Rota's Classification Problem for Nonsymmetric Operads

Li GUO Rutgers University at Newark

(joint work with Xing Gao and Huhu Zhang)

Motivation: Classification of Linear Operators

- Throughout the history, mathematical objects are often understood through studying operators defined on them.
- Well-known examples include Galois theory where fields are studied by their automorphisms (the Galois group),
- and analysis and geometry where functions and manifolds are studied through their derivations, integrals and related vector fields,
- and differential Galois theory where both operators occur.

Rota's Problem

By the 1970s, several other operators had been discovered from studies in analysis, probability and combinatorics.

Average operator P(x)P(y) = P(xP(y)), Inverse average operator P(x)P(y) = P(P(x)y), (Rota-)Baxter operator $P(x)P(y) = P(xP(y)) + P(P(x)y) + \lambda P(xy)$, where λ is a fixed constant,

Reynolds operator P(x)P(y) = P(xP(y)) + P(P(x)y) - P(P(x)P(y)).

Rota posed the problem of finding all the identities that could be satisfied by a linear operator defined on associative algebras. He also suggested that there should not be many such operators other than these previously known ones.

Quotation from Rota and Known Operators

- "In a series of papers, I have tried to show that other linear operators satisfying algebraic identities may be of equal importance in studying certain algebraic phenomena, and I have posed the problem of finding all possible algebraic identities that can be satisfied by a linear operator on an algebra. Simple computations show that the possibility are very few, and the problem of classifying all such identities is very probably completely solvable."
- Little progress was made on finding all such operators while new operators have merged from physics and combinatorial studies, such as

Nijenhuis operator Leroux's TD operator

$$P(x)P(y) = P(xP(y) + P(x)y - P(xy)), P(x)P(y) = P(xP(y) + P(x)y - xP(1)y).$$

Other Post-Rota developments

- These previously known operators continued to find remarkable applications in pure and applied mathematics.
- Vast theories were established for differential algebra and difference algebra, with wide applications, including Wen-Tsun Wu's mechanical proof of geometric theorems and mathematics mechanization (based on work of Ritt).
- Rota-Baxter algebra has found applications in classical Yang-Baxter equations, operads, combinatorics, and most prominently, the renormalization of quantum field theory through the Hopf algebra framework of Connes and Kreimer.
- How to understand Rota's problem?

PI Algebras

- What is an algebraic identity that is satisfied by a linear operator?—Polynomial identity (PI) algebras gives a simplified analogue:
- ► A **k**-algebra *R* is called a PI algebra (Procesi, Rowen, ...) if there is a fixed element $f(x_1, \dots, x_n)$ in the noncommutative polynomial algebra (that is, the free algebra) $\mathbf{k}\langle x_1, \dots, x_n \rangle$ such that

$$f(a_1, \cdots, a_n) = 0, \quad \forall a_1, \cdots, a_n \in R.$$

Thus an algebraic identity satisfied by an algebra is an element in the free algebra.

Then an algebraic identity satisfied by a linear operator should be an element in a free algebra with an operator, a so called free operated algebra.

Operated algebras

- An operated **k**-algebra is a **k**-algebra *R* with a linear operator α on *R*.
- **Examples.** Differential algebras and Rota-Baxter algebras.
- We can also consider algebras with multiple operators, such as differential-difference algebras, differential Rota-Baxter algebras, Rota-Baxter families and matching Rota-Baxter algebras.
- ▶ An operated ideal of *R* is an ideal *I* of *R* such that $\alpha(I) \subseteq I$.
- A homomorphism from an operated k-algebra (R, α) to an operated k-algebra (S, β) is a k-linear map f : R → S such that f ∘ α = β ∘ f.
- The adjoint functor of the forgetful functor from the category of operated algebras to the category of sets gives the free operated k-algebras.
- More precisely, a free operated k-algebra on a set X is an operated k-algebra ($\mathbf{k} ||X||, \alpha_X$) together with a map $j_X : X \to \mathbf{k} ||X||$ with the property that, for any operated algebra (R, β) together with a map $f : X \to R$, there is a unique morphism $\overline{f} : (\mathbf{k} ||X||, \alpha_X) \to (R, \beta)$ of operated algebras such that $f = \overline{f} \circ j_X$.

Bracketed words

- For any set Y, let [Y] := { [y] | y ∈ Y } denote a set indexed by Y and disjoint from Y.
- ► For a fixed set X, let $\mathfrak{M}_0 = \mathfrak{M}(X)_0 = M(X)$ (free monoid). For $n \ge 0$, let $\mathfrak{M}_{n+1} := M(X \cup [\mathfrak{M}_n])$.
- With the embedding X ∪ [𝔅n_{n-1}] → X ∪ [𝔅n_n], we obtain an embedding of monoids i_n : 𝔅n_n → 𝔅n_{n+1}, giving the direct limit 𝔅(X) := lim 𝔅n_n.
- Elements of $\mathfrak{M}(X)$ are called bracketed words.
- M(X) can also be identified with elements of M(X ∪ {[,]}) such that [and] are paired with each other.
- $\mathfrak{M}(X)$ can also be constructed by rooted trees and Motzkin paths.

Theorem. 1. The set 𝔅(X), equipped with the concatenation product, the operator w ↦ [w], w ∈ 𝔅(X), and the natural embedding j_X : X → 𝔅(X), is the free operated monoid on X.
 2. k ||X|| := k𝔅(X) (k-span) is the free operated unitary k-algebra on X.

Operated Polynomial Identities

► An operated k-algebra (R, P) is called an operated PI (OPI) k-algebra if there is a fixed element $\phi(x_1, \dots, x_n) \in \mathbf{k} || x_1, \dots, x_n ||$ such that the evaluation map

$$\phi(a_1, \cdots, a_n) = 0, \quad \forall a_1, \cdots, a_n \in \mathbf{R}.$$

where a pair of brackets $\lfloor \rfloor$ is replaced by *P* everywhere.

- More precisely, for any $f : \{x_1, \dots, x_n\} \to R$, the unique $\overline{f} : \mathbf{k} || x_1, \dots, x_n || \to R$ of operated algebras sends ϕ to zero.
- ▶ Then (R, P) is called a ϕ -k-algebra and P a ϕ -operator.

Examples

1. When $\phi = [xy] - x[y] - [x]y$, a ϕ -operator (resp. algebra) is a differential operator (resp. algebra).

2. When $\phi = [x][y] - [x[y]] - [[x]y] - \lambda[xy]$, a ϕ -operator (resp. ϕ -algebra) is a Rota-Baxter operator (resp. algebra) of weight λ . 3. When $\phi = [x] - x$, then a ϕ -algebra is just an associative algebra. Together with identities from the noncommutative polynomial algebra $\mathbf{k}\langle X \rangle$, we get a PI-algebra.

Free ϕ -algebras

Proposition Let φ = φ(x₁, · · · , x_k) ∈ k ||X|| be given. For any set Z, the free φ-algebra on Z is given by the quotient operated algebra k ||Z|| / I_{φ,Z} where I_{φ,Z} is the operated ideal of k ||Z|| generated by the set

$$\{\phi(u_1,\cdots,u_k)\mid u_1,\cdots,u_k\in\mathbf{k}\|Z\|\}.$$

Examples

- When $\phi = [x] x$, then the quotient $\mathbf{k} ||Z|| / I_{\phi,Z}$ gives the free algebra $\mathbf{k} \langle Z \rangle$ on *Z*.
- When φ = [xy] − x[y] − [x]y, then the quotient gives the free noncommutative differential polynomial algebra k{Z} := k⟨∆(Z)⟩ on Z, where Δ(X) := Z_{≥0} × Z is the set of "differential variables".

A major problem is to determine a canonical basis of $\mathbf{k} ||Z|| / I_{\phi,Z}$.

Remarks:

- ► A classification of linear operators can be regarded as a classification of elements in k || X ||.
- This problem is precise, but is too broad.
- We remind ourselves that Rota also wanted the operators to be defined on associative algebras.
- ► This means that the operated identity *φ* ∈ k ||*x*₁, · · · , *x_n*|| should be compatible with the associativity condition.
- What does this mean?

Examples of compatibility with associativity

• Example 1: For
$$\phi(x, y) = [xy] - [x]y - x[y]$$
, we have
 $[xy] \mapsto [x]y + x[y].$

Thus

$$[(xy)z] \mapsto [xy]z + (xy)[z] \mapsto [x]yz + x[y]z + xy[z].$$
$$[x(yz)] \mapsto [x](yz) + x[yz] \mapsto [x]yz + x[y]z + xy[z].$$

So [(xy)z] and [x(yz)] have the same reduction, indicating that the differential operator is consistent with the associativity condition.

More examples

• Example 2: The same is true for the right multiplier: $\phi(x, y) = [xy] - [x]y$:

$$\lfloor x \rfloor yz \leftrightarrow \lfloor xy \rfloor z \leftrightarrow [(xy)z] = \lfloor x(yz) \rfloor \mapsto [x]yz.$$

▶ Example 3: Suppose $\phi(x, y) = [xy] - [y]x$. Then $[xy] \mapsto [y]x$. So

$$[w]uv \leftarrow [(uv)w] = [u(vw)] \mapsto [vw]u \mapsto [w]vu.$$

Thus a ϕ -algebra (R, δ) needs to satisfy the weak commutativity:

$$\delta(w)(uv - vu) = 0, \forall u, v, w \in Z.$$

So this operator might not be what Rota had in mind!

Differential type operators

► differential operator [xy] = [x]y + x[y], differential operator of weight \(\lambda\) [xy] = [x]y + x[y] + \(\lambda\)[x][y], homomorphism [xy] = [x][y], semihomomorphism [xy] = x[y].

• They are of the form [xy] = N(x, y) where

- 1. $N(x, y) \in \mathbf{k} ||x, y||$ is in DRF, namely, it does not contain $[uv], u, v \neq 1$, that is, N(x, y) is in $\mathbf{k}\mathfrak{D}(x, y)$;
- 2. N(uv, w) = N(u, vw) is reduced to zero under the reduction $[xy] \mapsto N(x, y)$.

An operator identity $\phi(x, y) = 0$ is said of differential type if $\phi(x, y) = [xy] - N(x, y)$ where N(x, y) satisfies these properties. We call N(x, y) and an operator satisfying $\phi(x, y) = 0$ of differential type.

Classification of differential type operators

- ► (Rota's Problem: the Differential Case) Find all operated polynomial identities of differential type by finding all expressions N(x, y) ∈ k ||x, y|| of differential type.
- Conjecture (OPIs of Differential Type) Let k be a field of characteristic zero. Every expression N(x, y) ∈ k ||x, y|| of differential type takes one of the forms below for some a, b, c, e ∈ k :

1.
$$b(x\lfloor y \rfloor + \lfloor x \rfloor y) + c\lfloor x \rfloor \lfloor y \rfloor + exy$$
 where $b^2 = b + ce$,

2.
$$ce^2yx + exy + c\lfloor y \rfloor \lfloor x \rfloor - ce(y\lfloor x \rfloor + \lfloor y \rfloor x),$$

3.
$$axy[1] + b[1]xy + cxy$$
,

4.
$$x\lfloor y \rfloor + \lfloor x \rfloor y + ax \lfloor 1 \rfloor y + bxy$$
,

5.
$$\lfloor x \rfloor y + a(x \lfloor 1 \rfloor y - xy \lfloor 1 \rfloor),$$

6.
$$x \lfloor y \rfloor + a(x \lfloor 1 \rfloor y - \lfloor 1 \rfloor xy)$$

Rewriting systems

• $\phi(x, y) := \lfloor xy \rfloor - N(x, y) \in \mathbf{k} \Vert x, y \Vert$ defines a rewriting system:

$$\Sigma_{\phi} := \left\{ \lfloor ab \rfloor \mapsto \mathcal{N}(a, b) \mid a, b \in \mathfrak{M}(Z) \setminus \{1\} \right\}, \tag{1}$$

where Z is a set.

- More precisely, for g, g' ∈ k ||Z||, denote g →_{Σ_φ} g' if g' is obtained from g by replacing a subword ⌊ab⌋ in a monomial of g by N(a, b).
- A rewriting system Σ is call
 - terminating if every reduction $g_0 \mapsto_{\Sigma} g_1 \mapsto \cdots$ stops after finite steps,
 - confluent if any two reductions of g can be reduced to the same element.
 - convergent if it is both terminating and confluent.
- Theorem φ = [xy] N(x, y) defines a differential type operator if and only if the rewriting system Σ_φ is convergent.

Monomial well orderings

- Let Z be a set. Let M^{*}(Z) denote the bracketed words in Z ∪ {*} where * appears exactly once.
- For $q \in \mathfrak{M}^{\star}(Z)$ and $u \in \mathfrak{M}(Z)$, let $q|_u$ denote the bracketed word in $\mathfrak{M}(Z)$ when \star in q is replaced by u.
- Then g →_{Σ_φ} g' if there are q ∈ M^{*}(Z) and a, b ∈ M(Z) such that
 1. q|_[ab] is a monomial of g with coefficient c ≠ 0,
 2. g' = g cq|_{[ab]-N(a,b)}.
- ► A monomial ordering on M(Z) is a well-ordering < on M(X) such that</p>

 $1 \leq u$ and $u < v \Rightarrow q|_u < q|_v, \ \forall u, v \in \mathfrak{M}(X), q \in \mathfrak{M}^*(X).$

- ► Given a monomial ordering < and a bracketed polynomial s ∈ k ||X||, we let s̄ denote the leading bracketed word (monomial) of s.</p>
- If the coefficient of s̄ in s is 1, we call s monic with respect to the monomial order <.</p>

Gröbner-Shirshov bases

- Bokut, Chen and Qiu (JPAA, 2010) determined Gröbner-Shirshov bases for free nonunitary operated algebras. This can be similarly given for free unitary operated algebras k ||Z||.
- ► Let > be a monomial ordering on 𝔐(Z). Let f, g be two monic bracketed polynomials.
- ▶ For $p, q \in \mathfrak{M}^{\star}(Z)$ and $s, t \in \mathbf{k} ||Z||$, if $w := p|_{\overline{s}} = q|_{\overline{t}}$, then call

$$(f,g)^{p,q}_w := p|_s - q|_t$$

a composition of *f* and *g*.

- ▶ For $S \subseteq \mathbf{k} ||Z||$ and $u \in \mathbf{k} ||Z||$, we call *u* trivial modulo (S, w) if $u = \sum_i c_i q_i|_{s_i}$, with $c_i \in \mathbf{k}$, $q_i \in \mathfrak{M}^{\star}(Z)$, $s_i \in S$ and $q_i|_{\overline{s_i}} < w$.
- ► A set $S \subseteq \mathbf{k} ||X||$ is called a Gröbner-Shirshov basis if, for all $f, g \in S$, all compositions $(f, g)_w^{p,q}$ of f and g are trivial modulo (S, w).

Differential type, rewriting systems and Gröbner-Shirshov bases

► Theorem. (Guo-Sit-R. Zhang, 2013) For

 $\phi(x, y) := \lfloor xy \rfloor - N(x, y) \in \mathbf{k} ||x, y||$, the following statements are equivalent.

- $\phi(x, y)$ is of differential type;
- ► The rewriting system $\Sigma_{\phi} = \{ \lfloor ab \rfloor \mapsto N(a, b) \}$ is convergent;
- Let Z be a set with a well ordering. With a predefined monomial order >, the set

$$\mathcal{S} := \mathcal{S}_{\phi} := \{ \phi(u, v) = \delta(uv) - \mathcal{N}(u, v) | \ u, v \in \mathfrak{M}(Z) \setminus \{1\} \}$$

is a Gröbner-Shirshov basis in $\mathbf{k} ||Z||$;

► The free ϕ -algebra on a set Z is the noncommutative polynomial **k**-algebra $\mathbf{k}\langle\Delta(Z)\rangle$, together with the operator $d := d_Z$ on $\mathbf{k}\langle\Delta(Z)\rangle$ defined by the following recursion:

Let $u = u_1 u_2 \cdots u_k \in M(\Delta(Z))$, where $u_i \in \Delta(Z), 1 \le i \le k$.

- 1. If k = 1, i.e., $u = \delta^{i}(x)$ for some $i \ge 0, x \in Z$, then define $d(u) = \delta^{(i+1)}(x)$.
- 2. If $k \ge 1$, then define $d(u) = N(u_1, u_2 \cdots u_k)$.

Rota-Baxter type operators

What Rota-Baxter operator, average operator, Nijenhuis operator, etc. have in common is that they are of the form

[u][v] = [M(u, v)]

where M(u, v) is in $\mathbf{k}\mathfrak{M}'(Z)$.

• The expression M(u, v) is formally associative:

M(M(u, v), w) = M(u, M(v, w))

modulo the relation $\phi_M := [u][v] - [M(u, v)].$

- ▶ The rewriting rule $\lfloor u \rfloor \lfloor v \rfloor \mapsto \lfloor M(u, v) \rfloor$ is convergent.
- ► A $\phi(x, y) := \lfloor x \rfloor \lfloor y \rfloor \lfloor M(x, y) \rfloor$ of the above form is called a Rota-Baxter type operator.

Conjecture on Rota-Baxter type operators

• Conjecture. Any Rota-Baxter type operator is of the form P(x)P(y) = P(M(x, y)),

for an M(x, y) from the following list (new types in red).

- 1. xP(y) (average operator)
- 2. P(x)y (reverse average operator)
- 3. xP(y) + yP(x)
- 4. P(x)y + P(y)x
- 5. xP(y) + P(x)y P(xy) (Nijenhuis operator)
- 6. $xP(y) + P(x)y + e_1xy$ (RBA with weight e_1)
- 7. $xP(y) xP(1)y + e_1xy$

8.
$$P(x)y - xP(1)y + e_1xy$$

- 9. $xP(y) + P(x)y xP(1)y + e_1xy$ (TD operator with weight e_1)
- 10. $xP(y) + P(x)y xyP(1) xP(1)y + e_1xy$
- 11. $xP(y) + P(x)y P(xy) xP(1)y + e_1xy$
- 12. $xP(y) + P(x)y xP(1)y P(1)xy + e_1xy$
- 13. $d_0 x P(1)y + e_1 xy$ (generalized endomorphisms)
- 14. $d_2 y P(1) x + e_0 y x$

Classification of Rota-Baxter type operators

- ► Theorem (Gao-Guo-Sit-S. Zheng) For $\phi(x, y) := \lfloor x \rfloor \lfloor y \rfloor \lfloor M(x, y) \rfloor$, the following statements are equivalent.
- $\phi(x, y)$ is of Rota-Baxter type;
- The rewriting system from $\phi(x, y)$ is convergent;
- There is a Gröbner-Shirshove basis for the ideal of $\phi(x, y)$;
- Free algebras in the corresponding category have canonical bases given by the *Rota-Baxter words*.
- Corollary All operators in the above list are Rota-Baxter type operators.

General formulations for associative algebras

- (Rota's Classification Problem via rewriting systems) Determine all convergent systems of OPIs.
- Example. (Two-sided) averaging operator *P* is defined to satisfy

$$P(x_1)P(x_2) = P(P(x_1)x_2) = P(x_1P(x_2))$$

It is not convergent.

- (Rota's Classification Problem via Gröbner-Shirshov bases) Determine all Gröbner-Shirshov systems of OPIs.
- A Gröbner-Shirshov system of OPIs is convergent.

Baby model: multiplicative superalgebra

- ▶ Consider an algebra $H = H_1 \oplus H_0$ with subalgebras H_1, H_0 such that $H_iH_j \subseteq H_{ij}, i, j \in \{0, 1\}$. So H_1 is a subalgebra and H_0 is an ideal. Such an algebra is called a multiplicative superalgebra.
- Let (A, ·) be an algebra. Let (R, *) be an algebra with multiplication *. Let ℓ, r : A → End_k(R) be two linear maps.
- We call (R, *, ℓ, r) or simply R an A-bimodule k-algebra if (R, ℓ, r) is an A-bimodule that is compatible with the multiplication * on R:

$$\ell(x)(v * w) = (\ell(x)v) * w, (v * w)r(x) = v * (wr(x)), (vr(x)) * w = v * (\ell(x)w), \text{ for all } x, y \in A, v, w \in R.$$

- Every multiplicative superalgebras is of the form $A \oplus R = A(\mathbf{k}1 \oplus R)$ where *A* is an algebra and *R* is an *A*-bimodule algebra.
- Free multiplicative superalgebra with given H_0 is a quotient of $H_0 \oplus B(M)$, where B(M) is the free *A*-bimodule algebra spanned by a module *M*.

Disconnected operads as "superoperads"

- Most studied on operad are focused on the connected ones, that is S-modules P := (P_n)_{n≥0} with P₁ = kid (and reduced: P₀ = 0);
- A (reduced) disconnected operad 𝒫 has a "super" decomposition 𝒫 = 𝒫₌₁ ⊕ 𝒫_{>1} = 𝒫₌₁ ◦ 𝒫_{>1}, where 𝒫₌₁ is the operad with 𝒫₁ concentrated at arity 1 and 𝒫_{>1} is the connected operad (kid, 𝒫₂, 𝒫₃, ···).
- ► This is similar to a multiplicative superalgebra in the sense that P_{>1} is closed under compositions with P₁.
- We can regard 𝒫 as the connected operad 𝒫_{≥2} with linear operations from 𝒫₁, and pose an analogous Rota's Classification Problem for operads.

Operad forms of the classification problem

- (Weak form) For a connected operad P = T(M)/(S) with generator space spanned by *M* and relation space spanned by a Gröbner-Shirshov basis *S*. Determine operators P₌₁ = T(P)/(S_P) on P such that S ∪ S_P is a Gröbner-Shirshov basis (for T(M ⊕ P)).
- In (Strong form) Determine operators P₌₁ = 𝔅(P)/(S_P) such that the weak form holds for every connected operad 𝔅 = 𝔅(M)/(S) with generator space spanned by M and relation space spanned by a Gröbner-Shirshov basis S.

Special cases

Let 𝒫 = 𝔅(𝑘)/(𝔅) be a binary quadratic nonsymmetric operad. Define the differential 𝒫 operad to be

$$\mathcal{DP} := \mathcal{T}(M_d)/(S \sqcup S_d),$$

where $M_d := (M_0, M_1 \oplus \mathbf{k}\{d\}, M_2, \cdots, M_n, \cdots)$ and S_d is a set of Leibniz rules on \mathcal{P} .

- ▶ If *S* is a Gröbner-Shirshov basis in $\mathcal{T}(M)$, then $S \sqcup S_d$ is a Gröbner-Shirshov basis in $\mathcal{T}(M_d)$ for the operad \mathcal{DP} .
- A similar statement holds for Rota-Baxter operators.

Summary and outlook

- A long standing problem of Rota is the classification of linear operators on algebras that satisfy algebraic identities.
- This problem is made precise in the context of operated polynomial algebras and rewriting systems;
- This problem is treated in two cases: differential type and Rota-Baxter type operators, with the help of rewriting systems and Gröber-Shirshov bases;
- Similar methods can be applied to treat other classes of operators on associative algebras, and further to operads;
- Roughly speaking, the linear operators that interested Rota and maybe other mathematicians (good operators) should be the ones whose defining identities define convergent rewriting systems (good systems), or possesses Gröbner-Shirshov bases (good bases).
- Similar questions can be asked for linear operators on operads.

Thank You!