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IDEALS OF THE ASSOCIATIVE ALGEBRA OPERAD

Y.-H. BAO, J.-N. XU, Y. YE, J.J. ZHANG, AND Y.-F. ZHANG

Abstract. We prove a one-to-one correspondence between the operadic ideals of the operaduAss and
T -ideals. As a consequence, we show that uAss is noetherian and that every proper operadic ideal of
uAss is generated by a single element.

1. Introduction

Throughout let k be a base field of characteristic zero. Most algebraic objects are over k. Unless
otherwise stated we consider associative algebras with unit in this paper. A polynomial identity of an
algebra A is a noncommutative polynomial f(x1, · · · , xn) such that f(a1, · · · , an) = 0 for all a1, · · · , an ∈
A. An algebra satisfying a nontrivial polynomial identity is called a PI-algebra. Commutative algebras,
the matrix algebra over a commutative algebra, finite-dimensional algebras, and Grassmann (or exterior)
algebras are examples of PI-algebras.

Polynomial identities of a given PI-algebra were firstly investigated by Amitsur and Levisky in [AL]
where they proved that the standard polynomial of degree 2m is an identity of minimal degree for the
m × m full matrix algebra. It is well-known that the set of all identities satisfied by a PI-algebra is a
T-ideal of the free algebra k〈X〉 in countable indeterminants X := {xi}n∈N+

.

LetuAss (resp. Ass) denote the symmetric operad encoding the unital associative algebras (resp. the
associative algebras without unit). It is well-known that the PI-theory such as the study of multilinear
polynomial identities is related to ideals of the operaduAss. One motivation of this paper is to spell out
explicitly some connections between the operaduAss and the PI-theory.

Observe that the subspace of a T-ideal consisting of all multilinear polynomials is essentially equivalent
to an operadic ideal ofuAss [Lemma 2.3]. Recall thatuAss(n) = kSn for all n ≥ 0. Let Vn be the space
consisting of all multilinear polynomials in n variables x1, · · · , xn. Clearly, Vn admits an action of the
symmetric group Sn, which is naturally isomorphic to the regular representation of Sn. Let A be a
PI-algebra and Vn(A) the subspace of Vn of those polynomials that are identities of A. Then we have
Vn(A) ∼= IA(n) where IA is the operadic ideal of uAss determined by the algebra A [Lemma 2.3]. As a
consequence, Vn/Vn(A) ∼= (uAss/IA)(n). In this situation, we also say that A is a PI-algebra associated
to the operadic ideal IA. Given a T-ideal J and let A := k〈X〉/J . Then, following the above procedure we
can construct the associated operadic ideal IA ofuAss, denoted by Ψ(J). Conversely, for every nonzero
operadic ideal I of uAss, a uAss/I-algebra is a PI-algebra since each nonzero element in I gives an
identity of A. In particular, for any vector space V , the freeuAss/I-algebra (uAss/I)(V ) is a PI-algebra
associated to I.

Theorem 1.1 (Theorem 2.9). There is a natural one-to-one correspondence

{proper T-ideals of k〈X〉} ←→ {proper operadic ideals of uAss}

via the map J 7→ Ψ(J).
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Theorem 1.1 says that there is no essential difference between T-ideals of k〈X〉 and operadic ideals of
uAss. In [BYZ], the authors studied the ideal structure of 2-unitary operads similar touAss. Note that
uAss is denoted asAss in [BYZ]. Recall that an operad P is artinian (resp. noetherian) if the set of
ideals of P satisfies the descending (resp. ascending) chain condition. Let P be a locally finite 2-unitary
operad. Then

GKdimP <∞ ⇐⇒ P is artinian =⇒ P is noetherian.

It is easily seen that uAss is not artinian since GKdim(uAss) = ∞. Applying Kemer’s theorem
[Theorem 2.2] and the relationship between T-ideals and operadic ideals of uAss [Theorem 1.1], we
obtain the following.

Theorem 1.2. (1) The operad uAss is noetherian.

(2) Every proper operadic ideal of uAss is generated by a single element.

We are wondering if there is a version of Theorem 1.2 for other operads such as unital Poisson operad.
Recall that Ass is the symmetric operad encoding the associative algebras without unit. Note that
Theorem 1.2(2) fails forAss though Theorem 1.2(1) holds [Remark 2.15]. An operadic ideal I of uAss
may not be generated by an element in I of the minimal degree. For example, the k-th truncation ideal
kΥ ofuAss [BYZ, E0.0.2] is generated by an element in kΥ(m) for m > k ≥ 3, rather than in kΥ(k), see
[BFXYZZ]. Therefore, it is reasonable to consider the single generator of an operadic ideal of I and the
corresponding multilinear polynomial in PI-theory, which will be studied in [BFXYZZ].
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conversations and their useful suggestions. Y.-H. Bao was partially supported by the National Natural
Science Foundation of China (Nos. 11871071 and 12371015) and the Science Fundation for Distinguished
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novation Program for Quantum Science and Technology (No. 2021ZD0302902). J.J. Zhang was partially
supported by the US National Science Foundation (Nos. DMS-2001015 and DMS-2302087).

2. Proofs of statements

Throughout k is a fixed field of characteristic zero and all unadorned ⊗ will be ⊗k. First we recall
some basics about the operad uAss. Generally we refer to [LV, BYZ, QXZZ] for basic definitions and
properties about operads. For convenience, we denote [n] = {1, 2, · · · , n}.

Let Sn be the symmetric group of degree n. We follow that convention in [BYZ] and use the sequence
(σ−1(1), σ−1(2), · · · , σ−1(n)) to denote an element σ ∈ Sn. Equivalently, each (i1, i2, · · · , in) of [n]
corresponds to the permutation σ ∈ Sn given by σ(ik) = k for all 1 ≤ k ≤ n. We also use 1n to denote
the identity element in Sn.

Recall that uAss(n) = kSn is the right regular kSn-module, and the composition map of uAss is
linearly extended by the following maps: for n > 0, k1, k2, · · · , kn ≥ 0,

Sn × Sk1
× · · · × Skn

→ S∑n

i=1
ki
,

(σ, σ1, · · · , σn) 7→ (B̃σ−1(1), · · · , B̃σ−1(n))

for all σ ∈ Sn and σi ∈ Ski
, 1 ≤ i ≤ n, where

B̃i = (

i−1∑

j=1

kj + σ−1
i (1), · · · ,

i−1∑

j=1

kj + σ−1
i (ki))
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for all i = 1, · · · , n. The partial composition

uAss(m) ◦
i
uAss(n)→uAss(m+ n− 1)

is given by

µ ◦
i
ν = µ ◦ (11, · · · , ν

i
, · · · , 11)

for µ ∈uAss(m), ν ∈uAss(n), m ≥ 1, n ≥ 0 and 1 ≤ i ≤ m.

The operad uAss encodes unital associative algebras, namely, a unital associative algebra is exactly
a uAss-algebra. Let (A, µ, u) be a unital associative algebra. One can define an operad morphism
γ = (γn) :uAss → EndA given by γ0(10) = u and γ2(12) = µ, where EndA is the endomorphism operad
of the vector space A, see [LV, Section 5.2.11]. Each θ =

∑
σ∈Sn

cσσ ∈ kSn gives an n-ary operation on
A,

γn(θ) : A⊗n → A, γn(θ)(a1 ⊗ · · · ⊗ an) =
∑

σ∈Sn

cσaσ−1(1) · · ·aσ−1(n), for a1, · · · , an ∈ A.

Next we work out some connections between T-ideals and operadic ideals ofuAss.

Denote by k〈x1, · · · , xn〉 the free associative algebra in noncommutative indeterminants {x1, · · · , xn}
over k. Observe that a PI algebra A always satisfies a multilinear polynomial identity of degree ≤ d if
A satisfies an identity of degree d, see [MR, Proposition 13.1.9] or [GZ, Theorem 1.3.7]. A multilinear

polynomial of degree n is a nonzero element f(x1, · · · , xn) ∈ k〈x1, · · · , xn〉 of the form

f(x1, · · · , xn) =
∑

σ∈Sn

cσxσ−1(1) · · ·xσ−1(n)

for some cσ ∈ k. The method of multilinearization actually plays a very important role in the study of
the identities of a PI-algebra.

Based on the following observation, one can study PI-algebras in the language of operads. The following
lemma is a folklore.

Lemma 2.1. Let A be an associative algebra. Then A is a PI algebra if and only if A is a uAss/I-algebra
for some nonzero operadic ideal I of uAss.

Proof. Let I 6= 0 be an ideal of uAss and A a uAss/I-algebra with the operadic morphism γ̄ :uAss/I →
EndA. Clearly, A is an associative algebra. Then for each nonzero element θ =

∑
σ∈Sn

cσσ ∈ I(n), the
algebra A satisfies the following multilinear polynomial

fθ(x1, · · · , xn) =
∑

σ∈Sn

cσxσ−1(1) · · ·xσ−1(n),

since

fθ(a1, · · · , an) =γ̄(θ + I)(a1, · · · , an) = 0

for any a1, · · · , an ∈ A. Conversely, let A be a PI-algebra satisfying a multilinear polynomial of the form

f(x1, · · · , xn) =
∑

σ∈Sn

cσxσ−1(1) · · ·xσ−1(n),

where cσ ∈ k. Clearly, A is auAss-algebra. Suppose that γ :uAss→ EndA is the corresponding operadic
morphism. Then θf =

∑
σ∈Sn

cσσ ∈ Ker γ and therefore Ker γ is a nonzero operadic ideal of uAss. It
follows that A is an algebra over the quotient operaduAss/Kerγ. �
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Denote IA := Ker γ as in the proof of Lemma 2.1. In this case, we say that A is a PI-algebra associated
to the operadic ideal IA. Clearly, the operadic ideal IA is the maximal operadic ideal I of uAss such
that A is an algebra overuAss/I.

Let I be a nonzero operadic ideal of uAss and AI =uAss/I. Suppose that V is a vector space over
k. Recall the free AI -algebra AI(V ) with

AI(V ) =
⊕

k≥0

AI(V )k, with AI(V )k = AI(k)⊗kSk V ⊗k,

where the left action of Sk on V ⊗k is given by

σ · (v1 ⊗ · · · ⊗ vn) : = vσ−1(1) ⊗ · · · ⊗ vσ−1(n),

and the multiplication

AI(V )m ⊗AI(V )n → AI(V )m+n

given by

[µ̄, u1, · · · , um] · [ν̄, v1, · · · , vn] : = [12 ◦ (µ, ν), u1, · · · , um, v1, · · · , vn].

Clearly, each nonzero element in I(n) gives an identity satisfied by AI(V ). Moreover, the free AI-
algebra AI(V ) is a PI-algebra associated to I. Take different vector space V , one can obtain different
PI-algebra AI(V ) associated to I.

Let k〈X〉 be the free algebra generated by the set X = {xi}i∈N+
. Recall that an ideal H of k〈X〉 is

called a T-ideal if ϕ(H) ⊂ H for every endomorphism ϕ of k〈X〉. Let A be a PI algebra. The set Id(A) of
all polynomial identities of A in k〈X〉 is a T-ideal. Conversely, if H is a T-ideal of k〈X〉, then k〈X〉/H is
a “free” or “universal” PI algebra in some sense. To be precise, if A is a PI algebra such that Id(A) ⊇ H ,
then for any set mapping φ : X → A, there exists a unique algebra homomorphism φ̄ : k〈X〉/H → A such
that the following diagram

X
φ //

##❍
❍

❍

❍

❍

❍

❍

❍

❍

A

k〈X〉/H

φ̄

OO✤
✤

✤

(E2.1.1)

commutes, see [AGPR, Theorem 2.2.17]. It is easily seen that the “free” algebra k〈X〉/H is just the
free uAss/I-algebra (uAss/I)(V ), where V is the vector space spanned by X = {xi}i∈N+

, and I is the
kernel of the structure morphism γ : uAss → Endk〈X〉/H of k〈X〉/H as a uAss-algebra, since the free
algebrauAss/I(V ) also guarantees the existence of the above commutative diagram. Therefore, there is
a correspondence between the classes of PI algebras and the T-ideals of k〈X〉.

A basic question about finite generation of T-ideals was posed by Specht [Sp] in 1950. In order to
avoid confusion with finitely generated as an ideal, a finitely generated T-ideal in the class of T-ideals is
usually called finitely based. In 1987 Kemer gave an affirmative answer [Ke1, Ke2]. Further discussions
can be found in [AGPR, AKK, KR, Pr2].

Theorem 2.2. [Ke2, Theorem 2.4] Every associative algebra (with or without unit) has a finite basis of

identities.

Kemer’s proof is based on some structure theory of superidentities of superalgebras and certain graded
tensor products with the Grassmann algebra.

For each n ∈ N, we denote Vn the subspace of k〈x1, · · · , xn〉 spanned by xσ−1(1) · · ·xσ−1(n), σ ∈ Sn,
which consists of all multilinear polynomials of degree n in the indeterminants x1, · · · , xn ∈ X . Observe
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that Vn admits the right kSn-action given by

(xi1 · · ·xin) ∗ τ : = xτ−1(i1) · · ·xτ−1(in)

for τ ∈ Sn, and

Φn :uAss(n)→ Vn, σ 7→ xσ−1(1) · · ·xσ−1(n)

is an isomorphism of right kSn-modules.

Lemma 2.3. Let A be a PI algebra and Vn(A) be the subspace of Vn consisting of all multilinear identities

of A in k〈x1, · · · , xn〉. Denote I(n) = Φ−1
n (Vn(A)) for each n ∈ N+. Then I = (I(n))n∈N+

is an operadic

ideal of uAss.

Proof. It is easily seen that Vn(A) is invariant under the right Sn-action, and so is I(n). Let µ ∈
uAss(m), ν ∈uAss(n), 1 ≤ i ≤ m. If µ ∈ I(m) or ν ∈ I(n), then for a1, · · · , am+n−1 ∈ A, we have

(Φm+n−1(µ ◦
i
ν))(a1, · · · , am+n−1) = Φm(µ)(a1, · · · , ai−1,Φn(ν)(ai, · · · , ai+n−1), ai+n, · · · , am+n−1) = 0.

Therefore, Φm+n−1(µ ◦
i
ν) ∈ Vm+n−1(A) and µ ◦

i
ν ∈ I(m+ n− 1). It follows that I is an operadic ideal

ofuAss. �

Lemma 2.4. Let I = (I(n))n∈N be an operadic ideal of uAss and k〈X〉 the free algebra generated by

X = {xn}n∈N+. Put

(E2.4.1) Jn : = {Φn(θ)(f1, · · · , fn) | θ ∈ I(n), f1, · · · , fn ∈ k〈X〉}

for each n ∈ N. Suppose that J is the ideal of k〈X〉 generated by ∪n∈NJn. Then J is a T-ideal of k〈X〉.

Proof. Let ϕ be an endomorphism of the free algebra k〈X〉. For any Φn(θ)(f1, · · · , fn) ∈ Jn, we have

ϕ(Φn(θ)(f1, · · · , fn)) = Φn(θ)(ϕ(f1), · · · , ϕ(fn)) ∈ Jn.

Therefore, ϕ sends a generator onto a generator of J , and J is a T -ideal of k〈X〉. �

We fix the following notations.

Notation 2.5. Let A be a PI algebra and I be a proper operadic ideal of uAss.

(1) Let Ψ(A) denote the operadic ideal of uAss constructed in Lemma 2.3.

(2) Let J be a T-ideal of k〈X〉. By abuse of notation, Ψ(k〈X〉/J) is also denoted by Ψ(J). Given a

T-idea J , the operadic ideal Ψ(J) of uAss is defined by Ψ(J)(n) = Φ−1
n (Vn(k〈X〉/J)) for all n.

(3) Let Ω(I) denote the T-ideal of k〈X〉 constructed in Lemma 2.4. Given an operadic ideal I of

uAss, then Ω(I) is generated by ∪nΦn(I(n)) as a T-ideal.

Two sets of polynomials are said to be equivalent if they generate the same T-ideal. As usual we
assume that k is a base field of characteristic zero.

Lemma 2.6. [GZ, Theorems 1.3.7 and 1.3.8] Every nonzero polynomial f ∈ k〈X〉 is equivalent to a finite

set {f1, · · · , fw} of multilinear polynomials with deg fi ≤ deg f .

By Theorem 2.2 and Lemma 2.6, the following result is obvious.

Corollary 2.7. Every proper T-ideal is generated by finitely many multilinear polynomials as a T-ideal.

Let f be a multilinear polynomial of degree n in k〈x1, · · · , xn〉. We use If to denote the ideal of k〈X〉
of the form {

∑m
i=1 gif(ui1, · · · , uin)hi | gi, hi, uij ∈ k〈X〉, i = 1, · · · ,m, j = 1, · · · , n}.
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Lemma 2.8. Let W be a set of multilinear polynomials {f} where each f is a multilinear polynomial

of degree n in k〈x1, · · · , xn〉 for some n. Let 〈W 〉T be the T-ideal of k〈X〉 generated by W as a T-ideal.

Then 〈W 〉T =
∑

f∈W If .

Proof. It is easy to reduce to the case when W is the singleton {f}. In this case we need to show that
〈f〉T := 〈W 〉T = If . Clearly, gf(u1, · · · , un)h ∈ 〈f〉T for all g, h, ui ∈ k〈X〉, i = 1, · · · , n, and therefore
If ⊂ 〈f〉T . It suffices to show that If is a T-ideal. It is easily seen that If is an ideal of k〈X〉. Suppose
that ϕ is an arbitrary endomorphism of k〈X〉. Then for all gi, hi, uij ∈ k〈X〉, i = 1, · · · ,m, j = 1, · · · , n,
we have

ϕ(
m∑

i=1

gif(ui1, · · · , uin)hi) =
m∑

i=1

ϕ(gi)f(ϕ(ui1), · · · , ϕ(uin))ϕ(hi) ∈ If .

It follows that If is a T-ideal and 〈f〉T = If . �

Here is an intermediate step.

Theorem 2.9. The pair (Ψ,Ω) defined in Notation 2.5 induce an inclusion-preserving one-to-one cor-

respondence between the set of proper T-ideals of k〈X〉 and the set of proper operadic ideals of uAss.

Proof. By Lemmas 2.3 and 2.4, we have inclusion-preserving maps

Ψ : {proper T-ideals of k〈X〉} → {proper operadic ideals ofuAss}

and

Ω : {proper operadic ideals ofuAss} → {proper T-ideals of k〈X〉}.

First we prove that Ω(Ψ(J)) = J if J is a proper T-ideal of k〈X〉. By Corollary 2.7, J is generated
by finitely many multilinear polynomials, say {f1, · · · , fs}, as a T-ideal. Let A := k〈X〉/J . Since J is a
T-ideal, every element in J is an identity of A. In particular, fi ∈ Vn(A) if fi has degree n. By Lemma
2.3, Φ−1

n (fi) ∈ I(n) where I = Ψ(J). By Lemma 2.4, fi ∈ Ω(I). Consequently, J ⊆ Ω(I) = Ω(Ψ(J)).
Conversely, let J ′ = Ω(Ψ(J)), we need to show that J ′ ⊆ J . Since both J and J ′ are T-ideals, by Lemma
2.4, it suffices to show that Jn ⊆ J where Jn is defined as in (E2.4.1). Again, by the fact that J is a
T-ideal, it remains to show that Φn(θ) ∈ J for all θ ∈ I(:= Ψ(J)). By the definition of I in Lemma 2.3,
Φn(θ) ∈ Vn(A) where A is k〈X〉/J . This implies that Φn(θ) is an identity of A. Therefore Φn(θ) ∈ J as
required.

Next we show that Ψ(Ω(I)) = I for any proper operadic ideal I of uAss. Let J := Ω(I). By the
proof of Lemma 2.4, J is the 2-sided ideal of k〈X〉 generated by ∪n∈NJn. Then, for every θ ∈ I(n),
Φn(θ) = Φn(θ)(x1, · · · , xn) is in Jn ⊆ J . Thus Φn(θ) is in Vn(k〈X〉/J). By Lemma 2.3, θ ∈ Ψ(J). This
proves that I ⊆ Ψ(Ω(I)). Conversely, let I ′ := Ψ(Ω(I)), we need to show that I ′ ⊆ I. Let θ be in I ′. By
definition, θ = Φ−1

n (fθ) where fθ is some multilinear identity of k〈X〉/J , or equivalently, fθ is multilinear
and fθ ∈ J as J is a T-ideal. By the proof of Lemma 2.4, there exist gki, hki, uki,1, · · · , uki,nk

∈ k〈X〉
such that

fθ =
∑

k,i

gkifk(uki,1, · · · , uki,nk
)hki

where fk = Φnk
(θk) for some θk ∈ I(nk) (and the above sum is a finite sum). Let l denote nk. Without

loss of generality, we may assume that gki, hki, uki,1, · · ·uki,l are monomials. Since fθ is a multilinear poly-
nomial in k〈x1, · · · , xn〉, we may further assume that each term gkifk(uki,1, · · · , uki,l)hki is a multilinear
polynomial in the indeterminants x1, · · · , xn, and for each pair (k, i), gki, hki, uki,1, · · · , uki,l are in differ-
ent sets of indeterminants. We need only show that Φ−1

n (gfk(u1, · · · , ul)h) ∈ I(n), where (g, h, u1, · · · , ul)
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are sets of monomials of the form (gki, hki, uki,1, · · · , uki,l), can be generated by θk ∈ I(l) for all k. We
denote

g = axσ−1(1) · · ·xσ−1(r),

u1 = b1xσ−1(r+1) · · ·xσ−1(r+s1),

· · · ,

ul = blxσ−1(r+s1+···+sl−1+1) · · ·xσ−1(r+s1···+sl),

h = cxσ−1(r+s1···+sl+1) · · ·xσ−1(r+s1···+sl+t)

for some σ ∈ Sn and some nonzero scalars a, b1, · · · , bl, c in k. Clearly, r + s1 + · · ·+ sl + t = n. Then

Φ−1
n (gfk(u1, · · · , ul)h) = ab1 · · · blc(13 ◦ (1r, θk ◦ (1s1 , · · · , 1sl), 1t)) ∗ σ ∈ 〈θk〉(n),

where 〈θk〉 is the operadic ideal of uAss generated by θk. It follows that θ ∈
∑

k〈θk〉(n) where each
θk ∈ I(nk). Therefore θ ∈ I(n) as required. �

Remark 2.10. If a T-ideal J is generated by multilinear identities {fi}
s
i=1 as a T-ideal, then Ψ(J)

is generated by {Φ−1
deg fi

(fi)}
s
i=1 as an operadic ideal of uAss. To see this, let I be Ψ(J) and I ′ be the

operadic ideal ofuAss generated by {Φ−1
deg fi

(fi)}
s
i=1. It follows from Lemma 2.3 that I ′ ⊆ I. By Theorem

2.9, Ω(I ′) ⊆ Ω(I) = J . By Lemma 2.4, each fi is in Ω(I ′). Thus Ω(I ′) ⊇ J . This forces that I ′ = I and
consequently, I is generated by {Φ−1

deg fi
(fi)}

s
i=1 as an operadic ideal ofuAss.

Note that a T-ideal of the free nonunital associative algebra k〈X〉+ can be defined similarly. Similarly
one can show the following.

Theorem 2.11. There is an inclusion-preserving one-to-one correspondence between the set of proper

T-ideals of k〈X〉+ and the set of proper operadic ideals ofAss.

Kemer proved that every proper T-ideal of k〈X〉 is finitely generated as a T-ideal in [Ke1, Ke2].
Applying the one-to-one correspondence between T-ideals of k〈X〉 and operadic ideals ofuAss [Theorem
2.9], we have the following consequences.

Theorem 2.12. (1) The operad uAss is noetherian, that is, the set of operadic ideals of uAss
satisfies the ascending chain condition.

(2) Every ideal of uAss is finitely generated as an operadic ideal.

Proof. (1) Since every T-ideal of k〈X〉 is finitely generated as a T-ideal [Theorem 2.2], the set of T-ideals
of k〈X〉 satisfies the ascending chain condition. The assertion follows from Theorem 2.9.

(2) This follows from part (1) by a standard noetherian argument. �

The following lemma is needed.

Lemma 2.13. [BYZ, Lemma 2.15(2)] Let I be a finitely generated operadic ideal of uAss. Then there

exists θ ∈ I(n) for some n ≥ 0 such that I = 〈θ〉.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. (1) This is Theorem 2.12(1).

(2) This follows from Lemma 2.13 and Theorem 2.12(2). �

In general the description of a T-ideal is very difficult even if every proper T-ideal is finitely generated
[Ke1, Ke2]. In fact it is quite difficult to deduce the generators from a given T-ideal. An effective way
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is to study the multilinear polynomials in a T-ideal since every identity is equivalent to a system of
multilinear polynomials. Here is a small improvement of the original Kemer’s theorem [Theorem 2.2]
when we consider associative algebras with unit.

Corollary 2.14. Every proper T-ideal corresponding to an associative algebra with unit is generated by

one multilinear polynomial as a T-ideal.

Proof. Let J be a proper T-ideal of k〈X〉. By Theorem 2.9, J = Ω(I) where I is a proper operadic ideal
ofuAss. By part (2), I is generated by an element θ ∈ I(n). Let J ′ be the T-ideal of k〈X〉 generated by
Φn(θ). It remains to show that J = J ′. By the proof of Lemma 2.4, J ′ ⊆ J . Since Φn(θ) is an identity
of k〈X〉/J ′, it follows from the proof of Lemma 2.3 that

θ ∈ Ψ(J ′) ⊆ Ψ(J) = Ψ(Ω(I)) = I.

Since I is generated by θ, we obtain that I = Ψ(J ′) = Ψ(J). Now Theorem 2.9 implies that J ′ = J as
required. �

It is well-known that Corollary 2.14 fails for algebras without unit. Note that we do not provide a
new proof of Kemer’s theorem. Corollary 2.14 is in the same spirit as a result of Razmyslov [Ra] and
Procesi [Pr1] which states that all trace identities for the full matrix algebras are generated by a single
trace identity, see also [IKM].

Remark 2.15. Using Theorems 2.11 and 2.2, one sees that the operadAss is also noetherian on operadic
ideals.
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