GT-shadows and their action on Grothendieck's child's drawings

Vasily Dolgushev

Temple University

This talk is loosely based on joint paper https://arxiv.org/abs/2008.00066 with Khanh Q. Le and Aidan Lorenz.

Vasily Dolgushev (Temple University)

4 A N

The absolute Galois group $G_{\mathbb{Q}}$ of rationals and $\widehat{\mathsf{GT}}$

 $G_{\mathbb{Q}}$ is the group of (field) automorphisms of the algebraic closure $\overline{\mathbb{Q}}$ of the field \mathbb{Q} of rational numbers. This group is uncountable. In fact, for every finite Galois extension $E \supset \mathbb{Q}$, any element $g \in \text{Gal}(E/\mathbb{Q})$ can be extended (in infinitely many ways) to an element of $G_{\mathbb{Q}}$. The group $G_{\mathbb{Q}}$ is one of the most mysterious objects in mathematics!

In 1990, Vladimir Drinfeld introduced yet another mysterious group \widehat{GT} (the Grothendieck-Teichmuelller group). \widehat{GT} consists pairs (\hat{m}, \hat{f}) in $\widehat{\mathbb{Z}} \times \widehat{F}_2$ satisfying some conditions and it receives a one-to-one homomorphism

 $G_{\mathbb{Q}} \hookrightarrow \widehat{\operatorname{GT}}.$

Only two elements of $G_{\mathbb{Q}}$ **are known explicitly**: the identity element and the complex conjugation $a + bi \mapsto a - bi$. The corresponding images in $\widehat{\text{GT}}$ are (0, 1) and (-1, 1).

Incarnations of Grothendieck's child's drawings are ...

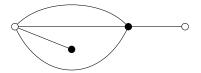
Isom. classes of (non-constant) holomorphic maps $f : \Sigma \to \mathbb{CP}^1$ from compact connected Riemann surfaces (without boundary) that do not have branching points above every $w \in \mathbb{CP}^1 - \{0, 1, \infty\}$.

Isom. classes of finite degree connected coverings of $\mathbb{CP}^1 - \{0, 1, \infty\}$.

Conjugacy classes of finite index subgroups of $F_2 := \langle x, y \rangle$.

Equivalence classes of pairs (g_1, g_2) of permutations in S_d (for some d) for which the group $\langle g_1, g_2 \rangle$ acts transitively on $\{1, 2, ..., d\}$.

Isomorphism classes of connected bipartite ribbon graphs with d edges (for some d).

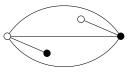


The action of $G_{\mathbb{Q}}$ on child's drawings

Given a child's drawing *D*, we can find a smooth projective curve *X* defined over $\overline{\mathbb{Q}}$ and an algebraic map $f : X \to \mathbb{P}^{1}_{\overline{\mathbb{Q}}}$ that does not have branching points above every $w \in \mathbb{P}^{1}_{\overline{\mathbb{Q}}} - \{0, 1, \infty\}$. (*X*, *f*) is called a **Belyi pair** corresponding to *D*.

The coefficients defining the curve *X* and the map *f* lie in some finite Galois extension *E* of \mathbb{Q} . Given any $g \in \text{Gal}(E/\mathbb{Q})$, the child's drawing g(D) is the one corresponding to the new Belyi pair (g(X), g(f)). We simply act by *g* on the coefficients defining *X* and *f*!

The $G_{\mathbb{Q}}$ -orbit of the above child's drawing has two elements. It's 'Galois conjugate' is



The action of $\widehat{\text{GT}}$ on child's drawings

Let (\hat{m}, \hat{f}) be an element of $\widehat{\text{GT}}$ and *D* be a child's drawing. It is convenient to represent *D* by a group homomorphism

 $\varphi:\mathsf{F_2}\to \mathcal{S}_{\mathcal{d}}\,,$

where $\varphi(F_2)$ is transitive. (*D* corresponds to the conjugacy class of the stabilizer of 1.)

 φ extends, by continuity, to a (continuous) group homomorphism $\hat{\varphi}: \hat{F}_2 \to S_d$. The child's drawing $D^{(\hat{m},\hat{f})}$ corresponds to the group homomorphism

$$\hat{\varphi} \circ \hat{T}\big|_{\mathsf{F}_2} : \mathsf{F}_2 \to \mathcal{S}_d$$
,

where

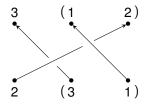
$$\hat{T}(x) := x^{2\hat{m}+1}$$
 and $\hat{T}(y) := \hat{f}^{-1} y^{2\hat{m}+1} \hat{f}$.

See Y. Ihara's paper "On the embedding of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ into \widehat{GT} ".

The operad PaB

For every integer $n \ge 1$, PaB(n) is a groupoid, whose objects are (completely) parenthesized sequences of 1, 2, ..., n (each $i \in \{1, ..., n\}$ appears exactly once). For instance, PaB(2) has exactly two objects (1,2) and (2,1); PaB(3) has 12 objects: (1,2)3, (2,1)3, ..., 1(2,3), 2(1,3), ...

Let B_n be Artin's braid group and PB_n be the kernel of the canonical homomorphism $\rho: B_n \to S_n$. $\{x_{ij}\}_{1 \le i < j \le n}$ denote standard generators of PB_n . Hom_{PaB} $(\tau, \tilde{\tau}) := \rho^{-1}(\tilde{\tau}^{-1} \circ \tau) \subset B_n$. For instance,

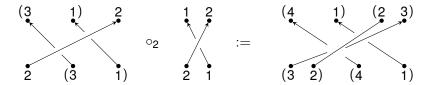


< ロ > < 同 > < 三 > < 三 >

Note that the automorphism group of every object in PaB(n) is the pure braid group PB_n on *n* strands. For instance,

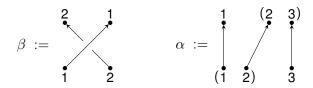
$$Aut_{PaB}((1,2)3) = PB_3$$
 and $Aut_{PaB}((1,2)) = PB_2 = \langle x_{12} \rangle$.

Here is an example of computing an elementary insertion:



Mac Lane's coherence theorem tells us that ...

PaB is generated by these two morphisms



Any relation involving α and β is a consequence of the pentagon relation:

$$(1(23))4 \longrightarrow 1((23)4)$$

$$((12)3)4 \longrightarrow (12)(34) \longrightarrow 1(2(34))$$

and the two hexagon relations.

Vasily Dolgushev (Temple University)

the group of continuous automorphisms

 $\hat{T}:\widehat{\mathsf{PaB}}\to\widehat{\mathsf{PaB}}$

of the profinite completion \widehat{PaB} of PaB.

Since β and α are topological generators of \widehat{PaB} , every $\widehat{T} \in \widehat{GT}$ is uniquely determined by

$$\hat{T}(\beta) = \beta \circ x_{12}^{\hat{m}} \text{ and } \hat{T}(\alpha) = \alpha \circ \hat{f},$$

where $\hat{f} \in \hat{PB}_3 = Aut_{\widehat{PaB}}((1,2)3)$ and $x_{12}^{\hat{m}} \in \hat{PB}_2 = Aut_{\widehat{PaB}}((1,2))$.

We tacitly identify F_2 with the subgroup $\langle x_{12}, x_{23} \rangle \leq PB_3$. The basic relations on α and $\beta \Rightarrow \hat{f} \in \hat{F}_2$. In fact, $\hat{f} \in ([\hat{F}_2, \hat{F}_2])^{top. \ closure}$

Since the automorphism group of (1, 2)3 in $\widehat{PaB}(3)$ is \widehat{PB}_3 , every $\widehat{T} \in \widehat{GT}$ gives us an automorphism of \widehat{PB}_3 . Restricting this automorphism to $\widehat{F}_2 \leq \widehat{PB}_3$, we get the automorphism of \widehat{F}_2 :

$$\hat{T}(x_{12}) := x_{12}^{2\hat{m}+1}$$
 and $\hat{T}(x_{23}) := \hat{f}^{-1} x_{23}^{2\hat{m}+1} \hat{f}.$ (1)

One can show that every element $(\hat{m}, \hat{f}) \in \widehat{GT}$ is uniquely determined by the automorphism (1). Some mathematicians identify \widehat{GT} with the corresponding group of continuous automorphisms of \hat{F}_2 . For our purposes, it is convenient to consider the truncation of PaB:

$$\mathsf{PaB}^{\leq 4} := \mathsf{PaB}(1) \sqcup \mathsf{PaB}(2) \sqcup \mathsf{PaB}(3) \sqcup \mathsf{PaB}(4).$$

This union of groupoids is a truncated operad in the following sense:

- S_n acts on PaB(n) for every $1 \le n \le 4$,
- we have elementary insertions $\circ_i : PaB(n) \times PaB(m) \rightarrow PaB(n+m-1)$ whenever $n+m-1 \le 4$ and
- all operad axioms for elementary insertions and the action of symmetric groups are satisfied if arities of all elements are < 4.

Since PaB is generated by elements of arities 2 and 3 and the key relations are in arities 3 and 4, we have $\widehat{GT} = Aut(\widehat{PaB}^{\leq 4})$.

From now on, "operad" := "truncated operad".

Compatible equivalence relations on $PaB^{\leq 4}$

An equivalence relation \sim on $\text{PaB}^{\leq 4}$ is called **compatible** if

- γ ~ γ̃ ⇒ the source (resp. the target) of γ coincides with the source (resp. the target) of γ̃;
- $\forall \ \theta \in S_n \text{ and } \forall \ \gamma, \tilde{\gamma} \in \mathsf{PaB}(n), \ \gamma \sim \tilde{\gamma} \quad \Leftrightarrow \quad \theta(\gamma) \sim \theta(\tilde{\gamma});$
- the equivalence class of $\gamma \circ \tilde{\gamma}$ depends only on the equivalence classes of γ and $\tilde{\gamma}$;
- for γ ∈ PaB(n), γ̃ ∈ PaB(k), 1 ≤ i ≤ n, and γ ∘_i γ̃ depends only on the equivalence classes of γ and γ̃;
- for every $2 \le n \le 4$, the groupoid $PaB(n) / \sim$ is finite.

A large supply of compatible equivalence relations on $PaB^{\leq 4}$ comes from finite index normal subgroups $N \trianglelefteq B_4$ such that $N \le PB_4$.

 $NFI_{PB_4}(B_4)$ is the poset of such subgroups of B_4 .

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let \mathcal{G} be a connected groupoid and G be the automorphism group of any object $a \in Ob(\mathcal{G})$. Then every $\mathbb{N} \trianglelefteq G$ gives us an equivalence relation on \mathcal{G} compatible with the composition of morphisms. Indeed, let $\gamma, \tilde{\gamma} \in \mathcal{G}(a, b)$; we declare that $\gamma \sim \tilde{\gamma}$ if $\gamma^{-1} \circ \tilde{\gamma} \in \mathbb{N}$.

Given $N \in NFI_{PB_4}(B_4)$, there is natural way to define $N_{PB_3} \in NFI_{PB_3}(B_3)$ and $N_{PB_2} \in NFI_{PB_2}(B_2)$. Then N, N_{PB_3} and N_{PB_2} give us equivalence relations on PaB(4), PaB(3) and PaB(2), respectively. This way, we get a compatible equivalence relation \sim_N on PaB^{≤ 4}.

Note that $PB_2 = \langle x_{12} \rangle$ (infinite cyclic group) and B_2 is Abelian. So every $N_{PB_2} \in NFI_{PB_2}(B_2)$ is of the form $\langle x_{12}^{N_{ord}} \rangle$ for some positive integer N_{ord} .

Consider the groupoid whose objects are elements of $NFI_{PB_4}(B_4)$ and whose morphisms are isomorphisms of operads

$$\operatorname{PaB}^{\leq 4}/\operatorname{N}^{(1)} \xrightarrow{\cong} \operatorname{PaB}^{\leq 4}/\operatorname{N}^{(2)}$$
. (2)

We denote this groupoid by GTSh. GT-**shadows** are morphisms of this groupoid.

Note that every isomorphism (2) is uniquely determined by an onto morphism of operads $\text{PaB}^{\leq 4} \longrightarrow \text{PaB}^{\leq 4}/N^{(2)}$. It is convenient to identify morphisms in $\text{GTSh}(N^{(1)},N^{(2)})$ with the onto morphisms of operads

$$\mathsf{PaB}^{\leq 4} \longrightarrow \mathsf{PaB}^{\leq 4}/\mathsf{N}^{(2)}$$

whose "kernel" is the compatible equivalence relation corresponding to $N^{(1)}$. For $N \in NFI_{PB_4}(B_4)$, GT(N) denotes the set of GT-shadows with the target N.

・ロト ・ 四ト ・ ヨト ・ ヨト

How to "explain this to a computer"?

For every $N \in NFI_{PB_4}(B_4)$, we have $N_{PB_3} \in NFI_{PB_3}(B_3)$ and $N_{PB_2} \in NFI_{PB_2}(B_2)$ (or, equivalently, a positive integer $N_{ord} := |PB_2 : N_{PB_2}|$). These subgroups give us \sim on $PaB^{\leq 4}$.

Since $PaB^{\leq 4}$ is generated by β and α , every GT-shadow $T : PaB^{\leq 4} \rightarrow PaB^{\leq 4}/N$ is uniquely determined by the pair $(m + N_{ord}\mathbb{Z}, f N_{PB_3}) \in \mathbb{Z}/N_{ord}\mathbb{Z} \times PB_3/N_{PB_3}$.

Vice versa, for every pair

$$(m + N_{\text{ord}}\mathbb{Z}, f \, N_{\text{PB}_3}) \in \mathbb{Z}/N_{\text{ord}}\mathbb{Z} imes \text{PB}_3/N_{\text{PB}_3}$$

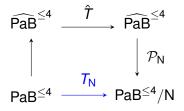
satisfying the versions of the hexagon relations, the version of the pentagon relation and additional conditions, we have a onto morphism of operads

$$T_{m,f}: \mathsf{PaB}^{\leq 4} \to \mathsf{PaB}^{\leq 4}/\mathsf{N}.$$

イロト 不得 トイヨト イヨト

GT-shadows coming from elements of $\widehat{\mathsf{GT}}$

Let $N \in NFI_{PB_4}(B_4)$ and $\widehat{\mathcal{T}} \in \widehat{GT}$. Composing the standard inclusion $PaB^{\leq 4} \rightarrow \widehat{PaB}^{\leq 4}$, $\widehat{\mathcal{T}}$ and the projection $\mathcal{P}_N : \widehat{PaB}^{\leq 4} \rightarrow PaB^{\leq 4}/N$, we get a GT-shadow \mathcal{T}_N .



We say that T_N comes from an element of \widehat{GT} . If a GT-shadow T comes from an element of \widehat{GT} , then T is called **genuine**. Otherwise, T is called **fake**.

The action of GT-shadows on child's drawings

Let $N \in NFI_{PB_4}(B_4)$ and $H \leq F_2$ be a subgroup that represents a child's drawing *D*. We say that *D* is **subordinate** to N if the normal core of *H* contains $N_{PB_3} \cap F_2$. Dessin(N) denotes the set of child's drawings subordinate to N.

We denote by Dessin the category whose objects are elements of NFI_{PB4}(B₄). For N⁽¹⁾, N⁽²⁾ \in NFI_{PB4}(B₄), morphisms from N⁽¹⁾ to N⁽²⁾ are functions from Dessin(N⁽¹⁾) to Dessin(N⁽²⁾).

Theorem

Let $N^{(1)}, N^{(2)} \in NFI_{PB_4}(B_4)$ and $[(m, f)] \in GTSh(N^{(1)}, N^{(2)})$. Let $\varphi : F_2 \rightarrow S_d$ be a homomorphism that represents $D \in Dessin(N^{(2)})$ and $\tilde{\varphi}$ be a homomorphism $F_2 \rightarrow S_d$ defined by

$$\tilde{\varphi}(x) := \varphi(x^{2m+1}), \qquad \tilde{\varphi}(y) := \varphi(f^{-1}y^{2m+1}f).$$

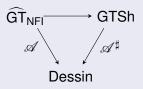
The assignment $\varphi \mapsto \tilde{\varphi}$ gives us a functor $\mathscr{A}^{\sharp} : \mathsf{GTSh} \to \mathsf{Dessin}$.

The actions are compatible!

 \widehat{GT} acts on NFI_{PB4}(B₄). We denote by \widehat{GT}_{NFI} the corresponding transformation groupoid. We have the obvious functor $\widehat{GT}_{NFI} \rightarrow GTSh$.

Theorem

The action of \widehat{GT} on child's drawings gives us a functor $\mathscr{A}: \widehat{GT}_{NFI} \rightarrow \text{Dessin.}$ Moreover, the diagram



commutes.

• • • • • • • • • • • • •

Consider a chain in the poset $NFI_{PB_4}(B_4)$

$$\mathsf{N}^{(1)}\supset\mathsf{N}^{(2)}\supset\mathsf{N}^{(3)}\supset\ldots$$

and a child's drawing $D \in \text{Dessin}(N^{(1)})$. It is clear that D is subordinate to $N^{(i)}$ for every $N^{(i)}$ in this chain.

Recall that GT(N) denotes the set of all GT-shadows with the target N. (GT(N) is finite!)

For every child's drawing *D*, we have the following *hierarchy of orbits*:

 $\operatorname{GT}(\operatorname{N}^{(1)})(D) \supset \operatorname{GT}(\operatorname{N}^{(2)})(D) \supset \operatorname{GT}(\operatorname{N}^{(3)})(D) \supset \cdots \supset \widehat{\operatorname{GT}}(D) \supset G_{\mathbb{Q}}(D).$

It is very hard to compute $G_{\mathbb{Q}}(D)$; there are no tools in modern mathematics to compute orbits $\widehat{GT}(D)$; it is relatively easy to compute orbits GT(N)(D).

Proposition

For $N\in\mathsf{NFI}_{\mathsf{PB}_4}(\mathsf{B}_4),$ the following conditions are equivalent:

- a) the quotient group PB₄/N is Abelian;
- **b)** the quotient group PB_3/N_{PB_3} is Abelian;

If N satisfies a) or b), then we say that we are in the "Abelian setting".

Theorem

Let $N \in NFI_{PB_4}(B_4)$. If the quotient group PB_4/N is Abelian then

 $\mathsf{GT}(\mathsf{N}) = \{(\overline{m}, \underline{1}) \mid 0 \le m \le N_{\mathsf{ord}} - 1, \ \mathsf{gcd}(2m + 1, N_{\mathsf{ord}}) = 1\}, \quad (3)$

where $\overline{m} := m + N_{\text{ord}}\mathbb{Z}$, <u>1</u> is the identity element of PB_3/N_{PB_3} . Furthermore, **every** GT-shadow in GT(N) is **genuine**.

Let $\varphi : F_2 \to S_d$ be a homomorphism that represents a child's drawing D. Recall that (the conjugacy class of) the permutation group $\varphi(F_2) \leq S_d$ is called the **monodromy group** of D.

A child's drawing *D* is called **Abelian** if its monodromy group is Abelian. One can show that every Abelian child's drawing is Galois.

The following theorem is from a paper in preparation:

Theorem

Let D be an Abelian child's drawing and $N\in NFI_{\mathsf{PB}_4}(\mathsf{B}_4)$ such that D is subordinate to N. Then the orbits

$$\operatorname{GT}(\mathsf{N})(D)\supset \widehat{\operatorname{GT}}(D)\supset G_{\mathbb{Q}}(D)$$

are singletons.

Selected results of computer experiments

Jointly with students, I have been developing a software package 'GT' for working with GT-shadows and their action on child's drawings. A beta version of this package is available at https://math.temple.edu/~vald/PackageGT/

- Let *D* be a child's drawing for which the G_Q-orbit and the orbit with respect to the action of GT-shadows are computed. Then these orbits coincide!
- There is **no** "Furusho phenomenon" for GT-shadows: there are examples *f* ∈ F₂ that satisfy the pentagon relation modulo N but at least one hexagon fails for (*m*, *f*) for every *m* ∈ {0, 1, ... N_{ord} − 1}.
- The connected components of GTSh we found have a very small number of objects: < 2. We could **not** find a connected component of GTSh with > 2 objects!
- So far, we did **not** find **any** example of a fake GT-shadow.

・ロト ・四ト ・ヨト ・ヨト

- [1] V. A. Dolgushev, K.Q. Le and A. Lorenz, What are GT-shadows? https://arxiv.org/abs/2008.00066
- [2] V. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, Algebra i Analiz **2**, 4 (1990) 149–181.
- [3] P. Guillot, The Grothendieck-Teichmueller group of a finite group and *G*-dessins d'enfants, arXiv:1407.3112.
- [4] D. Harbater and L. Schneps, Approximating Galois orbits of dessins, *Geometric Galois actions*, 1, 205–230, London Math. Soc. Lecture Note Ser., 242, Cambridge Univ. Press, Cambridge, 1997.
- [5] Y. Ihara, On the embedding of Gal(Q/Q) into GT, with an appendix by M. Emsalem and P. Lochak, LMS Lecture Note Ser., 200, Cambridge Univ. Press, 1994.

イロト イヨト イヨト イヨ

- [1] N. C. Combe and Y. I. Manin, "Genus zero modular operad and absolute Galois group" and "Symmetries of genus zero modular operad" https://arxiv.org/abs/1907.10313 and https://arxiv.org/abs/1907.10317
- [2] N. C. Combe, Y. I. Manin, M. Marcolli, Dessins for modular operad and Grothendieck-Teichmueller group, https://arxiv.org/abs/2006.13663
- [3] M. Musty, S. Schiavone, and J. Voight, A very useful database of Belyi maps, http://beta.lmfdb.org/Belyi/
- [4] F. Pop, Finite tripod variants of I/OM: on Ihara's question/Oda-Matsumoto conjecture, Invent. Math. 216, 3 (2019)
- [5] D.E. Tamarkin, Formality of chain operad of little discs, Lett. Math. Phys. **66**, 1-2 (2003)

イロト イヨト イヨト イヨト

THANK YOU!

æ

イロト イヨト イヨト イヨト