M satistying Proposition 6.8.

Thus, we obtained a family of central elements of Uy(g). Now, we are ready to prove Theorem B.

For convenience, we simplify Cp_(y) for ng)( NS

Theorem 6.4. {Cp,(\) | A € AN $ZP and L(N) finite-dimensional } is a basis of Z(Ug(g)) if
g#A(L1).
Proof. Applying the HC to Cp (x)~ results in

HC (Cp,r)-) = HC (sm ((C(KQP) ® 1)FLq(,\)*)) —q_,om <Str1 ((cap) 1)/ch@)*)>

= Z Y—p (Str( (2p, ")PL ) ) stlmL JuK g, =HC (qu()\)) )

nEwt(Lq(A)*)

According to Theorem A (ie., the HC =~_, o7 is an algebra isomorphism), zz,_(x) = Cr,(x)
Furthermore, {[Lq(A)]|A 6 AN LZ® and Ly(N) is finite-dimensional } is a basis of Key(Uq(g)).
Hence, {CL e ¢(A) is finite-dimensional} is a basis of Z(Ug(g)). So is
{CLq(A | A€ AN1Z® and L(/\) is finite-dimensional }. O

Remark 6.5. One can define a new quantum superalgebra U= qu (g) associated with a simple Lie
superalgebra g, except for A(1,1), by replacing the cartan subalgebra of quantum superalgebra g
with the group ring kI' if Z& C T C A, WI' =T and ¢" € k for all y € T, A € A. Using the
same procedure, we can establish the Harish-Chandra isomorphism between Z(U) and (UOV)Sup,
where

(U0v>sup { Z Q#K EU
pe2ANT

In particular, K(g) = K (U), where K,(U) is the subring of K (U) generated by all objects in
U-mod whose weights are contained in A if I' = A.

Ay = Gy, YW € W; Z a, =0, Yo € @iy, with (v, a);é()}
pEAY
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Remark 6.6. Our approach to obtaining the Harish-Chandra type theorem for quantum superal-
gebras of type A-G takes advantage of the Rosso form, which cannot be applied to quantum queer
superalgebra U, (q,,) [37] or quantum perplectic superalgebra U, (p,,) [1]. One immediate problem
is to establish the Harish-Chandra type theorems for these quantum superalgebras. We hope to
return to these questions in future.

APPENDIX A. DYNKIN DIAGRAMS IN DISTINGUISHED ROOT SYSTEMS

The Dynkin diagrams in the distinguished root systems of a simple basic Lie superalgebra of
type A-G are listed below, where r is the number of nodes and s is the element of 7. Note that
the form of Dynkin diagrams in the distinguished root systems is quite uniform in the literature.

W Let h* be a vector space spanned by {€; — €i41,Em+1 — 01,0; — Jj41|1 <4 <
m,1 < j < n} satisfies

(81+...+€m+1)—(51+...+6n+1)=0.
We equip the dual h* with a bilinear form (-,-) such that
(Ei, Ej) = 61']‘, (Ei, 5]) = (6j,<€i) = O, (61', 6J) = —(Sij for all possible Z,j
The distinguished fundamental system IT = {a, ..., @mint1} is given by
{81 — &2, «+--5 Emy —Em+1; Em+1 — 51, 51 — 52, ceey 571 — 5n+1}-

The Dynkin diagram associated with IT is depicted as follows:

Em+1 — 01

O ® O— O

€1 —e2 €2 — €3 Em — Em+1 01 — 82 On — Ont1.
In this case r = m +n + 1, s = m + 1. The distinguished positive system &+ = <I>5r U @{r
corresponding to the distinguished Borel subalgebra for A(m,n) is

{ei—gj,0p—0l<i<j<m+11<k<i<n+1}U{e;—-§|ll<i<m+1,1<j<n+1}.
The Weyl group W = S,41 X Gyt

Let b* be a vector space with basis {e;,d;|1 < i < m,1 < j < n}. We equip
the dual h* with a bilinear form (-, ) such that

(ei,€5) = bij, (£4,05) = (05,6;) =0, (0;,0;) = —0;; for all possible ¢, j.
The distinguished fundamental system IT = {a, ..., amin} is given by
{61 =82, ...y One1 —Ony O —€1,61 — €2, «.vy Em—1—Em, Em}-
The Dynkin diagram associated with II is depicted as follows:

On — €1

51 — 02 On—1— On €1 — €2 Em—-1 —E€m Em-
In this case r = m+n, s = n+1. The distinguished positive system ®+ = <I>gu<1>i+ corresponding
to the distinguished Borel subalgebra is

{0i £65, 20p, ex &1, €4} U{0p £ &g, 0p},

where 1 < i < j<nl k<l <ml<p <nl < qg< m The Weyl group W =
(6, X ZE) x (&, X ZT1).

B(0,n) case: | Let h* be a vector space with basis {0;|1 <7 < n}. We equip the dual h* with
a bilinear form (-, -) such that

(0;,6;) = —0;; for all possible 4, j.
The distinguished fundamental system IT = {1, ..., a,} is given by
{61 =82, ..., 61 — On, On}.
The Dynkin diagram associated with II is depicted as follows:
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01 — 62 02 — 3 On—1—0n On.
In this case, r = s = n. The distinguished positive system ®+ = <I>5r U @;r corresponding to the
distinguished Borel subalgebra is

{6; £0;, 20p]1 <i<j<n,1<p<n}tU{dyl<p<n}
The Weyl group W = (6,, x Z%).
‘C(n +1) case: ‘ Let b* be a vector space with basis {g,0;]1 < i < n}. We equip the dual bh*

with a bilinear form (-, -) such that

(e,e) =1, (g,0;) = (b;,e) =0, (&;,0;) =—0;; for all possible i, j.

The distinguished fundamental system IT = {a1, ..., apt1} is given by
{E — 51,51 — 52, ey 5n71 — 5717 2571}

The Dynkin diagram associated with II is depicted as follows:
5nfl - 5n

e — 01 61 — d2 Op—2 — 0p—1 26y,
In this case r = n + 1,s = 1. The distinguished positive system & = @g U @{ corresponding
to the distinguished Borel subalgebra is

{6:£0;, 20p]1<i<j<n1<p<ntU{exd|l <p<n}

The Weyl group W = (G, x Z3).

Let h* be a vector space with basis {e;,0;]1 <7 < m,1 < j < n}. We equip
the dual h* with a bilinear form (-,-) such that

(81‘, Ej) = 517‘, (81‘, (%) = (5j75i> = O, (51, 5J) = _5ij for all possible Z,j
The distinguished fundamental system IT = {a, ..., amin} is given by
{01 =02, ...y On—1 —0n, On —€1,61 = €2, -+, Em—1— Em,y Em—1 +Em}-

The Dynkin diagram associated with II is depicted as follows:

Em—1 —Em

§n — €1 €1 —E2
01 — 02  On—1—0n Em—2 — Em—1

Em—1+tEm-
In this case r = m+n, s = n+ 1. The distinguished positive system & = @g N fIJ{r corresponding
to the distinguished Borel subalgebra is

{6; £8;, 20p, ex £, FU{0p &4},

where 1 < i < j <n,l1 <k<l<ml<p<nl<qgs< m The Weyl group W =
(G, X Z5) x (&, x ZTH).

‘D(2, 1;a) case: ‘ Let b* be a vector space with basis {e1,e2,e5}. We equip the dual h* with

a bilinear form (-, -) with
(e1,e1) =—(1+ ), (e2,62)=1, (es,e3)=0a and (g;,6;)=0 forall 1<i#j<3.
The distinguished fundamental system
IM={a; =¢e1+e2+e3,a0 = —2e9,03 = —2¢e3}.

The Dynkin diagram associated with II is depicted as follows:
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—252
€1+¢€2+ €3

—263.

In this case r = 3, s = 1. The distinguished positive system & = @g N @;r corresponding to the
distinguished Borel subalgebra is

‘I)g = {2e1, —2e9, —2¢3}, @;r ={e; ey te3}.
The Weyl group W = Z3.
F(4) case : | Let h* be a vector space with basis {d,1,¢e2,e5}. We equip the dual bh* with a

bilinear form (-,-) such that
(0,0) =-3, (£i,0)=(0,&;) =0, (e4,65)=0;; foralli.

The distinguished fundamental system
1
H—{a1—§(5—51—52—53), Qg = &3, a3 = &2 — &3, 044—51—82}.

The Dynkin diagram associated with IT is depicted as follows:

%(5751762763)

—O—=0—=0

€3 €2 —€3 €1 — €2.
In this case » = 4, s = 1. The distinguished positive system ®+ = @3‘ N @;‘ corresponding to
the distinguished Borel subalgebra is

1
{6, ep, Ei:tsj|1<i<j§3,1<p<3}u{5(5:tslj:52j:53)},

The Weyl group W = Zg x (&3 x Z3).
m Let b* be a vector space with basis {d,e1,e2} and e5 = —e1 — 2. We equip the
dual b* with a bilinear form (-, -) such that
(0,0) = —(&4,€) = =2, (£i,0) =(0,€) =0, (e4,65)=—1, foralll<i##j<3.
The distinguished fundamental system
MI={ay =0+e3,a2 =e1,03 =62 —€1}.

The Dynkin diagram associated with II is depicted as follows:

5+ e3

®—O=0

€1 E2 —E1.
In this case 7 = 3, s = 1. The distinguished positive system ®+ = @g N @;r corresponding to
the distinguished Borel subalgebra is

{25, €1, €2, €2 + €1, €1 — &3, €2 — 83} U {5, 0=+ Ei|i = 1, 2,3},
The Weyl group W = Zg x Dg, where Dg is the dihedral group of order 12.

APPENDIX B. EXPLICIT DESCRIPTION OF THE RINGS Jey(g)

Now we give the explicit description of the rings Je,(g) for quantum superalgebras, which
is inspired by Sergeev and Veselov’s description for Lie superalgebras [42, Section 7, 8]. Let
r; = K_., /o and y; = K_;, /5 formally. First we need to review the rings J(g) for g is of type A.
Let

m—+1 n+1
P() = { Z a;g; + ijdj

i=1 j=1

ai,bj € C and a; —ai+1,bj —bj+1 S Z, V’L,]}/C’Y
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be the weights of Sl 1jny1s where v = €1+ -+ &my1 — 01 — -+ — Opq1 and z; = €%, y; =

e% for all possible i,j be the elements of the group ring of (C[PO] For convemence, we set
+ +

C[Iivyi] = C[‘rl 17" : axi:mlJrlayl P 7yr:7|,:i1]7 Z[Iivy ] = Z[Il )t axi:mlJrlvyl P aynil] and

then for (m,n) # (1,1)

0 0
b bt € (o) |

J(sbys1nt1) = {f € Z[PO] O,

= @ J(s[m-i-l\n—i-l)av

aeC/Z

where

:E. ~’771 Gn
J(5[m+1\n+1)a — ($1 .. 'xm-i-l)a | | (1 o y1> Z[;vil,yil]g +1 X641
; p
i,p

if a ¢ Z;

O o o)

J(8lmt1jnt1)o = {f € Z[pE!, yF SO g o

and Z[zT!, yj[l](?’"+1 *Sn+1 §s the quotient of the ring Z[zF! yFSm+1XGnt1 by the ideal generated
by 1+ Tpmy1 — Y1 Ynta
J(A(n,n)) = @ J(A(n,n)); for n # 1, where for ¢ # 0
i=0

) n+1 )
J(A(n,n))i = {f = (21 @)™ ] <1 - %) g‘g € Zla* y g O deg g = —i}

3P P
and J(A(n,n))o is the subring of J(sl,,1)n+1)o consisting of elements of degree 0.

J(A(1,1)) = {c+ (u—v)?glc € Z, g € Zlu,v]} where u = (i—i) i (5—?)% U (%)%+ (5_3)%'

‘A(m, n), m # n case: ‘ Define

of of
Jm|n — (C +1 +1 Sim+1XGni1 .
{recuym P g € ()
and
J,Q”'":{feJmI" degf:k}.
Thus, J™" = @ J;"".
kEZ
m—+1
For any element A € h*, we write A = ) a;g; + E b;0;, then we have
=1 Jj=

m—+1 n+1
ai,b; €Z, Vi,jand Y a;i+ Y b _0},

i=1 j=1

_{Aeb*

and

m—+1 n+1
A—{/\Ef)* CLi,bj EQ, ai—aiﬂ,bj—bj“ EZ, Vigm,jgnand Zal+zbj_0}




ON THE HARISH-CHANDRA HOMOMORPHISM FOR QUANTUM SUPERALGEBRAS 31

By direct computation, we know that

m—+1 ) n+1 )
2O+ 7| 3 (1)t e + 3 (—1)J5j> . ifm = 2k,n =2,

171 j=1
27D + 7. E( 1)74; if m=2k,n=20+1,
2ANZP = J:
2Z<I>+ZZ( 1)itle,, if m=2k+1,n=2l,
731: n+1
2Z<I>+ZZ( 1)+l +ZZ( 1)74;, ifm=2k+1,n=20+1,

for some non-negative integers k,[. Then the algebra

;" e Hyf T . if m = 2k, n = 2,
m‘"@Hyj m(‘[il), if m = 2k,n = 20+ 1,
Jev(g) = Jén\n@nxiz T if m=2k+1,n =21,
Jrn g Hx‘ gl e 1;[% R £ Hy2Jm|,?+l+2) ifm =2k +1,n =20+ 1.

for some non-negative integers k, . So it can be viewed as a subalgebra of k®z J(g) by ¢: Jov(g) —
k ®z J(g) with K; — e~*/2 and its image is coincide with k ® Sch(Kcy(g)).

‘A(n,n) (n#1) case:

In this case, we set

of of

S, S,
J(n)o = {f € Cla™, y™ g™ o T +yj8_yj € (z — yj)}

where Clz*!,y*!]o is the quotient of the ring Clz*!,y*!] with degree 0 by the ideal I =
<$1 Intl 1> Then we have

Y1 Yn+1

<

(n)o if n is even,
Tecl®) =\ sy @ {? I ( )g+1’g € Cla™!,y=1]", deg g = —"T“} if n is odd,
where @ = 1@y -+ Zny1 and W = S, 41 X S, y1. It can be viewed as a subalgebra by v: Je (g) —
k @z J(g) with K; — e~%/2 and its image is coincide with k ® Sch(Key(g)).
1 1
A(1,1) case: |We have Joy (A(1,1)) = {c¢+ (u — v)g|g € Clu,v] } where u = (%) ’ +(1_2> i » U=

x1

Y2

(y—)_ + (g—) Andu—v=K; +K;!' — K3 — K3' € Joy (A(1,1)), but u— v & J(A(1,1)).

m n
B(m,n),m,n >0 case: ‘ We set A= > A\igs + > p;0; € b*, then in this case
i=1 j=1

Z® = {\€b*|\i,y; €Z, Vi, j} and A_{)\eh*

1
W € Z, Vjandallx\iEZorall)\ieZ—FE}.

So 2ANZP = 2A. Let u; = x; + ZCi_l and v; = y; + yj_l for all possible 4,3, then we have

Jev(g) = J(g)o® J
§i+ngg & (u, vj>},

—~

9)1/2, where

S, X6y,

J(g)oz fE(C[’U,l,--- y Um, U1y " 7Un]

1/2—{

and

m n

1/2 —1/2 HH i — v;)g

i=1j=1

_:]3

s
|
-

S X6,
gG(C[ul,--- Um, V1, * ,’Un] }
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B(0,n) case: | In this case A = Z® = { > uid;
j=1

i € Z, Vj}, so 2ANZ® = 2A and this

algebra Jo,(g) = Clvy,v2, - - ,v,]%", where the notation v; are the same as above.

‘ C(n+1) case: ‘ In this case

A= {Aa—i—Zujéj

j=1

AeC,pu; €7, Vj}

and

A1y €Z, Vj and A+ Zuj is even}.

j=1

7P = {/\E + Z“j5j

j=1

S0 20N 20 = { e + 3 156,
j=1

A i € 27, Vj} and the algebra

af  of

+ +
Jev(9) = {f € Cla™, i, Lyt Y 5y tag- €@ —yj)}-

‘D(m,n),m > 1,n> 0 case: ‘ Let A=Y Nig; + > p;0; € b* and u,, v, are as above, then

i=1 j=1
1
A:{/\ef)* Wi € 7Z, Vjandallx\ieZoraH/\iEZ—i—E}
and
7o = {)\ € b* |\, € Z, Vi, j and Z)‘i —l—Zuj is even}.
i=1 j=1
So

279 + 7 (Z £i> + 2Z¢e,, if m =2k,
i=1

27D + 2Ze,,, if m=2k+1,

for some positive integer k. Thus the algebra Je,(g) is, respectively, equal to J(g)o © J(g)1/2 for
m = 2k and J(g)o for m = 2k + 1, where

J(g)O = {fe(c[xlila 7*%'7:‘7:117y1i17"' 7y7:i:1]W

2ANZD =

of of
xza_xi'i'y]a_yj € (xz _y])}u

and

w
J())2 = {Hwi — ) (@12 -+ w) PO i Lyt }

2%

‘ D(2,1,a) case: ‘ In this case,

3
A= {Z)\i&'i

i=1
So 2A NZ® = 2A. Thus the algebra
Joulg) = {c¢+ Ahlc € C, h € Cluy,uz, us }, if o is not rational,
I {g(wa) + Ahlg € Clw], h € C[ul,uQ,U3]}, ifa=p/qwithpeZ,qeN,

3
\ €Z, w}, and Z® = {Zmi

=1

Ai € Z and \; —)\j € 27, VZ,]}

where
A =ui 4 uj + uj 4, up =i+ a; ", fori=1,2
=wuy +uj +uz —uruguz — 4, u; =x; +x; -, fori=1,2,3,
and

—1 71> (2 — 2y ")(x§ — x37)

wo = (T1 + x;l — Toy — Ty T3 (@ xil)(xg xil) + by + 2y Pl
) -3
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F(4) case: | In this case,

3
= {ud + Z)\lé‘z

=1

1
all/\iEZorall/\iEZ—FE, QMEZ},

and

3
Z® = {u(s +) e

i=1
So 2A NZ® = 2A, and the algebra

Jev(g) {Q(W1,W2 + Ah‘h S (C i2 ;2 x§t27 ($1x2x3)i17yil]wa g€ C[Wl,Wg]},

1
all \j, p € Zor all \;, uEZ+§}.

where
3 T1ToT z?
B 1 e _1_ T1%2T3 i
A=(y+y w1%w3 — a7 'wy a5 1_[1 (y—i—y z? x1x2x3> ’
im
and
1 1 3 &
2%k —2k —2k 2k —2k _
Wi = Z <331 +x; +§)( +x; +2)_Z+y +y (W +y~ Hx—l—x )
1<i<j<3 =t

with k = 1,2, and W = Zy x (&5 x Z3).
G(3) case: | In this case, A = Z® = {)\151 + doga + ud| A1, Ao, 1 € Z}. So 2ANZP = 2A, and
the algebra

Jente) = {afe) + [T00 ~ w)nfp € Clovunumual®, g € i}

where

w=v%—v(uy +us +uz + 1) + ugus + urus + ugus.

and the notations u;, v are the same as above.
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