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Abstract: We are motivated by cone spherical metrics on compact Riemann surfaces of

positive genus to solve a special case of the Hurwitz problem. Precisely speaking, letting

d, g and ℓ be three positive integers and Λ be the following collection of (ℓ+2) partitions

of a positive integer d:

(a1, · · · , ap), (b1, · · · , bq), (m1 + 1, 1, · · · , 1), · · · , (mℓ + 1, 1, · · · , 1),

where (m1, · · · ,mℓ) is a partition of p+ q− 2 + 2g, we prove that there exists a branched

cover from some compact Riemann surface of genus g to the Riemann sphere P1 with

branch data Λ. An analogue for the genus-zero case was found by the first two authors

(Algebra Colloq. 27 (2020), no. 2, 231-246), who were stimulated by such metrics on P1

and conjectured the veracity of the above statement there.
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1 Introduction

A branched cover f of degree d > 1 from a compact Riemann surface to another one

gives a collection Λ of finitely many partitions of d of length less than d, called the

branch data of f . Moreover, Λ satisfies the celebrated Riemann-Hurwitz formula.

On the other hand, there also exist many collections of partitions of d, called excep-

tions, which satisfy Riemann-Hurwitz formula but fail to be the branch data of any

branched cover. The Hurwitz problem with a history more than 130 years asks for

enumerating branched covers with prescribed branch data with respect to some equiv-

alence relation. A simplified version of the problem is whether such a branched cover
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exists with a given branch data, which was solved [7, Proposition 3.3] in the sense that

there exist no exception if the target surface has positive genus. We mainly focus

in this manuscript on branched covers to the Riemann sphere P1. In this case, both

the original problem and the simplified version are still widely open although many

mathematicians have already obtained a lot of understandings about both the branch

data and the exceptions. See the classical [2, 7, 10, 11, 12, 14, 15, 17, 18, 31, 33]

and the more recent [1, 16, 21, 22, 23, 24, 25, 26, 27, 35, 36, 32] about this problem.

The new results we obtain are all limited to the simplified version of the Hurwitz

problem. We use the notations in [4, 32] in this manuscript.

Cone spherical metrics are constant curvature +1 conformal metrics with finitely

many cone singularities on compact Riemann surfaces. The existence problem of

such metrics with prescribed cone singularities on compact Riemann surfaces has

been open since Troyanov [34] proposed it formally and solved the sub-critical case

in 1980s. Such a metric is called reducible if and only if some developing map of

it has monodromy in U(1); otherwise, it is called irreducible. Q. Chen, W. Wang,

Y. Wu and the second author [4] characterized reducible (cone spherical) metrics

in terms of meromorphic one-forms with simple poles and periods in
√
−1R, called

unitary one-forms on compact Riemann surfaces. In particular, the cone angles of

a reducible metric are determined by the residues of poles and the multiplicities of

zeros of a unitary one-form ([4, Theorem 1.5]).

A unitary one-form on P1 has residues in R \ {0} and satisfies both the residue

theorem and the degree condition, i.e. the sum of multiplicities of its zeros equals

the number of its simple poles minus 2. To obtain the angle constraint for reducible

metrics with cone angles lying in 2πQ>0 on P1, based on the draft of [4], the second

author found in 2014 that it suffices to prove the following fact

Fact 1 Let (a1, · · · , ap) and (b1, · · · , bq) be two partitions of positive integer d > 1,

and (m1, · · · , mℓ) a partition of p+ q− 2 > 0. Then there exists a unitary one-form

ω on P1 such that it has the p + q residues of a1, · · · , ap,−b1, · · · ,−bq and ℓ zeros

with multiplicities m1, · · · , mℓ, respectively, if and only if

max(m1, · · · , mℓ) <
d

GCD(a1, · · · , ap, b1, · · · , bq)
. (1)

Given such a one-form ω, the second author observed in 2014 that the solution of

the ODE
df

f
= ω

is a unique rational function f on P1 up to a multiple, from which the necessary

part (1) of this fact holds. The second author reduced the sufficient part of Fact 1

to a special case of the Hurwitz problem and solved the latter affirmatively in 2015

joint with the first author. See [32, Theorem 1.1], i.e. Case 1 of Theorem 1.1. Then,

taking the logarithmic differential df

f
with respect to the branched cover f : P1 → P1

in Case 1 of Theorem 1.1, we obtain the desired one-form ω in Fact 1. Eremenko
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[8] used this case of the Hurwitz problem solved by the first and the second authors

and the theory of o-minimal structures to obtain the angle constraint for reducible

metrics on P1. Mondello-Panov [19, Theorem C] used parabolic rank two stable

bundles to give the angle constraint for irreducible metrics on P1 a little bit earlier

than Eremenko. Therefore, combining these, we obtain the angle constraint for cone

spherical metrics on P1. X. Zhu [36] used this angle constraint to find infinitely many

new exceptions for branched covers from P1 to itself.

Mondello-Panov [20, Theorem A] used the technique of cutting and gluing to

show that the Gauss-Bonnet formula is the only angle constraint for cone spherical

metrics on compact Riemann surfaces of positive genus. Quite recently, Q. Chen,

B. Li and the first and the second authors [3] applied Jenkins-Strebel differentials

to finding the angle constraint for reducible metrics on compact Riemann surfaces

of positive genus, which was reduced to an existence theorem of unitary one-forms

with both residues and zero multiplicities prescribed. A special case of the main

theorem we proved in [3] reads as follows.

Fact 2 Let p, q, g be three positive integers, (a1, · · · , ap) and (b1, · · · , bq) be two par-

titions of d, and (m1, · · · , mℓ) a partition of p + q − 2 + 2g. Then there exists a

unitary one-form ω on some compact Riemann surface of genus g such that it has the

p+ q residues of a1, · · · , ap,−b1, · · · ,−bq and ℓ zeros with multiplicities m1, · · · , mℓ,

respectively.

Roughly speaking, the positive genus in Fact 2 helps us remove the algebraic restric-

tion (1) in Fact 1 so that the residue theorem together with the degree condition

guarantee the existence of ω. Nevertheless, Fact 2 is non-trivial since all the periods

of ω lie in
√
−1R. Motivated by Fact 2, we obtain Case 2 of the following theorem,

whose proof is independent of this fact.

Theorem 1.1. Let d, ℓ be two positive integers. Suppose that a collection Λ consists

of ℓ+ 2 partitions of d:

(a1, a2, . . . , ap), (b1, b2, . . . , bq), (m1 + 1, 1, . . . , 1), . . . , (mℓ + 1, 1, . . . , 1).

Define the total branch number v(Λ) of Λ to be m1 + · · ·+mℓ + (d − p) + (d− q).

Then Λ is the branch data of a branched cover from a compact Riemann surface X

to P1 if and only if it satisfies one of the following two conditions:

1. v(Λ) = 2d− 2 and max{m1, . . . , mℓ} <
d

GCD(a1, . . . , ap, b1, . . . , bq)
;

2. The total branching order v(Λ) ≥ 2d is even.

Moreover, the genus of X equals
v(Λ) + 2− 2d

2
.

We call a branched cover from a compact Riemann surface X to P1 a Belyi

function on X if it has at most three branched points. Using the same argument as
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the proof of Theorem 1.3 in [32], we could obtain from Theorem 1.1 the following

corollary.

Corollary 1.2. Let us use the notations in Theorem 1.1. Then there exists a Belyi

function of degree ℓd on X with branch data

Λ̃ = {(ℓa1, · · · , ℓap), (ℓb1, · · · , ℓbq), (m1 + 1, · · · , mℓ + 1, 1, · · · , 1)} .

Remark 1.3. The ℓ = 1 case of Theorem 1.1 was proved by Boccara [2] which

is another motivation to us besides Facts 1-2. We already proved the first case of

v(Λ) = 2d− 2 in [32], where X is P1. The necessary part of the second case follows

from Riemann-Hurwitz. Hence, in the remaining of this note, we only need to show

its sufficient part.

There exists an apparent difference between Case 1 and Case 2 in Theorem 1.1.

It could be compared to some irregularity phenomena in enumeration geometry of

Riemann surfaces: unstable Riemann surfaces are more irregular than stable surfaces

[9, p.53].

By taking the logarithmic differential of the branched cover, Theorem 1.1 implies

Fact 2 if max(m1, · · · , mℓ) < d. However, we could not obtain Fact 2 by merely using

the theorem. Actually, we gave the proof of Fact 2 in [3] by using ribbon graphs of

Strebel differentials. On the other hand, following Hurwitz, we apply the Riemann

existence theorem [5, Theorem 2, p.49] to reducing Theorem 1.1 to the following

proposition.

Proposition 1.4. Let d, ℓ, g be three positive integers. If

Λ =
{
(a1, a2, . . . , ap), (b1, b2, . . . , bq), (m1 + 1, 1, . . . , 1), . . . , (mℓ + 1, 1, . . . , 1)

}

is a collection of ℓ + 2 partitions of d with m1 + · · · + mℓ = p + q − 2 + 2g, then

there exist ℓ + 2 permutations τ1, τ2, σ1, . . . , σℓ ∈ Sd satisfying the following three

conditions:

1. τ1τ2σ1 · · ·σℓ = id;

2. τ1 has type of a11a
1
2 · · ·a1p, τ2 of b11b

1
2 · · · b1q and σi of (mi + 1)11d−mi−1 for i =

1, 2, . . . , ℓ;

3. the subgroup generated by τ1, τ2, σ1, . . . , σℓ acts transitively on the set {1, 2, · · · , d}.

We prove the above proposition in the next section. In the last section, we

propose a question on the enumeration of branched covers in Theorem 1.1 up to

weak and strong equivalence relations, respectively, which salutes to Hurwitz.
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2 Proof of Propostion 1.4

2.1 Case ℓ = 1: three partitions

Actually this case was proved by Boccara [2]. In this subsection, we give an alter-

native proof, which seems more constructive than the original one by Boccara.

Proposition 2.1. Proposition 1.4 holds true for ℓ = 1.

Proof. We use induction on d.

At first, note that d ≥ m1 +1 = p+ q− 2+ 2g+1 ≥ 3. Moreover, if d = 3, then

Λ = {(3), (3), (3)}. We could choose τ1 = τ2 = σ = (123).

Then we assume that the proposition holds true for partitions of d ≤ D − 1,

where D ≥ 4. Recall that Λ = {(a1, . . . , ap), (b1, . . . , bq), (m1 + 1, 1, . . . , 1)} is a

collection of three partitions of D and 2g = m1 − p− q + 2 ≥ 2.

Case 1 Suppose that there exist i and j such that ai 6= bj . Without loss of generality,

we assume that ap > bq and bq = min{a1, . . . , ap, b1, . . . , bq}.

Subcase 1.1 Let m1 − 1 < D − bq. Then, applying the induction hypothesis to the

collection

Λ̃ = {(a1, . . . , ap − bq), (b1, . . . , bq−1), (m1, 1, . . . , 1)},

of three partitions ofD−bq, we could find three permutations τ̃1, τ̃2, σ̃1 ∈
SD−bq such that τ̃2σ̃1 = τ̃1 = µ̃1 · · · µ̃p, where µ̃i is a cycle of length ai for

1 ≤ i ≤ p− 1 and µ̃p is a cycle of length (ap − bq). Since 〈τ̃1, τ̃2, σ̃1〉 acts
transitively on {1, 2, · · · , D − bq}, by [32, Lemma 2.10], σ̃1 and µ̃p have

at least one common element, say a. Then we could take

τ2 = (D − bq + 1, D − bq + 2, . . . , D)τ̃2,

σ1 = σ̃1(aD),

τ1 = µ̃1 · · · µ̃p−1 ·
(
(D − bq + 1, D − bq + 2, . . . , D)µ̃p(aD)

)
.

Subcase 1.2 Let m1 − 1 ≥ D − bq. Since m1 + 1 ≤ D, we have bq ≥ 2. Moreover, if

bq = 2, then m1 + 1 = D. By Edmonds-Kulkarni-Stong [7, Proposition

5.2], it holds true for Case bq = 2. Hence, we assume bq ≥ 3 and consider

the following new collection

Λ̃ = {(a1, . . . , ap−1, ap − 2), (b1, . . . , bq−1, bq − 2), (m1 − 1, 1, . . . , 1)}

of three partitions of D− 2. Since D− bq ≤ m1 − 1 = p+ q − 3 + 2g, we

have 2g ≥ 3 +D − bq − p− q.
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At first, it is easy to check that if max{p, q} ≤ 2, then 2g ≥ 3. On

the other hand, D − bq − p − q ≥ D
3
− bq since p, q ≤ D

3
. Therefore, if

max{p, q} ≥ 3, then we have

2g ≥ 3 +D − bq − p− q ≥ 3 +
max{p, q} · bq

3
− bq ≥ 3.

Summing up, we always have g ≥ 2 and m1 − 2 = p+ q − 2 + 2(g − 1).

By the induction hypothesis, there exist τ̃1, τ̃2, σ̃1 in SD−2 corresponding

to Λ̃ with σ̃1 = τ̃1τ̃2. Let τ̃1 = µ̃1 · · · µ̃p, where µ̃i is a cycle of length ai
for 1 ≤ i ≤ p− 1 and µ̃p is a cycle of length (ap − 2). Let τ̃2 = ν̃1 · · · ν̃q,
where ν̃i is a cycle of length bi for 1 ≤ i ≤ q−1 and ν̃q is a cycle of length

(bq − 2). By the transitive property, σ̃1 and µ̃p have at least one common

element, say x; σ̃1 and ν̃q have at least one common element, say y. At

last, we take

τ1 = (D, D − 1, x)τ̃1

τ2 = τ̃2(D, D − 1, y)

σ1 = τ1τ2,

where σ1 = (D, D − 1, x)σ̃1(D, D − 1, y) is always an (m1 + 1)-cycle in

SD whether x coincides with y or not.

Case 2 Let a1 = · · · = ap = b1 = · · · = bq = k. Then we have k ≥ 3 since

p · k = D ≥ m1 + 1 = 2p− 1 + 2g.

Moreover, by Proposition 5.2 in [7], we could assume p = q ≥ 2 and then

m1 ≥ 4.

Subcase 2.1 Let m1 − 1 ≤ D − k. Then, considering the following new collection

Λ̃ = {(a1, . . . , ap−1), (b1, . . . , bq−1), (m1 − 1, 1, . . . , 1)}
of three partitions ofD−k, we find by the induction hypothesis τ̃1, τ̃2, σ̃1 ∈
SD−k corresponding to Λ̃ such that σ̃1 = τ̃1τ̃2. Let τ̃1 = µ̃1 · · · µ̃p, where

µ̃i is a cycle of length k for 1 ≤ i ≤ p. We claim that each µ̃i has at

least 2 common elements with σ̃1. In fact, if µ̃i has exactly one common

elements with σ̃1, say a, then the cycle in τ̃2 = τ̃−1
1 σ̃1 containing a has

length greater than k. A contradiction.

Let x1, xi be two common numbers lying in both µ̃1 = (x1, x2, . . . , xi, . . . , xk)

and σ̃1. Then we could take

τ1 = (x1, D − k + 1)(xi, D − k + i)(D − k + 1, D − k + 2, . . . , D)τ̃1,

τ2 = τ̃2(D,D − 1, . . . , D − k + 1),

σ1 = τ1τ2,

where σ1 = (x1, D− k+ 1)(xi, D− k+ i)σ̃1 is a cycle of length (m1 + 1).
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Subcase 2.2 Let m1 − 1 > D − k. Then we consider the following collection

Λ̃ = {(a1, . . . , ap−1, ap − 2), (b1, . . . , bq−1, bq − 2), (m1 − 1, 1, . . . , 1)}

of three partitions of D − 2. Since g ≥ 2, we could take the same con-

struction as in Subcase 1.2 except for Case Λ = {(3, 3), (3, 3), (5, 1)} for

which we could construct the three permutations by hand.

2.2 Case ℓ > 1: more than three partitions

In this subsection, we will prove Case ℓ > 1 of Proposition 1.4 by induction on both

ℓ and m1 + · · ·+mℓ − p− q. At first, we need some preliminary lemmas.

Lemma 2.2. Let 1 ≤ s, r ≤ d be two integers such that

s + r ≥ d+ 1 and s+ r ≡ d+ 1(mod 2).

Then there exist an s-cycle σ1 and an r-cycle σ2 such that σ1σ2 is a d-cycle.

Proof. If 2k = s+ r − (d+ 1), then 0 ≤ 2k < r. Let

σ−1
2 = (r, r − 1, . . . , 2, 1)(2k + 1, 2k, . . . , 2, 1)

= (r, r − 1, . . . , 2k + 2, 2k + 1, 2k − 1, . . . , 1, 2k, 2k − 2, . . . , 2)

Hence, σ2 is an r-cycle. Note that

(1, 2, . . . , d)σ−1
2 = (1, 2k + 1, 2k, . . . , 2, r + 1, r + 2, . . . , d)

Set σ1 = (1, 2k + 1, 2k, . . . , 2, r + 1, r + 2, . . . , d). Then σ1 is an s-cycle and σ1σ2 =

(1, 2, . . . , d) is a d-cycle.

Lemma 2.3. Proposition 1.4 holds true if ℓ = 2 and p = q = m1 = m2.

Proof. Case p = q = m1 = m2 = 1 follows from [7, Proposition 5.2]. We assume

p = q = m1 = m2 > 1 in what follows. We could derive p, q < d from (m1 + 1) ≤ d.

Without loss of generality, we could assume that

a1 ≥ a2 ≥ · · · ≥ ap, b1 ≥ b2 ≥ · · · ≥ bq.

Then a1 ≥ 2 and b1 ≥ 2. Let

τ1 = (a1 + a2 + · · ·+ ap−1 + 1, a1 + a2 + · · ·+ ap−2 + 1, . . . , a1 + 1, 1) (1, 2, . . . , d)

= (1, 2, . . . , a1) (a1 + 1, a1 + 2, . . . , a1 + a2) · · · (a1 + · · ·+ ap−1 + 1, . . . , d)

τ2 = (d, d− 1, . . . , 1)(1, b1 + 1, . . . , b1 + b2 + · · ·+ bq−1 + 1)

= (d, d− 1, . . . , b1 + b2 + · · ·+ bq−1 + 1) · · · (b1 + b2, . . . , b1 + 2, b1 + 1) (b1, . . . , 2, 1)
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Then we have the following equality relevant to the four permutations of τ1, τ2, σ1

and σ2:

τ1τ2 = (a1 + a2 + · · ·+ ap−1 + 1, . . . , a1 + 1, 1)(1, b1 + 1, . . . , b1 + b2 + · · ·+ bq−1 + 1)

= (a1 + a2 + · · ·+ ap−1 + 1, . . . , a1 + 1, 1)(12)︸ ︷︷ ︸
σ−1

2

(12)(1, b1 + 1, . . . , b1 + b2 + · · ·+ bq−1 + 1)︸ ︷︷ ︸
σ−1

1

Hence we complete the proof.

Lemma 2.4. Proposition 1.4 holds true if ℓ = 2 and p+ q = m1 +m2.

Proof. Without loss of generality, we assume that p ≥ q and m1 ≥ m2. Moreover,

by Lemma 2.3, we could assume p 6= q or m1 6= m2, that is m2 < p. Consider the

following new collection of partitions of d

Λ̃ =
{
(a1 + a2 + · · ·+ am2+1, am2+2, . . . , ap), (b1, b2, . . . , bq), (m1 + 1, 1, . . . , 1)

}
.

Then by Proposition 2.1, we know that there exist τ̃1, τ2, σ1 corresponding to Λ̃

such that τ̃1τ2 = σ−1
1 . In particular, τ̃1 is a product of mutually disjoint (p − m2)

cycles of lengths (a1 + a2 + · · ·+ am2+1), am2+2, . . . , ap, respectively. For simplicity,

we assume that the cycle of length (a1 + a2 + · · ·+ am2+1) in the product is

(1, 2, . . . , a1 + · · ·+ am2+1).

Note that

(a1 + · · ·+ am2
+ 1, a1 + · · ·+ am2−1 + 1, . . . , a1 + 1, 1) · (1, 2, . . . , a1 + a2 + · · ·+ am2+1)

=(1, 2, . . . , a1)(a1 + 1, a1 + 2, . . . , a1 + a2) · · · (a1 + · · ·+ am2
+ 1, . . . , a1 + · · ·+ am2+1)

Set

σ−1
2 = (a1 + · · ·+ am2

+ 1, a1 + · · ·+ am2−1 + 1, . . . , a1 + 1, 1),

τ1 = σ−1
2 τ̃1.

Then we have τ1τ2σ1σ2 = id.

Lemma 2.5. Proposition 1.4 holds true for ℓ = 2 and p+ q ≤ m1 +m2.

Proof. We use induction on m1 +m2 − (p+ q). By Lemma 2.4, we assume it holds

true for m1 + m2 = (p + q) + 2k. Suppose m1 + m2 − (p + q) = 2k + 2. Then

(m1 − 1) + (m2 − 1) = (p + q) + 2k. By the induction hypothesis, there exist τ1, τ2
and m1-cycle σ̃1, m2-cycle σ̃2 such that τ1τ2 = σ̃2σ̃1. Let Ai be the set of numbers

in the cycle σ̃i(i = 1, 2). We choose two numbers x, y ∈ {1, 2, . . . , d} according to

the following three cases, respectively:

• If A1 ⊆ A2, then pick x ∈ A1, y /∈ A2;
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• If A2 ⊆ A1, then pick x ∈ A2, y /∈ A1;

• If A1 * A2 and A2 * A1, then pick x ∈ A1 \ A2, y ∈ A2 \ A1.

Then σ2 = σ̃2(xy) is a (1 +m2)-cycle, σ1 = (xy)σ̃1 is a (1 +m1)-cycle and

τ1τ2 = σ2σ1.

Now we are in a position to complete the proof of Proposition 1.4.

Proof of Proposition 1.4. Here we use induction on ℓ and m1 + · · ·+mℓ − (p + q).

Assume that Proposition 1.4 holds true for ℓ ≤ k − 1 (k ≥ 3) and consider the case

ℓ = k. Then we use induction on m1 + · · ·+mℓ − (p+ q).

(Step 1) Let m1 + · · ·+mℓ = p + q. Then we could assume m1 ≥ m2 ≥ · · · ≥ mℓ and

p ≥ q without loss of generality. Hence p > mℓ and the same argument as in

Lemma 2.4 works.

(Step 2) Let m1 + · · ·+mℓ = p+ q + 2n− 2 where n > 1. Then the same argument as

in Lemma 2.5 shows that it holds true for m1 + · · ·+mℓ = p+ q + 2n.

3 Hurwitz numbers

Two branched covers f1 : X1 → Y and f2 : X2 → Y between compact Riemann

surfaces are said to be weakly equivalent if there exist two biholomorphic maps

g̃ : X1 → X2 and g : Y → Y such that f2 ◦ g̃ = g ◦ f1, and strongly equivalent if the

set of branched points in Y is fixed once and forever and one can take g = idY . The

weak (strong) Hurwitz number of a branch datum is the number of weak or strong

equivalence classes of branched covers realizing it. The simple Hurwitz numbers are

those strong Hurwitz numbers with respect to branch data with form

(2, 1, · · · , 1), · · · , (2, 1, · · · , 1), (a1, · · · , ap).

Long ago Mednykh in [17, 18] gave some general formulae for the computation of

the strong Hurwitz numbers, but the actual implementation of them is rather elabo-

rate in general. Lando-Zvonkin [16, Chapter 5] made a systematic exposition on how

to compute simple Hurwitz numbers for target P1 in terms of intersection numbers

on moduli spaces of curves. Moreover, they also gave enumeration of polynomial

rational functions P1 → P1 in terms of the Lyashko-Looijenga mapping. Monni-

Song-Song [21] used algebraic methods to compute the simple Hurwitz numbers

with respect to branch data of form {(2, 1, · · · , 1), · · · , (2, 1, · · · , 1)} for arbitrary

source and target Riemann surfaces and found the generating function for such sim-

ple Hurwitz numbers. Dubrovin-Yang-Zagier [6] gave a polynomial-time algorithm
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of computing these simple Hurwitz numbers for target surface P1. Quite recently,

Petronio [28, 30] and Petronio-Sarti [29] computed explicitly the weak Hurwitz num-

ber for certain branch data consisting of three partitions and having target surface

P1 by using a combinatorial method based on Grothendieck’s dessin d’enfants.

Question Find a neat formula for all the weak (strong) Hurwitz numbers for the

branch data in Theorem 1.1.
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