Twisted bi-symplectic structure of Artin-Schelter regular algebras Joint with Eshamtov and Liu

Xiaojun Chen Sichuan University

September 20, 2020

AS-regular algebras were introduced by Artin-Schelter in late 1980s. They have been extensively studied in the past three decades.

- (Reyes-Rogalski-Zhang) AS-regular regular algebras are twisted Calabi-Yau algebras.
- (Kontsevich, Pantev-Toën-Vaquié-Vezzosi) Calabi-Yau algebras are some kind of noncommutative symplectic spaces.

Question

Are AS-regular algebras also related to some noncommutative symplectic structure? Possibly twisted?

The goal of this talk is to give a possible answer to this question.

・ロト ・回ト ・ヨト ・ヨト

AS-regular algebras

Definition (Artin-Schelter)

A connected graded k-algebra A is called Artin-Schelter regular (or AS-regular for short) of dimension d if

- A has finite global dimension n, and
- 2 A is Gorenstein, that is, $\operatorname{Ext}_{A}^{i}(k, A) = 0$ for $i \neq n$ and $\operatorname{Ext}_{A}^{n}(k, A) \cong k$.

Example

- Quantum affine space: $A = k \langle x_1, \dots, x_n \rangle / (x_j x_i q_{ij} x_i x_j)$ where $q_{ii} = 1, q_{ij} q_{ji} = 1$ for $i \neq j$.
- (Dubois-Violette) $A = k \langle x_1, \cdots, x_n \rangle / (f)$, where $f = (x_1, \cdots, x_n) M(x_1, \cdots, x_n)^T$ with $M \in GL_n(k)$;
- Sklvanin algebras (they are Calabi-Yau that is $\sigma = id$) Xiaojun Chen Sichuan University Twisted bi-symplectic structure

Any AS-regular algebra has an automorphism $\sigma : A \rightarrow A$, called the Nakayama automorphism, which has been studied in great detail by mathematicians especially from Shanghai and Zhejiang.

To see this, let us note that in the definition, the modules k and A in $\operatorname{Ext}_{A}^{\bullet}(k, A)$ can be viewed as both left and right A-modules, but they are not necessarily the same. The difference is given by the Nakayama automorphism.

Now equip A with A-bimodule structure as follows:

$$u \circ x \circ v := u \cdot x \cdot \sigma(v)$$
, for all $x, u, v \in A$.

Denote this twisted A-bimodule by A_{σ} .

(《圖》 《문》 《문》 - 문

AS-regular algebras are highly related to Calabi-Yau algebras, a notion introduced by Ginzburg in 2007, via the following theorem:

Theorem (Reyes-Rogalski-Zhang)

Let A be a graded algebra. Then A is AS-regular of dimension n if and only if A is twisted n-Calabi-Yau, that is, A satisfies:

- A is homologically smooth;

In the above theorem, if $\sigma = id$, then A is called *n*-Calabi-Yau, or Calabi-Yau of dimension *n*.

イロト イポト イヨト イヨト 三国

From now on, we assume R is a DG free associative algebra (if not, then take its DG free resolution; for example, if A is a Koszul algebra, then we may take $R = \Omega(A^{i})$). Suppose $\sigma : R \to R$ is an automorphism of R.

Definition (André, Karoubi, Le Stum-Quirós...)

Consider the following twisted product:

$$\mu_{\sigma}: R \otimes R \to R, \ (x, y) \mapsto \sigma(x) \cdot y,$$

for all $x, y \in R$. The (derived) twisted noncommutative 1-forms of R is

$$\Omega^1_{\sigma}(R) := \ker \mu_{\sigma}.$$

イロン イヨン イヨン イヨン

3

Comparison with usual noncommutative forms

In previous definition, if $\sigma = id$, then $\Omega^1_{\sigma}(R)$ is the classical noncommutative 1-forms of R, and is denoted by $\Omega^1(R)$. There is a (noncanonical) isomorphism of vector spaces

$$\Phi: \Omega^1(R) \stackrel{\cong}{\to} \Omega^1_\sigma(R), \ \sum x \otimes y \mapsto \sum x \otimes \sigma(y).$$

Proposition

If we equip $\Omega^1(R)$ and $\Omega^1_{\sigma}(R)$ with *R*-bimodule structures as

$$u \circ (\sum x \otimes y) \circ v = \sum ux \otimes yv, u \circ (\sum x \otimes y) \circ v = \sum ux \otimes y\sigma(v),$$

then Φ is a map of *R*-bimodules.

Noncommutative tangent spaces

Let R be as before.

() Then the (derived) noncommutative tangent spaces of R is

$$\mathbb{D}\mathrm{er}(R) := \mathrm{Der}(R, R \otimes R).$$

We may similarly define the twisted noncommutative tangent spaces, but we will not use them.

2 The Karoubi-de Rham complex of R is defined to be

$$\mathrm{DR}^{\bullet}(R) := T_R \Omega^1(R) / [T_R \Omega^1(R), T_R \Omega^1(R)].$$

It's twisted version is

$$\mathrm{DR}^{\bullet}_{\sigma}(R) := T_R \Omega^1(R) / [T_R \Omega^1(R), \sigma(T_R \Omega^1(R))]$$

The augmented version

For technical reasons, it is more convenient to take the (derived) noncommutative 1-forms as the cone

```
\operatorname{Cone}\{\Omega^1(R) \hookrightarrow R \otimes R\}.
```

as well as its twisted version. Similar convention applies to noncommutative tangent space. We have:

Proposition

Let R be as above. Then:

- $\Omega^1_{\sigma}(R) \cong R_{\sigma}$ and $\mathbb{D}er(R) \cong \operatorname{RHom}_{R^e}(R, R \otimes R)$ as *R*-bimodules.
- $\ \ \, \Omega^1_\sigma(R)_{\natural}\simeq \mathrm{CH}_{\bullet}(R,R_{\sigma}) \ \, \text{and} \ \, \mathbb{D}\mathrm{er}(R)_{\natural}\simeq \mathrm{CH}^{\bullet}(R).$

We may also formulate the twisted counterpart for double derivations,

Twisted bi-symplectic structure

From the definition, we also have that

$$\operatorname{RHom}_{R^e}(R, R \otimes R) \cong R_{\sigma}[n] \text{ in } D(R^e)$$

is equivalent to

$$\mathbb{D}\mathrm{er}(R) \cong \Omega^1_{\sigma}(R)[n] \text{ in } D(R^e).$$

This leads to the following:

Definition

Let *R* be as before. A twisted (*n*-shifted) bi-symplectic structure on *R* is a closed 2-form $\omega = \sum da_1 da_2 \in DR^2_{\sigma}(R)$ of degree 2 - n s.t.

$$\iota_{(-)}\omega:\mathbb{D}\mathrm{er}(R)\to\Omega^1_\sigma(R)[-n],\ f\mapsto\sum f(a)''\cdot\Phi(da_2)\cdot\sigma(f(a)').$$

is a quasi-isomorphism of *R*-bimodules.

- If σ = id, then the above twisted bi-symplectic structure is the usual bi-symplectic introduced by Crawley-Boevey, Etingof and Ginzburg (for associative algebra) and further studied by C.-Eshmatov and Pridham recently.
- For an associative algebra A, let R be its DG free resolution. We say A has a derived bi-symplectic structure if R has a bi-symplectic structure.

(4) (5) (4) (5) (4)

Now let us assume A is a Koszul AS-regular algebra of dimension n. Denote by $A^!$ and A^i the Koszul dual algebra and coalgebra of A respectively. Then

- $A^!$ is a Frobenius algebra, that is, there exists a non-degenerate pairing on A such that $\langle a, b \rangle = \langle \sigma^*(b), a \rangle$, where σ^* is the dual Nakayama automorphism.
- 2 A^i is a graded coalgebra; take nonzero $\eta \in A^i_n$, then $\Delta(\eta) = \sum \eta' \otimes \eta''$ satisfying

$$\sum \eta' \otimes \eta'' = \sum \sigma(\eta'') \otimes \eta'.$$

(日) (部) (注) (注) (言)

Moreover, $R := \Omega(A^i)$ is a DG free resolution of A.

Main theorem I

Theorem (C.-Eshmatov-Liu)

Suppose A is a Koszul AS-regular algebra. Then $\omega := d\eta' \otimes d\eta''$ is a twisted bi-symplectic structure on R, that is, it is a closed twisted 2-form such that

$$\iota_{(-)}\omega: \mathbb{D}\mathrm{er}\ R \to \Omega^1_\sigma\ R[2-n] \tag{1}$$

is a quasi-isomorphism.

Corollary (Van den Bergh, Reyes-Rogalski-Zhang)

Let A be as above. Then taking the commutator quotient space on both sides of (1), we obtain

 $\mathrm{HH}^{\bullet}(A) \cong \mathrm{HH}_{n-\bullet}(A, A_{\sigma}).$

In the past two decades, great progress has been made in the field of (derived) noncommutative algebraic geometry. In 1998 Kontsevich and Rosenberg proposed the following

Kontsevich-Rosenberg Principle

For a noncommutative space, say an associative algebra A, a noncommutative geometric structure (e.g. Poisson, symplectic) should induce its classical counterpart on the affine scheme $\operatorname{Rep}_V(A)$ of all representations of A in V, for any vector space V.

However, since $\operatorname{Rep}_V(A)$ are always very singular, it is difficult to compute explicitly the geometric structures on them. Passing to the homotopy category solves a lot of issues.

・ロト ・回ト ・ヨト ・ヨト

Suppose A is a DG algebra. Then the following functor

 $\operatorname{Rep}_V(A) : \mathsf{CDGA} \to \mathsf{Set}, \ B \mapsto \operatorname{Hom}_{\mathsf{DGA}}(A, \operatorname{End}_V \otimes B)$

is representable, that is, there is a dg commutative algebra (CDGA) ${\cal A}_V$ such that

$$\operatorname{Hom}_{\mathsf{DGA}}(A, \operatorname{End}_V \otimes B) = \operatorname{Hom}_{\mathsf{CDGA}}(A_V, B).$$

 A_V may be viewed as the functions on the representation scheme of A in V, that is, $A_V = \mathcal{O}(\text{Rep}_V(A))$. In general A_V is very singular.

(本部) (本語) (本語) (語)

Definition (Berest-Khachatryan-Ramadoss)

The left derived functor of

$$(-)_V : \mathsf{DGA} \to \mathsf{CDGA}, \ A \mapsto A_V,$$

is called the derived representation scheme of A in V, and is denoted by $L(A)_V$ or $\operatorname{DRep}_V(A)$.

Berest et al showed that $DRep_V(A)$ is smooth in the homotopy category of CDGA's, and moreover, the zeroth homology

$$\operatorname{H}_0(\operatorname{DRep}_V(A)) = A_V$$
, for $A \in \operatorname{Alg}$.

Observe that the general linear group $\operatorname{GL}(V)$, as a subspace of End V, acts from the right on the latter by conjugation $\alpha \mapsto g^{-1}\alpha g$, for all $g \in \operatorname{GL}(V)$. We may consider the invariant subfunctor

$$L(-)_V^{\mathrm{GL}}$$
: $\mathsf{DGA}_k \to \mathsf{CDGA}_k$, $A \mapsto L(A)_V^{\mathrm{GL}}$,

which classifies the isomorphism classes of derived representations of A in V, and is also denoted by $\mathrm{DRep}_V(A)^{\mathrm{GL}}$.

Suppose R is a DG commutative algebra, and $\sigma : R \rightarrow R$ is an automorphism. Then the twisted Kähler forms are given by

$$\Omega^1_{\sigma}(R) := I/I \cdot \Phi(I),$$

where $I = \ker \mu_{\sigma}$ and $\Phi : x \otimes y \mapsto x \otimes \sigma(y)$ as in the DG algebra case. The twisted differential forms of A is given by

$$\Omega^{\bullet}_{\sigma}(R) := T_R I / (u \cdot v - \sigma(v) \cdot u).$$

It is straightforward to see

$$(du)v = \sigma(v)(du), \quad dudv = -\sigma(dv)du.$$

Now suppose A is a Koszul AS-regular algebra. Then the Nakayama automorphism on A (and hence on R) induces an automorphism on its derived representation schemes $\text{DRep}_V(A)^{\text{GL}}$.

Theorem (C.-Eshmatov-Liu)

Suppose A is a Koszul AS-regular algebra. Then the twisted bi-symplectic structure of A induces a twisted symplectic structure on $\mathrm{DRep}_V(A)^{\mathrm{GL}}$, for all vector space V. In other words, it induces a quasi-isomorphism, up to a degree shifting, between the tangent complex and the twisted Kähler forms on $\mathrm{DRep}_V(A)^{\mathrm{GL}}$.

Here, the twisted symplectic structure is a twisted analogue of the shifted symplectic structure of Pantev, Toën, Vaquié and Vezzosi.

Thank you!

Xiaojun Chen Sichuan University Twisted bi-symplectic structure

イロン イヨン イヨン イヨン

æ