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Abstract In this paper we generalize the Koszul complexes and Koszul algebras, and introduce the higher
Koszul (t-Koszul) complexes and higher Koszul algebras, where ¢t 2> 2 is an integer. We prove that an algebra is
t-Koszul if and only if its t-Koszul complex is augmented, i.e. the higher degree (> 1) homologies vanish. For
arbitrary t-Koszul algebra A, we also give a description of the structure of the cohomology algebra Ext}{ Ao, Ao)
by using the t-Koszul complexes, where the Ag is the direct sum of the simples.
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First introduced by Koszul, Koszul complex is applicable to the homology of Lie algebras.
In order to compute the homology of the augmented algebras, Priddy constructed a kind of
projective resolution for a large class of augmented algebras, including the Steenrold algebras and
the enveloping algebras of Lie algebras. This kind of resolution which we call Koszul resolution
generalizes the usual Koszul resolution™!. An algebra is called Koszul algebra if each simple
module has a Koszul resolution. Essentially, a Koszul resolution means that the ith graded
projective presentation is generated in degree i. Recently Koszul algebras are widely applied to
commutative algebra, algebraic topology, Lie theory and quantum groups!?—9l.,

In this paper, we generalize the Koszul complexes and Koszul algebras, and introduce the
higher Koszul (t-Koszul) complexes and higher Koszul (¢-Koszul) algebras, with ¢t > 2 as an
integer. The usual Koszul algebras are just the case of ¢ = 2. We show that an algebra is a
t-Koszul algebra if and only if the higher degree homologies (= 2) of its t-Koszul complex vanish.

Let A be an elementary 0, 1-generated algebra, it is well-known that the Yoneda algebra
Ext%(Aq, Ag) is a positively graded algebra under the Yoneda product. We call it the cohomology
algebra of A and denote it by E(A). There is a unique compatible Aq-algebra structure on E(A4),
and E(A) is formal if and only if A is Koszull”'. A is a Koszul algebra if and only if F(A) is
generated by its degree 0 and degree 1 components!®l, if and only if E(A) 2 (4')°P?, where A' is
the quadratic dual of A, For ¢-Koszul algebra A, t > 3, we introduce the t-dual algebra A' of A,
and show that as a Ag-Ao-bimodule, E(A)2yn11 = A, and E(A)gm = A}, Vi 2 0.

Let Z denote the set of integers, N denote the set of natural numbers and Ny = N U {0}.

1 Higher Koszul algebras

1.1 Preliminary

Throughout this paper, we fix a positive integer t with ¢t > 2. Let k be a field and 4 =
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Ao ® Ay @ -+~ be a graded k-algebra with each A; being a finite-dimensional k-space. We assume
that A is elementary ( i.e. Ay is a finite product of copies of k), and is generated in degrees
0 and 1 (ie. A;4; = A;y; for all 4,5). Such an algebra is called an elementary 0, 1-generated
algebra. It is isomorphic to kQ/I, where Q is a finite quiver and I is a two-sided ideal of the path
algebra k@ generated by homogeneous length elements with length 2 or more!®). Thus, I C J2,
where J is the two-sided ideal of kQ generated by the arrows of Q. Such an algebra A can be
infinite-dimensional. Note that, since I is assumed to be generated by homogeneous elements of
kQ, A is finite-dimensional if and only if I can be chosen to be admissible, i.e. JV C I for some
positive integer IV > 2. Denote by A-mod the category of finitely generated left A-modules. All
modules considered in this paper are in A-mod.

A A-module M is said to be a graded A-module provided that M = @ M, where each M;

i€z

is a finite-dimensional k-space such that A;M; C M;,;; and a graded A-module M is said to be
generated in degree 0 if M; = (0) for ¢« < 0 and M; = A;M, for all ¢ > 0. Let M and N be
graded A-modules. A A-homomorphism f: M — N is said to be of degree 0 if f(M;) = N, for
all 7. Denote the category of finitely generated graded A-modules and degree 0 maps by gr(4).
All graded modules considered in this paper are in gr(A)-mod.

If M = @@ M, is a graded A-module and n is an integer, we let M[n] denote the graded
1€EZ
A-module N = @@ N, such that N; = M,_,,. Note that A will be viewed as a graded A- module
€7

generated in degree 0. If P is a graded summand of 4, then P[n] is a graded projective A-module.
Graded projective A-modules are just direct sum of projective modules of the form P[n] for n € Z.

We denote the set of vertices of a quiver @ by @y and the set of arrows of @ by ;. For
a € 1, let s(a) and t(a) denote respectively the starting point and the ending point of the arrow
a. We will write compositions of paths in @ from right to left. For any v € @, denote by e, the
trivial path (i.e. a path with length zero) with the same starting point and ending point v.

Note that Ae, is a graded left projective A-module generated in degree 0, for v € Q. If M
is a graded A-module, then there exists a finite index set 7 and maps u: Z = Qo, d: I — Z,
and f: @ Ae,;[d(i)] — M, such that f is a graded projective cover of M. Moreover, if P is

i€

a gradedlprojective A-module, then P decomposes into a direct sum of projectives of the form
Ae,[n] where v € Qo and n € Z.

Denote by gry(A) the full subcategory of gr(A4) consisting of graded modules generated in
degree 0. By definition, a graded module M has a linear presentation if there is an exact sequence
in gr(A): P* — P° - M — 0, such that P! and P° are generated in degrees 1 and 0, respectively.
Denote by £(A) the full subcategory of gry(4) consisting of modules with linear presentations.

The graded Jacobson radical of A, denoted by r is A1 @ A2 & ---. We say that A is quadratic
if r{—1] € L(A); or equivalently, if there is a graded exact sequence P2 5Pl 5P 5 Ay 0
such that P* is generated in degree i for i = 0,1, 2.
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1.2 Definition of higher Koszul algebras

First for each integer ¢t > 2, we introduce a function ¢ : Ny — Ny which is given by
t(2m):=tm, t(2m+1):=tm+1Vm2=0.
Definition 1.1. Let A be an elementary 0, 1-generated algebra, M € gr,(4). We call M a

t-Koszul module if it has a graded projective resolution
oy ptmtl _yptm Pl P M0

such that P is generated in degree t(m), for any m > 0. Let K;(4) denote the full subcategory
of gry(A) of t-Koszul modules. We call A a t-Koszul algebra if Ag € K¢(4).
Remark. Ift = 2, then the t-Koszul modules are just the Koszul modules defined in ref.

[4], and the t-Koszul algebras are the Koszul algebras.

1.3 Some examples

(i) Any path algebra can be regarded as a t-Koszul algebra for any ¢ > 2.

(ii) Any t-truncated algebra A (i.e. A = kQ/J! where Q is a finite quiver and J is the ideal
of k@ generated by all arrows) is a ¢t-Koszul algebra for any t > 2.

(iii) Different from Koszul algebras, a t-monomial algebra A (i.e. A = kQ/I where @ is a
finite quiver and I is an ideal of kQ generated by some paths all of length t) is not necessarily a
t-Koszul algebra. For example, let A be the algebrg given by the following quiver

¢

with relations afa. Consider the simple module S; corresponding to vertex 1. S; has graded

1 ©2

projective resolution
P*: .. = Aex[T] — Aes[5] = Aes[3] — Aex[l] — Aey — 54
with P* = Aey (see ref. [5]) generated in degree 5, not in degree 4.

(iv) Let A = kQ/I. I is generated by homogeneous elements of lenth t. If gl.dim.(A) < 2,
then A is a t-Koszul algebra.

1.4 Opposite algebras of t-Koszul algebras are also t-Koszul

Lemma 1.1. Let A be an elementary 0, 1-generated algebra, and P*® be a minimal graded
projective resolution of Aq. Let 7, n(i) € Ny. Then P’ is generated in degree n(i) if and only if
Extér(A)(AO, Ap[n]) = 0 unless n = n(4).

In particular, 4 is a t-Koszul algebra if and only if Ext;r(/l)(/lo, Ao[n]) = 0 unless n = ¢(3) for
any ¢ = 0.

Proof. Since Ext;r(A)(Ao, Ao[n]) is a sub-quotient of Homgr(A)(Pi, Ao[n]), the “only if”
part follows.

In order to prove the “if” part, note that
Extl,(4y(Ao, Ao[n]) = Homg,(4)(Z' ", Ao[n]) = 0,
where Z'~! = Ker(P*~! — P"=2). It follows that Z*~' and hence P’ is generated in degree n(z).
4]

Similar to the Koszul casel?), we have

Proposition 1.1. If A is a t-Koszul algebra, then so is its opposite algebra.

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.



No. 1 HIGHER KOSZUL COMPLEXES 121

Proof. By Lemma 1.1, we need to prove that Ext;r(A)(Ao, Ag[n]) = 0 unless n = (i) for
any ¢ € Ny, where Ay is regarded as a right A-module. Let

ey PP PP M0

be a projective resolution of M, where P is generated in degree £(i) for ¢ > 0. Then we get an

injective resolution of the right A-module Aq
0— Ag — (P)® — (P1)® —s . — (PHY® — (PTTHY® ...
where (P')¥ := @, ., Homy, (P}, Ao) is a right injective A-module. Note that for any left graded
A-module M, the gradation of the right A-module M® is given by (M®); := (M_;)*. Thus, for a
right A-module Ag, Ext;r(/l)(/lo[—n], Ap) is a subquotient of
Hom,, () (Ao[=7], (P)®) 2= ((Ag@aP")0)" = ((P])n)",

which is zero unless n = #(3). This proves that A°PP is also t-Koszul.

?

1.5. t-Koszul algebras can be given by quivers with relations of length t.

Proposition 1.2. Let A = kQ/I where Q is a finite quiver and I is an ideal generated
by homogeneous elements of length > 2. Let P°® be a graded projective resolution of Ay. Then
P? is generated in degree t if and only if Extél.(A)(Ao, Ag[n]) = 0 unless n = t, if and only if [ is
generated by homogeneous elements all of length ¢.

Proof. By Proposition 1.2, we know the first assertion. Also by definition we see that, if
I is generated by homogeneous elements all of length ¢, then P? is generated in degree t.

Assume that Eth,-(A)(Ao, Ap[n]) = 0 unless n = ¢. Consider the exact sequence in gr(A):
0->W — A®Ao(kQ1) 5 0A — /1(),
with m being the multiplication map. Then W C r®kQ1, where r is the graded Jacobson radical

of A. Thus we have
Ext?, (1) (4o, Ao[n]) = Homge( 4y (W, Ao[n).

Now the assumption implies that W is generated in degree . This means that I is generated by
homogeneous elements all of length ¢ as required.
Corollary 1.1. Let A = kQ/I be a t-Koszul algebra. Then I is generated by homoge-

neous elements all of length ¢.
2 Higher Koszul complex

Let t be a fixed positive integer with ¢ > 2. Recall the definition of the function t : Ny — Ny,
which is given by
t2m+1):=mt+1, t2m)=mtVYm20. (2.1)

Assuming that A = kQ/I, where @ is a finite quiver, [ is an ideal of kQ generated by
some combinations of paths in @ of length ¢, we call such an algebra a t-algebra. Rewrite A as
A =Ty (V)/(R), where V = kQy, Tx,(V) is the tensor algebra of the bimodule 4,V4, over Ag,
and R = Ker(V®t — A;) is a A¢-A¢-sub-bimodule of V®*.

Modifying the definition of the Koszul complex of a quadratic algebral?l, we can define the

t-Koszul complex for any t-algebra.
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Definition 2.1. For t-algebra A = Ty, (V)/(R), define the t-Koszul complex

1 2m 2 1
K. . K’2m,+1 2t K2m. d? KlZm,fl . K2 d K'l d K()

of A as follows. For any i > 0, K* is a graded projective A-module given by
K' = A®K ;.
where Ké(i) is a Ag-bimodule concentrating in degree t(%),

Kiy= () VRV Cyetd),
0<vt(i)—t
Note that K';:(i) is concentrating in degree ¢(i), and the (j +¢(i))-th component of K* is Aj@Ké(ip
V j 2 0. For brevity, we set K} = (K");. In particular, we have
K= A®Ag = A, K'= A8V =A0A;, K?= AQR.
The differential d* : K? — K' ! is defined as the restriction of the map di ;. ARVEH)
A@VW(""'), where di is given by

a(a1® - - ®at(,j)) — aay - -at(i),_t(i,1)®(at(i)_t(,~_1)+1® s ®at(i)), Yaé€ A

Thus, we have
dZ'rn +1

a®(a1® - Qappr1) —> a1 ®(a29 - Qmeyy), YV a € A,

and

2m

aR(a1Q -+ Rapnt) > aay - a; 1(ar® - Qame), YV a € A.

Obviously d* is well-defined and d* is of degree 0. Thus d'd**! =0, Vi > 1, hence K* is indeed a
complex.

It is clear that if the Koszul complex K* of A is a projective resolution of Ay (with the
canonical projection K%(= A) — Ag), then A is a t-Koszul algebra. The main purpose of this
paper is to prove that the inverse statement also holds, i.e. A is a t-Koszul algebra if and only
if the ¢-Koszul complex K* is a projective resolution of Ay. Also we get a description of the
structure of the Yoneda algebra F{A) in this case, by using the Koszul resolution.

Set Z' := Kerd'. Since the restriction d* : Kf(i) — KZ(_L)I is injective by construction, it
follows that Z* lives in degree > (i) + 1. Also, since the restriction d*™+1 : KJZ""H — Kfm is
injective by construction, for mt +1 < j < mt + 1+ (t —2) = (m + 1)t — 1, it follows that Z?m+!
lives in degree > (m + 1)t. We have the following lemma.

Lemm 2.1. Let A be a t-Koszul algebra and K* its Koszul complex. Then K* — Ay — 0

is a projective resolution of Ay if and only if

2m+1 2m+4-2 ¢ gr2m-4-2
Z(::—Fl)t g d " (A(,::,l+1)t)7 v m > 0.

Proof. The necessity is obvious. In order to prove the sufficiency, we use induction on ¢
to prove the cohomology H*(K*®) = 0 for all i > 0. It is clear that K!' — K — A9 — 0 is an
exact sequence. So we need to prove H(K*®) =0 for all i > 1.

First, we claim that Z* is generated in degree t(i + 1), where £(i + 1) is defined as in (2.1).

In order to prove the claim, it suffices to show that

Homg,(4)(Z%, Ao[n]) =0 if n#t(i+1).
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Since by induction we have a graded projective resolution of Ag
PFr Pl K KT S KV KO Ag — 0,
where P**? and Pi*! are some graded projective A-modules, it follows that
it1 i
Extyfl (Ao, Ao[n]) = Ker(Homy () (P, Aoln}) = Homga) (P*%, 4o[n]))

& Im(Homng) (Kl, A()[n]) — Homg,.(A) (PH'l, A()[HD)

_ Homgr(/l)(Zia Ao[TLD ’
Im(Homg,4)(K*, Ao[n]) = Homy,(4)(Z7, Ag[n]))

= coker(Homy, (1) (K", Ao[n]) — Homg,(4)(Z*, Ao[n])).

Note that the induced map
Homy, () (K*, Ag[n]) = Homy,(4)(Z%, Ao[n])

is zero. This proves
Homyg, () (Z¢, Ag[n]) = Ext;f(l/l) (A, Ag[n]).

But since 4 is a t-Koszul algebra, i.e. P'™! is generated in degree (i + 1), it follows that

Exty (Ao, dg[n]) = 0 if n #¢(i +1).
This implies that Z* is generated in degree t(i + 1), where t(i + 1) is defined as in (2.1).

Secondly, we claim that H?"(K®) = 0, i.e. Z?™ = Imd*"*!, or equivalently, zZx ., C
K ), Ym > 1

In fact, if }_ a®(a1® - ®am) € Z27, € MK}, a € Ar,ie. Y aar - a1 @(a1® -+ @y

mt >

0, then Y a®a,® - Qa;_1®(a:® -+ Qamy) € ReV®m-1t+1 1t follows that
Z 1Ra®a;1® - ®ame) € Ag®@K2mT! = K27t!

and

d27n+l(z 1®a®a,® - - ®a'mt) = Z AR IR - Ryt

Finally, by assumption Z(zgill)t C dz’”+2(K(2;;f12)t), ¥m > 0, we have Z2"+! = Imd?™*2, Y m
0, hence H?*1(K*) =0 for all m > 0. This completes the proof.

Before giving the main result, we make some preparations. We recall two basic lemmas in
linear algebra.

Assume S to be a unitary semi-simple ring, i.e. § = 51 X S X --- X S,,, where S;’s are the
complete set of simple ideals of S. Let e; be the identity of S;. Then 1 = e; +e3+ - -+ ¢€, is
a decomposition of minimal orthogonal idempotent of the identity of S. By mod-S we denote
the category of finitely generated right S-modules. Similarly, S-mod and S-mod-S denote the
category of finitely generated left S-modules and S-S-modules respectively.

Lemma 2.2. Let S be a semi-simple ring. Assuming M € mod-S, N € S-mod, for any

submodules H,L C N, we have
M@ HNL =(MQH)N(M®L).
Proof. Obviously, M @ (HNL)C (M ® Hyn(M ® L). 1t suffices to show that for any
re(MoH)NM®L),ze M®(HNL).
Decompose S as above. As a semi-simple module, M can be decomposed into M = M; @

My ® .- ® M), where M; = m;S = e, S are simple modules such that m; = m;e,;, € M for any
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1€igl Wecanwritezasxz = », 1m;® h; for x € M ® H, where m; € M,;, h; € H. Since

iim
m; = Y, mja;;, Y1 < i< m, where a;; € S, we get
1<
&r = E T?Li [ h, = E m;a;, (59 hi = E my & E aijhi.
1<igm 1€ig<m 1<l 1<igm
1t

Thus we can rewrite x as ¢ = Y. m; ® h; such that h; = e, h; € H.

1<l

Similarly, since x € M ® L, we have z = Y  m; ® l;, where [; = e,,l; € L. Because S is
1<

semi-simple, for any * € M ® N, = has unique expression of the form z = Y m,; ® n; such that

1<l
n; =egn; € N. Thus h; =1{;, V1 <7 <!, hence x € M @ (H N L). This completes the proof.

Since any modules over semi-simple rings are projective and therefore flat, we have the fol-
lowing lemma.

Lemma 2.3. Assume that S is semi-simple, M, N € mod-S, f € Hom,(M,N), H € S-
mod. Considering the map f®1 : M ® H - N & H, we have

Ker(f ®1) = (Kerf) ® H.
Similarly, if M, N € S-mod, H € mod-S, and f € Homs(M, N), then
Ker(1® f) = H @ (Kerf).

Now we return to t-Koszul complexes of t-Koszul algebras. The following proposition is
natural.
Proposition 2.5. Assuming that A is a t-Koszul algebra, we have the following exact

sequence:

A2 ((ROV)N(VOR) ‘S AR a0V 4 4% 4,

where V = A, R = Ker(V® - A,) and m is induced by multiplication.

Proof. By the construction of the t-Koszul complex, Imd? = Kerd?, i.e. the sequence is
exact at A. Also from the proof of Lemma we know Imd? = Kerd!; that is, the sequence is exact
at AQV.

We need to prove that Imd® = Kerd?. It suffices to prove that Imd® D Kerd?. Since A
is t-Koszul, by definition, Kerd? is generated in degree t -+ 1; thus we need only to show that
(Kerd?);,; C Imd®.

Suppose z € (Kerd?);+1, and write z as =z = Y a;, Q@ Rj, 0, €V, R, € R. If z € (R®

7

V)N (V ® R)) is proved. Then, 1®z € AQ (R® V)N (V & R)), satisfying d*(1 ® z) = z. The
proposition follows.

By the choice of z, we have ¢ € V ® R. Tt suffices to show that z € R ® V. By the map
VO 22 4 oV we get (m®1)(x) = d*(z) = 0. By Lemma 2.4, we have x € R® V. Thus the
sequence is exact as required.

Now a key lemma follows.
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Lemma 2.4. Let A = Ty, (V)/(R) be a t-Koszul algebra, where V = kQ, T4, (V)

m

R = Ker(V®t —3 A;). Then for any 1 < n <t — 1, we have

b

(V®n ® R) N (R ® V®") — ﬂ (V®i QR® V"Ai).

ogign
Remark. In the case t = 2, the lemma is trivial.
Proof. We prove the lemma by induction on n. The case n = 1 is obvious. Suppose that

the lemma holds in the case < n — 1. We need to show that it also holds in the case n. Consider

the following map:
V" @R A, 1 ® (VOR) 5 A, @RS Ay 10V,

where m is given by the multiplication of the first n — 1 terms; d? and d2 are the restriction of
the maps defined in Definition 2.1.

For z € (V" @ R) N (R® V"), we have d?(d3(m(z))) = 0. This implies that d3(m(z)) €
Kerd?. Since d?| 4, gr = d2| 4 g, by Proposition 2.1, there exits # € 4,,_1 ® (R® V)N (V ® R))
such that d*(z) = J3(m(x)) But for any 1 < s < t — 1, the multiplication v®* — A, is injective,
thus m and d~3!An—l®V®t+l are both injective, so we get & = m(z). On the other hand, m is
obviously surjective, implying that m is an isomorphism. Hence by Z € A4, @ R®@ V, we get
z e Vel g R® V. Thus, we have

e (VO '@ R VIN(R® VE) N (Ve" @ R)
— ((VE"T @ R) N (RO VS 8 V)N (VO @ R)

— ( m (Vz QR® Vn~lvi) ® V) 0 (V®7z. ® R)
0gign—1

I

() VieRg V",

0gign

where the second step is given by Lemma, while the third one is given by induction.

Here we to give the main theorem of this section

Therem 2.1. Let A be an elementary 0, l-generated algebra. Then A is ¢-Koszul if and
only if its t-Koszul complex is a projective resolution of 4y. And in this case, the t-Koszul complex
K* of Ais also a minimal resolution of Ajg.

Proof. The sufficiency is given by the definitions. By Lemma 2.1, to prove the necessity,
it suffices to show that Z2"F1 C d?m+2(K2™F2 )V m > 0.

(m+1)t = (m+1)t
Suppose z € Z(Zrzlill)t, ¢ € Ay @ KZWL Consider the following map:

d2n1+1
V®(7n+1)t " At—l ® V®7nt+1 At ® V®7”t,

where m and d2™*+! are both induced by multiplication. It is easy to show that m is a Ag-Ag-
bimodule isomorphism; thus there exists z € V®™+1t such that 2 = m(z).

i 9 _ _ 2m+1 2m+1
Since ¢ € A1 ® Kw;’:_rf, we have 7 € VL @ K27z € Z(;'::l)t and

2m+1 o 2m+1
d IAt,1®K2m+1 - d lAt41®K2m+1

mt+1 mt41
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implies that JQT"'+1(m(§:)) = d*™*!(z) = 0. Applying Lemma 2.3, we have Z € R ® V®™, Thus

Te RV NV o KINH)

(m—1)t+1
— (R ® V®'m,f,) N (V@il ® ﬂ (V@Z @ R® V®(7n—1)t+1~i)>
=0

— (R ® V®mf,) A ﬂ (V®z ® R® V®mt—i)

t—1imt
C(ROVI) N (VO @ Re Vvelm L)
(RoOVEHYN (Ve 1 gR)) @ yem Dt
ﬂ (V‘Q‘f"" Q@ R® V®t717i) ® V®(7n-1)t+1’

0i<i—1

I

where the last step is given by Lemma 2.4. Hence
7 @i ®(mA1)t—i\ _ 7-2m-+2
ze () (V¥'@Re Vel - gEmid
0igmt
Considering the element 1 % € Ag® (K(27ZL:12)1,)’ we get ¢ = d2m+2(1 ®7) € d2m+2(K(2:Li12)t)’
as required.

3 Cohomology algebra of higher Koszul algebras

For any k-algebra A and any A-module M, Ext*(M, M) := @ Ext"(M,M) becomes a
nz20
positively graded algebra under the Yoneda product, where Ext®(—, —) denotes Ext} (—,—). An

elementary 0, 1-generated algebra A is Koszul if and only if its cohomology algebra Ext®(Ag, 4¢)
can be generated in degree 0, and 1(see ref. [8]); if and only if Ext®(Ag, 4g) = (4')°PP, where A'
is the quadratic dual of A (see ref. [4]). In this section, we introduce the #-dual algebra for any
t > 3 and any t-algebra. For a t-Koszul algebra A, we give a description of its cohomology algebra
by using its t-dual algebra. Concretely, we show that Exti(/lo, Ap), the i-degree component of
Ext®(Ag, Ag), is just the ¢(¢)-degree component of the t-dual algebra of A, where ¢(3) is given by
(2.1).

The following general lemma is well-known and very useful in the study of graded algebras
and graded modules.

Lemma 3.1. Let A = Ag ® Ay & - - be an arbitrary positively graded algebra, and M
and N be finitely generated graded A-modules. Then we have

Hom 4(M, N) = @) Homy,( (M, N[n]) (3.1)
nez
and
Ext}y (M, N) = @ Extl, 4,(M, Nin]) . (3.2)
nez

Proposition 3.1. Let A be an arbitrary elementary 0, 1-generated algebra, and let P*
be a minimal graded resolution of Ag. Assume that P’, P/ and P*!J are generated in degree n(s),
n(j) and n(i + j) respectively. If n(¢) + n(j) # n(i + 7). Then we have the Yoneda product

EXt?A(Ao, Ao) . EXﬁZ}(/lo, Ao) =0.
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Proof. By (3.2) and Lemma 1.1, we have
Ext! (Ao, Ao) - Bxt?, (Ay, Ao)
C Ext}, 7 (4o, Ao) = @ Ext, [/, (4o, Ao[n]) = Extit/ ) (Ao, A[n(i + j)))
new
Extly (4o, Ao) = Extyy4y(Ao, Ao[n(i)]),  Ext’y (4o, do) = Ext? 4 (Ao, Ao[n( )]
It follows that _ _ _
Exty (Ao, 4o) - Ext) (Ao, Ag) = Exty, 4)(Ao, Ao[n(3)]) - Exti_r(/‘)(/l“. Ao[n(j)h
- Ext;j(fm(/m, Ao[n(i) + n(5))).
Since n(i + j) # n(i) + n(j), we have
Ext'y (Ao, Ao) - Ext’y (4o, 4o)

C Extl!/) (4o, Ao[n(i+ 7)) NExt,7/ (Ao, Ao[n(i) + n(4)]) = 0,
as required.
From Proposition 3.1, we have

Corollary 3.1. Let A be a t-Koszul algebra, ¢t > 3. Then we have
Ext% (Ao, Ap) - Ext¥ ™' (A, Ap) = 0.
Proof. In the t-Koszul , t > 3 case, P?T! is generated in degree it + 1, P2t/ iy
degree (i + j + 1)t. Since t > 3, (it + 1) + (5t + 1) # (i + j + 1)t, the conclusion follows.
Also, with Proposition 1.4 and Proposition 3.2, we get
Corollary 3.2. Let A be a t-algebra (i.e. A =kQ/I, I can be generated by homogeneous
elements all of length ¢), where ¢t > 3. Then we have the Yoneda product

Ext) (Ao, Ao) - Ext' (4o, 40) = 0.
Let A = kQ/I be a t-algebra. Rewrite A as A = Ty, (V)/(R), where V = kQ, and T, (V) is
the tensor algebra of Ag-Ap-bi-module 4,Va, over Ay. R = Ker(V©®? LN Ay) is a sub-bimodule of
V@t For brevity, we write V®' as V. Define

R = {fe(WV)'=(V)|fR) =0}

and

A= Tp, (V)/(RT), (3.3)

where V* := Homy,(V, Ag), and (R') is the ideal of Ty, (V*) generated by R, We call A' the
t-dual algebra of A. Let A} = (A4');. We have
(V*)t(i)
Z (V*)t(i)ftfv(g)RJ_@(V*)w .

0v<E(d)—t
By using the equality (V/W)* = {f € V*|f(w) = 0}, we get

! * (V*)t(l) *

(At(i)) - ( Z (V*)t(i)ftﬂy@RL@(V*)n)
0KV E(d) ~1
{f c ((V*)t(i))* _ Vt(z) ‘f( Z (V*)t(i)—t—n@)RL@(V*)w) _ ()}
—t

ogo<E(d)

A!t(f,) =

i

- ﬂ V1;®R®Vt(i)’v~t _ 7(1)7
OCogt(i)—t
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where Ki(i) is given as in Definition 2.5. This proves

Lemma 3.2. Let A' be as in (3.3). Then we have (A!t(i))* = Ké(i), vV iz0.

The following theorem says that for arbitrary t-Koszul A, the i-degree component of its
cohomology algebra Ext%(Ag, Ao) is just the #(i)-degree component of its dual algebra A'. This
generalizes the corresponding result of the usual Koszul case.

Theorem 3.1. Let A be an arbitrary t-Koszul algebra. Then we have
Ext}y (Ao, 4o) = Ayyy, ¥ 20,
Proof. Since A is t-Koszul, by Theorem 2.1, the -Koszul complex K* of A is a projective

resolution of Ay. Thus, applying Lemma 3.2, we have
. Ker(Hom 4 (K*, Ap) — Hom (K, Ag)) :
y = . - =H K' A
Extis{do, do) = J (KT ) — Toma (K7 Ag))  Loma(&’ 4o)
= Hom 4 (A8 K{;), Ag) = Homy, (K ;), Hom (4, 4¢))
= Hom, ((4y;))" Ao) = 4,
where we use the fact that the functors Hom and ® are adjoint: let A and B be arbitrary rings,
and let 4L, gM 4 and gN be left A-module, B-A-bimodule and left B-module respectively. Then

Homa(L,Homg(M,N)) = Homp(M ©4 L, N).
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