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RESTRICTED POISSON ALGEBRAS

YAN-HONG BAO, YU YE AND JAMES J. ZHANG

We reformulate Bezrukavnikov and Kaledin’s definition of a restricted Pois-
son algebra, provide some natural and interesting examples, and discuss
connections with other research topics.

Introduction

The Poisson bracket was introduced by Poisson [1809] as a tool for classical
dynamics. Poisson geometry has become an active research field during the past
50 years. The study of Poisson algebras over R or a field of characteristic zero
[Laurent-Gengoux et al. 2013] also has a long history, and is closely related to
noncommutative algebra, differential geometry, deformation quantization, number
theory, and other areas. The notion of a restricted Poisson algebra was introduced
about ten years ago in an important paper of Bezrukavnikov and Kaledin [2008] in
the study of deformation quantization in positive characteristic. The project in that
paper is a natural extension of the classical deformation quantization of symplectic
(or Poisson) manifolds.

Our first goal is to better understand Bezrukavnikov and Kaledin’s definition via
a Lie-algebraic approach. We reinterpret their definition in the following way.

Throughout the paper let k be a base field of characteristic p � 3. All vector
spaces and algebras are over k.

Definition 0.1. Let .A; f�;�g/ be a Poisson algebra over k.

(1) We call A a weakly restricted Poisson algebra if there is a p-map operation
x 7! xfpg such that .A; f�;�g; .�/fpg/ is a restricted Lie algebra.

(2) We call A a restricted Poisson algebra if A is a weakly restricted Poisson
algebra and the p-map .�/fpg satisfies

(E0.1.1) .x2/fpg D 2xpxfpg

for all x 2A.
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The formulation in (E0.1.1) is slightly simpler than the original definition. We
will show that Definition 0.1(2) is equivalent to [Bezrukavnikov and Kaledin 2008,
Definition 1.8] in Lemma 3.7. Generally it is not easy to prove basic properties for
restricted Poisson algebras. For example, it is not straightforward to show that the
tensor product preserves the restricted Poisson structure. Different formulations are
helpful in understanding and proving some elementary properties.

Since there are several structures on a restricted Poisson algebra, it is delicate to
verify all of the compatibility conditions. There are not many examples given in the
literature. Our second goal is to provide several canonical examples from different
research subjects. Restricted Poisson algebras can be viewed as a Poisson version of
restricted Lie algebras, so the first few examples come from restricted (or modular)
Lie theory. Let L be a restricted Lie algebra over k. Then the trivial extension
algebra k˚L (with L2 D 0) is a restricted Poisson algebra. More naturally we
have the following.

Theorem 0.2 (Theorem 6.5). Let L be a restricted Lie algebra over k and let
s.L/ be the p-truncated symmetric algebra. Then s.L/ admits a natural restricted
Poisson structure induced by the restricted Lie structure of L.

To use ideas from Poisson geometry, it is a good idea to extend the restricted
Poisson structure to the symmetric algebra of a restricted Lie algebra (Example 6.2).
The following result is slightly more general and useful in other settings.

Theorem 0.3 (Theorem 6.1). Let T be an index set and A D k Œxi j i 2 T � be a
polynomial Poisson algebra. If , for each i 2 T, there exists  .xi/ 2 A such that
adp

xi
D ad.xi /, then A admits a restricted Poisson structure .�/fpgWA! A such

that x
fpg
i D  .xi/ for all i 2 T.

The next example comes from deformation theory, which is also considered in
[Bezrukavnikov and Kaledin 2008]. See (E7.0.1) for the definition of M

p
n .f /.

Proposition 0.4 (Proposition 7.1). Let .A; � ; f�;�g/ be a Poisson algebra over k
and let .AŒŒt ��;�/ be a deformation quantization of A. If M

p
n .f /D 0 for 1� n�

p� 2 and f p is central in AŒŒt �� for all f 2A, then A admits a restricted Poisson
structure.

A Lie–Rinehart algebra is an algebraic counterpart of a Lie algebroid, and appears
naturally in the study of Gerstenhaber algebras, Batalin–Vilkovisky algebras and
Maurer–Cartan algebras [Huebschmann 1990; 2005]. In this paper, we also study
the relationship between restricted Poisson algebras and restricted Lie–Rinehart
algebras. To save space we refer to [Dokas 2012] for the definition and some
properties of restricted Lie–Rinehart algebras.

Theorem 0.5 (Theorem 8.2). Let .A; � ; f�;�g; .�/fpg/ be a (weakly) restricted
Poisson algebra. If the module of Kähler differentials �A=k is free over A, then
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.A; �A=k; .�/
Œp�/ is a restricted Lie–Rinehart algebra, where the p-map of �A=k

is determined by

.x du/Œp� D xp dufpgC .x du/p�1.x/ du

for all x du 2�A=k.

The category of restricted Poisson algebras is a symmetric monoidal category. In
particular, the tensor product of two restricted Poisson algebras is again a restricted
Poisson algebra (Proposition 9.2). Advances in algebra benefit tremendously from a
geometric viewpoint and methods and vice versa. Restricted Poisson algebras are, to
some extent, the algebraic counterpart of symplectic differential geometry in positive
characteristic. Following this idea, restricted Poisson–Lie groups should correspond
to restricted Poisson Hopf algebras which connect both Poisson geometry in positive
characteristic and quantum groups at the root of unity. Hence, it is meaningful to
introduce the notion of a restricted Poisson Hopf algebra; see Definition 9.3. One
natural example of such an algebra is given in Example 9.4.

The paper is organized as follows. Sections 1 and 2 contain basic definitions
about restricted Lie algebras and Poisson algebras. In Section 3, we reintroduce the
notion of a restricted Poisson algebra. In Sections 4 to 7, we give several natural
examples. In Section 8, we prove Theorem 0.5. The notion of a restricted Poisson
Hopf algebra is introduced in Section 9.

1. Restricted Lie algebras

We give a short review of restricted Lie algebras.
Lie algebras over a field of positive characteristic often admit an additional

structure involving a so-called p-map. The Lie algebra together with a p-map
is called a restricted Lie algebra, which was first introduced and systematically
studied by Jacobson [1941; 1962]. Let L WD .L; Œ�;��/ be a Lie algebra over k. For
convenience, for each x 2L we denote by adx WL!L the adjoint representation
given by adx.y/D Œx;y� for all y 2L. We recall the definition of a restricted Lie
algebra from [Jacobson 1941, Section 1]. As always, we assume that k is of positive
characteristic p � 3.

Definition 1.1 [Jacobson 1941]. A restricted Lie algebra .L; .�/Œp�/ over k is a
Lie algebra L over k together with a p-map .�/Œp� W x 7! xŒp� such that

(1) adp
x D adxŒp� for all x 2L;

(2) .�x/Œp� D �pxŒp� for all � 2 k and x 2L;

(3) .x C y/Œp� D xŒp� C yŒp� Cƒp.x;y/, where ƒp.x;y/ D
Pp�1

iD1
si.x;y/= i

for all x;y 2L and si.x;y/ is the coefficient of t i�1 in the formal expression
adp�1

txCy.x/.
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For simplicity, we write all multiple Lie brackets with the notation

(E1.1.1) Œx1; Œx2; : : : ; Œxn�1;xn� : : : � �DW Œx1;x2; : : : ;xn�1;xn�

for x1; : : : ;xn 2L. Clearly,

adi
x.y/D Œx; : : : ;x„ ƒ‚ …

i copies

;y�

for every i . With this notation, we have

(E1.1.2) si.x;y/D
X

xkDx or y
#fkjxkDxgDi�1

Œx1; : : : ;xp�2;y;x�;

and hence

(E1.1.3) ƒp.x;y/D
X

xkDx or y
xp�1Dy;xpDx

1

#.x/
Œx1; : : : ;xp�1;xp �:

Note that ƒp.x;y/ is denoted by L.x;y/ in [Bezrukavnikov and Kaledin 2008]
and denoted by �.x;y/ in [Hochschild 1954]. Another way of understanding
ƒp.x;y/ is to use the universal enveloping algebra U.L/ of the Lie algebra L. By
[Hochschild 1954, Condition (3) on p. 559],

(E1.1.4) ƒp.x;y/D .xCy/p �xp
�yp

for all x;y 2L� U.L/, where .�/p is the multiplicative p-th power in U.L/.
We give a well-known example which will be used later.

Example 1.2. Let A be an associative algebra over k. We denote by AL the induced
Lie algebra with the bracket given by Œx;y� WD xy � yx for all x;y 2 A. Then
.AL; .�/

p/ is a restricted Lie algebra, where .�/p is the Frobenius map given by
x 7! xp.

Jacobson gave a necessary and sufficient condition in which an ordinary Lie
algebra over k is restricted:

Lemma 1.3 [Jacobson 1962, Theorem 11]. Let L be a Lie algebra with a k-basis
fxigi2I for some index set I . Suppose that there exists an element  .xi/ 2L for
each i 2 I such that

adp
xi
D ad.xi / :

Then there exists a unique restricted structure on L such that x
Œp�
i D  .xi/ for all

i 2 I .
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2. Poisson algebras and their enveloping algebras

In this section we recall some definitions. We begin with some basics concerning
Poisson algebras.

Definition 2.1 [Laurent-Gengoux et al. 2013, Definition 1.1]. Let A be a commuta-
tive algebra over k. A Poisson structure on A is a Lie bracket f�;�gWA˝A!A

such that the following Leibniz rule holds:

(E2.1.1) fxy; zg D xfy; zgCyfx; zg 8 x;y; z 2A:

The algebra A together with a Poisson structure is called a Poisson algebra.

The Lie bracket f�;�g (which replaces Œ�;�� in the previous section) is called the
Poisson bracket, and the associative multiplication of A is sometimes denoted by � .

Recall that the module of Kähler differentials, denoted by�A=k, of a commutative
algebra A over k is an A-module generated by elements (or symbols) dx for all
x 2A, and subject to the relations

d.xCy/D dxC dy; d.xy/D x dyCy dx; d�D 0;

where x;y 2A and � 2 k�A. When .A; f�;�g/ is a Poisson algebra, the module
of Kähler differentials�A=k admits a Lie algebra structure with Lie bracket given by

Œx du;y dv�D xfu;yg dvCyfx; vg duCxy dfu; vg

for all x du;y dv 2�A=k. Moreover, A is also a Lie module over �A=k with the
action given by .x du/:aD xfu; ag for all x du 2�A=k and a 2A. In fact, the pair
.A; �A=k/ is a Lie–Rinehart algebra in the following sense.

Definition 2.2 [Dokas 2012, Definition 1.5]. A Lie–Rinehart algebra over A is a
pair .A;L/, where A is a commutative associative algebra over k and L is a Lie
algebra equipped with the structure of an A-module together with an anchor map

˛WL! Derk.A/

which is both an A-module and a Lie algebra homomorphism such that

(E2.2.1) ŒX; aY �D aŒX;Y �C˛.X /.a/Y

for all a 2A and X;Y 2L.

Note that, in the case of a Poisson algebra, the anchor map ˛ W�A=k! Der.A/
is given by

(E2.2.2) ˛.x du/.z/D xfu; zg

for all x du 2�A=k and z 2A.
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Let .A;L/ be a Lie–Rinehart algebra. Rinehart [1963] introduced the notion
of the universal enveloping algebra U.A;L/ of .A;L/, which is an associative
k-algebra satisfying the appropriate universal property; see [Huebschmann 1990]
for more details. We recall the definition next.

Denote by AÌL the semidirect product of the Lie algebra L and the L-module A.
More precisely, AÌL is the direct sum of A and L as a vector space, and the Lie
bracket is given by

Œ.a;X /; .b;Y /�D .X.b/�Y .a/; ŒX;Y �/

for all .a;X /; .b;Y / 2 A Ì L. Let .U.A Ì L/; �/ be the universal enveloping
algebra of the Lie algebra A ÌL, where �WA ÌL! U.A ÌL/ is the canonical
embedding. We consider the subalgebra UC.AÌL/ (without unit) generated by
AÌL. Moreover, AÌL has the structure of an A-module via a.a0;X /D .aa0; aX /

for all a; a0 2A and X 2L. The (universal) enveloping algebra U.A;L/ associated
to the Lie–Rinehart algebra .A;L/ is defined to be the quotient

U.A;L/D
UC.AÌL/�

�..a; 0//�..a0;X //� �.a.a0;X //
� :

Note that .1A; 0/ becomes the algebra identity of U.A;L/. There are two canonical
maps

�1WA! U.A;L/; a 7! .a; 0/; and �2WL! U.A;L/; X 7! .0;X /:

Observe that �1 is an algebra homomorphism and �2 is a Lie algebra homomorphism.
Moreover, we have the relations

�1.a/�2.X /D �2.aX / and Œ�2.X /; �1.a/�D �1.X.a//

for all a 2A and X 2L.
As a consequence of [Rinehart 1963, Theorem 3.1], we have the following.

Lemma 2.3. Let .A;L/ be a Lie–Rinehart algebra and U.A;L/ the enveloping al-
gebra of .A;L/. If L is a projective A-module, then the Lie algebra homomorphism
�2WL! U.A;L/ is injective.

It is worth restating the above construction for Poisson algebras since it is needed
later. Denote by A Ì�A=k the semidirect product of A and �A=k with the Lie
bracket given by

Œ.a;x du/; .b;y dv/�D
�
xfu; bg�yfv; ag;xfu;yg dvCyfx; vg duCxy dfu; vg

�
for .a;x du/; .b;y dv/ 2AÌ�A=k. The Poisson enveloping algebra of A, denoted
by P.A/ (which is a new notation), is defined to be the enveloping algebra of the
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Lie–Rinehart algebra .A; �A=k/, which can be realized as an associated algebra

P.A/ WD U.A; �A=k/D UC.AÌ�A=k/=J;

where U.AÌ�A=k/ is the universal enveloping algebra of the Lie algebra AÌ�A=k,
and J is the ideal generated by

(E2.3.1) .a; 0/.b;x du/� .ab; ax du/

for all a; b 2A and x du 2�A=k [Moerdijk and Mrčun 2010; Rinehart 1963]. Here
we have two maps

�1WA!AÌ�A=k! P.A/; �1.a/D .a; 0/;

and
�2W�A=k!AÌ�A=k! P.A/; �2.x du/D .0;x du/:

Then �1 and �2 are homomorphisms of associative algebras and Lie algebras, re-
spectively. Moreover, we have

�1.fx;yg/D Œ�2.dx/; �1.y/�;(E2.3.2)

�2.d.xy//D �1.x/�2.dy/C �1.y/�2.dx/(E2.3.3)

for all x;y 2A.
If �A=k is a projective A-module, then the canonical map �2W�A=k! P.A/ is

injective (Lemma 2.3). It follows that�A=k can be seen as a Lie subalgebra of P.A/.
We now recall the definition of a free Poisson algebra; see [Shestakov 1993,

Section 3]. Let V be k-vector space. Let Lie.V / be the free Lie algebra generated
by V . The free Poisson algebra generated by V , denoted by FP.V /, is the symmetric
algebra over Lie.V /, namely

(E2.3.4) FP.V /D k ŒLie.V /�:

The following universal property is well known [Shestakov 1993, Lemma 1,
p. 312].

Lemma 2.4. Let A be a Poisson algebra and V be a vector space. Every k-linear
map g W V !A extends uniquely to a Poisson algebra morphism G W FP.V /!A

such that g factors through G.

Shestakov [1993, Section 3] defined the notion of a free Poisson algebra by
the universal property stated in Lemma 2.4, and then proved that the free Poisson
algebra can be constructed by using (E2.3.4) [Shestakov 1993, Lemma 1, p. 312].
In the same paper, Shestakov also considered the super (or Z2-graded) version of
Poisson algebras.
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For each associative commutative algebra A over a base field k of characteristic p,
let Ap denote the subalgebra generated by ff p j f 2Ag. The free Poisson algebras
have the following special property.

Lemma 2.5. Let A be a free Poisson algebra FP.V /.

(1) �A=k is a free module over A. As a consequence, the Lie algebra map
�2W�A=k! P.A/ is injective.

(2) The kernel of d WA!�A=k is Ap.

Proof. (1) Since A is a commutative polynomial ring, �A=k is free over A. (The
proof is omitted). The consequence follows from Lemma 2.3.

(2) Check directly. �
Let V be a k-vector space. There are two gradings that can naturally be assigned

to FP.V /. The first one is determined by

deg1.x/D 1 8 0¤ x 2 Lie.V /:

Since FP.V / is the symmetric algebra associated to Lie.V /, the above extends
to an N-grading on FP.V /. Since the Lie bracket f�;�g has degree �1, the
Poisson bracket on FP.V / has degree �1. Note that the multiplication on FP.V / is
homogeneous with respect to deg1.

For the second grading, we assume that

deg2.x/D 1 8 0¤ x 2 V

and make the free Lie algebra Lie.V / N-graded (namely, Œ�;�� is homogeneous
of degree zero). Then we extend the N-grading to FP.V / so that both the Poisson
bracket and the multiplication are homogeneous of degree zero.

Let fvigi2I be a k-basis of V and fxj gj2J a k-basis of Lie.V /. Let A be the
free Poisson algebra FP.V / and let Ac be the Ap-submodule of A generated by
monomials x

i1

1
� � �x

in
n , for x1; : : : ;xn 2 Lie.V /, which are not in Ap.

Recall that

(E2.5.1) ff1; f2; : : : ; fng WD ff1; ff2; : : : ; ffn�1; fng : : : gg

for all fi 2A.

Lemma 2.6. Let A be a free Poisson algebra FP.V /.

(1) Let f1; : : : ; fn be polynomials in vi (not xi). If p does not divide n� 1, then
ff1; f2; : : : ; fng 2Ac.

(2) Let f;g be polynomials in vi . Then ƒp.f;g/ 2Ac.

(3) The following elements are in Ac for any polynomials in f;g; h in vi :
(a) ƒp.f;g/; ƒp.f

2;g2/; ƒp.f
2Cg2; 2fg/.
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(b) ƒp.fg; h/; ƒp..fg/2; h2/; ƒp..fg/2C h2; 2fgh/.
(c) ƒp.fg; f h/.

Proof. (1) By linearity, we may assume that all fs are monomials in fvig � V .
Then deg1 fs D deg2 fs for s D 1; : : : ; n. Let F WD ff1; f2; : : : ; fng. Then

deg1 F D�nC 1C deg2 F:

Since p does not divide n � 1, p cannot divide both deg1 F and deg2 F. This
implies that F 2Ac.

(2) Note that ƒp.f;g/ is a linear combination of terms of the form (E2.5.1) when
nD p and fi D f or g. By part (1), ƒp.f;g/ 2Ac.

(3) This is a special case of part (2) for different choices of f;g. �

3. Restricted Poisson algebras, definition

In this section we present a formulation of a restricted Poisson algebra that is
equivalent to [Bezrukavnikov and Kaledin 2008, Definition 1.8].

Inspired by the notion of a restricted Lie algebra, we first introduce the definition
of a weakly restricted Poisson structure over a field k of characteristic p � 3.

Definition 3.1. Let .A; � ; f�;�g/ be a Poisson algebra. If there exists a p-map
.�/fpgWA!A such that .A; f�;�g; .�/fpg/ is a restricted Lie algebra, then A is
called a weakly restricted Poisson algebra.

This definition requires no compatibility condition between the p-map .�/fpg

and the multiplication � . We will see that an additional requirement is very natural
from a Lie-algebraic point of view.

Lemma 3.2. Let .A; � ; f�;�g/ be a Poisson algebra and let x;y 2A.

(1) If there exist zx and zy in A such that adp
x D adzx and adp

y D adzy , then

adp
xy D adxp zyCyp zxCˆp.x;y/;

where

(E3.2.1) p̂.x;y/D .x
p
Cyp/ƒp.x;y/�

1
2

�
ƒp.x

2;y2/Cƒp.x
2
Cy2; 2xy/

�
:

In particular, adp

x2 D ad2xp zx .

(2) If .A; � ; f�;�g/ is a weakly restricted Poisson algebra, then

(E3.2.2) ad.xy/fpg D adxpyfpgCypxfpgCˆp.x;y/
:

In particular,

(E3.2.3) ad.x2/fpg D ad2xpxfpg :
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Proof. (1) We first prove the assertion when x D y. By the Leibniz rule, we have
ad.fg/ D f adgCg adf for any f;g 2A. Clearly,

adp

x2 D .2x adx/
p
D .2x/p.adx/

p
D 2xp adp

x D 2xp adzx D ad2xp zx :

In the general case, considering the universal enveloping algebra of the Lie algebra
.A; f�;�g/ and using (E1.1.4), we get adƒp.f;g/ D adp

fCg
� adp

f
� adp

g for any
f;g 2A. Therefore,

adxp zyCyp zxCˆ.x;y/ D adxp zyCyp zxC.xpCyp/ƒp.x;y/�
1
2

�
ƒp.x2;y2/Cƒp.x2Cy2;2xy/

�
D xp adp

y Cyp adp
x C.x

p
Cyp/.adp

xCy � adp
x � adp

y /

C
1
2
.adp

x2 C adp

y2 C adp
2xy
� adp

.xCy/2
/

D xp adp
y Cyp adp

x C.x
p
Cyp/.adp

xCy � adp
x � adp

y /

Cxp adp
x Cyp adp

y C adp
xy �.xCy/p adp

xCy

D adp
xy ;

which completes the proof.

(2) This is an immediate consequence of (1). �

Concerning the notation p̂ in (E3.2.1), we also have the following characteriza-
tion by considering the Poisson enveloping algebra.

Proposition 3.3. Let A be a Poisson algebra and P.A/ the Poisson enveloping
algebra of A. Then, for all x;y 2A, we have

(E3.3.1) �2.d p̂.x;y//D .�2.d.xy///p � �1.x
p/.�2.dy//p � �1.y

p/.�2.dx//p:

Proof. By the definition of P.A/, we have

.0;dx2/pD.0;2x dx/pD..2x;0/.0;dx//pD.2x;0/p.0;dx/pD2.xp;0/.0;dx/p

and hence

(E3.3.2) .�2.dx2//p D 2�1.x
p/.�2.dx//p

for any x 2A. It follows that (E3.3.1) holds when x D y.
Considering the Frobenius map of P.A/, we have

.�2.d.xCy///p D .0; d.xCy//p D ..0; dx/C .0; dy//p

D .0; dx/pC .0; dy/pCƒp..0; dx/; .0; dy//

D .�2.dx//pC .�2.dy//pC �2.dƒp.x;y//
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since �2 is a homomorphism of Lie algebras. By the above computation and (E3.3.2),

.�2.d.xCy/2//p D 2�1..xCy/p/.�2.d.xCy///p

D 2�1.x
p
Cyp/

�
.�2.dx//pC .�2.dy//pC �2.dƒp.x;y//

�
:

By a direct calculation and (E3.3.2),

.�2.d.xCy/2//p D .�2.dx2
Cdy2

C2 d.xy///p

D .�2.dx2
Cdy2//pC.�2.2 d.xy///pC �2.dƒp.x

2
Cy2; 2xy//

D .�2.dx2//pC.�2.dy2//pC �2.dƒp.x
2;y2//

C2.�2.d.xy///pC �2.dƒp.x
2
Cy2; 2xy//

D 2�1.x
p/.�2.dx//pC2�1.y

p/.�2.dy//pC �2.dƒp.x
2;y2//

C2.�2.d.xy///pC �2.dƒp.x
2
Cy2; 2xy//:

Comparing the above two equations, we get

.�2.d.xy///pC 1
2

�
�2
�
d
�
ƒp.x

2;y2/Cƒp.x
2
Cy2; 2xy/

���
D �1.x

p/.�2.dy//pC �1.y
p/.�2.dx//pC �1.x

p
Cyp/�2.dƒp.x;y//

D �1.x
p/.�2.dy//pC �1.y

p/.�2.dx//pC �2
�
d..xp

Cyp/ƒp.x;y//
�
:

Therefore,

�2.d p̂.x;y//

D �2
�
d
�
.xp
Cyp/ƒp.x;y/�

1
2

�
ƒp.x

2;y2/Cƒp.x
2
Cy2; 2xy/

���
D .�2.d.xy///p � �1.x

p/.�2.dy//p � �1.y
p/.�2.dx//p: �

For a weakly restricted Poisson algebra, it is desirable to consider the compati-
bility between the p-map and the associative multiplication. By removing ad from
(E3.2.3) (which can be done in some cases), we obtain (E3.4.1) below. Similarly,
if we remove ad from (E3.2.2), we obtain (E3.5.1) below. Both Lemma 3.2 and
Proposition 3.3 suggest the following definition. Following Lemma 3.2(2), condition
(E3.4.1) is forced.

Definition 3.4. Let .A; � ; f�;�g; .�/fpg/ be a weakly restricted Poisson algebra
over k. We call A a restricted Poisson algebra if, for every x 2A,

(E3.4.1) .x2/fpg D 2xpxfpg:

In this case, the p-map .�/fpg is a restricted Poisson structure on A.

Next we give another description of condition (E3.4.1) which is convenient for
some computations.
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Proposition 3.5. Let A be a weakly restricted Poisson algebra.

(1) Suppose (E3.4.1) holds. Then .�1A/
fpg D 0 for all � 2 k.

(2) Equation (E3.4.1) holds for all x 2 A if and only if every pair of elements
.x;y/ in A satisfies

(E3.5.1) .xy/fpg D xpyfpgCypxfpgC p̂.x;y/:

Consequently, A is a restricted Poisson algebra if and only if (E3.5.1) holds.

(3) Suppose (E3.5.1) holds. Then

(E3.5.2) .xn/fpg D nx.n�1/pxfpg

for all n. As a consequence, .xp/fpg D 0 for all x 2A.

(4) If .1A/
fpg D 0, then (E3.5.1) holds for pairs .x; �1A/ and .�1A;x/ for all

x 2A and all � 2 k.

Proof. (1) Clearly, 1
fpg
A
D 2 � 1

p
A

1
fpg
A

and hence 1
fpg
A
D 0. For every � 2 k,

.�1A/
fpg D �p1

fpg
A
D 0.

(2) The “if” part is trivial since p̂.x;x/D 0 for any x 2 A. Next, we show the
“only if” part. By (E3.4.1) and Definition 1.1(3), we have

..xCy/2/fpg D 2.xCy/p.xCy/fpg D 2.xp
Cyp/.xfpgCyfpgCƒp.x;y//:

Since .A; f�;�g; .�/fpg/ is a restricted Lie algebra, by Definition 1.1(2,3) we have

..xCy/2/fpg

D .x2
Cy2

C 2xy/fpg

D .x2
Cy2/fpgC 2p.xy/fpgCƒp.x

2
Cy2; 2xy/

D .x2/fpgC .y2/fpgCƒp.x
2;y2/C 2p.xy/fpgCƒp.x

2
Cy2; 2xy/

D 2xpxfpgC 2ypyfpgCƒp.x
2;y2/C 2.xy/fpgCƒp.x

2
Cy2; 2xy/:

Comparing the above two equations and using 2¤ 0, we obtain (E3.5.1).

(3) This follows by induction.

(4) First of all, .�1A/
fpg D �p1

fpg
A
D 0 for all � 2 k. The assertion follows by the

fact p̂.�1A;x/D p̂.x; �1A/D 0. �
Remark 3.6. Several remarks are collected below.

(1) As in [Bezrukavnikov and Kaledin 2008], we assume that p � 3. So the
polynomial p̂.x;y/ in (E3.2.1) is well defined. When p D 3, we have

ˆ3.x;y/D x2yfy;y;xgCxy2
fx;x;ygCxyfx;yg2:

For p > 3, it is too long to write out all the terms as above.
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(2) Considering p̂.x;y/ as an element in FP.V /, where V D kx ˚ ky, it is
homogeneous of degree pC1 with respect to deg2 and homogeneous of degree 2p

with respect to deg1.

(3) Bezrukavnikov and Kaledin [2008, Definition 1.8] defined a restricted Poisson
algebra as a weakly restricted Poisson algebra .A; f�;�g; .�/fpg/ such that the
p-map satisfies

(E3.6.1) .xy/fpg D xpyfpgCypxfpgCP .x;y/

for all x;y 2A. Here P .x;y/ is a canonical quantized polynomial determined by
[Bezrukavnikov and Kaledin 2008, (1.3)]. We will show that (E3.6.1) is equivalent
to (E3.5.1).

(4) P .x;y/ is defined implicitly, but it follows from [Bezrukavnikov and Kaledin
2008, (1.3)] that P .x;x/D 0. Therefore a restricted Poisson algebra in the sense
of [Bezrukavnikov and Kaledin 2008, Definition 1.8] is a restricted Poisson algebra
in the sense of Definition 3.4.

(5) There are other interpretations of p̂.x;y/. Using

xy D 1
4
Œ.xCy/2� .x�y/2�;

we obtain that

(E3.6.2) .xy/fpg D xpyfpgCypxfpgCˆ0p.x;y/;

where

(E3.6.3) ˆ0p.x;y/D
1
4
ƒp

�
.xCy/2;�.x�y/2

�
C

1
2

�
.xp
Cyp/ƒp.x;y/� .x

p
�yp/ƒp.x;�y/

�
:

One can show that p̂.x;y/Dˆ
0
p.x;y/ in the free Poisson algebra generated by

x and y.

(6) The following are clear by definition.

(a) ƒp.x;y/Dƒp.y;x/ for all x;y 2A.

(b) If fx;yg D 0, then ƒp.x;y/D 0.

(c) p̂.x;y/D p̂.y;x/ for all x;y 2A.

(d) If fx;yg D 0, then p̂.x;y/D 0.

Lemma 3.7. The definitions of restricted Poisson algebras in Definition 3.4 and
[Bezrukavnikov and Kaledin 2008, Definition 1.8] are equivalent.

Proof. Let P .x;y/ be the polynomial defined in [Bezrukavnikov and Kaledin 2008,
(1.3)]. By Proposition 3.5(2), it remains to show that P .x;y/ D p̂.x;y/. Let
Lie.V / be the free Lie algebra over a vector space V and consider the tensor (free)
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algebra T .V / as a universal enveloping algebra over Lie.V /. Then we have a
Poincaré–Birkhoff–Witt filtration on T .V /. The free quantized algebra Q�.V / is
the Rees algebra associated to this filtration. By definition, for each n,

Fn WD FnT .V /D k˚L�.V /˚ .L�.V //2˚ � � �˚ .L�.V //n:

We are omitting the symbol h which represents the natural embedding h WF�!F�C1

in the Rees ring. Taking V D kx˚ ky, inside the Rees ring we have

.xp
Cyp/2C .ƒp.x;y//

2
Cƒp.x;y/.x

p
Cyp/C .xp

Cyp/ƒp.x;y/

D .xp
Cyp

Cƒp.x;y//
2

D .xCy/2p

D .x2
Cy2

CxyCyx/p

D .x2
Cy2/pC .xyCyx/pCƒp.x

2
Cy2;xyCyx/

D x2p
Cy2p

Cƒp.x
2;y2/C .xy/pC .yx/pCƒp.xy;yx/

Cƒp.x
2
Cy2;xyCyx/;

and hence

.xy/pC .yx/p �xpyp
�ypxp

Dƒp.x;y/.x
p
Cyp/C .xp

Cyp/ƒp.x;y/C .ƒp.x;y//
2

�ƒp.x
2;y2/�ƒp.xy;yx/�ƒp.x

2
Cy2;xyCyx/:

On the other hand,

Œx;y�p D .xy �yx/p D .xy/p � .yx/pCƒp.xy;�yx/:

So we have

2P .x;y/D 2..xy/p �xpyp/

Dƒp.x;y/.x
p
Cyp/C .xp

Cyp/ƒp.x;y/�ƒp.x
2;y2/

�ƒp.x
2
Cy2;xyCyx/C .ƒp.x;y//

2
�ƒp.xy;yx/

�ƒp.xy;�yx/C Œx;y�p � Œxp;yp �:

In fact, it is easily seen that .ƒp.x;y//
2 2 F2, Œx;y�p 2 Fp. On the other hand,

Œxp;yp �D adp
x.y

p/D� adp�1
x .adp

y .x// 2 F1;

where adx.y/D Œx;y�. By (E1.1.3), we have

ƒp.xy;yx/D
X

xkDxy or yx

1

#.xy/
adx1
� � � adxp�2

.Œyx;xy�/;
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where #.xy/ is the number of xy in the collection of possibly repeated elements
fx1;x2; : : : ;xp�2;yx;yxg. Since

Œyx;xy�D Œyx;yxC Œx;y� �D Œyx; Œx;y� � 2 F2;

we have ƒp.xy;yx/ 2 Fp. Similarly, ƒp.xy;�yx/ 2 Fp. By definition (see
[Bezrukavnikov and Kaledin 2008, (1.3)]), P .x;y/ is homogeneous of degree
pC 1. Therefore, after removing lower-degree components,

2P .x;y/Dƒp.x;y/.x
p
Cyp/C .xp

Cyp/ƒp.x;y/

�ƒp.x
2;y2/�ƒp.x

2
Cy2;xyCyx/:

Since the multiplication is commutative in a Poisson algebra, we have

P .x;y/D.xp
Cyp/ƒp.x;y/�

1
2

�
ƒp.x

2;y2/Cƒp.x
2
Cy2;2xy/

�
D p̂.x;y/: �

4. Elementary properties and examples

We start with something obvious.

Definition 4.1. Let .A; � ; f�;�g; .�/fpg/ be a restricted Poisson algebra. A Poisson
ideal I of A is said to be restricted if xfpg 2 I for any x 2 I.

The proofs of the following three assertions are easy and omitted.

Lemma 4.2. Let A be a restricted Poisson algebra. Suppose that I is a Poisson
ideal of A that is generated by fxi j i 2 Sg as an ideal of the commutative ring A. If
x
fpg
i 2 I for any i 2 S , then I is a restricted Poisson ideal.

Proposition 4.3. Let A be a restricted Poisson algebra and I a restricted Poisson
ideal of A. Then the quotient Poisson algebra A=I is a restricted Poisson algebra.

Clearly, we have the following fact.

Proposition 4.4. Let f WA!A0 be a homomorphism of restricted Poisson algebras.
Then Kerf is a restricted Poisson ideal of A.

Let Ap be the subalgebra of A generated by ff p j f 2Ag— the image of the
Frobenius map.

Lemma 4.5. Let A be a Poisson algebra and f;g; h 2A. Then the following hold:

(1) f p
p̂.g; h/� p̂.fg; h/C p̂.f;gh/� hp

p̂.f;g/D 0.

(2) If f is in the Poisson center of A, then f p
p̂.g; h/D p̂.fg; h/D p̂.g; f h/.

(3) p̂.f;gC h/� p̂.f;g/� p̂.f; h/Dƒp.fg; f h/�f pƒp.g; h/.
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Proof. It is clear that (2) is a consequence of (1). It suffices to show assertions
(1) and (3) for the free Poisson algebra FP.A/ since there is a surjective Poisson
algebra map FP.A/!A (Lemma 2.4). So the hypothesis becomes that f;g; h are
in a k-space V sitting inside a free Poisson algebra FP.V /.

When A is a free Poisson algebra FP.V /, by Lemma 2.5(1), �2 is injective. It
follows from Lemma 2.5(2) that

(a) the kernel of the map

A
d
�!�A=k

�2
�!P.A/

is Ap.

Let fvigi2S be a basis of the V . Let Ac be the Ap-submodule of A D FP.V /
defined before Lemma 2.6. Then

(b) Ac \Ap D f0g and ƒp.x;y/ 2Ac for all x;y 2 k ŒV � by Lemma 2.6(2).

Now we prove (1) and (3) under conditions (a) and (b).

(1) For all f;u2A, we have d.f pu/Df p du and �2.d.f pu//D .f p; 0/.0; du/2

P.A/. By Proposition 3.3,

�2.d.f p
p̂.g;h///D .f

p;0/.0;d.gh//p�.f pgp;0/.0;dh/p�.f php;0/.0;dg/p;

�2.d p̂.fg;h//D .0;d.fgh//p�..fg/p;0/.0;dh/p�.hp;0/.0;d.fg//p;

�2.d p̂.f;gh//D .0;d.fgh//p�.f p;0/.0;d.gh//p�..gh/p;0/.0;df /p;

�2.d.hp
p̂.f;g///D .h

p;0/.0;d.fg//p�.hpf p;0/.0;dg/p�.hpgp;0/.0;df /p

for all f;g; h 2 V . It follows that

�2.d.f p
p̂.g; h/� p̂.fg; h/C p̂.f;gh/� p̂.f;g/h

p//D 0:

By condition (a), we get

X WD f p
p̂.g; h/� p̂.fg; h/C p̂.f;gh/� hp

p̂.f;g/ 2Ap:

By definition, X is in the Ap-submodule generated by ƒp.x;y/ for all x;y 2A,
or in Ac as given in condition (b). But since Ap \Ac D f0g by condition (b), we
obtain that X D 0 and that the desired identity holds.

(3) The proof is similar to that of (1) and is omitted. �
Proposition 4.6. Let A be a weakly restricted Poisson algebra.

(1) If .x;y/ satisfies (E3.5.1), then so do .x; �y/ and .�x;y/ for all � 2 k.

(2) Let f;g; h 2A. Suppose that .f;g/ and .g; h/ satisfy (E3.5.1). Then .fg; h/

satisfies (E3.5.1) if and only if .f;gh/ does.

(3) If .f;g/ and .f; h/ satisfy (E3.5.1), then so does .f;gC h/.
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(30) If .g; f / and .h; f / satisfy (E3.5.1), then so does .gC h; f /.

(4) Fix an x 2A and let Rx be the set of y 2A such that .x;y/ satisfies (E3.5.1).
Then Rx is a k-subspace of A.

(40) Fix an x 2A and let Lx be the set of y 2A such that .y;x/ satisfies (E3.5.1).
Then Lx is a k-subspace of A.

Proof. (1) Assuming (E3.5.1) for .x;y/, we have

.x�y/fpg D .�.xy//fpg D �p.xy/fpg

D �p.xpyfpgCypxfpgC p̂.x;y//

D xp
�
.�y/fpgC .�y/pxfpgC�p

p̂.x;y/
�

D xp
�
.�y/fpgC .�y/pxfpgC p̂.x; �y/

�
;

where the last equation is Lemma 4.5(2). So .x; �y/ satisfies (E3.5.1). Similarly
for .�x;y/.

(2) By symmetry, we only prove one implication and assume that .fg; h/ satisfies
(E3.5.1). We show next that .f;gh/ satisfies (E3.5.1):

.f .gh//fpg D ..fg/h/fpg D .fg/phfpgC hp.fg/fpgC p̂.fg; h/

D .fg/phfpgC hp
�
f pgfpgCgpf fpgC p̂.f;g/

�
C p̂.fg; h/

D f pgphfpgCf phpgfpgCgphpf fpgC p̂.fg; h/C hp
p̂.f;g/

D f pgphfpgCf phpgfpgCgphpf fpg

Cf p
p̂.g; h/C p̂.f;gh/ by Lemma 4.5(1)

D f p
�
gphfpgC hpgfpgC p̂.g; h/

�
C .gh/pf fpgC p̂.f;gh/

D f p.gh/fpgC .gh/pf fpgC p̂.f;gh/:

(3) Assume .f;g/ and .f; h/ satisfy (E3.5.1). Then

.f .gC h//fpg D .fgCf h/fpg

D .fg/fpgC .f h/fpgCƒp.fg; f h/

D f pgfpgCgpxfpgC p̂.f;g/CxphfpgC hpf fpg

C p̂.f; h/Cƒp.fg; f h/

D f p
�
gfpgC hfpgCƒp.g; h/

�
C .gC h/pf fpgC p̂.f;gC h/

D f p.gC h/fpgC .gC h/pf fpgC p̂.f;gC h/;

where the second-to-last equality is deduced from Lemma 4.5(3). So .f;gC h/

satisfies (E3.5.1).

(30) is equivalent to (3).



18 YAN-HONG BAO, YU YE AND JAMES J. ZHANG

(4) Let
Rx D fy 2A j (E3.5.1) holds for the pair .x;y/g:

By Proposition 4.6(1), we have

(i) if y 2Rx , then so is �y for all � 2 k.

By Proposition 4.6(3),

(ii) if g; h 2Rx , then so is gC h.

By (i) and (ii) above, Rx is a k-subspace of A.

(40) This is true because Lx DRx . �

The following result will be used several times.

Theorem 4.7. Let A be a weakly restricted Poisson algebra. Let b WD fbigi2S be
a k-basis of A. If (E3.5.1) holds for every pair .x;y/ � b, then A is a restricted
Poisson algebra.

Proof. We need to show that (E3.5.1) holds for all x;y 2A. First we fix any x 2 b

and let
Rx D fy 2A j (E3.5.1) holds for the pair .x;y/g:

By Proposition 4.6(4), Rx is a k-subspace of A. By hypothesis, we see that b�Rx .
Since b is a basis of A, Rx DA.

Next we fix y 2A and consider

Ly D fx 2A j (E3.5.1) holds for the pairs .x;y/g:

Similarly, by Proposition 4.6(40), Ly is a k-subspace. It contains b because RxDA

for all x 2 b (see the first paragraph). Hence, Ly D A. This means that (E3.5.1)
holds for all pairs .x;y/ in A. Therefore A is a restricted Poisson algebra. �

One of the main goals of this paper is to provide some interesting examples of
restricted Poisson algebras. In the rest of this section we give some elementary (but
nontrivial) examples. We would like to give a gentle warning before the examples.
We have checked that all p-maps given below satisfy (E3.5.1); however, our proofs
are tedious computations and therefore omitted. On the other hand, since the
p-maps are explicitly expressed by partial derivatives, one can verify the assertions
with enough patience. More-sophisticated examples are given in later sections.

Example 4.8. Let ADk Œx;y� be a polynomial algebra in two variables x;y, where
the (classical) Poisson bracket is given by

(E4.8.1) ff;gg D fxgy �fygx
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for all f;g 2A, and fx and fy are the partial derivatives of f with respect to the
variables x and y, respectively. (The bracket defined in (E4.8.1) was the original
Poisson bracket studied by many people including Poisson [1809] when kD R.)

(1) Let k be a base field of characteristic 3. For every f 2A, we define

(E4.8.2) f f3g D f 2
x fyy Cf

2
y fxxCfxfyfxy ;

where fxx; fyy and fxy are the second order partial derivatives of f . Then
.A; � ; f�;�g; .�/f3g/ is a restricted Poisson algebra.

(2) Let k be a base field of characteristic 5. For every f 2A, define

(E4.8.3) f f5gDf 4
1 f2222Cf

3
1 f2f1222Cf

2
1 f

2
2 f1122Cf1f

3
2 f1112Cf

4
2 f1111

Cf12.f
3

1 f222�f
2

1 f2f122�f1f
2

2 f112Cf
3

2 f111/

�f1f22.f
2

1 f122� 2f1f2f112Cf
2

2 f111/

�f2f11.f
2

2 f112� 2f2f1f122Cf
2

1 f222/

C 2.f 2
12�f11f22/.f

2
1 f22� 2f1f2f12Cf

2
2 f11/;

where fi1i2���ik
denotes the k-th order partial derivative of f with respect to the

variables xi1
;xi2

; : : : ;xik
. Then .A; � ; f�;�g; .�/f5g/ is a restricted Poisson

algebra.

See Example 7.3 for general p. It would be interesting to understand the meaning
of (E4.8.2) and (E4.8.3) and to find its connection with other subjects.

The next two are slight generalizations of the previous example.

Example 4.9. Suppose char k D 3 and let A D k Œx;y� be a polynomial Poisson
algebra in two variables x;y, where the Poisson bracket is given by

ff;gg D '.fxgy �fygx/;

and ' D �xC�yC �, �;�; � 2 k. For every f 2A, we define

(E4.9.1) f f3g D �'fxf
2

y C�'f
2

x fy

C'2.f 2
x fyy Cf

2
y fxxCfxfyfxy/C�

2yf 3
y C�

2xf 3
x :

Then .A; � ; f�;�g; .�/f3g/ is a restricted Poisson algebra.

Example 4.10. Suppose char k D 3 and let A D k Œx1;x2; : : : ;xn� be a Poisson
algebra, where the Lie bracket is given by fxi ;xj gD 2cij 2 k with cijCcji D 0 for
1� i; j � n. Clearly, ff;gg D

P
1�i;j�n cij .figj �fj gi/ for f;g 2A, where fi

denotes the partial derivative of f with respect to the variable xi for i D 1; 2; : : : ; n.
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Then A is a restricted Poisson algebra with the p-map given by

f f3g D
X

1�i;j ;k;l�n

cij cklfifkfjl

for any f 2A, where fjl is the second partial derivative of f with respect to the
variables xj and xl .

5. Existence and uniqueness of restricted structures

By Lemma 3.2(2), a weakly restricted Poisson structure on a Poisson algebra is
very close to a restricted Poisson structure (up to a factor in the Poisson center). In
this section, we study the existence and uniqueness of (weakly) restricted Poisson
structures. First we consider the trivial extension.

Lemma 5.1. Let A be a Poisson algebra, and let ADk1A˚m be its decomposition
as a Lie algebra.

(1) If x 7! xfpg is a restriction p-map of the Lie algebra m, it can naturally
be extended to A by defining 1

fpg
A
D 0. As a consequence, A is a weakly

restricted Poisson algebra.

(2) If , further, the p-map on m satisfies (E3.4.1), then so does the extended p-map
on A. In this case, A is a restricted Poisson algebra.

Proof. (1) This follows from Lemma 1.3. For all � 2 k and x 2m, the p-map is
defined by .�1ACx/fpg D xfpg.

(2) We check (E3.4.1) for elements in A as follows:

..�1ACx/2/fpg D .�21AC 2�xCx2/fpg

D .2�xCx2/fpg D .2�x/fpgC .x2/fpg

D 2�pxfpgC 2xpxfpg D 2.�1ACx/pxfpg

D 2.�1ACx/p.�1ACx/fpg:

Therefore A is a restricted Poisson algebra. �
The following example is immediate.

Example 5.2. (1) Let L be a restricted Lie algebra and let AD k1A˚L, where the
associate product on L is 0. Then A is a Poisson algebra in the obvious way. Both
sides of (E3.4.1) are zero for elements in L (since L �LD 0). By Lemma 5.1(2),
A is a restricted Poisson algebra.

(2) Consider the special case when LD kxC ky is a solvable Lie algebra with
Œx;y�D x. For f D �1xC�2y 2L, we define the p-map by

f fpg D �
p�1
2

.�1xC�2y/:
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It is straightforward to check that .L; .�/fpg/ is a restricted Lie algebra. Let
ADk1A˚L. Then, by part (1), A is a restricted Poisson algebra. As a commutative
algebra, ADk Œx;y�=.x2;xy;y2/with k-linear basis f1;x;yg. The Poisson bracket
is given by fx;yg D x.

Let L be a restricted Lie algebra. It is well known that the p-map of L is unique
up to a semilinear map from L to Z.L/, where Z.L/ is the center of L. Recall
that a map  WL!Z.L/ being semilinear means that for any x;y 2A and � 2 k,

 .xCy/D  .x/C  .y/;

 .�x/D �p .x/:

The following lemma is well known and easy to prove.

Lemma 5.3. Let .L; .�/Œp�/ be a restricted Lie algebra.

(1) Let .�/fpg be another restricted Lie structure on L. Then there is a map
 WL!Z.L/ such that .�/fpg D .�/Œp�C  .

(2) Let  be a map from L to Z.L/. Then .�/Œp�C  is a restricted Lie structure
on L if and only if  is a semilinear map from L to Z.L/.

Let A be a Poisson algebra over k and Z.A/ the center of A. Observe that Z.A/

is a left A-module with the action given by

A�Z.A/!Z.A/; .a; z/ 7! apz:

A semilinear map WA!Z.A/ is called a Frobenius derivation of A with the values
in Z.A/ provided that  .ab/D ap .b/C bp .a/ for any a; b 2A. For example,
if  0WA!A is a derivation, then  WA!Z.A/, defined by  .a/D . 0.a//

p for
all a 2A, is a Frobenius derivation of A with the values in Z.A/.

By Lemma 5.3(1), any two restricted Poisson structures on A differ by a semi-
linear map  which appears in the next proposition, which was mentioned in
[Bezrukavnikov and Kaledin 2008, p. 414].

Proposition 5.4. Let .A; � ; f�;�g; .�/fpg/ be a restricted Poisson algebra and  a
map from A to itself. Then the map .�/fpgC  is a restricted Poisson structure if
and only if  is a Frobenius derivation of A with values in Z.A/.

Proof. Let .�/fpg1 WA!A be another p-map such that .A; � ; f�;�g; .�/fpg1/ is also
a restricted Poisson algebra. Since .�/fpg1 and .�/fpg are restricted structures on Lie
algebra .A; f�;�g/,  D .�/fpg1 � .�/fpg is a semilinear map from A to Z.A/ by
Lemma 5.3. Moreover, for any x;y2A, .xy/fpg1Dxpyfpg1Cypxfpg1C p̂.x;y/,
and

 .xy/D .xy/fpg1 � .xy/fpg

D xp.yfpg1 �yfpg/Cyp.xfpg1 �xfpg/

D xp .y/Cyp .x/:
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It follows that  is a Frobenius derivation of A with values in Z.A/.
Conversely, it follows from Lemma 5.3 that the map .�/fpgC is also a restricted

Lie structure on .A; f�;�g/, since  is a semilinear map from A to Z.A/ and .�/fpg

is a p-map of Lie algebra .A; f�;�g/. Moreover, for any x;y 2A,

.xy/fpgC  .xy/D xp.yfpgC  .y//Cyp.xfpgC  .x//C p̂.x;y/:

It follows that the Poisson algebra A together with the map .�/fpgC is a restricted
structure. �

By Proposition 5.4, the p-map of a restricted Poisson algebra is unique up to
Frobenius derivations.

Remark 5.5. Let .A; � ; f�;�g; .�/fpg/ be a restricted Poisson algebra and let
 WA!Z.A/ be a semilinear map. Suppose that  is not a Frobenius derivation
(which is possible for many A) and defines a new p-map .�/0fpg D .�/fpgC  .
Then by Proposition 5.4, .A; � ; f�;�g; .�/0fpg/ is not a restricted Poisson algebra,
but it is still a weakly restricted Poisson algebra by Lemma 5.3(2).

6. Restricted Poisson algebras from restricted Lie algebras

We start with a general result.

Theorem 6.1. Let AD k Œxi j i 2T � be a polynomial Poisson algebra with an index
set T. If for each i 2 T , there exists  .xi/ 2 A such that adp

xi
D ad.xi /, then A

admits a restricted Poisson structure .�/fpg such that x
fpg
i D  .xi/ for all i 2 T.

Proof. First we show that A has a weakly restricted Poisson structure, and then
verify that the weakly restricted Poisson structure satisfies (E3.5.1).

For the sake of simplicity, we assume that T Df1; 2; : : : ; ng. To apply Lemma 1.3,
we choose a canonical monomial k-basis of A, which is

fx
i1

1
x

i2

2
� � �xin

n j i1; i2; : : : ; in � 0g:

We define .xi1

1
x

i2

2
� � �x

in
n /
fpg inductively on the degree i1C i2C � � �C in such that

adp

.x
i1
1

x
i2
2
���x

in
n /
D ad

.x
i1
1

x
i2
2
���x

in
n /fpg

;

and therefore get the restricted Lie structure on .A; f�;�g/ by Lemma 1.3. For
convenience, we write xI Dx

i1

1
x

i2

2
� � �x

in
n and jI jD i1C� � �Cin for ID .i1; : : : ; in/.

If jI j D 0, then xI D 1 and we define 1fpg D 0, and if jI j D 1, then xI D xi

for some 1 � i � n. We define x
fpg
i D  .xi/ for each 1 � i � n. By hypothesis,

adp

xI D ad.xI /fpg for any I with jI j D 0; 1.
We proceed by induction and assume that .xI /fpg has been defined such that

adp

xI D ad.xI /fpg for any xI with jI j � m. For each monomial xI of degree
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m C 1, we assume that k is the smallest subscript such that ik � 1 in I , i.e.,
I D .0; : : : ; 0; ik ; : : : ; in/, and define

(E6.1.1) .xI /fpg D x
p

k
.x

ik�1

k
x

ikC1

kC1
� � �xin

n /
fpg
C .x

ik�1

k
x

ikC1

kC1
� � �xin

n /
px
fpg

k

C p̂.xk ;x
i1�1
k

x
ikC1

kC1
� � �xin

n /:

By Lemma 3.2(1) for .x;y/D .xk ;x
ik�1

k
x

ikC1

kC1
� � �x

in
n / and the above definition,

we have adp

xI D ad.xI /fpg for any jI j DmC 1, which completes the induction. By
Lemma 1.3, A has a weakly restricted Poisson structure.

Now let b be the set of all monomials, which is a k-basis of A. We prove that
(E3.5.1) holds for any pair of elements .x;y/ in b by induction on deg xC deg y.
If x or y is 1, then (E3.5.1) holds trivially, which also takes care of the case when
m WD deg xC deg y � 1. Suppose that the assertion holds for m and now assume
that deg xC deg y DmC 1. Let

xy D x
ik

k
x

ikC1

kC1
� � �xin

n ; where ik > 0:

By (E6.1.1), the pair .xk ;x
ik�1

k
x

ikC1

kC1
� � �x

in
n / satisfies (E3.5.1). By symmetry,

we may assume that x D xkg. Then the above says that the pair .xk ;gy/ sat-
isfies (E3.5.1). By the induction hypothesis, the pairs .xk ;g/ and .g;y/ satisfy
(E3.5.1). By Proposition 4.6(2), .x;y/D .xkg;y/ satisfies (E3.5.1). By induction,
(E3.5.1) holds for any two elements in b. Finally the main statement follows from
Theorem 4.7. �

As a consequence, we have the following.

Example 6.2. Let L be a restricted Lie algebra. We claim that the polynomial
Poisson algebra A WD k ŒL� (also denoted by S.L/) is a restricted Poisson algebra.
Let fxigi2I be a basis of L. Then, for each i , there is an  .xi/ WD x

Œp�
i 2L such

that adp
xi
D ad.xi / when restricted to L. Since A is a polynomial ring over L, both

adp
xi

and ad.xi / extend uniquely to derivations of A. Thus adp
xi
D ad.xi / holds

when applied to A. The claim follows from Theorem 6.1 and there is a unique
restricted structure .�/fpg on A such that

xfpg D xŒp� 8x 2L:

Let V be a vector space. Then the free restricted Lie algebra RLie.V / can be
defined by using the universal property or by taking the restricted Lie subalgebra of
the free associative algebra generated by V with the p-map being the p-powering
map. Now we can define the free restricted Poisson algebra generated by V .

Definition 6.3. Let V be a k-space. The free restricted Poisson algebra generated
by V is defined to be

FRP.V /D k ŒRLie.V /�:
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The following universal property is standard [Shestakov 1993, Lemma 1, p. 312].

Lemma 6.4. Let A be a restricted Poisson algebra and V be a vector space. Every
k-linear map g W V !A extends uniquely to a restricted Poisson algebra morphism
G W FRP.V /!A such that g factors through G.

Continuing Example 6.2, when L is a restricted Lie algebra over k and S.L/ WD

k ŒL� the symmetric algebra on L, then S.L/ admits an induced restricted Poisson
structure. One natural setting in positive characteristic is to replace the symmetric
algebra S.L/ by the truncated (or small) symmetric algebra s.L/. By definition,
when L has a k-basis fxigi2I ,

(E6.4.1) s.L/D k Œxi j i 2 I �=.x
p
i ; 8 i 2 I/:

It is easily seen that s.L/ admits a Poisson structure with the bracket

ff;gg D
X
i;j

�
@f

@xi

@g

@xj
�
@f

@xj

@g

@xi

�
fxi ;xj g

for any f;g 2 s.L/. Next we show that s.L/ has a natural restricted Poisson
structure.

Theorem 6.5. Let L be a restricted Lie algebra over k of characteristic p and let
s.L/ be the Poisson algebra with the bracket induced by L. Then s.L/ admits a
natural restricted Poisson structure induced by the p-map of L.

Proof. By Example 6.2, S.L/ has an induced restricted Poisson algebra structure.
By (E6.4.1),

s.L/D S.L/=J;

where J is the Poisson ideal generated by x
p
i for all i 2 I . By Proposition 3.5(3),

.x
p
i /
fpg D 0. By Lemma 4.2, J is a restricted Poisson ideal as desired. �

7. Restricted Poisson algebras from deformation quantization

Bezrukavnikov and Kaledin [2008, Section 1.2] showed that a Frobenius-constant
quantization automatically gives a restricted Poisson algebra. In this section, we
consider a special deformation quantization of a Poisson algebra to produce more
examples under a weaker condition.

Let A be a commutative (associative) algebra. Let k ŒŒt �� be the formal power
series ring in one variable t . A formal deformation of A means an associative
algebra AŒŒt �� over k ŒŒt �� with multiplication, denoted by mt , satisfying

mt .a˝ b/D a� b D abCm1.a; b/t C � � �Cmn.a; b/t
n
C � � �

for all a; b 2 A � AŒŒt ��. We should view AŒŒt �� as the power series ring in one
variable t with coefficients in A where the associative multiplication mt (or the star
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product �) is induced by a family of k-bilinear maps fmi WA˝A! Agi�0 with
m0.a; b/D ab.

Define a bilinear map f�;�gWA˝A!A by setting fa; bgDm1.a; b/�m1.b; a/.
It is easy to check that A together with the bracket f�;�g is a Poisson algebra.
Then .A; f�;�g/ is called the classical limit of .AŒŒt ��;mt /, and .AŒŒt ��;mt / is called
a deformation quantization of the Poisson algebra .A; f�;�g/.

For every f 2A, we write the p-power of f as

(E7.0.1) f �p D

1X
nD0

Mp
n .f /t

n
D f p

CM
p
1
.f /t CM

p
2
.f /t2

C � � � 2AŒŒt ��;

where M
p
i .f / 2A for all i D 0; 1; 2; : : : .

Proposition 7.1. Let .A; � ; f�;�g/ be a Poisson algebra over k and let .AŒŒt ��;�/
be a deformation quantization of A. If M

p
n .f /D 0 for 1 � n � p� 2 and f p is

central in AŒŒt �� for all f 2A, then A admits a restricted Poisson structure.

Proof. Recall that f � g D
P1

nD0 mn.f;g/t
n 2 AŒŒt �� for all f;g 2 A, where

mn.f;g/ 2A for all n. By the definition of the deformation quantization,

ff;gg Dm1.f;g/�m1.g; f /

for all f;g 2A. Considering the Frobenius map f 7! f �p in AŒŒt ��, we get

(E7.1.1) Œf �p;g�� D Œf; : : : ; f„ ƒ‚ …
p copies

;g��

for all f;g 2A.
Since Œf;g�� D ff;ggt .mod t2/ and Œ�;��� is k ŒŒt ��-bilinear, we have

Œf; : : : ; f„ ƒ‚ …
p copies

;g�� � ff; : : : ; f„ ƒ‚ …
p copies

;gg tp .mod tpC1/:

By assumption, M
p
n .f /D 0 for 1 � n � p� 2 and f p is central in AŒŒt ��. Using

the fact that (E7.1.1) or adf �p .g/D .adf /p.g/, it follows that

fM
p
p�1

.f /;gg tp
D ff; : : : ; f„ ƒ‚ …

p copies

;gg tp .mod tpC1/

or

(E7.1.2) fMp
p�1

.f /;ggDm1.M
p
p�1

.f /;g/�m1.g;M
p
p�1

.f //Dff; : : : ; f„ ƒ‚ …
p copies

;gg

for all g 2A. We define f fpg DM
p
p�1

.f / for any f 2A, and prove that the map
f 7!M

p
p�1

.f / gives rise to a restricted Poisson structure on A.
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Note that Definition 1.1(1) follows from (E7.1.2). Definition 1.1(2) follows from
the fact that .�f /�p D �pf �p. For the condition in Definition 1.1(3), we consider
the Frobenius map of AŒŒt ��, and get a restricted Lie structure of .AŒŒt ��; Œ�;���/. It
follows from Example 1.2 that

.f Cg/�p �f �p �g�p Dƒ�p.f;g/:

Computing the coefficients of tp�1 in the above equation, we get

(E7.1.3) .f Cg/fpg�f fpg�gfpg Dƒp.f;g/

as desired.
Finally it remains to show (E3.4.1). By assumption, M

p
n .f /D 0 for all 1� n�

p� 2. We compute the coefficient of tp�1 in the expression of f �;2p as follows:

f �;2p
D f �p �f �p

D .f p
C tp�1M

p
p�1

.f /C � � � /� .f p
C tp�1M

p
p�1

.f /C � � � /

� f 2p
C 2f pM

p
p�1

.f /tp�1 .mod tp/:

Assume that f �f D f 2C tW , where

W Dm1.f; f /Cm2.f; f /t C � � � :

It follows that

f �;2p
D .f �2/�p D .f 2

C tW /�p

D .f 2/�pC .tW /�pCƒ�p.f
2; tW /

� f 2p
CM

p
p�1

.f 2/tp�1 .mod tp/:

Therefore, for all f 2A, f 2fpg D 2f pf fpg, which is (E3.4.1). �
Before giving some explicit examples, we recall a result.

Lemma 7.2 [Bezrukavnikov and Kaledin 2008, Lemma 1.3]. Let B be an associa-
tive algebra over a base field k of characteristic p > 0, and let B.k/, B.1/ D B,
B.k/D ŒB;B.k�1/� be its central series with respect to the commutator. If B.p/D 0

and B
p

.2/
D 0, then the Frobenius map x 7! xp preserves the addition and the mul-

tiplication.

Example 7.3. Let A WD k Œx;y� be a polynomial Poisson algebra over a field k of
characteristic p � 3 with the bracket given by fx;yg D 1.

By a direct calculation, the Poisson algebra A admits a deformation quantization
.AŒŒt ��;�/ with the star product given by

(E7.3.1) f �g D
X

0�n�p�1

mn.f;g/t
n
D

X
0�n�p�1

tn

n!
.@n

1f /.@
n
2g/
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for all f;g 2 A, where @1 and @2 are the partial derivatives of f with respect to
the variables x and y, respectively.

Clearly, f p � g D f pg D g � f p for any f;g 2 A, whence f p is central in
AŒŒt ��. Moreover, for every f 2A, we claim that

Mp
n .f /D 0 for 1� n� p� 2:

In fact, for any f;g 2A�AŒŒt ��, we have

Œf;g�� D f �g�g �f 2 .t/:

It follows that
Œf;g�

�;p
� 2 .t

p/;

and
Œf1; : : : ; fp �� 2 .t

p�1/

for all f1; : : : ; fp 2 AŒŒt ��. Since t is central, we can define the quotient algebra
B WDAŒŒt ��=.tp�1/. The above computation shows that B.p/ D 0 and B

p

.2/
D 0. By

Lemma 7.2, it follows that the Frobenius map b 7! b�p of B is additive and mul-
tiplicative. By (E7.3.1), an easy computation shows that x�p D xp and y�p D yp

in AŒŒt ��. For each f 2A, let f be the corresponding element in B. Then

f
�p
D f p 2 B

since the map f 7! f
�p

preserves the addition and the multiplication in B. It
follows that f �p �f p 2 .tp�1/ and therefore M

p
n D 0 for any 1� n� p� 2.

By Proposition 7.1, A admits a restricted Poisson structure with the p-map
f fpg DM

p
p�1

.f / for any f 2 A. The p-map agrees with (E4.8.2) when p D 3

and (E4.8.3) when p D 5.

The next example is a generalization of the previous one.

Example 7.4. Let A WD k Œx1; : : : ;xm� be a polynomial Poisson algebra with Pois-
son bracket determined by fxi ;xj g D cij 2 k for 1 � i < j � m. Let � denote
the associative product of A which is extended to the power series ring of A. Let
@i WD @=@xi for all 1 � i � m. For each scalar c 2 k, let exp.tc@i ˝ @j / be the
operator X

0�n�p�1

.ct/n

n!
@n

i ˝ @
n
j W AŒŒt ��˝AŒŒt ��!AŒŒt ��˝AŒŒt ��:

By a direct calculation, a deformation quantization .AŒŒt ��;�/ of the Poisson algebra
A is given by

f �g D �

� Y
1�i<j�m

�
exp.cij t @i ˝ @j /

�
.f ˝g/

�
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for all f;g 2A. Clearly, f p 2A�AŒŒt �� is central for any f 2A. Being similar
to the proof of Example 7.3, we have M

p
n .f / D 0 for 1 � n � p � 2 and all

f 2A. By Proposition 7.1, A admits a restricted Poisson structure with the p-map
f fpgDM

p
p�1

.f / for any f 2A. When pD 3, the p-map is given in Example 4.10.

Example 7.5. Let B2nD k Œx1; : : : ;x2n�=I be the p-truncated polynomial Poisson
algebra in 2n variables over k, where the Poisson bracket is defined by

ff;gg D

nX
iD1

�
@i.f /@nCi.g/� @nCi.f /@i.g/

�
for all f;g 2 B2n, and I is generated by x

p
i , i D 1; : : : ; 2n. Skryabin [2002]

introduced the notion of the normalized p-map on .B2n; f�;�g/, say, 1fpgD 0 and
f fpg 2m2 for all f 2m2, where m is the maximal ideal of B2n as an associative
algebra.

We consider the Poisson algebra AD k Œx1; : : : ;x2n� in Example 7.4 with the
bracket given by cij D ıiCn;j for all 1 � i < j � 2n. Clearly, x

p
i is central and

I is a Poisson ideal of A. By Proposition 3.5(3), .xp
i /
fpg D 0 for all i 2 I , and

by Lemma 4.2, I is a restricted Poisson ideal of A. Therefore, it follows from
Proposition 4.3 that the Poisson algebra B2n admits a restricted Poisson structure.
Clearly, this p-map is normalized.

8. Connection with restricted Lie–Rinehart algebras

Some definitions concerning Lie–Rinehart algebras were given in Section 2. Let
A be a Poisson algebra and �A=k its Kähler differentials module. Then the pair
.A; �A=k/ is a Lie–Rinehart algebra over k, where the anchor map ˛ W �A=k!

Der.A/ is given in (E2.2.2). Dokas [2012] introduced the notion of a restricted
Lie–Rinehart algebra and studied its cohomology theory. The goal of this section is
to show that the Lie–Rinehart algebra .A; �A=k/ admits a natural restricted structure
if the Poisson algebra A is weakly restricted and �A=k is a free module over A.

Let .L; .�/Œp� and .L0; .�/Œp�/ be restricted Lie algebras. A map f W.L; .�/Œp�/!
.L0; .�/Œp�/ is called a restricted Lie homomorphism if f is a Lie algebra homo-
morphism and satisfies f .xŒp�/D f .x/Œp� for all x 2L.

Definition 8.1 [Dokas 2012, Definition 1.7]. A restricted Lie–Rinehart algebra
.A;L; .�/Œp�/ over a commutative k-algebra A is a Lie–Rinehart algebra over A

such that

(a) .L; .�/Œp�/ is a restricted Lie algebra over k,

(b) the anchor map is a restricted Lie homomorphism, and
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(c) we have

.aX /Œp� D apX Œp�
C .aX /p�1.a/X

for all a 2A and X 2L.

We now prove Theorem 0.5.

Theorem 8.2. Let .A; � ; f�;�g; .�/fpg/ be a weakly restricted Poisson algebra.
If the module of Kähler differentials �A=k is free, then the Lie–Rinehart algebra
.A; �A=k; .�/

Œp�/ is restricted, where the p-map of �A=k is defined by

.x du/Œp� D xp dufpgC .x du/p�1.x/ du

for all x du 2�A=k.

Proof. Since �A=k is a free A-module, �A=k can be embedded into the univer-
sal enveloping algebra U.A; �A=k/ (Lemma 2.3). By the proof of [Dokas 2012,
Proposition 2.2], it suffices to show that

adp
x du.y dv/D Œxp dufpgC .x du/p�1.x/ du;y dv�

for all x du and y dv 2�A=k.
By Hochschild’s relation [1955, Lemma 1], we get in U.A;L/ the relation

.�2.x du//p D �1.x
p/.�2.du//pC �2..x du/p�1.x/ du/

for all x du 2�A=k. Considering the Frobenius map of U.A;L/, we have

Œ.�2.du//p; �1.y/�D Œ�2.du/; : : : ; �2.du/; �1.y/�D �1..adu/
p.y//;

and hence

�2.du/p�1.y/D �1.y/�2.du/pC �1..adu/
p.y//

for all du 2�A=k and y 2A. Moreover, for x du;y dv 2�A=k � U.A;L/,

Œ�1.x
p/.�2.du//p; �2.y dv/�

D �1.x
p/.�2.du//p�1.y/�2.dv/� �1.y/�2.dv/�1.xp/.�2.du//p

D �1.x
p/
�
�1.y/.�2.du//pC �1..adu/

p.y//
�
�2.dv/

� �1.y/
�
�1.x

p/�2.dv/C �1.fv;xp
g/
�
.�2.du//p

D �1.x
py/Œ.�2.du//p; �2.dv/�C �2.xp.adu/

p.y/ dv/

D �1.x
py/�2.adp

du.dv//C �2.x
p.du/p.y/ dv/

D �1.x
py/�2.d.adp

u .v///C �2.x
p.adu/

p.y/ dv/;
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and therefore,

�2.adp
x du.y dv//

D Œ.�2.x du//p; �2.y dv/�

D Œ�1.x
p/.�2.du//pC �2..x adu/

p�1.x/du/; �2.y dv/�

D �1.x
py/�2.d.adp

u .v///C �2.x
p.adu/

p.y/dv/C �2.Œ.x adu/
p�1.x/du;y dv�/

D �2.x
py d.adp

u .v///C �2.x
p.adu/

p.y/dv/C �2.Œ.x adu/
p�1.x/du;y dv�/

D �2.Œx
p dufpgC .x adu/

p�1.x/du;y dv�/;

and hence

adp
x du.y dv/D Œxp dufpgC .x adu/

p�1.x/ du;y dv�

as desired. �
For Poisson algebras A in Examples 4.8–4.10, Example 6.2, Theorem 6.5, and

Examples 7.3–7.5, it is automatic that �A=k is free over A.

9. Restricted Poisson Hopf algebras

We first recall the definition of Poisson Hopf algebras. The notion of a Poisson
Hopf algebra was probably first introduced by Drinfel’d [1985; 1987]; see also
[Doebner et al. 1990].

Definition 9.1. Let A be a Poisson algebra. We say that A is a Poisson Hopf
algebra if

(1) A is a Hopf algebra with the usual operations �; �;S ;

(2) � WA!A˝A and � WA! k are Poisson algebra morphisms and S WA!A

is a Poisson algebra antiautomorphism.

To define restricted Poisson Hopf algebras, we first need to show that the tensor
product of two restricted Poisson algebras is again a restricted Poisson algebra.

Proposition 9.2. Let A and B be two restricted Poisson algebras. Then there is a
unique restricted Poisson structure on A˝B such that

(E9.2.1) .a˝ b/fpg D afpg˝ bp
C ap

˝ bfpg

for all a 2A and b 2 B.

Proof. First of all, it is well known that A˝B is a Poisson algebra with bracket
defined by

fa1˝ b1; a2˝ b2g D fa1; a2g˝ b1b2C a1a2˝fb1; b2g

for all a1; a2 2A and b1; b2 2 B.
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Let faigi2I (respectively, fbj gj2J ) be a k-basis of A (respectively, B) and
assume that 1A 2 faigi2I and 1B 2 fbj gi2J . Then fai˝ bj gi2I;j2J is a k-basis of
A˝B.

For any a2A and b 2B, adp

a˝b
is a derivation. For any c˝d 2A˝B, we have

adp

a˝b
.c˝ d/D .1˝ d/ adp

a˝b
.c˝ 1/C .c˝ 1/ adp

a˝b
.1˝ d/

D .1˝ d/.adp
a .c/˝ bp/C .c˝ 1/.ap

˝ adp

b
.d//

D .1˝ d/.adafpg.c/˝ bp/C .c˝ 1/.ap
˝ adbfpg.d//

D .1˝ d/.adafpg˝bp .c˝ 1//C .c˝ 1/.adap˝bfpg.1˝ d//

D .1˝ d/.adafpg˝bp .c˝ 1//C .c˝ 1/.adafpg˝bp .1˝ d//

C .1˝ d/.adap˝bfpg.c˝ 1//C .c˝ 1/.adap˝bfpg.1˝ d//

D adafpg˝bp .c˝ d/C adap˝bfpg.c˝ d/

D adafpg˝bpCap˝bfpg.c˝ d/:

In particular,
adp

ai˝bj
D ad

.a
fpg

i
˝b

p

j
Ca

p

i
˝b
fpg

j
/

for all i and j . Since fai˝bj gi2I;j2J is a k-basis of A˝B, by Lemma 1.3, there
is a unique weak restricted Poisson structure on A˝B such that

(E9.2.2) .ai ˝ bj /
fpg
D a

fpg
i ˝ b

p
j C a

p
i ˝ b

fpg
j

for all i; j , which agrees with (E9.2.1). It remains to show that this weak restricted
Poisson structure on A˝B is indeed a restricted Poisson structure and (E9.2.1) holds.

We first prove (E9.2.1). By (E9.2.2), .ai ˝ 1/fpg D a
fpg
i ˝ 1. It follows from

Definition 1.1 that

(E9.2.3) .a˝ 1/fpg D afpg˝ 1

for all a 2 A. By symmetry, .1 ˝ b/fpg D 1 ˝ bfpg for all b 2 B. Since
fai˝1; 1˝bj gD 0, (E9.2.2) implies that the pair .ai˝1; 1˝bj / satisfies (E3.5.1).
By Proposition 4.6(4), Rai˝1 is a k-vector space, and by assumption, fbj g is a
k-basis of B, so we have that Rai˝1�B. Or, for any b 2B, the pair .ai˝1; 1˝b/

satisfies (E3.5.1). By switching a and b and applying the same argument, one sees
that any pair .a˝ 1; 1˝ b/ satisfies (E3.5.1). This means that

.a˝ b/fpg D .a˝ 1/fpg.1˝ b/pC .a˝ 1/p.1˝ b/fpgC p̂.a˝ 1; 1˝ b/

D .a˝ 1/fpg.1˝ b/pC .a˝ 1/p.1˝ b/fpg

D afpg˝ bp
C ap

˝ bfpg:

So we proved (E9.2.1).



32 YAN-HONG BAO, YU YE AND JAMES J. ZHANG

For the rest, we claim that for any pair of elements .ai ˝ bj ; ak ˝ bl/, (E3.5.1)
holds. By using (E9.2.3), (E3.5.1) holds for all pairs of the form .a˝ 1; a0˝ 1/.
By symmetry, (E3.5.1) holds for all pairs of the form .1˝ b; 1˝ b0/. By (E9.2.1),
(E3.5.1) holds for pairs of the form .a˝ 1; 1˝ b/. Set f D a˝ 1, g D a0 ˝ 1

and h D 1 ˝ b for any a; a0 2 A and b 2 B. Then .f;g/, .g; h/ and .fg; h/

satisfy (E3.5.1). By Proposition 4.6(2), .f;gh/ satisfies (E3.5.1). Or equivalently,
.a˝ 1; a0˝ b/ satisfies (E3.5.1). By symmetry, .1˝ b; a˝ b0/, .a˝ b; a0˝ 1/ and
.a˝ b; 1˝ b0/ satisfy (E3.5.1). Recycle the letters and let f D a˝ b, g D a0˝ 1

and h D 1˝ b0. We have that .f;g/, .g; h/ and .fg; h/ all satisfy (E3.5.1). By
Proposition 4.6(2), .f;gh/ satisfies (E3.5.1). By choosing special a; a0; b; b0 we
have that .ai˝bj ; ak˝bl/ satisfies (E3.5.1) as desired. This says that every pair of
elements from the k-basis fai˝bj gi2I;j2J satisfies (E3.5.1). By Theorem 4.7, the
weak restricted Poisson structure on A˝B is actually a restricted Poisson structure.

The above proof shows that there is a unique restricted Poisson structure on
A˝B satisfying (E9.2.2). Since (E9.2.1) is a consequence of (E3.5.1), the assertion
follows. �

Now it is reasonable to define a restricted Poisson Hopf algebra.

Definition 9.3. A restricted Poisson algebra H is called a restricted Poisson Hopf
algebra if there are restricted Poisson algebra maps� WH!H˝H and � WH! k
and a restricted Poisson algebra antiautomorphism S WH!H such that H together
with .�; �;S/ becomes a Hopf algebra.

One canonical example is the following.

Example 9.4. Let L be a restricted Lie algebra. Then s.L/ (given in Theorem 6.5)
is a restricted Poisson Hopf algebra with the structure maps determined by

� W x! x˝ 1C 1˝x;

� W x! 0;

S W x!�x

for all x 2L. It is straightforward to check that s.L/ is a restricted Poisson Hopf
algebra. Similarly, S.L/ (given in Example 6.2) is a restricted Poisson Hopf algebra
with structure maps determined as above.
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