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Abstract A linear Gr-category is a category of finite-dimensional vector spaces
graded by a finite group together with the natural tensor product. We classify the
braided monoidal structures of a class of linear Gr-categories via explicit computa-
tions of the normalized 3-cocycles and the quasi-bicharacters of finite abelian groups
which are direct product of two cyclic groups.
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1 Introduction

By a linear Gr-category we mean a category of finite-dimensional vector spaces
graded by a finite group together with the natural tensor product of graded vector
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spaces. Linear Gr-categories arise naturally in such areas of mathematics as coho-
mology of groups, representation theory, tensor categories, and quantum groups. In
1975, the monoidal structures of a Gr-category were related to the 3rd cohomology
group of its grading group for the first time in the thesis of Hoàng [7]. When the
group is abelian, a Gr-category admits further a braiding and its braided monoidal
structures are related to the 3rd abelian cohomology group, see [11].

We are mainly concerned about the applications of linear Gr-categories in the
classification of finite pointed tensor categories [4, 6]. Note that, pointed fusion
(i.e., semisimple tensor) categories are nothing other than linear Gr-categories [5],
moreover, the full subcategory of all semi-simple objects of a finite pointed tensor
category is a linear Gr-category, therefore a thorough understanding of the monoidal
structures of linear Gr-categories is indispensable for the purpose of our classification
problem. In fact, the starting point of our investigation was the attempt to classify
pointed tensor categories of tame type over the field of complex numbers. The full
subcategory of semi-simple objects of any such tensor category is a linear Gr-category
over a cyclic group or the direct product of two cyclic groups.

The crux for the classification of the monoidal structures on a linear Gr-category
lies in an explicit and unified formula of the normalized 3-cocycles, not just the
3rd cohomology group, of the grading group. It is worthy to stress that, though the
cohomology group of a finite group might be known, the explicit form of normalized
cocycles is not necessarily clear. A naive reason is that, one may compute the
cohomology group by the minimal (or any simpler) resolution, however one needs
to work on the bar resolution to get normalized cocycles, see for example [12]. In the
case where the group is cyclic, the nice formula of the normalized 3-cocycles and
the classification of the braided monoidal structures are presented in [11]. These
facts are important in the recent advances in the classification of finite pointed
tensor categories whose invertible objects make cyclic groups, see for instance [2, 10].
However for non-cyclic groups, very little is known. To the best of our knowledge,
the only result in this direction is [3] in which the group is the Klein four group and
the computations therein are very technical and there seems no hope to extend them
to more general groups.

The aim of this note is to give explicit and unified formulae of the normalized
3-cocycles and the quasi-bicharacters for the direct product of two arbitrary finite
cyclic groups, and hence provide a classification of the braided monoidal structures
of the linear Gr-categories over such groups. Our main idea is to construct a chain
map, up to the 3rd term, from the bar resolution to a simpler resolution. In the
latter resolution, the cocycles are ready to be handled with. By the chain map, the
computation of normalized 3-cocycles is thus transited to a much easier situation.
Our results vastly extend those obtained in [3, 11]. This also opens a door to the
classification theory of finite pointed quasi-quantum groups and finite pointed tensor
categories [8–10] which will be a nontrivial generalization of the beautiful theory of
finite pointed quantum groups, see [1] and references therein.

The note is organized as follows. In Section 2, we give an explicit chain map from
the bar resolution to the minimal resolution of a finite cyclic group. This provides a
hint to deal with the case of the direct product of two finite cyclic groups which is
carried out in Section 3. The first three terms of a chain map are constructed and
thus the normalized cocycles up to degree 3 and the quasi-bicharacters are obtained.
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In Section 4, we give the classification of the braided monoidal structures of linear
Gr-categories over the direct product of any two finite cyclic groups.

Throughout, k is an algebraically closed field of characteristic zero and let k∗
denote the multiplicative group k\{0}.

2 The Cocycles of Cyclic Groups

In this section, we construct a chain map from the bar resolution to the minimal
resolution of any finite cyclic group. This leads to explicit and unified formulae for
cocycles of all degrees. As mentioned above, the results up to 3-cocycles were known
in the literature. The results for cocycles of higher degrees seem to be new.

Let G = Zm = 〈g|gm = 1〉 be the cyclic group of order m. The trivial ZG-module
Z has the following minimal resolution (see [12, Section 6.2])

· · · −→ ZZm
g−1−→ ZZm

Nm−→ ZZm
g−1−→ ZZm

Nm−→ Z −→ 0, (2.1)

where Nm = ∑m−1
i=0 gi. Let (M•, d•) denote this resolution. To avoid confusion,

denote the generator of the i-th free module in Eq. 2.1 by �i for i ≥ 0. Thus the
differential of Eq. 2.1 can be described in the following way

d(�i) =
{

(g − 1)�i−1 i odd
Nm�i−1 i even

.

By (B•, ∂•) we denote the bar resolution of the trivial ZG-module Z. That is,

Bn =
⊕

0≤i1,...,in≤m−1

ZG[gi1 , · · · , gin ]

and

∂n([gi1 , · · · , gin ]) = gi1 [gi2 , · · · , gin ]

+
n−1∑

j=1

(−1) j[gi1 , · · · , gi j gi j+1 , · · · , gin ] + (−1)n[gi1 , · · · , gin−1 ].

The main objective of this section is to give a chain map from the bar resolution
to the minimal resolution. As preparation, we need to fix some notations and give a
technical lemma. For a natural number i, we denote by i′ the remainder of division
of i by m. Given a rational number x, let [x] denote the integer part of x, i.e., the
largest integer not greater than x. The following technical lemma is useful in our
later arguments and will be used freely.

Lemma 2.1 For any two natural numbers i and j, we have
[

i + j′

m

]

=
[

i + j
m

]

−
[

j
m

]

. (2.2)

Proof
[ i+ j′

m

] = [ i+ j−[ j
m ]m

m

] = [ i+ j
m

] − [ j
m

]
. 	
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Now we are ready to give the desired chain map F : (B•, ∂•) −→ (M•, d•). Let

F2k+1 : [
gi1 , · · · , gi2k+1

] �→
i1−1∑

α=0

[
i2 + i3

m

]

· · ·
[

i2k + i2k+1

m

]

gα�2k+1, k ≥ 0;

F2k : [
gi1 , · · · , gi2k

] �→
[

i1 + i2

m

]

· · ·
[

i2k−1 + i2k

m

]

�2k, k ≥ 1. (2.3)

Here, if i1 = 0, then
∑i1−1

α=0 gα is understood as zero.

Lemma 2.2 The map F = {Fi|i ≥ 1} def ined above is a chain map from the bar
resolution to the minimal resolution.

Proof We verify the claim by direct computations. Indeed, for any 0 ≤ i1, . . . , i2k+1 ≤
m − 1, we have

F2k(∂2k+1([gi1 , · · · , gi2k+1 ]))

= F2k(gi1 [gi2 , · · · , gi2k+1 ] +
2k∑

j=1

(−1) j[gi1 , · · · , gi j gi j+1 , · · · , gi2k+1 ] − [gi1 , · · · , gi2k ])

=
(

gi1

[
i2 + i3

m

]

· · ·
[

i2k + i2k+1

m

]

−
[

(i1 + i2)
′ + i3

m

]

· · ·
[

i2k + i2k+1

m

]

+
[

i1 + (i2 + i3)
′

m

]

· · ·
[

i2k + i2k+1

m

]

− · · ·

−
[

i1 + i2

m

]

· · ·
[

(i2k−1 + i2k)
′ + i2k+1

m

]

+
[

i1 + i2

m

]

· · ·
[

i2k−1 + (i2k + i2k+1)
′

m

]

−
[

i1 + i2

m

]

· · ·
[

i2k−1 + i2k

m

])

�2k

=
(

gi1

[
i2 + i3

m

]

· · ·
[

i2k + i2k+1

m

]

+
[

i1 + i2

m

]

· · ·
[

i2k + i2k+1

m

]

−
[

i2 + i3

m

]

· · ·
[

i2k + i2k+1

m

]

− · · ·

+
[

i1 + i2

m

]

· · ·
[

i2k−1 + i2k

m

]

+
[

i1 + i2

m

]

· · ·
[

i2k + i2k+1

m

]

−
[

i1 + i2

m

]

· · ·
[

i2k−1 + i2k

m

])

�2k

=
[

i2 + i3

m

]

· · ·
[

i2k + i2k+1

m

]

(gi1 − 1)�2k

=
i1−1∑

α=0

[
i2 + i3

m

]

· · ·
[

i2k + i2k+1

m

]

gα(g − 1)�2k

= dF2k+1([gi1 , · · · , gi2k+1 ]),

1252



Braided Monoidal Gr-Categories

and

F2k−1(∂2k([gi1 , · · · , gi2k ]))

= F2k

(

gi1 [gi2 , · · · , gi2k ] +
2k−1∑

j=1

(−1) j[gi1 , · · · , gi j gi j+1 , · · · , gi2k ] + [gi1 , · · · , gi2k−1 ]
)

=
(

gi1
i2−1∑

α=0

[
i3 + i4

m

]

· · ·
[

i2k−1 + i2k

m

]

gα −
(i1+i2)′−1∑

α=0

[
i3 + i4

m

]

· · ·
[

i2k−1 + i2k

m

]

gα

+
i1−1∑

α=0

[
(i2 + i3)

′ + i4

m

]

· · ·
[

i2k−1 + i2k

m

]

gα−
i1−1∑

α=0

[
i2 + (i3 + i4)

′

m

]

· · ·
[

i2k−1 + i2k

m

]

gα

+ · · · +
i1−1∑

α=0

[
i2 + i3

m

]

· · ·
[

(i2k−2 + i2k−1)
′ + i2k

m

]

gα

−
i1−1∑

α=0

[
i2 + i3

m

]

· · ·
[

i2k−2 + (i2k−1 + i2k)
′

m

]

gα

+
i1−1∑

α=0

[
i2 + i3

m

]

· · ·
[

i2k−2 + i2k−1

m

]

gα

)

�2k−1

=
(

gi1
i1−1∑

α=0

[
i3 + i4

m

]

· · ·
[

i2k−1 + i2k

m

]

gα −
(i1+i2)−1∑

α=0

[
i3 + i4

m

]

· · ·
[

i2k−1 + i2k

m

]

gα

+
[

i1 + i2

m

] [
i3 + i4

m

]

· · ·
[

i2k−1 + i2k

m

]

Nm

−
i1−1∑

α=0

[
i2 + i3

m

]

· · ·
[

i2k−1 + i2k

m

]

gα +
i1−1∑

α=0

[
i3 + i4

m

]

· · ·
[

i2k−1 + i2k

m

]

gα

+ · · · −
i1−1∑

α=0

[
i2 + i3

m

]

· · ·
[

i2k−2 + i2k−1

m

]

gα +
i1−1∑

α=0

[
i2 + i3

m

]

· · ·
[

i2k−1 + i2k

m

]

gα

+
i1−1∑

α=0

[
i2 + i3

m

]

· · ·
[

i2k−2 + i2k−1

m

]

gα

)

�2k−1

=
(

gi1
i1−1∑

α=0

[
i3 + i4

m

]

· · ·
[

i2k−1 + i2k

m

]

gα −
(i1+i2)−1∑

α=0

[
i3 + i4

m

]

· · ·
[

i2k−1 + i2k

m

]

gα

+
[

i1+i2

m

] [
i3+i4

m

]

· · ·
[

i2k−1+i2k

m

]

Nm+
i1−1∑

α=0

[
i3+i4

m

]

· · ·
[

i2k−1+i2k

m

]

gα

)

�2k−1

=
[

i1 + i2

m

] [
i3 + i4

m

]

· · ·
[

i2k−1 + i2k

m

]

Nm�2k−1

= dF2k([gi1 , · · · , gi2k ]).
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Since k is algebraically closed, Hl(Zm, k∗) ∼= k∗/(k∗)m = 0 if l is even. So there is
no non-trivial l-cocycle whenever l is even.

Proposition 2.3 Suppose l is odd and ζm an m-th primitive root of unity. Then the set
of maps

ωa : Bl → k∗, [gi1 , · · · , gil ] �→ ζ
ai1[ i2+i3

m ]···[ il−1+il
m ]

m , 0 ≤ a < m

forms a complete set of representatives of l-cocycles.

Proof It is well known that Hl(Zm, k∗) ∼= Zm. So it is enough to show that ωa is an l-
cocycle. Consider the minimal resolution, we know any l-cochain f : (ZG)�l → k∗ is
uniquely determined by the value fl := f (�l). It is not hard to see that f is a cocycle
if and only if fl is an m-th root of unity. So there is some natural number a ∈ [0, m)

such that fl = ζ a
m. By Lemma 2.2, ωa is an l-cocycle and they indeed form a complete

set of representatives of l-cocycles. 	


3 The Cocycles and Quasi-Bicharacters of Zm × Zn

In this section, firstly we give a Zm × Zn -resolution of Z which is the tensor product
of the minimal resolutions of cyclic factors as given in Section 2, then provide the
first 3 terms of a chain map from the bar resolution to this resolution. This enables
us to obtain explicit formulae for the desired 3-cocycles and quasi-bicharacters. As
byproducts, we also get some results on 2-cocycles and 2nd cohomology group which
are obviously important in the cohomology and representation theory of groups.

3.1 A Resolution

Let g1 (resp. g2) be a generator of Zm (resp. Zn). The norm in ZZm is the element
Nm = ∑m−1

i=0 gi
1. As given in Section 2, the following periodic sequence is a projective

resolution of the trivial Zm-module Z

· · · −→ ZZm
g1−1−→ ZZm

Nm−→ ZZm
g1−1−→ ZZm

Nm−→ Z −→ 0. (3.1)

Denote g1 − 1 by Tm for convenience. Similarly one can define Nn and Tn and has
the following projective resolution of the trivial Zn-module Z

· · · −→ ZZn
Tn−→ ZZn

Nn−→ ZZn
Tn−→ ZZn

Nn−→ Z −→ 0. (3.2)

We construct the tensor product of the above periodic resolutions for Zm and Zn.
Let K• be the following complex of projective (actually, free) Z(Zm × Zn)-modules.
For each pair (i, j) of nonnegative integers, let �(i, j) be a free generator in degree
i + j. Thus

Kl :=
⊕

i+ j=l

Z(Zm × Zn)�(i, j).

1254



Braided Monoidal Gr-Categories

For the differential, define

d1(�(i, j)) =
⎧
⎨

⎩

0 i = 0
Nm�(i − 1, j) 0 �= i even
Tm�(i − 1, j) 0 �= i odd

;

d2(�(i, j)) =
⎧
⎨

⎩

0 j = 0
(−1)i Nn�(i, j− 1) 0 �= j even
(−1)iTn�(i, j− 1) 0 �= j odd

.

The differential d is just defined to be d1 + d2.

Lemma 3.1 (K•, d) is a free resolution of trivial Z(Zm × Zn)-module Z.

Proof By observing that (K•, d) is exactly the tensor product complex of Eqs. 3.1
and 3.2, the lemma follows by the Künneth formula for complexes (see (3.6.3)
in [12]). 	


3.2 A Chain Map

Let B• → Z be the bar resolution of the trivial Z(Zm × Zn)-module Z (see [12,
Section 6.5] and notations therein). Thus up to homotopy we have a unique chain
map F• : B• −→ K•. For our purpose, we write F1, F2 and F3 out. Explicitly, for
0 ≤ i, s, k < m, 0 ≤ j, t, l < n,

F1 :
[
gi

1g j
2

]
�→

i−1∑

α=0

gα
1 �(1, 0) +

j−1∑

β=0

gi
1gβ

2 �(0, 1); (3.3)

F2 :
[
gi

1g j
2, gs

1gt
2

]
�→

[
i + s

m

]

�(2, 0) −
s−1∑

α=0

j−1∑

β=0

gα+i
1 gβ

2 �(1, 1)

+
[

j+ t
n

]

gi+s
1 �(0, 2); (3.4)

F3 :
[
gi

1g j
2, gs

1gt
2, gk

1 gl
2

]
�→

i−1∑

α=0

[
k + s

m

]

gα
1 �(3, 0) +

j−1∑

β=0

[
k + s

m

]

gi
1gβ

2 �(2, 1)

+
k−1∑

α=0

[
j+ t

n

]

gi+s+α
1 �(1, 2) +

j−1∑

β=0

[
t + l

n

]

gi+s+k
1 gβ

2 �(0, 3).

(3.5)

Here, say, if i = 0, we understand
∑i−1

α=0 gi
1 as 0.
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Lemma 3.2 The following diagram is commutative

Proof We adopt the notations used in [12]. Take the generator [gi
1g j

2] ∈ B1 for some
0 ≤ i < m and 0 ≤ j < n, then

∂1

([
gi

1g j
2

])
=

(
gi

1g j
2 − 1

)
�(0, 0).

On the other hand,

dF1

([
gi

1g j
2

])
= d

⎛

⎝
i−1∑

α=0

gα
1 �(1, 0) +

j−1∑

β=0

gi
1gβ

2 �(0, 1)

⎞

⎠

=
⎛

⎝
i−1∑

α=0

gα
1 (g1 − 1) +

j−1∑

β=0

gi
1gβ

2 (g2 − 1)

⎞

⎠�(0, 0)

=
(

gi
1g j

2 − 1
)

�(0, 0).

So we have dF1 = ∂1.
For any natural number i, we denote by i′ and i′′ the remainders of division of i by

m and n respectively. Now for any generator [gi
1g j

2, gs
1gt

2] ∈ B2,

F1∂2

([
gi

1g j
2, gs

1gt
2

])

= F1

(
gi

1g j
2

[
gs

1gt
2

] −
[
gi+s

1 g j+t
2

]
+

[
gi

1g j
2

])

= gi
1g j

2

⎛

⎝
s−1∑

α=0

gα
1 �(1, 0)+

t−1∑

β=0

gs
1gβ

2 �(0, 1)

⎞

⎠−
⎛

⎝
(i+s)′−1∑

α=0

gα
1 �(1, 0)+

( j+t)′′−1∑

β=0

gi+s
1 gβ

2 �(0, 1)

⎞

⎠

+
⎛

⎝
i−1∑

α=0

gα
1 �(1, 0) +

j−1∑

β=0

gi
1gβ

2 �(0, 1)

⎞

⎠

= gi
1g j

2

⎛

⎝
s−1∑

α=0

gα
1 �(1, 0) +

t−1∑

β=0

gs
1gβ

2 �(0, 1)

⎞

⎠ −
⎛

⎝

(
(i+s)−1∑

α=0

gα
1 −

[
i + s

m

]

Nm

)

�(1, 0)

+
⎛

⎝
( j+t)−1∑

β=0

gi+s
1 gβ

2 −gi+s
1

[
j+t
n

]

Nn

⎞

⎠�(0, 1)

⎞

⎠+
⎛

⎝
i−1∑

α=0

gα
1 �(1, 0)+

j−1∑

β=0

gi
1gβ

2 �(0, 1)

⎞

⎠

=
([

i+s
m

]

Nm+gi
1

(
g j

2−1
) s−1∑

α=0

gα
1

)

�(1, 0)+
⎛

⎝gi+s
1

[
j+t
n

]

Nn+gi
1(1−gs

1)

j−1∑

β=1

gβ

2

⎞

⎠�(0, 1)
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and

dF2

([
gi

1g j
2, gs

1gt
2

])

= d

⎛

⎝
[

i + s
m

]

�(2, 0) −
s−1∑

α=0

j−1∑

β=0

gα+i
1 gβ

2 �(1, 1) +
[

j+ t
n

]

gi+s
1 �(0, 2)

⎞

⎠

=
[

i + s
m

]

Nm�(1, 0) −
s−1∑

α=0

j−1∑

β=0

gα+i
1 (g1 − 1)gβ

2 �(0, 1)

+
s−1∑

α=0

j−1∑

β=0

gα+i
1 gβ

2 (g2 − 1)�(1, 0) + gi+s
1

[
j+ t

n

]

Nn�(0, 1)

=
([

i + s
m

]

Nm + gi
1

(
g j

2 − 1
) s−1∑

α=0

gα
1

)

�(1, 0)

+
⎛

⎝gi+s
1

[
j+ t

n

]

Nn + gi
1

(
1 − gs

1

)
j−1∑

β=1

gβ

2

⎞

⎠�(0, 1).

So, we have proved that F1∂2 = dF2. At last,

F2∂3

([
gi

1g j
2, gs

1gt
2, gk

1 gl
2

])

= F2

(
gi

1g j
2

[
gs

1gt
2, gk

1 gl
2

] −
[
gi+s

1 g j+t
2 , gk

1 gl
2

]
+

[
gi

1g j
2, gs+k

1 gt+l
2

]
−

[
gi

1g j
2, gs

1gt
2

])

= gi
1g j

2

⎛

⎝
[

s + k
m

]

�(2, 0) −
k−1∑

α=0

t−1∑

β=0

gα+s
1 gβ

2 �(1, 1) +
[

t + l
n

]

gs+k
1 �(0, 2)

⎞

⎠

−
⎛

⎝
[

(i + s)′ + k
m

]

�(2, 0) −
k−1∑

α=0

( j+t)′′−1∑

β=0

gα+i+s
1 gβ

2 �(1, 1)

+
[

( j+ t)′′ + l
n

]

gi+s+k
1 �(0, 2)

⎞

⎠

+
⎛

⎝
[

i + (s + k)′

m

]

�(2, 0) −
(s+k)′−1∑

α=0

j−1∑

β=0

gα+i
1 gβ

2 �(1, 1)

+
[

j+ (t + l)′′

n

]

gi+s+k
1 �(0, 2)

⎞

⎠

−
⎛

⎝
[

i + s
m

]

�(2, 0) −
s−1∑

α=0

j′′−1∑

β=0

gα+i
1 gβ

2 �(1, 1) +
[

j+ t
n

]

gi+s+k
1 �(0, 2)

⎞

⎠ .
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In such expression, the item containing �(2, 0) equals to

([
s + k

m

]

gi
1g j

2 −
([

i + s + k
m

]

−
[

i + s
m

])

+
([

i + s + k
m

]

−
[

s + k
m

])

−
[

i + s
m

])

�(2, 0)

=
([

s + k
m

]

gi
1g j

2 −
[

s + k
m

])

�(2, 0)

=
[

s + k
m

] (
gi

1g j
2 − 1

)
�(2, 0).

The item containing �(1, 1) equals to

⎛

⎝−
k−1∑

α=0

j+t−1∑

β= j

gα+i+s
1 gβ

2 +
k−1∑

α=0

gα+i+s
1

⎛

⎝
j+t−1∑

β=0

gα+s
1 gβ

2 −
[

j+ t
n

]

Nn

⎞

⎠

−
(s+k)−1∑

α=0

(

gα+i
1 −

[
s + k

m

]

gi
1 Nm

) j−1∑

β=0

gβ

2 +
s−1∑

α=0

gα+i
1

j′′−1∑

β=0

gβ

2

⎞

⎠�(1, 1)

=
⎛

⎝
k−1∑

α=0

gα+i+s
1

j−1∑

β=0

gβ

2 −
k−1∑

α=0

gα+i+s
1

[
j+ t

n

]

Nn

+
j−1∑

β=0

gβ

2

[
s + k

m

]

gi
1 Nm −

k−1∑

α=0

gα+i+s
1

j−1∑

β=0

gβ

2

⎞

⎠�(1, 1)

=
⎛

⎝
j−1∑

β=0

gβ

2

[
s + k

m

]

gi
1 Nm −

k−1∑

α=0

gα+i+s
1

[
j+ t

n

]

Nn

⎞

⎠ �(1, 1)

The item containing �(0, 2) equals to

([
t + l

n

]

gi+s+k
1 g j

2 −
([

j+ t + l
n

]

−
[

j+ t
n

])

gi+s+k
1

+
([

j+ t + l
n

]

−
[

t + l
n

])

gi+s+k
1 −

[
j+ t

n

]

gi+s
1

)

�(0, 2)

=
([

t + l
n

]

gi+s+k
1 (g j

2 − 1) +
[

j+ t
n

]

(gi+s+k
1 − gi+s

1 )

)

�(0, 2).
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In addition,

dF3

([
gi

1g j
2, gs

1gt
2, gk

1 gl
2

])

= d

⎛

⎝
i−1∑

α=0

[
k + s

m

]

gα
1 �(3, 0) +

j−1∑

β=0

[
k + s

m

]

gi
1gβ

2 �(2, 1)

+
k−1∑

α=0

[
j+ t

n

]

gi+s+α
1 �(1, 2) +

j−1∑

β=0

[
t + l

n

]

gi+s+k
1 gβ

2 �(0, 3)

⎞

⎠

=
i−1∑

α=0

[
k + s

m

]

gα
1 (g1 − 1)�(2, 0) +

j−1∑

β=0

[
k + s

m

]

gi
1gβ

2 (Nm�(1, 1) + (g2 − 1)�(2, 0))

+
k−1∑

α=0

[
j+ t

n

]

gi+s+α
1 ((g1 − 1)�(0, 2) − Nn�(1, 1))

+
j−1∑

β=0

[
t + l

n

]

gi+s+k
1 gβ

2 (g2 − 1)�(0, 2)

=
[

k + s
m

]
(
gi

1 − 1
)
�(2, 0) +

[
k + s

m

]

gi
1

(
g j

2 − 1
)

�(2, 0)

+
[

j+ t
n

]
(
gi+s+k

1 − gi+s
1

)
�(0, 2) +

[
t + l

n

]

gi+s+k
1

(
g j

2 − 1
)

�(0, 2)

+
j−1∑

β=0

gβ

2

[
s + k

m

]

gi
1 Nm�(1, 1) −

k−1∑

α=0

gα+i+s
1

[
j+ t

n

]

Nn�(1, 1)

=
[

s + k
m

] (
gi

1g j
2 − 1

)
�(2, 0)

+
⎛

⎝
j−1∑

β=0

gβ

2

[
s + k

m

]

gi
1 Nm −

k−1∑

α=0

gα+i+s
1

[
j+ t

n

]

Nn

⎞

⎠�(1, 1)

+
([

t + l
n

]

gi+s+k
1 (g j

2 − 1) +
[

j+ t
n

] (
gi+s+k

1 − gi+s
1

))

�(0, 2).

By comparing the items containing �(2, 0),�(1, 1) and �(0, 2), we can find that
F2∂3 = dF3. 	


3.3 2-Cocycles and 2nd Cohomology Group

It is easy to see that a 2-cochain f ∈ HomZ(Zm×Zn)(
⊕

i+ j=2 Z(Zm × Zn)�(i, j), k∗)
is uniquely determined by the the sequence of values ( f (�(2, 0)), f (�(1, 1)),

f (�(0, 2))). For short, let

A = f (�(2, 0)), B = f (�(1, 1)), and C = f (�(0, 2)).
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Lemma 3.3 The cochain f is a 2-cocycle if and only if Bm = Bn = 1, and it is a 2-
coboundary if and only if B = 1.

Proof By definition, f is a cocycle if and only if d∗( f ) = 0, which is equivalent to
saying that

1 = d∗( f )(�(3, 0)) = f (d(�(3, 0))) = f (Tm�(2, 0)) = A0,

1 = d∗( f )(�(2, 1)) = f (d(�(2, 1))) = f (Nm�(1, 1) + Tn�(2, 0)) = Bm A0,

1 = d∗( f )(�(1, 2)) = f (d(�(1, 2))) = f (Tm�(0, 2) − Nn�(1, 1)) = C0 B−n,

1 = d∗( f )(�(0, 3)) = f (d(�(0, 3))) = f (Tn�(0, 2)) = C0.

So the first part of the lemma is proved. For the second part, assume f = d∗(g) for a
1-cochain g. Therefore,

A = d∗(g)(�(2, 0)) = g(d(�(2, 0))) = g(Nm�(1, 0)) = (g(�(1, 0)))m,

B = d∗(g)(�(1, 1)) = g(d(�(2, 1))) = g(Tm�(0, 1) − Tn�(1, 0))

= (g(�(0, 1)))0(g(�(1, 0)))0 = 1,

C = d∗(g)(�(0, 2)) = g(d(�(0, 2))) = g(Nn�(0, 1)) = (g(�(0, 1)))n.

Since the field is algebraically closed, the only restriction is B = 1. 	


Let (m, n) denote the greatest common divisor of m and n. The preceding lemma
implies the following result directly.

Corollary 3.4 H2(Zm × Zn, k∗) ∼= Z(m,n).

Remark 3.5 For any natural number s, set ζs to be a primitive s-th root of unity. Thus
the above corollary tells us that

{ f is a 2−cochain| f (�(2, 0)) = 1, f (�(1, 1)) = ζ b
(m,n),

f (�(0, 2)) = 1, for 0 ≤ b < (m, n)}
is a complete set of representatives of 2-cocycles.

By combining Lemmas 3.2 and 3.3, any 2-cochain � in HomZ(Zm×Zn)(B2, k∗) can be
described as

�
(

gi
1g j

2, gs
1gt

2

)
= A[ i+s

m ]B− jsC[ j+t
n ] (3.6)

and it is a 2-cocycle if and only if B(m,n) = 1. Define �b ∈ HomZ(Zm×Zn)(B2, k∗) by

�b

(
gi

1g j
2, gs

1gt
2

)
:= ζ

b js
(m,n). (3.7)

Owing to Remark 3.5, one has

Proposition 3.6 The set {�b |0 ≤ b < (m, n)} is a complete set of representatives of the
normalized 2-cocycles.

1260



Braided Monoidal Gr-Categories

3.4 3-Cocycles and 3rd Cohomology Group

In the same manner as Section 3.3, any 3-cochain f ∈ HomZ(Zm×Zn)(
⊕

i+ j=3 Z(Zm ×
Zn)�(i, j), k∗) is uniquely determined by its values on �(3, 0),�(2, 1),�(1, 2) and
�(0, 3). By abuse of notation, let A = f (�(3, 0)), B = f (�(2, 1)), C = f (�(1, 2))

and D = f (�(0, 3)). Due to the similarities, we state the following results without
proofs.

Lemma 3.7 The map f is a 3-cocycle if and only if Am = BnCm = Dn = 1, and it is a
3-coboundary if and only if A = D = 1, B = Em and C = E−n for some E ∈ k∗.

Corollary 3.8 H3(Zm × Zn, k∗) ∼= Zm × Z(m,n) × Zn.

Using the third term F3 of the chain map, any 3-cochain � in HomZ(Zm×Zn)(B3, k∗)
can be described as

�
(

gi
1g j

2, gs
1gt

2, gk
1 gl

2

)
= A[ k+s

m ]i B[ k+s
m ] jC[ j+t

n ]k D[ t+l
n ] j (3.8)

and it is a 3-cocycle if and only if Am = BnCm = Dn = 1. Define a 3-cocycle �a,b ,d ∈
HomZ(Zm×Zn)(B3, k∗) by setting

�a,b ,d

(
gi

1g j
2, gs

1gt
2, gk

1 gl
2

)
= ζ

a[ k+s
m ]i

m ζ
b [ k+s

m ] j
(m,n) ζ

d[ t+l
n ] j

n . (3.9)

Proposition 3.9 The set {�a,b ,d|0 ≤ a < m, 0 ≤ b < (m, n), 0 ≤ d < n} is a complete
set of representatives of the normalized 3-cocycles.

3.5 Quasi-Bicharacters

Definition 3.10 Let G be a group and � a normalized 3-cocycle on G with
coefficients in k∗. A map R : G × G −→ k∗ is called a quasi-bicharacter with respect
to � provided the following equations are satisfied:

R(xy, z) = �(z, x, y)R(x, z)�−1(x, z, y)

×R(y, z)�(x, y, z), (3.10)

R(x, yz) = �−1(y, z, x)R(x, z)�(y, x, z)

×R(x, y)�−1(x, y, z), (3.11)

for all x, y, z ∈ G.

Clearly, if � is trivial, then a quasi-bicharacter is just an ordinary bicharacter.
For the convenience of our later computations, we rewrite Eqs. 3.10 and 3.11 in the
following way:

R(xy, z) = R(x, z)R(y, z)
�(z, x, y)�(x, y, z)

�(x, z, y)
, (3.12)

R(x, yz) = R(x, y)R(x, z)
�(y, x, z)

�(y, z, x)�(x, y, z)
, (3.13)

1261



H.-L. Huang et al.

for all x, y, z ∈ G. The aim of this subsection is to describe all quasi-bicharacters
of Zm × Zn. By Proposition 3.9, one can assume that � = �a,b ,d for some a ∈
{0, . . . , m − 1}, b ∈ {0, . . . , (m, n) − 1} and d ∈ {0, . . . , n − 1}. Clearly, any quasi-
bicharacter R is uniquely determined by the following four values:

r11 := R(g1, g1), r12 := R(g1, g2), r21 := R(g2, g1), r22 := R(g2, g2).

Proposition 3.11 Let G = Zm × Zn, � = �a,b ,d and r11, r12, r21, r22 ∈ k∗. Then there
is a quasi-bicharacter R with respect to � satisfying R(g1, g1) = r11,R(g1, g2) =
r12,R(g2, g1) = r21,R(g2, g2) = r22 if and only if the following equations are satisf ied:

rm
11 = ζ a

m = ζ−a
m , rn

22 = ζ d
n = ζ−d

n ,

rn
12 = 1, rm

12 = ζ−b
(m,n),

rn
21 = 1, rm

21 = ζ b
(m,n). (3.14)

Proof By the definition of �a,b ,d, it is easy to see that �a,b ,d(x, y, z) = �a,b ,d(x, z, y).
Then Eqs. 3.12 and 3.13 can be simplified into

R(xy, z) = R(x, z)R(y, z)�(z, x, y), (3.15)

R(x, yz) = R(x, y)R(x, z)
1

�(x, y, z)
(3.16)

for all x, y, z ∈ Zm × Zn.

“⇒” Using Eqs. 3.15 and 3.16 iteratively, we have R(g1, gi
1) = R(g1, g1)

i and
R(gi

1, g1) = R(g1, g1)
i for 1 ≤ i ≤ m − 1. Now

1 = R
(
g1, gm

1

) = R(g1, g1)R
(
g1, gm−1

1

) 1

�
(
g1, g1, gm−1

1

) = R(g1, g1)
m 1

ζ a
m

,

1 = R
(
gm

1 , g1
) = R

(
gm−1

1 , g1
)
R(g1, g1)�

(
g1, gm−1

1 , g1
) = R(g1, g1)

mζ a
m.

Thus rm
11 = ζ a

m = ζ−a
m . Similarly, we can show that rn

22 = ζ d
n = ζ−d

n .
Again by applying Eq. 3.15 iteratively, one can show that R(gi

1, g2) =
R(g1, g2)

i for 1 ≤ i ≤ m − 1. Therefore,

1 = R
(
gm

1 , g2
) = R

(
gm−1

1 , g2
)
R(g1, g2)�

(
g2, gm−1

1 , g1
) = R(g1, g2)

mζ b
(m,n).

This implies that rm
12 = ζ−b

(m,n). By the definition of �, it is not hard to see

that �(g1, gi
2, g j

2) ≡ 1 for all i, j. Combining this fact and Eq. 3.16, we have
R(g1, gi

2) = R(g1, g2)
i for 1 ≤ i ≤ n. So

1 = R
(
g1, gn

2

) = R(g1, g2)
n = rn

12.

Similarly, we have rn
21 = 1 and rm

21 = ζ b
(m,n). The necessity is proved.

“⇐” Conversely, define a map R : G × G −→ k∗ by setting

R
(

gi
1g j

2, gs
1gt

2

)
= ris

11rit
12r js

21r jt
22.
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To show it is indeed a quasi-bicharacter, it is enough to prove that Eqs. 3.15
and 3.16 are satisfied. We only show Eq. 3.15 since Eq. 3.16 can be proved
similarly. Recall that for any integer i ∈ N, we denote by i′ and i′′ the
remainders of division of i by m and n respectively. Now,

R
(

gs
1gt

2 · gk
1 gl

2, gi
1g j

2

)
= R

(
g(s+k)′

1 g(t+l)′′
2 , gi

1g j
2

)
= ri(k+s)′

11 r j(k+s)′
12 ri(t+l)′′

21 r j(t+l)′′
22 .

Then,

R
(

gs
1gt

2, gi
1g j

2

)
R

(
gk

1 gl
2, gi

1g j
2

)
�

(
gi

1g j
2, gs

1gt
2, gk

1 gl
2

)

= ri(k+s)
11 r j(k+s)

12 ri(t+l)
21 r j(t+l)

22 ζ
a[ k+s

m ]i
m ζ

b [ k+s
m ] j

(m,n) ζ
d[ t+l

n ] j
n

= r
i[(k+s)′+[ k+s

m ]m]
11 r

j[(k+s)′+[ k+s
m ]m]

12 r
i[(t+l)′′+[ t+l

n ]n]
21 r

j[(t+l)′′+[ t+l
n ]n]

22

× ζ
a[ k+s

m ]i
m ζ

b [ k+s
m ] j

(m,n) ζ
d[ t+l

n ] j
n

= ri(k+s)′
11 ζ

−a[ k+s
m ]i

m r j(k+s)′
12 ζ

−b [ k+s
m ] j

(m,n) ri(t+l)′′
21 r j(t+l)′′

22 ζ
−d[ t+l

n ] j
n

× ζ
a[ k+s

m ]i
m ζ

b [ k+s
m ] j

(m,n) ζ
d[ t+l

n ] j
n

= ri(k+s)′
11 r j(k+s)′

12 ri(t+l)′′
21 r j(t+l)′′

22

= R
(

gs
1gt

2 · gk
1 gl

2, gi
1g j

2

)
.

The sufficiency is proved.
	


Remark 3.12

(a) Clearly, if there is a quasi-bicharacter with respect to �a,b ,d, then either a = 0
or m is even and a = m

2 . Similarly, either d = 0 or n is even and d = n
2 .

(b) A quasi-bicharacter is said to be skew-symmetric if R(x, y)R(y, x) = 1 for all
x, y ∈ G. In view of the above proposition, a quasi-bicharacter R is skew-
symmetric if and only if r2

11 = r2
22 = 1 and r12 = r−1

21 .

Convention Given any �a,b ,d, let Aa,b ,d be the set of sequences of (r11, r12, r21, r22)

satisfying Eq. 3.14. An element (r11, r12, r21, r22) ∈ Aa,b ,d is denoted by r and the
quasi-bicharacter R determined by r is denoted by Rr. Note that Aa,b ,d might be
an empty set.

4 Braided Monoidal Structures on Linear Gr-Categories over Zm × Zn

Let G be a group. By VecG we denote the category of finite-dimensional G-graded
spaces. Define the tensor product in this category by the formula

(V ⊗ W)g =
⊕

x,y∈G,xy=g

Vx ⊗ Wy
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for all x, y, g ∈ G. The linear Gr-category over G is (VecG,⊗). It is well-known
that (VecG,⊗) is a monoidal category, and the monoidal structures on VecG are
parameterized by the normalized 3-cocycles on G. Given a normalized 3-cocycle
� on G, we denote the corresponding monoidal category by Vec�

G . Clearly, the
monoidal category Vec�

G is braided if and only if there exists a quasi-bicharacter R
with respect to �. The resulted braided monoidal category is written as (Vec�

G,R).

Obviously, to classify the monoidal structures on (VecG,⊗) is equivalent to
determining all the normalized 3-cocycles, and to classify the braided structures on
Vec�

G is equivalent to determining the quasi-bicharacters with respect to �. Now we
are ready to give our main classification results based on the preparations in the
previous sections.

Theorem 4.1 Let G = Zm × Zn. Then any monoidal structure on the linear Gr-
category over G is tensor equivalent to Vec�a,b ,d

G for some a ∈ {0, . . . , m − 1}, b ∈
{0, . . . , (m, n) − 1} and d ∈ {0, . . . , n − 1}.

Proof Let Vec�
G be a monoidal structure on (VecG,⊗). By Proposition 3.9, � is

cohomologous to �a,b ,d for some a ∈ {0, . . . , m − 1}, b ∈ {0, . . . , (m, n) − 1} and d ∈
{0, . . . , n − 1}. At the same time, it is well-known that any two monoidal categories
Vec�1

G , Vec�2
G are tensor equivalent provided �1 and �2 are cohomologous. 	


Theorem 4.2 Let G = Zm × Zn. Then any braided monoidal structure on (VecG,⊗)

is tensor equivalent to (Vec�a,b ,d

G ,Rr) for some a ∈ {0, . . . , m − 1}, b ∈ {0, . . . , (m, n) −
1}, d ∈ {0, . . . , n − 1} and r ∈ Aa,b ,d.

Proof Let (Vec�
G,R) be a braided monoidal structure on (VecG,⊗). Similarly,

� is cohomologous to �a,b ,d for some a ∈ {0, . . . , m − 1}, b ∈ {0, . . . , (m, n) − 1}
and d ∈ {0, . . . , n − 1} by Proposition 3.9. So �a,b ,d = �δ( f ) for a 2-cochain f ∈
HomZG(B2, k∗). Define R′ by

R′(x, y) := R(x, y) f (x, y) f (y, x)−1, x, y ∈ G.

Direct computations show that R′ is a quasi-bicharacter with respect to �a,b ,d. Thus
R′ = Rr for some r ∈ Aa,b ,d by Proposition 3.11. Therefore (Vec�

G,R) is tensor
equivalent to (Vec�a,b ,d

G ,Rr). 	


Remark 4.3 It is not hard to see that the braided monoidal category (Vec�
G,R) is

symmetric if and only if R is skew-symmetric as defined in Remark 3.12.
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