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2-UNITARY OPERADS OF GK-DIMENSION 3

YAN-HONG BAO, DONG-XING FU, YU YE, AND JAMES J. ZHANG

Abstract. We study and classify the 2-unitary operads of Gelfand-Kirillov dimension three.

0. Introduction

Algebraic operads originated from homotopy theory in algebraic topology, and was first introduced

by Boardman-Vogt [BV] and May [Ma] in 1960s-1970s. During the recent 20 years, operad theory has

become an important tool in homological algebra, category theory, algebraic geometry and mathematical

physics. It is well-known that every operad encodes an algebra system. For example, Ass encodes all

unital associative algebras. Further, a k-linear operad itself is an algebraic object similar to an associative

algebra, and algebraic structures of operads have been widely investigated by many mathematicians, see

[BYZ, Dot, DK, DMR, DT, Fr1, Fr2, KP, LV, MSS, QXZZ].

The Gelfand-Kirillov dimension of an associative algebra is a useful numerical invariant in ring theory

and noncommutative algebraic geometry, see [KL]. In a similar way, the Gelfand-Kirillov dimension can

be defined for other algebraic objects including algebraic operads [BYZ, Fi]. Let k is a base field. An

operad P is said to be locally finite if each P(n) is finite dimensional over k. In this paper we only

consider locally finite operads. The Gelfand-Kirillov dimension (or GK-dimension for short) of a locally

finite operad P is defined to be

GKdimP : = lim sup
n→∞

logn

(

n
∑

i=0

dimk P(i)

)

.

We refer to [BYZ, KP, QXZZ] for more information related to the GK-dimension of an operad.

Recall that an operad P is unitary if P(0) = k10 with a basis element 10 (which is called a 0-unit),

see [Fr2, Section 2.2]. Denote by Op+ the category of unitary operads, in which a morphism preserves

the 0-unit. A 2-unitary operad P is a unitary operad P equipped with a morphism Mag → P in Op+,

where Mag is the unital magmatic operad (see [BYZ, Section 8.4] or [Lo, Section 4.1.10]). The definition

of a 2a-unitary operad is given in Definition 1.5(4). In [BYZ], the authors proved that GK-dimension of

a 2-unitary operad P is either an nonnegative integer or infinity and that the generating series of P is a

rational function when GKdimP <∞. The pattern of GK-dimension of a general non-2-unitary operad

(or nonsymmetric operad) is very different, see Remark 5.5.

The only 2-unitary operad of GK-dimension 1 is Com that encodes all unital commutative algebras.

All locally finite 2-unitary operads of GK-dimension 2 were classified in [BYZ, Theorem 0.6]. One way of

viewing this classification is the following. We refer to [BYZ, Section 6] for the construction of 2-unitary

operads of GK-dimension 2.
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Theorem 0.1. [BYZ, Theorem 0.6] There are natural equivalences between

(1) the category of finite dimensional, not necessarily unital, k-algebras,

(2) the category of 2-unitary operads of GK-dimension ≤ 2,

(3) the category of 2a-unitary operads of GK-dimension ≤ 2.

In the case of GK-dimension 3, our result is not as clean as Theorem 0.2. Nevertheless, we will

provide a classification. Recall that an operad is called Com-augmented if there is an operadic unit

map uP : Com → P . The morphisms in the category of Com-augmented operads are supposed to be

compatible with operadic unit maps. Here is the main result of this paper.

Theorem 0.2. There is a natural equivalence between

(1) the category of finite dimensional trident algebras,

(2) the category of Com-augmented operads of GK-dimension 3.

If char k 6= 2, we also prove that every 2-unitary operad of GK-dimension 3 is equipped with a

Com-augmentation with possibly new 2-unit [Proposition 2.5]. Combining Theorem 0.2 with Proposition

2.5, we obtain a classification of 2-unitary operads of GK-dimension 3 in terms of finite dimensional

trident algebras. However, Theorem 0.2 fails if the condition “Com-augmented” in part (2) is replaced

by “2-unitary” [Example 5.4].

The definition of a trident algebra is given in Section 3. Roughly speaking, a trident algebra consists of

a pair of k-vector spaces (A,M) equipped with some algebraic structures and a pair of k-linear maps (f, g)

satisfying some identities. Note that a seemingly technical result, Theorem 0.2, makes some questions

easy to solve. For example, we prove

Corollary 0.3 (Proposition 5.3). There is no Com-augmented Hopf operad of GK-dimension 2.

Corollary 0.3 motivates the following question.

Question 0.4. Is there a Com-augmented Hopf operad of finite GK-dimension large than 2.

This paper is organized as follows. In Section 1 we recall some basic definitions and properties of

2-unitary operads. We prove some properties of 2-unitary operads of GK-dimension 3 in Section 2. A key

preliminary result is that a 2-unitary operad of GK-dimension 3 is Com-augmented after changing the

2-unit [Proposition 2.5]. We define a concept of a trident algebra in Section 3. In Section 4, we construct

an operad from a trident algebra and complete the classification of 2-unitary operads of GK-dimension

3 by Theorem 0.2 and Proposition 2.5. In Section 5, we give some comments, examples, and remarks. A

complete but tedious proof of Theorem 4.1 is given in Appendix (Section 6).

Acknowledgments. Y.-H. Bao and Y. Ye were partially supported by the Natural Science Foundation

of China (Grant Nos. 11871071, 11971449). J.J. Zhang was partially supported by the US National

Science Foundation (Grant Nos. DMS-1700825 and DMS-2001015).
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1. Preliminaries

Throughout let k be a base field, and every object is over k. Let n be a nonnegative integer. Set

[n] = {1, 2, · · · , n} for n > 0 and [0] = ∅. We use Sn to denote the symmetric group for n ≥ 0. By

convention, S0 is the trivial group. Following the notation introduced in [BYZ, Section 8.1], for each

σ ∈ Sn, we use the sequence (i1, i2, · · · , in) to denote a permutation σ ∈ Sn with σ(ik) = k for all

1 ≤ k ≤ n. Denote by S the disjoint union of all symmetric group Sn for all n ≥ 0. Recall that a

kS-module (or S-module) means a sequence {P(n)}n≥0 of right kSn-modules, where the right Sn-action

on P(n) is denoted by ∗.

In this section, we retrospect some basic facts about operads.

1.1. Definitions. From different viewpoints, there are various definitions about operads. In this paper,

we mainly use the partial definition and refer to [LV, Chapter 5] for other versions of the definition.

Definition 1.1. [Fr2, Section 2.1] An operad P consists of the following data:

(i) a kS-module {P(n)}n≥0, where an element in P(n) is called an n-ary operation.

(ii) an element 1 ∈ P(1), which is called the identity,

(iii) for all m ≥ 1, n ≥ 0 and 1 ≤ i ≤ m, a partial composition:

− ◦
i
− : P(m)⊗ P(n) → P(m+ n− 1)

satisfying the following coherence axioms:

(OP1) (Identity) for all θ ∈ P(M) and all 1 ≤ i ≤ m,

θ ◦
i
1 = θ = 1 ◦

1
θ;

(OP2) (Associativity) for all λ ∈ P(l), µ ∈ P(m) and ν ∈ P(n),

(λ ◦
i
µ) ◦

i−1+j
ν = λ ◦

i
(µ ◦

j
ν), 1 ≤ i ≤ l, 1 ≤ j ≤ m,(E1.1.1)

(λ ◦
i
µ) ◦

k−1+m
ν = (λ ◦

k
ν) ◦

i
µ, 1 ≤ i < k ≤ l;(E1.1.2)

(OP3) (Equivariance) for all µ ∈ P(m), ν ∈ P(n) and σ ∈ Sn, φ ∈ Sm,

µ ◦
i
(ν ∗ σ) =(µ ◦

i
ν) ∗ σ′,(E1.1.3)

(µ ∗ φ) ◦
i
ν =(µ ◦

φ(i)
ν) ∗ φ′′,(E1.1.4)

where σ′ = 1m ◦
i
σ and φ′′ = φ◦

i
1n are given by the partial composition in the associative algebra

operad Ass. We refer to [BYZ, Section 8] for more details concerning σ′ and φ′′.

Let P be an operad in the sense of Definition 1.1. Then one can define the composition map by

(E1.1.5) λ ◦ (µ1, · · · , µn) = (· · · ((λ ◦
n
µn) ◦

n−1
µn−1) ◦

n−2
µn−2 · · · ) ◦

1
µ1

for all λ ∈ P(n) and µi ∈ P and for 1 ≤ i ≤ n [BYZ, Remark 1.3].

Example 1.2. [LV, Section 5.2.10] Let Com denote the commutative algebra operad. The space of n-ary

operations of Com is Com(n) = k1n equipped with the trivial action of the symmetric group and the

partial composition is given by 1m ◦
i
1n = 1m+n−1 for all m,n, i. Note that 11 is the identity 1 of Com.
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Example 1.3. [LV, Section 13.8] Suppose that Mag is the operad generated by the S-module

(kµ, k1, kS2ν, 0, 0, · · · )

and subject to relations

ν ◦
i
µ = 1, (i = 1, 2),

where kS2ν is the regular kS2-module with the basis ν. In this paper we use 10 for µ and 12 for ν.

Definition 1.4. [LV, Chapter 5] Let P and P ′ be operads. A morphism from P to P ′ is a sequence of

kSn-homomorphism γ = (γn : P(n) → P ′(n))n≥0, satisfying

γ(1) = 1

′ and γ(µ ◦
i
ν) = γ(µ) ◦

i
γ(ν),

where 1 and 1

′ are identities of P and P ′, respectively, and µ, ν ∈ P . Let Op denote the category of

operads.

Next we collect some definitions given in [BYZ, Fr2].

Definition 1.5. (1) An operad P is called unitary if P(0) = k10, where 10 is a basis of P(0), and

is called a 0-unit. The category of unitary operads is denoted by Op+, in which morphisms are

operadic morphisms preserving 0-units.

(2) A unitary operad is said to be connected, if P(1) = k1 where 1 is the identity of P . In this case

we also use 11 for 1.

(3) A 2-unitary operad is a unitary operad P equipped with a morphism Mag → P in Op+, where

Mag is the unital magmatic operad [Example 1.3], or equivalently, there is an element 12 ∈ P(2)

(called a 2-unit) such that

(E1.5.1) 12 ◦
1
10 = 1(= 11) = 12 ◦

2
10

where 10 is a 0-unit of P .

(4) A 2a-unitary operad is a unitary P equipped with a morphism Ass→ P in Op+, or equivalently,

P is 2-unitary with a 2-unit 12 satisfying

(E1.5.2) 12 ◦
1
12 = 12 ◦

2
12.

In this case 12 is called 2a-unit.

(5) An operad P is called Com-augmented if there is a morphism from Com → P . It is clear that

Com-augmented operads are 2a-unitary. In this case 12 ∗ (2, 1) = 12 and 12 is called a symmetric

2a-unit.

Let P and P ′ be 2-unitary operads. A morphism of 2-unitary operads is a morphism γ : P → P ′ in

Op+ satisfying the following commutative diagram

Mag

}}③③
③③
③③
③③

""
❊❊

❊❊
❊❊

❊❊

P
γ

// P ′

or equivalently, the operad morphism preserves the 2-unit. The categories of 2-unitary operads, 2a-

unitary operads and Com-augmented operads, are denoted by Mag ↓ Op+, Ass ↓ Op+ and Com ↓ Op+,

respectively. Let dim denote dimk.



2-UNITARY OPERADS OF GK-DIMENSION 3 5

Definition 1.6. Let P = (P(n))n≥0 be a locally finite operad, i.e. dimP(n) <∞ for all n ≥ 0.

(1) The generating series of P is defined to be

GP (t) =

∞
∑

n=0

dimP(n)tn ∈ Z[[t]].

(2) The Gelfand-Kirillov dimension (GK-dimension for short) of P is defined to be

GKdim(P) = lim sup
n→∞

logn(

n
∑

i=0

dimP(i)).

1.2. Truncation Ideals. Let P be a unitary operad and I a subset of [n]. Recall that a restriction

operator [Fr2, Section 2.2.1] means

(E1.6.1) πI : P(n) → P(s), πI(θ) = θ ◦ (1χI (1), · · · ,1χI(n))

for all θ ∈ P(n), where χI is the characteristic function of I, i.e. χI(x) = 1 for x ∈ I and χI(x) = 0

otherwise. Note that ◦ is defined in (E1.1.5). If I = {i1, · · · , is} ⊂ [n] with 1 ≤ i1 < · · · < is ≤ n, we

also denote πI as πi1,··· ,is . We refer to [BYZ, Section 2.3] for more details.

For integers k ≥ 1, the k-th truncation ideals kΥ is defined by

(E1.6.2) kΥP(n) =
⋂

I⊂[n], |I|≤k−1

KerπI =











⋂

I⊂[n], |I|=k−1

KerπI , if n ≥ k;

0, otherwise.

By convention, let 0ΥP = P . If no confusion, we write kΥ = kΥP for brevity.

For every subset I = {i1, · · · , is} ⊂ [n] with i1 < · · · < is, we denote a permutation

cI : = (i1, · · · , is, 1, · · · , i1 − 1, i1 + 1, · · · , is − 1, is + 1, · · · , n) ∈ Sn.

Theorem 1.7. [BYZ, Theorem 4.6] Let P be a 2-unitary operad. For each k ≥ 0, let

Θk : = {θk1 , · · · , θ
k
zk
}

be a k-basis for kΥ(k). Let Bk(n) be the set

{12 ◦ (θ
k
i ,1n−k) ∗ cI | 1 ≤ i ≤ zk, I ⊂ [n], |I| = k.}

Then P(n) has a k-basis
⋃

0≤k≤n

Bk(n) = {1n} ∪
⋃

1≤k≤n

Bk(n),

and for every k ≥ 1, kΥ(n) has a k-basis
⋃

k≤i≤n Bi(n).

Lemma 1.8. [BYZ, Lemma 5.2] Let P be a 2-unitary operad and fP(k) = dim kΥ(k) for each k ≥ 0.

Then

(1) GP (t) =
∞
∑

k=0

fP(k)
tk

(1 − t)k+1
.

(2) GKdimP = max{k | fP(k) 6= 0}+ 1 = min{k | kΥ = 0}.

Combining Lemma 1.8(2) with [BYZ, Proposition 0.5], if P is 2-unitary, then there is a canonical

morphism of 2-unitary operads

(E1.8.1) ǫ : P −→ P/1Υ = Com.
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2. Basic Facts of 2-unitary Operads of GK-dimension 3

Let P be a 2-unitary operad of GK-dimension 3. By Theorem 1.7 and Lemma 1.8, we have the

following basic facts:

(1) 2Υ 6= 0, and kΥ = 0 for all k ≥ 3.

(2) dimP(n) = 1 + dn+m
n(n− 1)

2
, where d := fP(1) = dim 1Υ(1) and m := fP(2) = dim 2Υ(2).

(3) GP (t) =
1

1− t
+ d

t

(1 − t)2
+m

t2

(1 − t)3
.

Based on the above facts, we have the following lemmas, which is useful to understand the structure

of a 2-unitary operad of GK-dimension 3.

Lemma 2.1. Let P be a 2-unitary operad of GK-dimension 3 and 12 a 2-unit. Then for all τ, µ ∈ 2Υ(2),

τ ◦
1
12 =12 ◦

2
τ + (12 ◦

2
τ) ∗ (12),(E2.1.1)

τ ◦
2
12 =12 ◦

1
τ + (12 ◦

1
τ) ∗ (23).(E2.1.2)

τ ◦
i
µ =0 (i = 1, 2).(E2.1.3)

Proof. By a direct calculation, we have

(τ ◦
1
12 − 12 ◦

2
τ − (12 ◦

2
τ) ∗ (12)) ◦

i
10 = 0

for all 1 ≤ i ≤ 3. It follows that

τ ◦
1
12 − 12 ◦

2
τ − (12 ◦

2
τ) ∗ (12) ∈ 3Υ(3).

Since P is of GK-dimension 3 and 3Υ(3) = 0, Equation (E2.1.1) holds. Similarly, (E2.1.2) and (E2.1.3)

hold. �

Let P be a 2-unitary operad with a 2-unit 12. By convention, we define 1′
n = 1n for n = 0, 1, 2. Recall

from [BYZ, Section 2] that, for every n ≥ 3, one can define inductively that

1n = 12 ◦
1
1n−1, and 1

′
n = 12 ◦

2
1

′
n−1.

By Definition 1.5(4) a 2-unitary operad is called 2a-unitary if 12 is associative, or equivalently 13 = 1

′
3.

Lemma 2.2. Let P be a 2-unitary operad of GK-dimension 3 with 2-unit 12. Then 12 is a 2a-unit.

Moreover, if 12 is a 2a-unit, then so is 12 + τ for any τ ∈ 2Υ(2).

Proof. Suppose that 12 is a 2-unit of P . By definition, 13 = 12◦
1
12 and 1

′
3 = 12◦

2
12. One can easily check

that (13 − 1

′
3) ◦

i
10 = 0 for all i = 1, 2, 3. This means that 13 − 1

′
3 ∈ 3Υ(3). Since P is of GK-dimension

3, 3Υ(3) = 0. Thus 13 = 1

′
3 as required.

Clearly, for any τ ∈ 2Υ(2), we have

(12 + µ) ◦
i
10 = 12 ◦

i
10 = 11

for i = 1, 2. So 12 + µ is a 2-unit. Moreover, by Lemma 2.1 (E2.1.3), we have

(12 + τ) ◦
i
(12 + τ) = 12 ◦

i
12 + τ ◦

i
12 + 12 ◦

i
τ
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for i = 1, 2. Since 12 is a 2a-unit, 12 ◦
1
12 = 12 ◦

2
12. By direct computation, we have

(12 ◦
1
τ + τ ◦

1
12 − 12 ◦

2
τ − τ ◦

2
12) ◦

i
10 = τ − τ = 0

for i = 1, 2, 3. Therefore, (12 ◦
1
τ + τ ◦

1
12 − 12 ◦

2
τ − τ ◦

2
12) ∈

3Υ(3). Since P is of GK-dimension 3 and

3Υ(3) = 0, we know 12 ◦
1
τ + τ ◦

1
12 = 12 ◦

2
τ + τ ◦

2
12. It follows that 12 + τ is a 2a-unit. �

Lemma 2.3. [BYZ, Lemma 2.7] Let P be a 2a-unitary operad. Then the following hold.

(1) For every n ≥ 3, 1n = 1

′
n.

(2) For every n ≥ 1 and k1, · · · , kn ≥ 0, 1n ◦ (1k1 , · · · ,1kn
) = 1k1+···+kn

.

Lemma 2.4. Let P be a 2-unitary operad of GK-dimension 3. Suppose that 1Υ(1) has a k-basis {δj |

j ∈ [d]} and 2Υ(2) has a k-basis {τs | s ∈ [m]}. Then for every n ≥ 3, P(n) has a k-basis:

{1n} ∪ {δn(i),j | i ∈ [n], j ∈ [d]} ∪ {τn(i1i2),s | 1 ≤ i1 < i2 ≤ n, s ∈ [m]},(E2.4.1)

where δn(i),j = (1n ◦
1
δj) ∗ ci, τ

n
(i1i2),s

= (1n−1 ◦
1
τs) ∗ ci1i2 , and ci = (i, 1, · · · , i − 1, î, i + 1, · · · , n) and

ci1i2 = (i1, i2, 1, · · · , i1 − 1, î1, i1 + 1, · · · , i2 − 1, î2, i2 + 1, · · · , n).

Proof. Since P is a 2-unitary operad of GK-dimension 3, we have kΥ(k) = 0 for all k ≥ 3. By Theorem

1.7, we can choose a basis of P(n) as follows

{1n} ∪ {12 ◦ (δj ,1n−1) ∗ ci | i ∈ [n], j ∈ [d]} ∪ {12 ◦ (τs,1n−2) ∗ ci1i2 | 1 ≤ i1 < i2 ≤ n, s ∈ [m]}.

By Lemmas 2.2 and 2.3

1n ◦
1
δj = 1

′
n ◦

1
δj = (12 ◦

2
1n−1) ◦

1
δj = (12 ◦

1
δj) ◦

2
1n−1 = 12 ◦ (δj ,1n−1),

1n−1 ◦
1
τs = 1

′
n−1 ◦

1
τs = (12 ◦

2
1n−2) ◦

1
τs = (12 ◦

1
τs) ◦

3
1n−2 = 12 ◦ (τs,1n−2),

we immediately obtain basis (E2.4.1) of P(n). �

Proposition 2.5. Suppose char k 6= 2. Let P be a 2-unitary operad of GK-dimension 3 with a 2-unit

12. Let

1

′
2 :=

1

2
(12 + 12 ∗ (12)).

Then 1

′
2 is also a 2a-unit. Consequently, P is Com-augmented.

Proof. It is easy to check that 1′
2 is a 2-unit. By Lemma 2.2, 1′

2 is a 2a-unit, namely, (P ,10,1,1
′
2) is a

2a-unitary operad.

After replacing 12 by 1

′
2 we may assume that 12 ∗ (12) = 12. It follows from induction and Lemma

2.3(1) that 1n ∗ σ = 1n for all σ ∈ Sn. Therefore there is a canonical morphism from Com [Example 1.2]

to P sending 1n 7→ 1n for all n ≥ 0. �

3. Trident Algebras

Let R be a untial associative algebra over k with a right action of an abelian group G satisfying

(ab).g = (a.g)(b.g) and for all a, b ∈ R and g ∈ G. Such an R is called a kG-module algebra. Recall that

the skew group algebra R#G is the vector space R⊗ kG with the multiplication

(a#g)(b#h) = ((a.h)b)#(gh)).
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Furthermore, a right module M over R#G means that M is a right R-module and a right kG-module

satisfying (µa)g = (µg)(a.g) for all µ ∈M, g ∈ G and a ∈ R. The following lemma is easy.

Lemma 3.1. Let G be an abelian group. Let A and B be G-module algebras. Suppose M,N are right

modules over the skew groups algebras A#G and B#G, respectively. Then M ⊗N is a right (A⊗B)#G-

module with the action given by

(x⊗ y)(a⊗ b#g) : = (x.(a#g)) ⊗ (y.(b#g))

for x ∈M, y ∈ N, a ∈ A, b ∈ B, g ∈ G.

Let A be a unital associative algebra. Clearly, the tensor product algebra A ⊗ A (also denoted by

A⊗2) admits a natural right S2-action given by (a⊗ b)(12): = b⊗ a. So we obtain a skew group algebra

(A⊗A)#S2 (also denoted by A⊗2#S2). Let M be a left A- right A⊗2#S2-bimodule. Equivalently, M is

both a right kS2-module and a left A- right (A⊗A)-bimodule satisfying

a(µ(12)) =(aµ)(12),(E3.1.1)

(µ.(a⊗ b))(12) =(µ(12)).(b⊗ a),(E3.1.2)

for all a, b ∈ A, µ ∈M .

Remark 3.2. Observe that if M is both a right kS2-module and a right A-module with the action

M ⊗A→M, (µ, a) 7→ µ ·
1
a, then M admits another right A-module action given by

µ ·
2
a = ((µ.(12)) ·

1
a).(12),

which is called the congruence action. Therefore, a right A⊗2#S2-module action on M is equivalent to a

right kS2-action together with a right A-module action satisfying

(E3.2.1) (µ ·
1
a) ·

2
b = (µ ·

2
b) ·

1
a

for all µ ∈M,a ∈ A.

3.1. Tridents. In this subsection we introduce a new algebraic system.

Let A = k11 ⊕ Ā be an augmented algebra with augmentation ideal Ā. Obviously, the right regular

A⊗2-module A ⊗ A with an action of S2 given by (a ⊗ b)(12) = b ⊗ a admits a right A⊗2#S2-module

structure. Furthermore, its quotient module (A⊗A)/(Ā⊗Ā) admits an (A,A⊗2#S2)-bimodule structure,

where the left A-action is given by

a · [1A ⊗ 1A] : = [a⊗ 1A] + [1A ⊗ a], a · [b⊗ 1A] : = [(ab)⊗ 1A], a · [1A ⊗ b] : = [1A ⊗ (ab)]

for a, b ∈ Ā, where [x⊗ y] denotes the element x⊗ y + Ā⊗ Ā ∈ (A⊗ A)/(Ā⊗ Ā) for x⊗ y ∈ A⊗A.

In fact, (A⊗A)/(Ā⊗ Ā) is isomorphic to k(1A ⊗ 1A)⊕ (Ā⊗ k1A)⊕ (k1A ⊗ Ā) as a vector space.

Let A be an augmented algebra with the augmented ideal Ā andM an (A,A⊗2#S2)-bimodule. Suppose

that E is an extension ofM by (A⊗A)/(Ā⊗ Ā) as an (A,A⊗2#S2)-bimodule. Then the triple (A,M,E)

is called a trident.

Let (A,M,E) and (A′,M ′, E′) be two tridents. Suppose that α : A → A′ is a homomorphism of aug-

mented algebras, and β : M →M ′ is a homomorphism of (A,A⊗2#S2)-bimodules with the (A,A⊗2#S2)-

actions on M ′ given by the algebra homomorphisms α : A → A′ and α ⊗ α : A ⊗ A → A′ ⊗ A′. Clearly,
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[α⊗ α] : (A ⊗ A)/(Ā ⊗ Ā) → (A′ ⊗ A′)/(Ā′ ⊗ Ā′) is a homomorphism of (A,A⊗2#S2)-bimodules. Then

one can obtain a homomorphism of extensions of (A,A⊗2#S2)-bimodules

0 −−−−→ M −−−−→ E −−−−→ (A⊗A)/(Ā⊗ Ā) −−−−→ 0

β





y

γ





y





y

[α⊗α]

0 −−−−→ M ′ −−−−→ E′ −−−−→ (A′ ⊗A′)/(Ā′ ⊗ Ā′) −−−−→ 0

which is also called a homomorphism of tridents. Consequently, we obtain a category T , called the trident

category. The following lemmas follows from Lemma 3.1.

Lemma 3.3. Let A,B be an associative algebras over k. Suppose that M and N are (A,A⊗2#S2)- and

(B,B⊗2#S2)-bimodules, respectively. Then M ⊗N is (A⊗B, (A⊗B)⊗2#S2)-bimodule.

3.2. Trident systems. There is another way of introducing a trident. Denote by mod-S2 the category

of finite dimensional right kS2-modules. It is well known that V ⊗W ∈ mod-S2 with the diagonal action

(v ⊗ w) ∗ (12) = (v ∗ (12))⊗ (w ∗ (12))

for V,W ∈ mod-S2. Let B be an associative algebra in the category mod-S2. Such an algebra is also

called a kS2-module algebra (in Hopf algebra language). Sometimes it is called an algebra with involution

(but k may not be the complex field). A right (resp. left) module V over a kS2-module algebra B means

V ∈ mod-S2 and the action V ⊗B → V (resp. B ⊗ V → V ) is a homomorphism of kS2-modules.

Definition 3.4. A pair (A,M) with morphisms f, g, or equivalently, a quadruple (A,M, f, g), is called

a trident system if

(1) A = k11 ⊕ Ā is an augmented algebra with the augmentation ideal Ā,

(2) M is a nontrivial (A,A⊗A)-bimodule in mod-S2,

(3) f : Ā→M is a k-linear map in mod-S2 where the S2-action on Ā is trivial,

(4) g : Ā ⊗ Ā→M is a homomorphism of right A⊗A-modules in mod-S2,

such that the following identities hold

f(ab) =af(b) + f(a) · (b⊗ 1A) + f(a) · (1A ⊗ b) + g(a, b) + g(b, a),(E3.4.1)

f(a) · (b, c) =ag(b, c)− g(ab, c)− g(b, ac),(E3.4.2)

for all a, b, c ∈ Ā.

We define morphisms between trident systems as follows. Let (A,M, f, g) and (A′,M ′, f ′, g′) be two

trident systems. A morphism (α, β) : (A,M, f, g) → (A′,M ′, f ′, g′) is given by an algebra homomorphism

α : A → A′ and a trident A-module homomorphism β : M → M ′ such that the following diagrams

commute

Ā
f

−−−−→ M

α





y





y

β

Ā′ f ′

−−−−→ M ′

and

Ā⊗ Ā
g

−−−−→ M

α⊗α





y





y

β

Ā′ ⊗ Ā′ g′

−−−−→ M ′

where the (A,A ⊗ A)-bimodule actions on M ′ is determined by (A′, A′ ⊗ A′)-bimodule actions and the

algebra homomorphisms α : A→ A′ and α⊗ α : A⊗A→ A′ ⊗A′.

One can define a category C consisting of all trident systems and morphisms defined above.
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Proposition 3.5. Retain the above notation. The trident category is isomorphic to the category of trident

systems.

Proof. Let (A,M, f, g) be a trident system. Recall that A⊗2 is a subring of A⊗2#S2. Then f and g

satisfy

(1) f(a) = f(a) ∗ (12),

(2) g(a, b) = g(b, a) ∗ (12),

(3) f(ab) = a · f(b) + f(a) · (b⊗ 1A#(1)) + f(a) · (1A ⊗ b#(1)) + g(a, b) + g(b, a),

(4) f(a) · (b ⊗ c#(1)) = a · g(b, c)− g(ab, c)− g(b, ac),

for all a, b, c ∈ Ā. Using these equations, one can define an extension E of M by (A⊗A)/(Ā⊗ Ā). To be

precise, E =M ⊕ (A⊗A)/(Ā⊗ Ā) as a right S2-module with the (A,A⊗A)-bimodule action given by

a · (x, λ[1A ⊗ 1A] + [b ⊗ 1A] + [1A ⊗ c]) = (ax+ λf(a) + f(a) · (b⊗ 1A) + f(a) · (1A ⊗ c)

+ g(b, a) + g(a, c), λ[a⊗ 1A] + λ[1A ⊗ a] + [ab⊗ 1A] + [1A ⊗ ac]),

(x, λ[1A ⊗ 1A] + [b⊗ 1A] + [1A ⊗ c]) · (a⊗ 1A) = (x · (a⊗ 1A) + g(a, c), λ[a⊗ 1A] + [ba⊗ 1A]),

(x, λ[1A ⊗ 1A] + [b⊗ 1A] + [1A ⊗ c]) · (1A ⊗ a) = (x · (1A ⊗ a) + g(b, a), λ[1A ⊗ a] + [1⊗ ca]),

(x, λ[1A ⊗ 1A] + [b⊗ 1A] + [1A ⊗ c]) · (a⊗ a′) = (x · (a⊗ a′) + λg(a, a′) + g(ba, a′) + g(a, ca′), 0)

for all λ ∈ k, a, a1, a2, b, c ∈ Ā and x ∈M . It is easy to see that (A,M,E) is a trident.

Conversely, given a trident (A,M,E), we construct a trident system as follows. Suppose that

0 →M → E
π
−→ (A⊗A)/(Ā⊗ Ā) → 0

is the corresponding short exact sequence of (A,A⊗2#S2)-bimodules. Without loss of generality, we

assume M is a sub-bimodule of E. Fix an element 12 ∈ E with π(12) = [1A ⊗ 1A] ∈ (A ⊗ A)/(Ā ⊗ Ā).

For all a, b ∈ Ā, we define

f(a) : =a · 12 − 12 · (a⊗ 1A#(1))− 12 · (1A ⊗ a#(1)),

g(a, b) : =12 · (a⊗ b#(1))

in E. Clearly, in (A⊗A)/(Ā⊗ Ā), we have

π(f(a)) =a · [1A ⊗ 1A]− [a⊗ 1A]− [1A ⊗ a] = 0,

π(g(a, b)) =[1A ⊗ 1A] · (a⊗ b) = 0

Therefore, we obtain two k-linear maps

f : Ā→M, and g : Ā⊗ Ā→M.

It can be directly checked that (A,M, f, g) is a trident system.

Since both constructions above are canonical, these defines two functors that are inverse to each

other. �

Definition 3.6. A trident algebra means either a trident (A,M,E) or a trident system (A,M, f, g).
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3.3. Examples. We give some easy examples of trident algebras.

Example 3.7. Let A be an augmented algebra and let M be an (A,A⊗2#S2)-bimodule. Consider the

trivial extension of M by (A ⊗ A)/(Ā ⊗ Ā). Equivalently, f : Ā → M and g : Ā⊗2 → M are zero maps

in the corresponding trident system. In this case, we call (A,M, f, g) is called a trivial trident algebra.

Example 3.8. This is the trident algebra corresponding to DA⊗
H
DB, where DA and DB are the 2-unitary

operad defined in [BYZ, Example 2.4].

Let A and B be augmented algebras. Clearly, A ⊗ B is also an augmented algebra with A⊗B =

Ā ⊗ k1B + k1A ⊗ B̄ + Ā ⊗ B̄. From Subsection 3.1, we know (A ⊗ A)/(Ā ⊗ Ā) and (B ⊗ B)/(B̄ ⊗ B̄)

are (A,A⊗2#S2)-bimodule and (B,B⊗2#S2)-bimodule, respectively. By Lemma 3.1, we obtain an (A⊗

B, (A⊗B)⊗2#S2)-bimodule

E = [(A⊗A)/(Ā⊗ Ā)]⊗ [(B ⊗B)/(B̄ ⊗ B̄)].

Observe that,

E = (k[1A ⊗ 1A]⊕ (Ā⊗ k1A)⊕ (k1A ⊗ Ā))⊗ (k[1B ⊗ 1B]⊕ (B̄ ⊗ k1B)⊕ (k1B ⊗ B̄))

and

M = [(Ā⊗ k1A)⊗ (k1B ⊗ B̄)]⊕ [(k1A ⊗ Ā)⊗ (B̄ ⊗ k1B)]

is a sub-bimodule of E. By easy computation, we have

E/M ∼=k[1A⊗B ⊗ 1A⊗B]⊕ [(k1A ⊗ B̄)⊗ k1A⊗B]⊕ [(k1A⊗B ⊗ (k1A ⊗ B̄))]

⊕ [(Ā⊗ k1B)⊗ k1A⊗B]⊕ [(Ā⊗ B̄)⊗ k1A⊗B]⊕ [k1A⊗B ⊗ (Ā⊗ k1B)]⊕ [k1A⊗B ⊗ (Ā⊗ B̄)]

=k[1A⊗B ⊗ 1A⊗B]⊕ (A⊗B ⊗ k1A⊗B)⊕ (k1A⊗B ⊗A⊗B)

=[(A⊗B)⊗ (A⊗B)]/[(A⊗B)⊗ (A⊗B)]

Therefore, we obtain a trident (A ⊗ B,M,E). Finally this trident (A ⊗ B,M,E) is denoted by A ⊙ B.

Using the language of trident system, we have

(1) f : A⊗B →M is determined by

f(a⊗ 1B) = 0,

f(1A ⊗ b) = 0,

f(a⊗ b) = (a⊗ 1A)⊗ (1B ⊗ b) + (1A ⊗ a)⊗ (b ⊗ 1B)

for all a ∈ Ā and b ∈ B̄.
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(2) g : A⊗B ⊗A⊗B →M is determined by

g((a⊗ 1B)⊗ (a′ ⊗ 1B)) = 0,

g((a⊗ 1B)⊗ (1A ⊗ b′)) = (a⊗ 1A)⊗ (1B ⊗ b′),

g((a⊗ 1B)⊗ (a′ ⊗ b′)) = 0,

g((1A ⊗ b)⊗ (a′ ⊗ 1B)) = (1A ⊗ a′)⊗ (b⊗ 1B),

g((1A ⊗ b)⊗ (1A ⊗ b′)) = 0,

g((1A ⊗ b)⊗ (a′ ⊗ b′)) = 0,

g((a⊗ b)⊗ (a′ ⊗ 1B)) = 0,

g((a⊗ b)⊗ (1A ⊗ b′)) = 0,

g((a⊗ b)⊗ (a′ ⊗ b′)) = 0

for all a, a′ ∈ Ā and b, b′ ∈ B̄.

4. Classification of 2-unitary operads of GK-dimension 3

4.1. An operad constructed from a trident algebra. In this part, we construct a 2-unitary operad

P by (A,M,E), with P(0) = k10, P(1) = A and P(2) = E, where the composition P(1) ◦
1
P(1) → P(1)

is given by the multiplication of A, the compositions P(1) ◦
1
P(2) → P(2), P(2) ◦ (P(1),P(1)) → P(1)

are given by the corresponding actions of A on E.

In fact, let (A,M, f, g) be a trident system. We consider the operad P generated by the kS-module

(k10, A, k12 ⊕M, 0, 0, · · · ) and subject to the following relations

a ◦ 10 = 0, for all a ∈ Ā,

µ ◦
i
10 = 0, for all µ ∈M,

12 ◦
i
10 = 11, for i = 1, 2,

a ◦ b = ab, for all a, b ∈ Ā,

a ◦ µ = a · µ, for all a ∈ Ā, µ ∈M,

a ◦ 12 = 12 ◦
1
a+ 12 ◦

2
a+ f(a), for all a ∈ Ā,

12 ◦ (a, b) = g(a, b), for all a, b ∈ Ā,

µ ◦ (a, b) = µ · (a⊗ b), for all µ ∈M,a, b ∈ Ā,

12 ◦
1
12 = 12 ◦

2
12,

µ ◦
1
12 = 12 ◦

2
µ+ (12 ◦

2
µ) ∗ (2, 1, 3), for all µ ∈M,

µ ◦
2
12 = 12 ◦

1
µ+ (12 ◦

1
µ) ∗ (1, 3, 2), for all µ ∈M,

µ ◦
i
µ′ = 0, for all µ, µ′ ∈M, i = 1, 2.

where 12 ∗ (2, 1) = 12, and ab, a ·µ, µ · (a⊗ b) are given by the multiplication of A, the left module action

of A on M , and the right module action of A⊗A on M , respectively.

Next we give an explicit description of P .
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(C1) The vector space P(n):

(C11) P(0) = k10.

(C12) P(1) = A = k11 ⊕ Ā.

(C13) P(2) = k12 ⊕ (Ā
(2)
1 ⊕ Ā

(2)
2 )⊕M .

(C14) for each n ≥ 3,

P(n) = k1n ⊕

n
⊕

k=1

Ā
(n)
k ⊕

⊕

1≤i<j≤n

M
(n)
ij ,

where k1n is a 1-dimensional vector space with the basis 1n, Ā
(n)
k is a vector space isomorphic

to Ā for 1 ≤ k ≤ n, n ≥ 2, and M
(n)
ij is a vector space isomorphic to M for 1 ≤ i < j ≤ n, n ≥ 2.

In order to write elements in Ā
(n)
k and M

(n)
ij , we fix two families of k-linear isomorphisms

ϕn
k : Ā→ Ā

(n)
k and ψn

ij : M →M
(n)
ij ,

for 1 ≤ k ≤ n, 1 ≤ i < j ≤ n and n ≥ 2. In fact, we will see that Ā
(n)
k = {1n ◦

k
a | a ∈ Ā} and

M
(n)
ij = {(1n−1 ◦

1
µ) ∗ cij | µ ∈M}, where cij = (i, j, 1, · · · , i− 1, î, i+ 1, · · · , j − 1, ĵ, j + 1, · · · , n).

(C2) The right action of kSn on P(n): for each σ ∈ Sn,

(C21) 1n ∗ σ = 1n,

(C22) ϕ
(n)
i (a) ∗ σ = ϕ

(n)
σ−1(i)(a),

(C23) ψ
(n)
ij (µ) ∗ σ =







ψ
(n)

σ−1(i),σ−1(j)(µ), σ−1(i) < σ−1(j),

ψ
(n)
σ−1(j),σ−1(i)(µ ∗ (21)), σ−1(i) > σ−1(j).

(C3) The partial composition P(m) ◦
s
P(n) → P(m+ n− 1):

(C31) 1m ◦
s
1n = 1m+n−1.

(C32) 1m ◦
s
ϕ
(n)
i (a) = ϕ

(m+n−1)
s+i−1 (a).

(C33) 1m ◦
s
ψ
(n)
i1,i2

(µ) = ψ
(m+n−1)
s+i1−1,s+i2−1(µ).

(C34) ϕ
(m)
i (a) ◦

s
1n =























ϕ
(m+n−1)
i (a), i < s,

i+n−1
∑

k=i

ϕ
(m+n−1)
k (a) +

∑

i≤k1<k2≤i+n−1

ψ
(m+n−1)
k1k2

(f(a)), i = s,

ϕ
(m+n−1)
i+n−1 (a), i > s.

(C35) ϕ
(m)
i (a) ◦

s
ϕ
(n)
j (b) =







































ψ
(m+n−1)
i,s+j−1 (g(a, b)), i < s,
i+j−2
∑

k=i

ψ
(m+n−1)
k,i+j−1 (g(a, b) + f(a) ·

2
b) + ϕ

(m+n−1)
i+j−1 (ab)

+
i+n−1
∑

k=i+j

ψ
(m+n−1)
i+j−1,k (g(b, a) + f(a) ·

1
b),

i = s,

ψ
(m+n−1)
s+j−1,i+n−1(g(b, a)), i > s.

(C36) ϕ
(m)
i (a) ◦

s
ψ
(n)
j1j2

(µ) =







0, i 6= s,

ψ
(m+n−1)
i+j1−1,i+j2−1(aµ), i = s.



14 YAN-HONG BAO, DONG-XING FU, YU YE, AND JAMES J. ZHANG

(C37) ψ
(m)
i1i2

(µ) ◦
s
1n =



















































ψ
(m+n−1)
i1+n−1,i2+n−1(µ), 1 ≤ s < i1,

i1+n−1
∑

k=i1

ψ
(m+n−1)
k,i2+n−1(µ), s = i1,

ψ
(m+n−1)
i1,i2+n−1(µ), i1 < s < i2,

i2+n−1
∑

k=i2

ψ
(m+n−1)
i1,k

(µ), s = i2,

ψ
(m+n−1)
i1i2

(µ), i2 < s ≤ m.

(C38) ψ
(m)
i1i2

(µ) ◦
s
ϕ
(n)
j (b) =



















0, s 6= i1, i2,

ψ
(m+n−1)
i1+j−1,i2+n−1(µ ·

1
b), s = i1,

ψ
(m+n−1)
i1,i2+j−1(µ ·

2
b), s = i2.

(C39) ψ
(m)
i1i2

(µ) ◦
s
ψ
(n)
j1j2

(ν) = 0.

Theorem 4.1. Retain the above notation. Let (A,M, f, g) be a trident algebra. Then P := F (A,M, f, g)

is a 2-unitary Com-augmented operad of GK-dimension 3.

A tedious proof of Theorem 4.1 is given in the final section.

4.2. Classification of 2-unitary operads of GK-dimension 3. Now we are ready to prove the main

theorem.

Theorem 4.2. The category C consisting of trident algebras (A,M, f, g) is equivalent to the category D

of Com-augmented operads of GK-dimension 3.

Proof. Define a functor F : C −→ D as follows:

(i) For any trident algebra (A,M, f, g),

F(A,M, f, g) := F (A,M, f, g)

where F (A,M, f, g) is given in Theorem 4.1, namely,

F(A,M, f, g) = {P(n)}n≥0 = {k1n ⊕

n
⊕

k=1

Ā
(n)
k ⊕

⊕

1≤i<j≤n

M
(n)
ij }n≥0.

By Theorem 4.1, F(A,M, f, g) is a Com-augmented operad of GK-dimension 3.

(ii) For a morphism (α, β) : (A,M, f, g) → (A′,M ′, f ′, g′), we define an operadic morphism

Φ = F(α, β) : {P(n)} → {P ′(n)}

as follows:

Φn(1n) : = 1

′
n;

Φn(ϕ
n
k (a)) : = ϕ′n

k (α(a)), for a ∈ Ā;

Φn(ψ
n
ij(µ)) : = ψ′n

ij(β(µ)), for µ ∈M.

By a direct calculation, it follows easily from (C21)-(C23) and (C31)-(C39) that Φ is a morphism of

operads since (α, β) is a morphism in the category C.
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Conversely, we define a functor G : D −→ C as follows: for an object P in category D, we define

G(P) = (A,M, f, g)

where A = P(1), M = 2ΥP(2), and

f : 1Υ(1) → 2Υ(2), a 7→ a ◦ 12 − 12 ◦
1
a− 12 ◦

2
a;

g : 1Υ(1)⊗ 1Υ(1) → 2Υ(2), (a, b) 7→ (12 ◦
1
a) ◦

2
b.

We show next that (A,M, f, g) is a trident algebra. By definitions, A := P(1) is an associative k-

algebra with identity 11. Considering the map π∅ : P(1) → P(0) = k10, θ 7→ θ◦10, we know that A is an

augmented algebra with the augmentation ideal Kerπ∅ = 1ΥP(1). By the definition of truncation ideals,

M := 2ΥP(2) is a kS2-submodule of P(2), and is an (A,A⊗A)-bimodule with the module actions given

by the related composition map. Since P is a Com-augmented (hence 2-unitary) operad of GK-dimension

3, we have

(a ◦ 12 − 12 ◦
1
a− 12 ◦

2
a) ◦

i
10 = 0,

for all a ∈ Ā and i = 1, 2, and

((12 ◦
1
a) ◦

2
b) ◦

i
10 = 0,

for all a, b ∈ Ā and i = 1, 2. Therefore a ◦12 −12 ◦
1
a−12 ◦

2
a and (12 ◦

1
a) ◦

2
b are in M . Therefore f maps

from Ā→M and g maps from Ā⊗2 →M .

For a, b ∈ A and µ ∈ M , let a · µ be a ◦ µ and µ · (a ⊗ b) = µ ◦ (a, b) both of which are in M . Then,

for all a ∈ A, µ ∈M ,

a · (µ ∗ (2, 1)) = a ◦
1
(µ ∗ (2, 1)) = (a ◦

1
µ) ∗ (11 ◦

1
(2, 1)) = (a · µ) ∗ (2, 1)

which shows that (E3.1.1) holds. For a, b ∈ A, we have

(µ ∗ (2, 1)) · (a⊗ b) =(µ ∗ (2, 1)) ◦
1
a ◦

2
b = ((µ ◦

2
a) ∗ ((2, 1) ◦

1
11)) ◦

2
b

=((µ ◦
2
a) ◦

1
b) ∗ ((2, 1) ◦

2
11)) = (µ · (b⊗ a)) ∗ (2, 1),

which shows that (E3.1.2) holds. Hence M is a trident A-module.

For ā, b̄ ∈ Ā,

f(āb̄) =(āb̄) ◦ 12 − 12 ◦
1
(āb̄)− 12 ◦

2
(āb̄)

=ā ◦ (b̄ ◦ 12 − 12 ◦
1
b̄− 12 ◦

2
b̄) + (ā ◦ 12 − 12 ◦

1
ā− 12 ◦

2
ā) ◦

1
b̄

+ (ā ◦ 12 − 12 ◦
1
ā− 12 ◦

2
ā) ◦

2
b̄+ (12 ◦

1
ā) ◦

2
b̄+ (12 ◦

1
b̄) ◦

2
ā

=āf(b̄) + f(ā) ◦
1
b̄+ f(ā) ◦

2
b̄+ g(ā, b̄) + g(b̄, ā).

Hence (E3.4.1) holds. For ā, b̄, c̄ ∈ Ā,

f(ā) · (b̄, c̄) =((ā ◦ 12 − 12 ◦
1
ā− 12 ◦

2
ā) ◦

1
b̄) ◦

2
c̄

=ā((12 ◦
1
b̄) ◦

2
c̄)− (12 ◦

1
(āb̄)) ◦

2
c̄− (12 ◦

1
b̄) ◦

2
(āc̄)

=āg(b̄, c̄)− g(āb̄, c̄)− g(b̄, āc̄).

Hence (E3.4.2) holds. Therefore (A,M, f, g) is a trident algebra. It follows that G(P) is an object in the

category C.
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For the operad morphism Ψ: P → P ′, we define the morphism

(α, β) = G(Ψ): (P(1), 2ΥP(2), f, g) → (P ′(1), 2Υ
′
P′(2), f ′, g′)

as follows:

G(Ψ) := (Ψ(1),Ψ(2)|2Υ(2)).

Therefore G is a functor from D → C.

Finally, it is clear from the definition that GF is the identity and it follows from Lemma 2.4 that FG

is naturally isomorphic to the identity. The assertion follows. �

5. Comments, examples, and remarks

We refer to [LV] for the definition of Hadamard product − ⊗
H
− and a Hopf operad. Recall that the

Hadamard product P ⊗
H
Q of the operads P and Q is defined to be

(P ⊗
H
Q)(n) = P(n)⊗Q(n),

for all n ≥ 0 with the partial composition

(µ1 ⊗ ν1) ◦
i
(µ2 ⊗ ν2) = (µ1 ◦

i
µ2)⊗ (ν1 ◦

i
ν2),

for µ1 ⊗ ν1 ∈ (P ⊗
H
Q)(m), µ2 ⊗ ν2 ∈ (P ⊗

H
Q)(n), and m ≥ 1, n ≥ 0, 1 ≤ i ≤ m. Clearly, the operad Com

is obviously a unit for Hadamard product.

A Hopf operad is a symmetric operad P with a morphism of operads ∆: P → P ⊗
H
P called the

coproduct of P and a morphism of operads ǫP : P → Com called the counit, which is supposed to be

coassociative and counital.

Definition 5.1. Let P be a Hopf operad. We say that P is a Com-augmented Hopf operad if

(1) P is Com-augmented and the composition

Com
uP−−−→ P

ǫ
−→ Com

is the identity map, and

(2) the following diagram is commutative

Com
∼=

−−−−→ Com⊗
H
Com

uP





y





y

uP⊗
H
uP

P −−−−→
∆

P ⊗
H
P .

Remark 5.2. A Hopf operad satisfying the condition (1) in Definition 5.1 is also called a unital aug-

mented connected Hopf operad in [Kh, Definition 2.5].

Proposition 5.3. Let P be a Com-augmented Hopf operad of GK-dimension ≤ 2. Then P = Com.

Proof. Note that ∆ : P → P ⊗
H
P is an operadic morphism. Write P as F (A, 0, 0, 0) as given by Theorem

0.2. Suppose Ā 6= 0. Then GKdimP = 2 and GKdimP ⊗
H
P = 3. Since P ⊗

H
P has GK-dimension 3, it

is of the form F (A⊙ A) where A⊙A is given in Example 3.8. By Theorem 4.2, ∆ induces a morphism
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of trident algebras (A, 0, 0, 0) → A ⊙ A := (A ⊗ A,M, f, g). Then f∆ |P(1): A → A ⊗ A → M is zero.

We claim that A = k. If not, let 0 6= a ∈ Ā and write ∆ |P(1) (a) = 1⊗ a+ a⊗ 1 +
∑

a(1) ⊗ a(2) where

a(1), a(2) ∈ Ā. Then, by three equations in Example 3.8(1),

0 = f∆(a) = f(1⊗ a+ a⊗ 1 +
∑

a(1) ⊗ a(2))

=
∑

((a(1) ⊗ 1A)⊗ (1A ⊗ a(2)) + (1A ⊗ a(1))⊗ (a(2) ⊗ 1A)).

Therefore
∑

a(1) ⊗ a(2) = 0, and consequently, a is a primitive element. By Definition 5.1(2), 1n is

group-like, i.e., ∆(1n) = 1n ⊗ 1n for all n. Since each a is primitive, it follows from (C32) that each

ϕ
(n)
i (a) is primitive, i.e., ∆(ϕ

(n)
i (a)) = ϕ

(n)
i (a)⊗1n+1n⊗ϕ

(n)
i (a) for all i, n. Since P has GK-dimension

≤ 2, ϕ
(2)
1 (a) ◦

1
ϕ
(3)
1 (a) = 0 by (C35). But

∆(ϕ
(2)
1 (a) ◦

1
ϕ
(3)
1 (a)) = (ϕ

(2)
1 (a)⊗ 12 + 12 ⊗ ϕ

(2)
1 (a)) ◦

1
(ϕ

(3)
1 (a)⊗ 13 + 13 ⊗ ϕ

(3)
1 (a))

= (ϕ
(2)
1 (a)⊗ 12) ◦

1
(13 ⊗ ϕ

(3)
1 (a)) + (12 ⊗ ϕ

(2)
1 (a)) ◦

1
(ϕ

(3)
1 (a)⊗ 13)

= (
2
∑

k=1

ϕ
(4)
k (a)) ⊗ ϕ

(4)
1 (a) + ϕ

(4)
1 (a)⊗ (

2
∑

k=1

ϕ
(4)
k (a))

= ϕ
(4)
2 (a)⊗ ϕ

(4)
1 (a) + ϕ

(4)
1 (a)⊗ ϕ

(4)
2 (a) + 2ϕ

(4)
1 (a)⊗ ϕ

(4)
1 (a)

6= 0,

yielding a contradiction. Therefore Ā = 0 and P = Com. �

Unlike in the GK-dimension 2 case, the 2-unit of a 2-unitary operad needs not be unique.

Example 5.4. Let P = F (A,M, f, g) where M 6= 0. Let 12 be the canonical 2-unit of P given in the

construction of F (A,M, f, g). Let 1′
2 = 12+ψ

(2)
12 (m). It is easy to check that 1′

2 is a 2a-unit. Suppose that

m ∗ (2, 1) 6= m. Then (P ,10,11,1
′
2) is a 2-unitary operad, but not Com-augmented. As a consequence,

we can not replace “Com-augmented” by “2-unitary” in Theorem 0.2.

Remark 5.5. For non-2-unitary operad, we have the following remarks.

(1) By [QXZZ, Construction 7.1] there are a lot of symmetric operads of GK-dimension 3 that are

not 2-unitary.

(2) In [QXZZ], an analogue of Bergman’s gap theorem of nonsymmetric operads is proved, namely,

no finitely generated locally finite nonsymmetric operad has GK-dimension strictly between 1

and 2. In [LQXZZZ] the authors proved that there is no finitely generated symmetric operad

with GK-dimension strictly between 1 and 2.

(3) It is an open question if there are finitely generated symmetric operads with GK-dimension

strictly between 2 and 3, see [QXZZ, Question 0.8].

(4) For every r ∈ {0} ∪ {1} ∪ [2,∞) or r = ∞, the authors in [QXZZ] constructed an explicit

non-symmetric operad of GK-dimension r.

The following lemma was proved in [BYZ, Theorem 6.5].

Lemma 5.6. Let P be a 2-unitary operad of finite GK-dimension ≥ 3. Then P is not semiprime.

Proof. If P is semiprime, by the proof of [BYZ, Theorem 6.5], (2)Υ = 0. So GKdimP ≤ 2, yielding a

contradiction. �
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The following example shows that ⊗
H

does not preserve primeness.

Example 5.7. Let A = k ⊕M2(k). Then P := F (A, 0, 0, 0) is prime of GK-dimension 2 by Theorem

0.1. Since P ⊗
H
P has GK-dimension 3, it is not semiprime by Lemma 5.6.

6. Appendix: Proof of Theorem 4.1

This final section is devoted to a complete proof of Theorem 4.1.

Proof of Theorem 4.1. We need to check (OP1), (OP2), (OP3). Let A = {1n}, Φ = {ϕ
(n)
i (a) | a ∈ Ā},

and Ψ = {ψ
(n)
ij (y) | y ∈M}. We will use these elements.

Verification of (OP1): By (C31), (C32) and (C33), 1 ◦
1
θ = θ for all θ ∈ P . By (C31), (C34) and (C37),

we have θ ◦
i
1 = θ for all θ ∈ P and 1 ≤ i ≤ Ar(θ). Therefore (OP1) holds.

Verification of (OP2): There are two equations in (OP2). We only check the first one in (OP2), namely,

the following equation

(E1.1.1) (λ ◦
i
µ) ◦

i−1+j
ν = λ ◦

i
(µ ◦

j
ν), 1 ≤ i ≤ l, 1 ≤ j ≤ m

for all λ ∈ P(l), µ ∈ P(m) and ν ∈ P(n).

If two of λ, µ, and ν are ψ
(n)
ij , it follows from (C39) that both sides of (E1.1.1) are zero. Then there

are following 20 cases to consider.

Case 1: λ ∈ Ψ and µ, ν ∈ Φ. Write λ = ψ
(l)
k1k2

(y), µ = ϕ
(m)
s (a), and ν = ϕ

(n)
t (b). Then

LHS of (E1.1.1) = (ψ
(l)
k1k2

(y) ◦
i
ϕ(m)
s (a)) ◦

i−1+j
ϕ
(n)
t (b)

=
by (C38)







0 i 6= k1, k2,

ψ
(l+m−1)
k1+s−1,k2+m−1

(y ·
1
a) i = k1,

ψ
(l+m−1)
k1,k2+s−1

(y ·
2
a) i = k2,

◦
i−1+j

ϕ
(n)
t (b)

=
by (C38)



















0 i 6= k1, k2, i+ j − 1 6= k1 + s − 1, k2 +m − 1, k1, k2 + s− 1,

ψ
(l+m+n−2)
k1+s+t−2,k2+m+n−2

((y ·
1
a) ·

1
b) i = k1, i + j − 1 = k1 + s− 1,

ψ
(l+m+n−2)
k1+s−1,k2+m+t−2

((y ·
1
a) ·

2
b) i = k1, i + j − 1 = k2 +m− 1, (impossible)

ψ
(l+m+n−2)
k1+t−1,k2+s+n−2

((y ·
2
a) ·

1
b) i = k2, i + j − 1 = k1, (impossible)

ψ
(l+m+n−2)
k1,k2+s+t−2

((y ·
2
a) ·

2
b) i = k2, i + j − 1 = k2 + s− 1,

=







ψ
(l+m+n−2)
k1+s+t−2,k2+m+n−2

((y ·
1
a) ·

1
b) i = k1, j = s,

ψ
(l+m+n−2)
k1,k2+s+t−2

((y ·
2
a) ·

2
b) i = k2, j = s,

0 otherwise,
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and

RHS of (E1.1.1) = ψ
(l)
k1k2

(y) ◦
i
(ϕ(m)

s (a) ◦
j
ϕ
(n)
t (b))

=
by (C35)

ψ
(l)
k1k2

(y) ◦
i



















ψ
(m+n−1)
s,j+t−1 (g(a, b)), s < j,

s+t−2
∑

k=s

ψ
(m+n−1)
k,s+t−1

(g(a, b) + f(a) ·
2
b) + ϕ

(m+n−1)
s+t−1 (ab)

+
s+n−1

∑

k=s+t

ψ
(m+n−1)
s+t−1,k

(g(b, a) + f(a) ·
1
b),

s = j,

ψ
(m+n−1)
j+t−1,s+n−1(g(b, a)), s > j.

=
by (C39)

{

0 s < j,

ψ
(l)
k1k2

(y) ◦
i
ϕ
(m+n−1)
s+t−1

(ab) s = j,

0 s > j,

=
by (C36)



















0 s < j,

0 s = j, i 6= k1, k2,

ψ
(l+m+n−2)
k1+s+t−2,k2+m+n−2

(y ·
1
ab) s = j, i = k1

ψ
(l+m+n−2)
k1,k2+s+t−2

(y ·
2
ab) s = j, i = k2

0 s > j,

=







ψ
(l+m+n−2)
k1+s+t−2,k2+m+n−2

((y ·
1
a) ·

1
b) i = k1, j = s,

ψ
(l+m+n−2)
k1,k2+s+t−2

((y ·
2
a) ·

2
b) i = k2, j = s,

0 otherwise,

which implies that (E1.1.1) holds.

Case 2: µ ∈ Ψ and λ, ν ∈ Φ. Write λ = ϕ
(l)
u (a), µ = ψ

(m)
k1k2

(y), and ν = ϕ
(n)
v (c) where a, c ∈ Ā and

b ∈M . Then

LHS of (E1.1.1) = (ϕ(l)
u (a) ◦

i
ψ
(m)
k1k2

(y)) ◦
i−1+j

ϕ(n)
v (c)

=
by (C36)

{

0 i 6= u,

ψ
(l+m−1)
k1+u−1,k2+u−1

(ay) i = u
◦

i−1+j
ϕ(n)
v (c)

=
by (C38)











0 i 6= u,

0 j 6= k1, k2,

ψ
(l+m+n−2)
k1+u+v−2,k2+u+n−2

(ay ·
1
c) i = u, j = k1,

ψ
(l+m+n−2)
k1+u−1,k2+u+v−2

(ay ·
2
c) i = u, j = k2,

and

RHS of (E1.1.1) = ϕ(l)
u (a) ◦

i
(ψ

(m)
k1k2

(y) ◦
j
ϕ(n)
v (c))

=
by (C38)

ϕ(l)
u (a) ◦

i







0 j 6= k1, k2,

ψ
(m+n−1)
k1+v−1,k2+n−1

(y ·
1
c) j = k1,

ψ
(m+n−1)
k1,k2+v−1

(y ·
2
c) j = k2,

=
by (C38)











0 j 6= k1, k2,

0 i 6= u,

ψ
(l+m+n−2)
k1+u+v−2,k2+u+n−2

(a(y ·
1
c)) j = k1, i = u,

ψ
(l+m+n−2)
k1+u−1,k2+u+v−2

(a(y ·
2
c)) j = k2, i = u.

Hence (E1.1.1) holds.



20 YAN-HONG BAO, DONG-XING FU, YU YE, AND JAMES J. ZHANG

Case 3: ν ∈ Ψ and λ, µ ∈ Φ. Write λ = ϕ
(l)
u (a), µ = ϕ

(m)
v (c), and ν = ψ

(n)
k1k2

(y). Then

LHS of (E1.1.1) = (ϕ(l)
u (a) ◦

i
ϕ(m)
v (c)) ◦

i−1+j
ψ
(n)
k1k2

(y)

=
by (C35)

{

ψ i 6= u,

ψ + ϕ
(l+m−1)
u+v−1 (ac) i = u,

◦
i−1+j

ψ
(n)
k1k2

(y)

=
by (C39)

{

0 i 6= u,

ϕ
(l+m−1)
u+v−1 (ac) ◦

i−1+j
ψ

(n)
k1k2

(y) i = u,

=
by (C36)

{

0 i 6= u,

0 j 6= v,

ψ
(l+m+n−2)
k1+u+v−2,k2+u+v−2

((ac)y) i = u, j = v,

where ψ is a linear combination of elements in Ψ. And

RHS of (E1.1.1) = ϕ(l)
u (a) ◦

i
(ϕ(m)

v (c) ◦
j
ψ
(n)
k1k2

(y))

=
by (C36)

ϕ(l)
u (a) ◦

i

{

0 j 6= v,

ψ
(m+n−1)
k1+v−1,k2+v−1

(cy) j = v,

=
by (C36)

{

0 j 6= v,

0 i 6= u

ψ
(l+m+n−2)
k1+v+u−2,k2+v+u−2

(a(cy)) j = v, i = u.

Hence (E1.1.1) holds.

Case 4: λ ∈ Ψ, µ ∈ A, and ν ∈ Φ. Write λ = ψ
(l)
k1k2

(y), µ = 1m, and ν = ϕ
(n)
t (c). Then

LHS of (E1.1.1) = (ψ
(l)
k1k2

(y) ◦
i
1m) ◦

i−1+j
ϕ
(n)
t (c)

=
by (C37)































ψ
(l+m−1)
k1+m−1,k2+m−1

(y), 1 ≤ i < k1,

k1+m−1
∑

k=k1

ψ
(l+m−1)
k,k2+m−1

(y), i = k1,

ψ
(l+m−1)
k1,k2+m−1

(y), k1 < i < k2,

k2+m−1
∑

k=k2

ψ
(l+m−1)
k1,k

(y), i = k2,

ψ
(l+m−1)
k1k2

(y), k2 < i ≤ l.

◦
i−1+j

ϕ
(n)
t (c)

=
by (C38)





























































































0, i − 1 + j 6= k1 +m − 1, k2 +m − 1

ψ
(l+m+n−2)
k1+m+t−2,k2+m+n−2

(y ·
1
c), i − 1 + j = k1 +m − 1, (impossible)

ψ
(l+m+n−2)
k1+m−1,k2+m+t−2

(y ·
2
c), i − 1 + j = k1 +m − 1, (impossible).

1 ≤ i < k1,

k1+m−1
∑

k=k1

ψ
(l+m−1)
k,k2+m−1

(y) ◦
i−1+j

ϕ
(n)
t (c) = ψ

(l+m+n−2)
k1+j+t−2,k2+m+n−2

(y ·
1
c), i = k1,



















0, i− 1 + j 6= k1, k2 +m− 1

ψ
(l+m+n−2)
k1+t−1,k2+m+n−2

(y ·
1
c), i− 1 + j = k1, (impossible)

ψ
(l+m+n−2)
k1,k2+m+t−2

(y ·
2
c), i− 1 + j = k2 +m− 1, (impossible).

k1 < i < k2,

k2+m−1
∑

k=k2

ψ
(l+m−1)
k1,k

(y) ◦
i−1+j

ϕ
(n)
t (c) = ψ

(l+m+n−2)
k1,k2+j+t−2

(y ·
2
c), i = k2,



















0, i− 1 + j 6= k1, k2

ψ
(l+m+n−2)
k1+t−1,k2+n−1

(y ·
1
c), i− 1 + j = k1, (impossible)

ψ
(l+m+n−2)
k1,k2+t−1

(y ·
2
c), i− 1 + j = k2, (impossible).

k2 < i ≤ l.

and
RHS of (E1.1.1) = ψ

(l)
k1k2

(y) ◦
i
(1m ◦

j
ϕ
(n)
t (c))

=
by (C32)

ψ
(l)
k1k2

(y) ◦
i
ϕ
(m+n−1)
j+t−1 (c)

=
by (C38)







0 i 6= k1, k2,

ψ
(l+m+n−2)
k1+j+t−2,k2+m+n−2

(y ·
1
c) i = k1,

ψ
(l+m+n−2)
k1,k2+j+t−2

(y ·
2
c) i = k2.

Hence (E1.1.1) holds.
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Case 5: λ ∈ Ψ, µ ∈ Φ, and ν ∈ A. Write λ = ψ
(l)
k1k2

(y), µ = ϕ
(m)
s (b), and ν = 1n. Then

LHS of (E1.1.1) = (ψ
(l)
k1k2

(y) ◦
i
ϕ(m)
s (b)) ◦

i−1+j
1n

=
by (C38)







0 i 6= k1, k2,

ψ
(l+m−1)
k1+s−1,k2+m−1

(y ·
1
b) i = k1,

ψ
(l+m−1)
k1,k2+s−1

(y ·
2
b) i = k2,

◦
i−1+j

1n

=
by (C37)























































































0 i 6= k1, k2,






























































ψ
(l+m+n−2)
k1+s−1+n−1,k2+m−1+n−1

(y ·
1
b), 1 ≤ i− 1 + j < k1 + s− 1,

k1+s−1+n−1
∑

k=k1+s−1
ψ

(l+m+n−2)
k,k2+m−1+n−1

(y ·
1
b), i − 1 + j = k1 + s− 1,

ψ
(l+m+n−2)
k1+s−1,k2+m−1+n−1

(y ·
1
b), k1 + s − 1 < i− 1 + j < k2 +m − 1,

k2+m−1+n−1
∑

k=k2+m−1
ψ

(l+m+n−2)
k1+s−1,k

(y ·
1
b), i − 1 + j = k2 +m− 1, (impossible)

ψ
(l+m+n−2)
k1+s−1,k2+m−1

(y ·
1
b), k2 +m − 1 < i− 1 + j ≤ l +m − 1, (impossible).

i = k1,































































ψ
(l+m+n−2)
k1+n−1,k2+s−1+n−1

(y ·
2
b), 1 ≤ i − 1 + j < k1, (impossible)

k1+n−1
∑

k=k1

ψ
(l+m+n−2)
k,k2+s−1+n−1

(y ·
2
b), i− 1 + j = k1, (impossible)

ψ
(l+m+n−2)
k1,k2+s−1+n−1

(y ·
2
b), k1 < i − 1 + j < k2 + s− 1,

k2+s−1+n−1
∑

k=k2+s−1
ψ

(l+m+n−2)
k1,k

(y ·
2
b), i− 1 + j = k2 + s− 1,

ψ
(l+m+n−2)
k1k2+s−1

(y ·
2
b), k2 + s− 1 < i− 1 + j ≤ l +m − 1.

i = k2,

and

RHS of (E1.1.1) = ψ
(l)
k1k2

(y) ◦
i
(ϕ(m)

s (b) ◦
j
1n)

=
by (C34)

ψ
(l)
k1k2

(y) ◦
i







ϕ
(m+n−1)
s (b), s < j,

s+n−1
∑

k=s

ϕ
(m+n−1)
k

(b) +
∑

s≤p1<p2≤s+n−1
ψ

(m+n−1)
p1p2

(f(b)), s = j,

ϕ
(m+n−1)
s+n−1 (b), s > j.

=
by (C38)









































































0 i 6= k1, k2,

ψ
(l+m+n−2)
k1+s−1,k2+m+n−2

(y ·
1
b) i = k1,

ψ
(l+m+n−2)
k1,k2+s−1

(y ·
2
b) i = k2,

s < j































0 i 6= k1, k2,

s+n−1
∑

k=s

ψ
(l+m+n−2)
k1+k−1,k2+m+n−2

(y ·
1
b) i = k1,

s+n−1
∑

k=s

ψ
(l+m+n−2)
k1,k2+k−1

(y ·
2
b) i = k2,

s = j



















0 i 6= k1, k2,

ψ
(l+m+n−2)
k1+s+n−2,k2+m+n−2

(y ·
1
b) i = k1,

ψ
(l+m+n−2)
k1,k2+s+n−2

(y ·
2
b) i = k2,

s > j

which implies that (E1.1.1) holds.

Case 6: µ ∈ Ψ, λ ∈ A, and ν ∈ Φ. Write λ = 1l, µ = ψ
(m)
k1k2

(y), and ν = ϕ
(n)
t (c). Then

LHS of (E1.1.1) = (1l ◦
i
ψ
(m)
k1k2

(y)) ◦
i−1+j

ϕ
(n)
t (c)

=
by (C33)

ψ
(l+m−1)
i+k1−1,i+k2−1(y) ◦

i−1+j
ϕ
(n)
t (c)

=
by (C38)







0 j 6= k1, k2,

ψ
(l+m+n−2)
i+k1+t−2,i+k2+n−2

(y ·
1
c) j = k1,

ψ
(l+m+n−2)
i+k1−1,i+k2+t−2

(y ·
2
c) j = k2,
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and

RHS of (E1.1.1) = 1l ◦
i
(ψ

(m)
k1k2

(y) ◦
j
ϕ
(n)
t (c))

=
by (C38)

1l ◦
i







0 j 6= k1, k2,

ψ
(m+n−1)
k1+t−1,k2+n−1

(y ·
1
c) j = k1,

ψ
(m+n−1)
k1,k2+t−1

(y ·
2
c) j = k2,

=
by (C33)







0 j 6= k1, k2,

ψ
(l+m+n−2)
i+k1+t−2,i+k2+n−2

(y ·
1
c) j = k1,

ψ
(l+m+n−2)
i+k1−1,i+k2+t−2

(y ·
2
c) j = k2,

Hence (E1.1.1) holds.

Case 7: µ ∈ Ψ, λ ∈ Φ, and ν ∈ A. Write λ = ϕ
(l)
r (a), µ = ψ

(m)
k1k2

(y), and ν = 1n. Then

LHS of (E1.1.1) = (ϕ(l)
r (a) ◦

i
ψ
(m)
k1k2

(y)) ◦
i−1+j

1n

=
by (C36)

{

0 i 6= r,

ψ
(l+m−1)
k1+r−1,k2+r−1

(ay) i = r
◦

i−1+j
1n

=
by (C37)



































0 i 6= r,

ψ
(l+m+n−2)
k1+r−1+n−1,k2+r−1+n−1

(ay), 1 ≤ r − 1 + j < r + k1 − 1,

k1+r−1+n−1
∑

k=k1+r−1
ψ

(l+m+n−2)
k,k2+r−1+n−1

(ay), r − 1 + j = r + k1 − 1,

ψ
(l+m+n−2)
k1+r−1,k2+r−1+n−1

(ay), r + k1 − 1 < r − 1 + j < r + k2 − 1,

k2+r−1+n−1
∑

k=k2+r−1
ψ

(l+m+n−2)
k1+r−1,k

(ay), r − 1 + j = r + k2 − 1,

ψ
(l+m+n−2)
k1+r−1,k2+r−1

(ay), r + k2 − 1 < r − 1 + j ≤ l +m− 1.

and

RHS of (E1.1.1) = ϕ(l)
r (a) ◦

i
(ψ

(m)
k1k2

(y) ◦
j
1n)

=
by (C37)

ϕ(l)
r (a) ◦

i































ψ
(m+n−1)
k1+n−1,k2+n−1

(y), 1 ≤ j < k1,

k1+n−1
∑

k=k1

ψ
(m+n−1)
k,k2+n−1

(y), j = k1,

ψ
(m+n−1)
k1,k2+n−1

(y), k1 < j < k2,

k2+n−1
∑

k=k2

ψ
(m+n−1)
k1,k

(y), j = k2,

ψ
(m+n−1)
k1k2

(y), k2 < j ≤ m.

=
by (C36)





































































0 i 6= r,

ψ
(l+m+n−2)
r+k1+n−2,r+k2+n−2

(ay) i = r
1 ≤ j < k1,















0 i 6= r,

k1+n−1
∑

k=k1

ψ
(l+m+n−2)
r+k−1,r+k2+n−2

(ay) i = r
j = k1,







0 i 6= r,

ψ
(l+m+n−2)
r+k1−1,r+k2+n−2

(ay) i = r
k1 < j < k2,















0 i 6= r,

k2+n−1
∑

k=k2

ψ
(l+m+n−2)
r+k1−1,r+k−1

(ay) i = r
j = k2,







0 i 6= r,

ψ
(l+m+n−2)
r+k1−1,r+k2−1

(ay) i = r
k2 < j ≤ m.

Hence (E1.1.1) holds.
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Case 8: ν ∈ Ψ, λ ∈ A, and µ ∈ Φ. Write λ = 1l, µ = ϕ
(m)
k (a), and ν = ψ

(n)
k1k2

(y). Then

LHS of (E1.1.1) = (1l ◦
i
ϕ
(m)
k (a)) ◦

i−1+j
ψ
(n)
k1k2

(y)

=
by (C32)

ϕ
(l+m−1)
i+k−1 (a) ◦

i−1+j
ψ
(n)
k1k2

(y)

=
by (C36)

{

0 i + k − 1 6= i− 1 + j,

ψ
(l+m+n−2)
k1+i+j−2,k2+i+j−2

(ay) i + k − 1 = i− 1 + j,

and

RHS of (E1.1.1) = 1l ◦
i
(ϕ

(m)
k (a) ◦

j
ψ
(n)
k1k2

(y))

=
by (C36)

1l ◦
i

{

0 k 6= j,

ψ
(m+n−1)
k1+j−1,k2+j−1

(ay) k = j

=
by (C32)

{

0 k 6= j,

ψ
(l+m+n−2)
k1+j+i−2,k2+j+i−2

(ay) k = j.

Hence (E1.1.1) holds.

Case 9: ν ∈ Ψ, λ ∈ Φ, and µ ∈ A. Write λ = ϕ
(l)
r (a), 1m, and ν = ψ

(n)
k1k2

(y). Then

LHS of (E1.1.1) = (ϕ(l)
r (a) ◦

i
1m) ◦

i−1+j
ψ
(n)
k1k2

(y)

=
by (C34)







ϕ
(l+m−1)
r (a), r < i,

r+m−1
∑

k=r

ϕ
(l+m−1)
k

(a) +
∑

r≤p1<p2≤r+m−1
ψ

(l+m−1)
p1p2

(f(a)), r = i,

ϕ
(l+m−1)
r+m−1 (a), r > i.

◦
i−1+j

ψ
(n)
k1k2

(y)

=
by (C36)

























0 r 6= i− 1 + j,

ψ
(l+m+n−2)
r+k1−1,r+k2−1

(ay) r = i− 1 + j, (impossible).
r < i

ψ
(l+m+n−2)
i−1+j+k1−1,i−1+j+k2−1

(ay) r = i






0 r +m − 1 6= i− 1 + j,

ψ
(l+m+n−2)
r+m−1+k1−1,r+m−1+k1−1

(ay) r +m − 1 = i− 1 + j, (impossible).
r > i

And

RHS of (E1.1.1) = ϕ(l)
r (a) ◦

i
(1m ◦

j
ψ
(n)
k1k2

(y))

=
by (C33)

ϕ(l)
r (a) ◦

i
ψ
(m+n−1)
j+k1−1,j+k2−1(y)

=
by (C36)

{

0 r 6= i,

ψ
(l+m+n−2)
r+j+k1−2,r+j+k2−2

(ay)) r = i.

Hence (E1.1.1) holds.

Case 10: λ, µ, ν ∈ Φ. Write λ = ϕ
(l)
r (a) for a ∈ Ā, µ = ϕ

(m)
s (b) and ν = ϕ

(n)
t (c). Then

LHS of (E1.1.1) = (ϕ(l)
r (a) ◦

i
ϕ(m)
s (b)) ◦

i−1+j
ϕ
(n)
t (c)

=
by (C35)



















ψ
(l+m−1)
r,i+s−1 (g(a, b)), r < i,

r+s−2
∑

k=r

ψ
(l+m−1)
k,r+s−1

(g(a, b) + f(a) ·
2
b) + ϕ

(l+m−1)
r+s−1 (ab)

+
r+m−1

∑

k=r+s

ψ
(l+m−1)
r+s−1,k

(g(b, a) + f(a) ·
1
b),

r = i,

ψ
(l+m−1)
i+s−1,r+m−1

(g(b, a)), r > i.

◦
i−1+j

ϕ
(n)
t (c)

=
by (C38)

























0, j 6= s,

ψ
(l+m+n−2)
r,i+s−1+t−1(g(a, b) ·

2
c), j = s.

r < i,

Xterm, r = i,






0, j 6= s,

ψ
(l+m+n−2)
i+s−1+t−1,r+m−1+n−1

(g(b, a) ·
1
c), j = s.

r > i.
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where

Xterm = (
i+s−2
∑

k=i

ψ
(l+m−1)
k,i+s−1 (g(a, b) + f(a) ·

2
b) + ϕ

(l+m−1)
i+s−1 (ab) +

i+m−1
∑

k=i+s

ψ
(l+m−1)
i+s−1,k (g(b, a) + f(a) ·

1
b)) ◦

i−1+j
ϕ
(n)
t (c)

=
by (C35),(C38)











































ψ
(l+m−1+n−1)
i+s−1,i+j−1+t−1

(g(ab, c)) + ψ
(l+m−1+n−1)
i+s−1,i+j−1+t−1

(g(b, a) + f(a) ·
1
b) ·

2
c, s < j,



























































i+s−2
∑

k=i

ψ
(l+m−1+n−1)
k,i+s−1+t−1

(g(a, b) + f(a) ·
2
b) ·

2
c

+
i+s−1+t−2

∑

k=i+s−1
ψ

(l+m−1+n−1)
k,i+s−1+t−1

(g(ab, c) + f(ab) ·
2
c) + ϕ

(l+m−1+n−1)
i+s−1+t−1

((ab)c)

+
i+s−1+n−1

∑

k=i+s−1+t

ψ
(l+m−1+n−1)
i+s−1+t−1,k

(g(c, ab) + f(ab) ·
1
c)

+
i+m−1

∑

k=i+s

ψ
(l+m−1+n−1)
i+s−1+t−1,k+n−1

(g(b, a) + f(a) ·
1
b) ·

1
c

s = j,

ψ
(l+m−1+n−1)
i+j−1+t−1,i+s−1+n−1(g(a, b) + f(a) ·

2
b) ·

1
c + ψ

(l+m−1+n−1)
i+j−1+t−1,i+s−1+n−1(g(c, ab)), s > j.

and

RHS of (E1.1.1) = ϕ(l)
r (a) ◦

i
(ϕ(m)

s (b) ◦
j
ϕ
(n)
t (c))

=
by (C35)

ϕ(l)
r (a) ◦

i



















ψ
(m+n−1)
s,j+t−1 (g(b, c)), s < j,

s+t−2
∑

k=s

ψ
(m+n−1)
k,s+t−1

(g(b, c) + f(b) ·
2
c) + ϕ

(m+n−1)
s+t−1 (bc)

+
s+n−1

∑

k=s+t

ψ
(m+n−1)
s+t−1,k

(g(c, b) + f(b) ·
1
c),

s = j,

ψ
(m+n−1)
j+t−1,s+n−1

(g(c, b)), s > j.

=
by (C36)

























0, r 6= i,

ψ
(l+m+n−2)
r+s−1,r+j+t−1−1

(ag(b, c)), r = i.
s < j,

Y term s = j,






0, r 6= i,

ψ
(l+m+n−2)
r+j+t−1−1,r+s+n−1−1

(ag(c, b)), r = i.
s > j.

where

Y term =
s=j

ϕ(l)
r (a) ◦

i
(

s+t−2
∑

k=s

ψ
(m+n−1)
k,s+t−1 (g(b, c) + f(b) ·

2
c) + ϕ

(m+n−1)
s+t−1 (bc) +

s+n−1
∑

k=s+t

ψ
(m+n−1)
s+t−1,k (g(c, b) + f(b) ·

1
c))

=
by (C35),(C36)











































ψ
(l+m−1+n−1)
r,i+s+t−1−1 g(a, bc) r < i,























































s+t−2
∑

k=s

ψ
(l+m−1+n−1)
i+k−1,i+s+t−1−1

(a(g(b, c) + f(b) ·
2
c))

+
i+s+t−1−2

∑

k=i

ψ
(l+m−1+n−1)
k,i+s+t−1−1

(g(a, bc) + f(a) ·
2
bc) + ϕ

(l+m−1+n−1)
i+s+t−1−1 (a(bc))

+
i+m+n−1−1

∑

k=i+s+t−1
ψ

(l+m−1+n−1)
i+s+t−1−1,k

(g(bc, a) + f(a) ·
1
bc)

+
s+n−1

∑

k=s+t

ψ
(l+m−1+n−1)
i+s+t−1−1,i+k−1

(a(g(c, b) + f(b) ·
1
c))

r = i,

ψ
(l+m−1+n−1)
i+s+t−1−1,r+m−1+n−1

g(bc, a), r > i.

Hence (E1.1.1) holds.

Case 11: λ ∈ A and µ, ν ∈ Φ. Write λ = 1l, µ = ϕ
(m)
s (b), and ν = ϕ

(n)
t (c). Then

LHS of (E1.1.1) = (1l ◦
i
ϕ(m)
s (b)) ◦

i−1+j
ϕ
(n)
t (c)

=
by (C32)

ϕ
(l+m−1)
i+s−1 (b) ◦

i−1+j
ϕ
(n)
t (c)

=
by (C35)



















ψ
(l+m+n−2)
i+s−1,i−1+j+t−1(g(b, c)), i+ s− 1 < i − 1 + j,

i+s−1+t−2
∑

k=i+s−1
ψ

(l+m+n−2)
k,i+s−1+t−1

(g(b, c) + f(b) ·
2
c) + ϕ

(l+m+n−2)
i+s−1+t−1 (bc)

+
i+s−1+n−1

∑

k=i+s−1+t

ψ
(l+m+n−2)
i+s−1+t−1,k

(g(c, b) + f(b) ·
1
c),

i+ s− 1 = i− 1 + j,

ψ
(l+m+n−2)
i−1+j+t−1,i+s−1+n−1

(g(c, b)), i+ s− 1 > i − 1 + j.
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and

RHS of (E1.1.1) = 1l ◦
i
(ϕ(m)

s (b) ◦
j
ϕ
(n)
t (c))

=
by (C35)

1l ◦
i



















ψ
(m+n−1)
s,j+t−1 (g(b, c)), s < j,

s+t−2
∑

k=s

ψ
(m+n−1)
k,s+t−1

(g(b, c) + f(b) ·
2
c) + ϕ

(m+n−1)
s+t−1 (bc)

+
s+n−1

∑

k=s+t

ψ
(m+n−1)
s+t−1,k

(g(c, b) + f(b) ·
1
c),

s = j,

ψ
(m+n−1)
j+t−1,s+n−1(g(c, b)), s > j.

=
by (C32),(C33)



















ψ
(l+m+n−2)
i+s−1,i+j+t−2(g(b, c)), s < j,

s+t−2
∑

k=s

ψ
(l+m+n−2)
i+k−1,i+s+t−2

(g(b, c) + f(b) ·
2
c) + ϕ

(l+m+n−2)
i+s+t−2 (bc)

+
s+n−1

∑

k=s+t

ψ
(l+m+n−2)
i+s+t−2,i+k−1

(g(c, b) + f(b) ·
1
c),

s = j,

ψ
(l+m+n−2)
i+j+t−2,i+s+n−2(g(c, b)), s > j.

Hence (E1.1.1) holds.

Case 12: µ ∈ A and λ, ν ∈ Φ. Write λ = ϕ
(l)
r (a), µ = 1m and ν = ϕ

(n)
t (c). Then

LHS of (E1.1.1) = (ϕ(l)
r (a) ◦

i
1m) ◦

i−1+j
ϕ
(n)
t (c)

=
by (C34)







ϕ
(l+m−1)
r (a), r < i,

r+m−1
∑

w=r
ϕ
(l+m−1)
w (a) +

∑

r≤k1<k2≤r+m−1
ψ

(l+m−1)
k1k2

(f(a)), r = i,

ϕ
(l+m−1)
r+m−1 (a), r > i.

◦
i−1+j

ϕ
(n)
t (c)

=
by (C35)

























ψ
(l+m+n−2)
r,i−1+j+t−1(g(a, c)), r < i− 1 + j,

(impossible), others.
r < i.

Xterm r = i,






ψ
(l+m+n−2)
i−1+j+t−1,r+m−1+n−1(g(c, a)), r +m− 1 > i− 1 + j,

(impossible), others.
r > i.

where

Xterm =

r+m−1
∑

w=r

ϕ(l+m−1)
w (a) ◦

i−1+j
ϕ
(n)
t (c) +

∑

r≤k1<k2≤r+m−1

ψ
(l+m−1)
k1k2

(f(a)) ◦
i−1+j

ϕ
(n)
t (c)

=
by (r=i)







i−1+j−1
∑

w=i

ϕ
(l+m−1)
w (a) ◦

i−1+j
ϕ
(n)
t (c) + ϕ

(l+m−1)
i−1+j

(a) ◦
i−1+j

ϕ
(n)
t (c) +

i+m−1
∑

w=i+j

ϕ
(l+m−1)
w (a) ◦

i−1+j
ϕ
(n)
t (c)

+
i+m−1

∑

k=i+j

ψ
(l+m−1)
i−1+j,k

(f(a)) ◦
i−1+j

ϕ
(n)
t (c) +

i−1+j−1
∑

k=i

ψ
(l+m−1)
k,i−1+j

(f(a)) ◦
i−1+j

ϕ
(n)
t (c)

=
by (C35),(C38)































i−1+j−1
∑

w=i

ψ
(l+m+n−2)
w,i−1+j+t−1(g(a, c)) +

i−1+j+t−2
∑

k=i−1+j

ψ
(l+m+n−2)
k,i−1+j+t−1

(g(a, c) + f(a) ·
2
c)

+ϕ
(l+m+n−2)
i−1+j+t−1

(ac) +
i−1+j+n−1

∑

k=i−1+j+t

ψ
(l+m+n−2)
i−1+j+t−1,k

(g(c, a) + f(a) ·
1
c)

+
i+m−1

∑

w=i+j

ψ
(l+m+n−2)
i−1+j+t−1,w+n−1(g(c, a))

+
i+m−1

∑

k=i+j

ψ
(l+m−1)
i−1+j+t−1,k+n−1

(f(a) ·
1
c) +

i−1+j−1
∑

k=i

ψ
(l+m−1)
k,i−1+j+t−1

(f(a) ·
2
c)

and

RHS of (E1.1.1) = ϕ(l)
r (a) ◦

i
(1m ◦

j
ϕ
(n)
t (c))

=
by (C32)

ϕ(l)
r (a) ◦

i
ϕ
(m+n−1)
j+t−1 (c)

=
by (C35)



















ψ
(l+m+n−2)
r,i+j+t−1−1(g(a, c)), r < i,

r+j+t−1−2
∑

k=r

ψ
(l+m+n−2)
k,r+j+t−1−1

(g(a, c) + f(a) ·
2
c) + ϕ

(l+m+n−2)
r+j+t−1−1(ac)

+
r+m+n−1−1

∑

k=r+j+t−1
ψ

(l+m+n−2)
r+j+t−1−1,k

(g(c, a) + f(a) ·
1
c),

r = i,

ψ
(l+m+n−2)
i+j+t−1−1,r+m+n−1−1(g(c, a)), r > i.

Hence (E1.1.1) holds.
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Case 13: ν ∈ A and λ, µ ∈ Φ. Write λ = ϕ
(l)
r (a) for a ∈ Ā, µ = ϕ

(m)
s (b) and ν = 1n. Then

LHS of (E1.1.1) = (ϕ(l)
r (a) ◦

i
ϕ(m)
s (b)) ◦

i−1+j
1n

=
by (C35)



















ψ
(l+m−1)
r,i+s−1 (g(a, b)), r < i,

r+s−2
∑

k=r

ψ
(l+m−1)
k,r+s−1

(g(a, b) + f(a) ·
2
b) + ϕ

(l+m−1)
r+s−1 (ab)

+
r+m−1

∑

k=r+s

ψ
(l+m−1)
r+s−1,k

(g(b, a) + f(a) ·
1
b),

r = i,

ψ
(l+m−1)
i+s−1,r+m−1(g(b, a)), r > i.

◦
i−1+j

1n

=
by (C37)





























































ψ
(l+m+n−2)
r,i+s−1+n−1(g(a, b), j < s,

i+s−1+n−1
∑

k=i+s−1
ψ

(l+m+n−2)
r,k

(g(a, b), j = s,

ψ
(l+m+n−2)
r,i+s−1

(g(a, b), j > s.

, r < i,

Xterm, r = i,






















ψ
(l+m+n−2)
i+s−1+n−1,r+m−1+n−1(g(b, a)), j < s,

i+s−1+n−1
∑

k=i+s−1
ψ

(l+m+n−2)
k,r+m−1+n−1

(g(b, a)), j = s,

ψ
(l+m+n−2)
i+s−1,r+m−1+n−1(g(b, a)), j > s

, r > i.

where

Xterm = (

i+s−2
∑

k=i

ψ
(l+m−1)
k,i+s−1 (g(a, b) + f(a) ·

2
b) + ϕ

(l+m−1)
i+s−1 (ab) +

i+m−1
∑

k=i+s

ψ
(l+m−1)
i+s−1,k (g(b, a) + f(a) ·

1
b), ) ◦

k−1+j
1n

=
by (C34),(C37)









































































































i+s−2+n−1
∑

k=i

ψ
(l+m−1+n−1)
k,i+s−1+n−1

(g(a, b) + f(a) ·
2
b),

+ϕ
(l+m−1+n−1)
i+s−1+n−1

(ab),

+
i+m−1+n−1

∑

k=i+s+n−1
ψ

(l+m−1+n−1)
i+s−1+n−1,k

(g(b, a) + f(a) ·
1
b)),

j < s,



































∑

i≤k1<i+s−2,i+s−1≤k2<i+s−1+n−1
ψ

(l+m−1+n−1)
k1,k2

(g(a, b) + f(a) ·
2
b)

+
i+s−1+n−1

∑

k=i+s−1
ϕ
(l+m−1+n−1)
k

(ab) +
∑

i+s−1≤k1<k2<i+s−1+n−1
ψ

(l+m−1+n−1)
k1,k2

f(ab)

+
∑

i+s−1≤k1<i+s−1+n−1,i+s+n−1≤k2<i+m−1+n−1
ψ

(l+m−1+n−1)
k1,k2

(g(b, a) + f(a) ·
1
b))

j = s,































i+s−2
∑

k=i

ψ
(l+m−1+n−1)
k,i+s−1

(g(a, b) + f(a) ·
2
b),

+ϕ
(l+m−1+n−1)
i+s−1 (ab),

+
i+m−1+n−1

∑

k=i+s

ψ
(l+m−1+n−1)
i+s−1,k

(g(b, a) + f(a) ·
1
b)),

, j > s.

and

RHS of (E1.1.1) = ϕ(l)
r (a) ◦

i
(ϕ(m)

s (b) ◦
j
1n)

=
by (C34)

ϕ(l)
r (a) ◦

i







ϕ
(m+n−1)
s (b), s < j,

s+n−1
∑

k=s

ϕ
(m+n−1)
k

(b) +
∑

s≤p1<p2≤s+n−1
ψ

(m+n−1)
p1p2

(f(b)), s = j,

ϕ
(m+n−1)
s+n−1 (b), s > j.

=
by (C35)









































































































ψ
(l+m+n−2)
r,i+s−1 (g(a, b)), r < i,

r+s−2
∑

k=r

ψ
(l+m+n−2)
k,r+s−1

(g(a, b) + f(a) ·
2
b) + ϕ

(l+m+n−2)
r+s−1 (ab)

+
r+m+n−1−1

∑

k=r+s

ψ
(l+m+n−2)
r+s−1,k

(g(b, a) + f(a) ·
1
b),

r = i,

ψ
(l+m+n−2)
i+s−1,r+m+n−1−1

(g(b, a)), r > i.

s < j,

Y term s = j,










































ψ
(l+m+n−2)
r,i+s+n−1−1(g(a, b)), r < i,

r+s+n−1−2
∑

k=r

ψ
(l+m+n−2)
k,r+s+n−1−1

(g(a, b) + f(a) ·
2
b) + ϕ

(l+m+n−2)
r+s+n−1−1(ab)

+
r+m+n−1−1

∑

k=r+s+n−1
ψ

(l+m+n−2)
r+s+n−1−1,k

(g(b, a) + f(a) ·
1
b),

r = i,

ψ
(l+m+n−2)
i+s+n−1−1,r+m+n−1−1

(g(b, a)), r > i.

s > j.
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where

Y term =
s=j

ϕ(l)
r (a) ◦

i
(

s+n−1
∑

k=s

ϕ
(m+n−1)
k (b) +

∑

s≤p1<p2≤s+n−1

ψ(m+n−1)
p1p2

(f(b)))

=
by (C34),(C37)



























i+s−1+n−1
∑

k=i+s−1
ψ

(l+m−1+n−1)
r,k

g(a, b) r < i,



















s+n−1
∑

k=s

r+k−2
∑

w=r
ψ

(l+m−1+n−1)
w,r+k−1

(g(a, b) + f(a) ·
2
b) +

s+n−1
∑

k=s

ϕ
(l+m−1+n−1)
r+k−1

(ab)

+
s+n−1

∑

k=s

r+m+n−1−1
∑

w=r+k

ψ
(l+m−1+n−1)
r+k−1,w

(g(b, a) + f(a) ·
1
b)

r = i,

i+s−1+n−1
∑

k=i+s−1
ψ

(l+m−1+n−1)
k,r+m−1+n−1

g(b, a), r > i.

Hence (E1.1.1) holds.

Case 14: λ ∈ Φ and µ, ν ∈ A. Write λ = ϕ
(l)
k (a), µ = 1m and ν = 1n. Then

LHS of (E1.1.1) = (ϕ
(l)
k (a) ◦

i
1m) ◦

i−1+j
1n

=
by (C34)







ϕ
(l+m−1)
k

(a), k < i,

k+m−1
∑

w=k

ϕ
(l+m−1)
w (a) +

∑

k≤k1<k2≤k+m−1
ψ

(l+m−1)
k1k2

(f(a)), k = i,

ϕ
(l+m−1)
k+m−1

(a), k > i.

◦
i−1+j

1n

=
by (C34)















































ϕ
(l+m+n−2)
k

(a), k < i,


































































k+j−2
∑

w=k

ϕ
(l+m+n−2)
w (a)

+
k+j+n−2

∑

v=k+j−1
ϕ
(l+m+n−2)
v (a)

+
∑

k+j−1≤l1<l2≤k+j+n−2
ψ

(l+m+n−2)
l1l2

(f(a))

+
k+m+n−2

∑

w=k+j+n−1
ϕ
(l+m+n−2)
w (a)

+Xterm

k = i,

ϕ
(l+m+n−2)
k+m+n−2

(a), k > i.

where

Xterm =
by (C37)

(
∑

k≤k1<k2≤k+m−1

ψ
(l+m−1)
k1k2

(f(a))) ◦
k−1+j

1n

=



























∑

k≤k1<k2<k+j−1
ψ

(l+m+n−2)
k1k2

(f(a)))

+
∑

k≤k1<k+j−1,k+j−1≤k2<k+j−1+n−1
ψ

(l+m+n−2)
k1k2

(f(a))

+
∑

k1<k+j−1<k2
ψk1,k2+n−1(f(a))

+
∑

k+j−1≤k1<k+j−1+n,k+j−1+n≤k2<i+m−1+n−1 ψ
(l+m+n−2)
k1k2

(f(a))

+
∑

k≤k+j−1<k1<k2

ψ
(l+m+n−2)
k1+n−1,k2+n−1

(f(a)))

and

RHS of (E1.1.1) = ϕ
(l)
k (a) ◦

i
(1m ◦

j
1n)

= ϕ
(l)
k (a) ◦

i
1m+n−1

=
by (C34)







ϕ
(l+m+n−2)
k

(a), k < i,

k+m+n−2
∑

w=k

ϕ
(l+m+n−2)
w (a) +

∑

k≤l1<l2≤k+m+n−2 ψ
(l+m+n−2)
l1l2

(f(a)) k = i,

ϕ
(l+m+n−2)
k+m+n−2

(a), k > i.

Hence (E1.1.1) holds.



28 YAN-HONG BAO, DONG-XING FU, YU YE, AND JAMES J. ZHANG

Case 15: µ ∈ Φ and λ, ν ∈ A. Write µ = ϕ
(m)
k (a), λ = 1l and ν = 1n. Then

LHS of (E1.1.1) = (1l ◦
i
ϕ
(m)
k (a)) ◦

i−1+j
1n =

by (C32)
ϕ
(m+l−1)
k+i−1 (a) ◦

i−1+j
1n

=
by (C34)







ϕ
(m+l+n−2)
k+i−1

(a) k < j

k+i+n−2
∑

s=k+i−1
ϕ
(m+l+n−2)
s (a) +

∑

k+i−1≤k1<k2<k+i+n−2
ψ

(m+l+n−2)
k1k2

(f(a)) k = j

ϕ
(m+l+n−2)
k+i+n−2

(a) k > j

RHS of (E1.1.1) = 1l ◦
i
(ϕ

(m)
k (a)) ◦

j
1n)

=
by (C34)

1l ◦
i







ϕ
(m+n−1)
k

(a) k < j

k+n−1
∑

s=k

ϕ
(m+n−1)
s (a) +

∑

k≤k1<k2<k+n−1
ψ

(m+n−1)
k1k2

(f(a)) k = j

ϕ
(m+n−1)
k+n−1

(a) k > j

=
by (C32), (C33)







ϕ
(m+l+n−2)
k+i−1

(a) k < j

k+i+n−2
∑

s=k+i−1
ϕ
(m+l+n−2)
s (a) +

∑

k+i−1≤k1<k2<k+i+n−2
ψ

(m+l+n−2)
k1k2

(f(a)) k = j

ϕ
(m+l+n−2)
k+i+n−2

(a) k > j

Hence (E1.1.1) holds.

Case 16: ν ∈ Φ and λ, µ ∈ A. Write ν = ϕ
(n)
k (a), λ = 1l and µ = 1m. Then

LHS of (E1.1.1) = (1l ◦
i
1m) ◦

i−1+j
ϕ
(n)
k (a) =

by (C31)
1l+m−1 ◦

i−1+j
ϕ
(n)
k (a)

=
by (C32)

ϕ
(n+l+m−2)
k+i+j−2 (a)

RHS of (E1.1.1) = 1l ◦
i
(1m ◦

j
ϕ
(n)
k (a)) =

by (C32)
1l ◦

i
ϕ
(n+m−1)
k+j−1 (a)

=
by (C32)

ϕ
(n+m+l−2)
k+j+i−2 (a).

Hence (E1.1.1) holds.

Case 17: λ ∈ Ψ and µ, ν ∈ A. Write λ = ψ
(l)
k1,k2

(y), µ = 1m and ν = 1n. Then

LHS of (E1.1.1) = (ψ
(l)
k1,k2

(y) ◦
i
1m) ◦

i−1+j
1n

=
by (C37)































ψ
(l+m−1)
k1+m−1,k2+m−1

(y), 1 ≤ i < k1,

k1+m−1
∑

k=k1

ψ
(l+m−1)
k,k2+m−1

(y), i = k1,

ψ
(l+m−1)
k1,k2+m−1

(y), k1 < i < k2,

k2+m−1
∑

k=k2

ψ
(l+m−1)
k1,k

(y), i = k2,

ψ
(l+m−1)
k1k2

(y), k2 < i ≤ l.

◦
i−1+j

1n

=
by (C37)

























































ψ
(l+m+n−2)
k1+m−1+n−1,k2+m−1+n−1

(y), 1 ≤ i− 1 + j < k1 +m − 1,

(impossible), others.
1 ≤ i < k1.

k1+j−2
∑

k=k1

ψ
(l+m+n−2)
k,k2+m+n−2

(y) +
k1−1+j+n−1

∑

k=k1−1+j

ψ
(l+m+n−2)
k,k2+m+n−2

(y) +
k1+m−1

∑

k=k1+j

ψ
(l+m+n−2)
k+n−1,k2+m+n−2

(y) i = k1.







ψ
(l+m+n−2)
k1,k2+m−1+n−1

(y), k1 ≤ i− 1 + j < k2 +m− 1,

(impossible), others.
k1 ≤ i < k2.

k2+j−2
∑

k=k2

ψ
(l+m+n−2)
k1,k

(y) +
k2−1+j+n−1

∑

k=k2−1+j

ψ
(l+m+n−2)
k1,k

(y) +
k2+m−1

∑

k=k2+j

ψ
(l+m+n−2)
k1,k+n−1

(y) i = k2.







ψ
(l+m+n−2)
k1,k2

(y), k2 ≤ i− 1 + j < l +m − 1,

(impossible), others.
k2 ≤ i < l.
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and
RHS of (E1.1.1) = ψ

(l)
k1,k2

(y) ◦
i
(1m ◦

j
1n)

=
by (C31)

ψ
(l)
k1,k2

(y) ◦
i
1m+n−1

=
by (C34)































ψ
(l+m+n−2)
k1+m+n−2,k2+m+n−2

(y), 1 ≤ i < k1,

k1+m+n−2
∑

k=k1

ψ
(m+n−2)
k,k2+m+n−2

(y), i = k1,

ψ
(l+m+n−2)
k1,k2+m+n−2

(y), k1 < i < k2,

k2+m+n−2
∑

k=k2

ψ
(l+m+n−2)
k1,k

(y), i = k2,

ψ
(l+m+n−2)
k1k2

(y), k2 < i ≤ l.

Hence (E1.1.1) holds.

Case 18: µ ∈ Ψ and λ, ν ∈ A. Write µ = ψ
(m)
k1,k2

(y), λ = 1l and ν = 1n. Then

LHS of (E1.1.1) = (1l ◦
i
ψ
(m)
k1,k2

(y)) ◦
i−1+j

1n =
by (C32)

ψ
(l+m−1)
k1+i−1,k2+i−1(y) ◦

i−1+j
1n

=
by (C37)































ψ
(l+m+n−2)
k1+i+n−2,k2+i+n−2

(y) j < k1,

k1+i+n−2
∑

w=k1+i−1
ψ

(l+m+n−2)
w,k2+i+n−1

(y) j = k1,

ψ
(l+m+n−2)
k1+i−1,k2+i+n−2

(y) k1 < j < k2,

k2+i+n−2
∑

w=k2+i−1
ψ

(l+m+n−2)
k1+i−1,w

(y) j = k2,

ψ
(l+m+n−2)
k1+i−1,k2+i−1

(y), j > k2,

and
RHS of (E1.1.1) = 1l ◦

i
(ψ

(m)
k1,k2

(y) ◦
j
1n)

=
by (C37)

1l ◦
i































ψ
(m+n−1)
k1+n−1,k2+n−1

(y), 1 ≤ j < k1,

k1+n−1
∑

w=k1

ψ
(m+n−1)
w,k2+n−1

(y), j = k1,

ψ
(m+n−1)
k1,k2+n−1

(y), k1 < j < k2,

k2+n−1
∑

w=k2

ψ
(m+n−1)
k1,w

(y), j = k2,

ψ
(m+n−1)
k1k2

(y), k2 < j ≤ m

=
by (C33)































ψ
(l+m+n−1)
k1+i+n−2,k2+i+n−2

(y), 1 ≤ j < k1,

k1+i+n−2
∑

w=k1+i−1
ψ

(m+n−1)
w,k2+i+n−2

(y), j = k1,

ψ
(l+m+n−1)
k1+i−1,k2+i+n−2

(y), k1 < j < k2,

k2+i+n−2
∑

w=k2+i−1
ψ

(m+n−1)
k1+i−1,w

(y), j = k2,

ψ
(l+m+n−1)
k1+i−1,k2+i−1

(y), k2 < j ≤ m.

Hence (E1.1.1) holds.

Case 19: ν ∈ Ψ and λ, µ ∈ A. Write ν = ψ
(n)
k1,k2

(y), λ = 1l and µ = 1m. Then

LHS of (E1.1.1) = (1l ◦
i
1m) ◦

i−1+j
ψ
(n)
k1,k2

(y) =
by (C31)

1l+m−1 ◦
i−1+j

ψ
(n)
k1,k2

(y)

=
by (C33)

ψ
(n+l+m−2)
k1+i+j−2,k2+i+j−2(y)

RHS of (E1.1.1) =
by (C33)

1l ◦
i
(1m ◦

j
ψ
(n)
k1,k2

(y) = 1l ◦
i
ψ
(n+m−1)
k1+j−1,k2+j−1(y)

=
by (C33)

ψ
(n+l+m−2)
k1+i+j−2,k2+i+j−2(y)

Hence (E1.1.1) holds.

Case 20: λ, µ, ν ∈ A. Equation (E1.1.1) follows from (C31).
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Verification of (OP3): There are two equations in (OP3). We only check the first one in (OP3), namely,

the following equation

(E1.1.3) µ ◦
i
(ν ∗ σ) = (µ ◦

i
ν) ∗ σ′,

for all µ ∈ P(m), ν ∈ P(n), and σ ∈ Sn. Note that σ′ is 1m ◦
i
σ. Write

(E3.6.1) σ =
(

k1, k2, · · · kn

)

where by convention kw = σ−1(w) for all w. Then, by definition,

(E3.6.2) σ′ =
(

1, · · · i− 1, k1 + i− 1, k2 + i− 1, · · · kn + i− 1, i+ n, · · · n+m− 1
)

.

By (E3.6.2), (σ′)−1(s) = s if s < i and s ≥ i + n and (σ′)−1(k + i − 1) = σ−1(k) + i − 1 for 1 ≤ k ≤ n.

We refer to [BYZ, Section 8] for more details concerning σ′.

If both µ and ν are in A, then (E1.1.3) follows easily from (OP1). We have the following 8 cases to

consider.

Case 1: µ ∈ Φ and ν ∈ A. Write µ = ϕ
(m)
k (a) and ν = 1n. Then

LHS of (E1.1.3) = ϕ
(m)
k (a) ◦

i
(1n ∗ σ) =

by (C33)
ϕ
(m)
k (a) ◦

i
1n

=
by (C34)







ϕ
(m+n−1)
k

(a), k < i,

k+n−1
∑

w=k

ϕ
(m+n−1)
k

(a) +
∑

k≤k1<k2≤k+n−1
ψ

(m+n−1)
k1k2

(f(a)), k = i,

ϕ
(m+n−1)
k+n−1

(a), k > i.

and in the following computation we use the fact that f(a)∗ (2, 1) = f(a) [Definition 3.4(3)] and notation

(k′1, k
′
2) = ((σ′)−1(k1), (σ

′)−1(k2)) or ((σ
′)−1(k2), (σ

′)−1(k1)),

RHS of (E1.1.3) = (ϕ
(m)
k (a) ◦

i
1n) ∗ σ

′

=
by (C34)







ϕ
(m+n−1)
k

(a), k < i,

k+n−1
∑

w=k

ϕ
(m+n−1)
k

(a) +
∑

k≤k1<k2≤k+n−1
ψ

(m+n−1)
k1k2

(f(a)), k = i,

ϕ
(m+n−1)
k+n−1

(a), k > i.

∗ σ′

=
by (C22) and (C23)











ϕ
(m+n−1)

(σ′)−1(k)
(a), k < i,

k+n−1
∑

w=k

ϕ
(m+n−1)

(σ′)−1(k)
(a) +

∑

k≤k′
1
<k′

2
≤k+n−1

ψ
(m+n−1)

k′
1
k′
2

(f(a)), k = i,

ϕ
(m+n−1)

(σ′)−1(k+n−1)
(a), k > i.

=







ϕ
(m+n−1)
k

(a), k < i,

k+n−1
∑

w=k

ϕ
(m+n−1)
k

(a) +
∑

k≤k1<k2≤k+n−1
ψ

(m+n−1)
k1k2

(f(a)), k = i,

ϕ
(m+n−1)
k+n−1

(a), k > i.

Hence (E1.1.3) holds.

Case 2: µ ∈ Ψ and ν ∈ A. Write µ = ψ
(m)
k1k2

(y) and ν = 1n. Then

LHS of (E1.1.3) = ψ
(m)
k1k2

(y) ◦
i
(1n ∗ σ) =

by (C33)
ψ
(m)
k1k2

(y) ◦
i
1n

=
by (C37)































ψ
(m+n−1)
k1+n−1,k2+n−1

(y), 1 ≤ i < k1,

k1+n−1
∑

w=k1

ψ
(m+n−1)
w,k2+n−1

(y), i = k1,

ψ
(m+n−1)
k1,k2+n−1

(y), k1 < i < k2,

k2+n−1
∑

w=k2

ψ
(m+n−1)
k1,w

(y), i = k2,

ψ
(m+n−1)
k1k2

(y), k2 < i ≤ m,
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and

RHS of (E1.1.3) = (ψ
(m)
k1k2

(y) ◦
i
1n) ∗ σ

′

=
by (C37)































ψ
(m+n−1)
k1+n−1,k2+n−1

(y), 1 ≤ i < k1,

k1+n−1
∑

w=k1

ψ
(m+n−1)
w,k2+n−1

(y), i = k1,

ψ
(m+n−1)
k1,k2+n−1

(y), k1 < i < k2,

k2+n−1
∑

w=k2

ψ
(m+n−1)
k1,w

(y), i = k2,

ψ
(m+n−1)
k1k2

(y), k2 < i ≤ m,

∗ σ′

=
by (E3.6.2)































ψ
(m+n−1)
k1+n−1,k2+n−1

(y), 1 ≤ i < k1,

k1+n−1
∑

w=k1

ψ
(m+n−1)
w,k2+n−1

(y), i = k1,

ψ
(m+n−1)
k1,k2+n−1

(y), k1 < i < k2,

k2+n−1
∑

w=k2

ψ
(m+n−1)
k1,w

(y), i = k2,

ψ
(m+n−1)
k1k2

(y), k2 < i ≤ m.

Hence (E1.1.3) holds.

Case 3: µ ∈ A and ν ∈ Φ. Write µ = 1m and ν = ϕ
(n)
k (a). Then

LHS of (E1.1.3) = 1m ◦
i
(ϕ

(n)
k (a) ∗ σ) =

by (C22)
1m ◦

i
ϕ
(n)
σ−1(k)(a)

=
by (C32)

ϕ
(m+n−1)
σ−1(k)+i−1(a),

and

RHS of (E1.1.3) = (1m ◦
i
ϕ
(n)
k (a)) ∗ σ′ =

by (C32)
ϕ
(m+n−1)
k+i−1 (a) ∗ σ′

=
by (C22)

ϕ
(m+n−1)
(σ′)−1(k+i−1)(a) = ϕ

(m+n−1)
σ−1(k)+i−1(a).

Hence (E1.1.3) holds.

Case 4: µ ∈ A and ν ∈ Ψ. Write µ = 1m and ν = ψ
(n)
k1k2

(y). Then

LHS of (E1.1.3) = 1m ◦
i
(ψ

(n)
k1k2

(y) ∗ σ) =
by (C23)

1m ◦
i

{

ψ
(n)

σ−1(k1)σ−1(k2)
(y) σ−1(k1) < σ−1(k2)

ψ
(n)

σ−1(k2)σ−1(k1)
(y ∗ (2, 1)) σ−1(k1) > σ−1(k2)

=
by (C33)

{

ψ
(m+n−1)

σ−1(k1)+i−1,σ−1(k2)+i−1
(y) σ−1(k1) < σ−1(k2)

ψ
(m+n−1)

σ−1(k2)+i−1,σ−1(k1)+i−1
(y ∗ (2, 1)) σ−1(k1) > σ−1(k2)

and

RHS of (E1.1.3) = (1m ◦
i
ψ
(n)
k1k2

(y)) ∗ σ′

=
by (C33)

ψ
(m+n−1)
k1+i−1,k2+i−1(y) ∗ σ

′

=
by (C23)

{

ψ
(m+n−1)

(σ′)−1(k1+i−1),(σ′)−1(k2+i−1)
(y) (σ′)−1(k1 + i− 1) < (σ′)−1(k2 + i − 1)

ψ
(m+n−1)

(σ′)−1(k2+i−1),(σ′)−1(k1+i−1)
(y) (σ′)−1(k1 + i− 1) > (σ′)−1(k2 + i − 1)

=

{

ψ
(m+n−1)

σ−1(k1)+i−1,σ−1(k2)+i−1
(y) σ−1(k1) < σ−1(k2)

ψ
(m+n−1)

σ−1(k2)+i−1,σ−1(k1)+i−1
(y ∗ (2, 1)) σ−1(k1) > σ−1(k2).

Hence (E1.1.3) holds.
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Case 5: µ ∈ Φ and ν ∈ Φ. Write µ = ϕ
(m)
k1

(a) and ν = ϕ
(n)
k2

(b). Then

LHS of (E1.1.3) = ϕ
(m)
k1

(a) ◦
i
(ϕ

(n)
k2

(b) ∗ σ) =
by (C22)

ϕ
(m)
k1

(a) ◦
i
ϕ
(n)
σ−1(k2)

(b)

=
by (C35)



























ψ
(m+n−1)

k1,i+σ−1(k2)−1
(g(a, b)), k1 < i,

k1+σ−1(k2)−2
∑

k=k1

ψ
(m+n−1)

k,k1+σ−1(k2)−1
(g(a, b) + f(a) ·

2
b) + ϕ

(m+n−1)

k1+σ−1(k2)−1
(ab)

+
k1+n−1

∑

k=k1+σ−1(k2)

ψ
(m+n−1)

k1+σ−1(k2)−1,k
(g(b, a) + f(a) ·

1
b),

k1 = i,

ψ
(m+n−1)

i+σ−1(k2)−1,k1+n−1
(g(b, a)), k1 > i,

and

RHS of (E1.1.3) = (ϕ
(m)
k1

(a) ◦
i
ϕ
(n)
k2

(b)) ∗ σ′

=
by (C35)























ψ
(m+n−1)
k1,i+k2−1

(g(a, b)), k1 < i,

k1+k2−2
∑

k=k1

ψ
(m+n−1)
k,k1+k2−1

(g(a, b) + f(a) ·
2
b) + ϕ

(m+n−1)
k1+k2−1

(ab)

+
k1+n−1

∑

k=k1+k2

ψ
(m+n−1)
k1+k2−1,k

(g(b, a) + f(a) ·
1
b),

k1 = i,

ψ
(m+n−1)
i+k2−1,k1+n−1

(g(b, a)), k1 > i.

∗ σ′

=
by (C22) and (C23)



























ψ
(m+n−1)

k1,i+σ−1(k2)−1
(g(a, b)), k1 < i,

k1+σ−1(k2)−2
∑

k=k1

ψ
(m+n−1)

k,k1+σ−1(k2)−1
(g(a, b) + f(a) ·

2
b) + ϕ

(m+n−1)

k1+σ−1(k2)−1
(ab)

+
k1+n−1

∑

k=k1+σ−1(k2)

ψ
(m+n−1)

k1+σ−1(k2)−1,k
(g(b, a) + f(a) ·

1
b),

k1 = i,

ψ
(m+n−1)

i+σ−1(k2)−1,k1+n−1
(g(b, a)), k1 > i.

Hence (E1.1.3) holds.

Case 6: µ ∈ Φ and ν ∈ Ψ. Write µ = ϕ
(m)
h (a) and ν = ψ

(n)
k1k2

(y). Then

LHS of (E1.1.3) = ϕ
(m)
h (a) ◦

i
(ψ

(n)
k1k2

(y) ∗ σ) =
by (C23)

ϕ
(m)
h (a) ◦

i
ψ
(n)
σ−1(k1)σ−1(k2)

(y)

=
by (C36)







0, h 6= i,

ψ
(m+n−1)
h+σ−1(k1)−1,h+σ−1(k1)−1(ay), h = i,

and

RHS of (E1.1.3) = (ϕ
(m)
h (a) ◦

i
ψ
(n)
k1k2

(y)) ∗ σ′

=
by (C36)







0, h 6= i,

ψ
(m+n−1)
h+k1−1,h+k1−1(ay), h = i,

∗ σ′

=
by (C23)







0, h 6= i,

ψ
(m+n−1)
h+σ−1(k1)−1,h+σ−1(k1)−1(ay), h = i.

Hence (E1.1.3) holds.

Case 7: µ ∈ Ψ and ν ∈ Φ. Write µ = ψ
(m)
k1k2

(y) and ν = ϕ
(n)
h (a). Then

LHS of (E1.1.3) = ψ
(m)
k1k2

(y) ◦
i
(ϕ

(n)
h (a) ∗ σ) =

by (C22)
ψ
(m)
k1k2

(y) ◦
i
ϕ
(n)
σ−1(h)(a)

=
by (C38)







0, i 6= k1, k2,

ψ
(m+n−1)

k1+σ−1(h)−1,k2+n−1
(y ·

1
a), i = k1,

ψ
(m+n−1)

k1,k2+σ−1(h)−1
(y ·

2
a), i = k2,
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and

RHS of (E1.1.3) = (ψ
(m)
k1k2

(y) ◦
i
ϕ
(n)
h (a)) ∗ σ′

=
by (C38)







0, i 6= k1, k2,

ψ
(m+n−1)
k1+h−1,k2+n−1

(y ·
1
a), i = k1,

ψ
(m+n−1)
k1,k2+h−1

(y ·
2
a), i = k2.

∗ σ′

=
by (C23)







0, i 6= k1, k2,

ψ
(m+n−1)

k1+σ−1(h)−1,k2+n−1
(y ·

1
a), i = k1,

ψ
(m+n−1)

k1,k2+σ−1(h)−1
(y ·

2
a), i = k2.

Hence (E1.1.3) holds.

Case 8: µ ∈ Ψ and ν ∈ Ψ. In this case both sides of (E1.1.3) are zero, so (E1.1.3) holds.

Combining all these cases, P is a 2-unitary operad. We define a morphism uP : Com→ P by sending

1m → 1m for all m ≥ 0. Note that uP is an operadic morphism by (C21) and (C31).

Let {aj}
d
j=1 be a basis of Ā and {µk}

m
k=1 a basis of M where d is the dimension of Ā and m is the

dimension of M . By construction,

{1n, ϕ
(n)
i (aj) := 1n ◦

i
aj , ψ

(n)
i1i2

(µk) := (1n−1 ◦
1
µk) ∗ ci1i2 | i ∈ [n], j ∈ [d], k ∈ [m], 1 ≤ i1 < i2 ≤ n}

is a k-basis of P(n). As a consequence, the generating function of P is

GP (t) =

∞
∑

n=0

(1 + dn+m
n(n− 1)

2
)tn =

1

1− t
+ d

t

(1 − t)2
+m

t2

(1− t)3
.

Therefore P has GK-dimension 3. �
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