Rota's Classification Problem for Nonsymmetric Operads

Li GUO
Rutgers University at Newark

(joint work with Xing Gao and Huhu Zhang)

Motivation: Classification of Linear Operators

- Throughout the history, mathematical objects are often understood through studying operators defined on them.
- Well-known examples include Galois theory where fields are studied by their automorphisms (the Galois group),
- and analysis and geometry where functions and manifolds are studied through their derivations, integrals and related vector fields,
- and differential Galois theory where both operators occur.

Rota's Problem

- By the 1970s, several other operators had been discovered from studies in analysis, probability and combinatorics.

Average operator $P(x) P(y)=P(x P(y))$,
Inverse average operator $P(x) P(y)=P(P(x) y)$,
(Rota-)Baxter operator $P(x) P(y)=P(x P(y))+P(P(x) y)+\lambda P(x y)$,
where λ is a fixed constant,
Reynolds operator $P(x) P(y)=P(x P(y))+P(P(x) y)-P(P(x) P(y))$.

- Rota posed the problem of finding all the identities that could be satisfied by a linear operator defined on associative algebras. He also suggested that there should not be many such operators other than these previously known ones.

Quotation from Rota and Known Operators

- "In a series of papers, I have tried to show that other linear operators satisfying algebraic identities may be of equal importance in studying certain algebraic phenomena, and I have posed the problem of finding all possible algebraic identities that can be satisfied by a linear operator on an algebra. Simple computations show that the possibility are very few, and the problem of classifying all such identities is very probably completely solvable."
- Little progress was made on finding all such operators while new operators have merged from physics and combinatorial studies, such as

Nijenhuis operator

$$
\begin{array}{rr}
\text { Nijenhuis operator } & P(x) P(y)=P(x P(y)+P(x) y-P(x y)), \\
\text { Leroux's TD operator } & P(x) P(y)=P(x P(y)+P(x) y-x P(1) y) .
\end{array}
$$

Other Post-Rota developments

- These previously known operators continued to find remarkable applications in pure and applied mathematics.
- Vast theories were established for differential algebra and difference algebra, with wide applications, including Wen-Tsun Wu's mechanical proof of geometric theorems and mathematics mechanization (based on work of Ritt).
- Rota-Baxter algebra has found applications in classical Yang-Baxter equations, operads, combinatorics, and most prominently, the renormalization of quantum field theory through the Hopf algebra framework of Connes and Kreimer.
- How to understand Rota's problem?

PI Algebras

- What is an algebraic identity that is satisfied by a linear operator?—Polynomial identity (PI) algebras gives a simplified analogue:
- A k-algebra R is called a PI algebra (Procesi, Rowen, ...) if there is a fixed element $f\left(x_{1}, \cdots, x_{n}\right)$ in the noncommutative polynomial algebra (that is, the free algebra) $\mathbf{k}\left\langle x_{1}, \cdots, x_{n}\right\rangle$ such that

$$
f\left(a_{1}, \cdots, a_{n}\right)=0, \quad \forall a_{1}, \cdots, a_{n} \in R
$$

Thus an algebraic identity satisfied by an algebra is an element in the free algebra.

- Then an algebraic identity satisfied by a linear operator should be an element in a free algebra with an operator, a so called free operated algebra.

Operated algebras

- An operated \mathbf{k}-algebra is a \mathbf{k}-algebra R with a linear operator α on R.
- Examples. Differential algebras and Rota-Baxter algebras.
- We can also consider algebras with multiple operators, such as differential-difference algebras, differential Rota-Baxter algebras, Rota-Baxter families and matching Rota-Baxter algebras.
- An operated ideal of R is an ideal I of R such that $\alpha(I) \subseteq I$.
- A homomorphism from an operated \mathbf{k}-algebra (R, α) to an operated k-algebra (S, β) is a k-linear map $f: R \rightarrow S$ such that $f \circ \alpha=\beta \circ f$.
- The adjoint functor of the forgetful functor from the category of operated algebras to the category of sets gives the free operated k-algebras.
- More precisely, a free operated \mathbf{k}-algebra on a set X is an operated \mathbf{k}-algebra ($\mathbf{k}\|X\|, \alpha_{X}$) together with a map $j_{X}: X \rightarrow \mathbf{k}\|X\|$ with the property that, for any operated algebra (R, β) together with a map $f: X \rightarrow R$, there is a unique morphism $\bar{f}:\left(\mathbf{k}\|X\|, \alpha_{X}\right) \rightarrow(R, \beta)$ of operated algebras such that $f=\bar{f} \circ j_{X}$.

Bracketed words

- For any set Y, let $[Y]:=\{\lfloor y\rfloor \mid y \in Y\}$ denote a set indexed by Y and disjoint from Y.
- For a fixed set X, let $\mathfrak{M}_{0}=\mathfrak{M}(X)_{0}=M(X)$ (free monoid). For $n \geq 0$, let $\mathfrak{M}_{n+1}:=M\left(X \cup\left[\mathfrak{M}_{n}\right]\right)$.
- With the embedding $X \cup\left[\mathfrak{M}_{n-1}\right] \rightarrow X \cup\left[\mathfrak{M}_{n}\right]$, we obtain an embedding of monoids $i_{n}: \mathfrak{M}_{n} \rightarrow \mathfrak{M}_{n+1}$, giving the direct limit

$$
\mathfrak{M}(X):=\underset{\longrightarrow}{\lim } \mathfrak{M}_{n}
$$

- Elements of $\mathfrak{M}(X)$ are called bracketed words.
- $\mathfrak{M}(X)$ can also be identified with elements of $M(X \cup\{[]\}$,$) such that [$ and] are paired with each other.
- $\mathfrak{M}(X)$ can also be constructed by rooted trees and Motzkin paths.
- Theorem. 1. The set $\mathfrak{M}(X)$, equipped with the concatenation product, the operator $w \mapsto\lfloor w\rfloor, w \in \mathfrak{M}(X)$, and the natural embedding $j_{x}: X \rightarrow \mathfrak{M}(X)$, is the free operated monoid on X. 2. $\mathbf{k}\|X\|:=\mathbf{k} \mathfrak{M}(X)$ (k-span) is the free operated unitary \mathbf{k}-algebra on X.

Operated Polynomial Identities

- An operated \mathbf{k}-algebra (R, P) is called an operated $\mathrm{PI}(\mathrm{OPI})$ \mathbf{k}-algebra if there is a fixed element $\phi\left(x_{1}, \cdots, x_{n}\right) \in \mathbf{k}\left\|x_{1}, \cdots, x_{n}\right\|$ such that the evaluation map

$$
\phi\left(a_{1}, \cdots, a_{n}\right)=0, \quad \forall a_{1}, \cdots, a_{n} \in R .
$$

where a pair of brackets \rfloor is replaced by P everywhere.

- More precisely, for any $f:\left\{x_{1}, \cdots, x_{n}\right\} \rightarrow R$, the unique
$\bar{f}: \mathbf{k}\left\|x_{1}, \cdots, x_{n}\right\| \rightarrow R$ of operated algebras sends ϕ to zero.
- Then (R, P) is called a ϕ-k-algebra and P a ϕ-operator.
- Examples

1. When $\phi=[x y]-x[y]-[x] y$, a ϕ-operator (resp. algebra) is a differential operator (resp. algebra).
2. When $\phi=[x][y]-[x[y]]-[[x] y]-\lambda[x y]$, a ϕ-operator (resp. ϕ-algebra) is a Rota-Baxter operator (resp. algebra) of weight λ.
3. When $\phi=[x]-x$, then a ϕ-algebra is just an associative algebra. Together with identities from the noncommutative polynomial algebra $\mathbf{k}\langle X\rangle$, we get a Pl-algebra.

Free ϕ-algebras

- Proposition Let $\phi=\phi\left(x_{1}, \cdots, x_{k}\right) \in \mathbf{k}\|X\|$ be given. For any set Z, the free ϕ-algebra on Z is given by the quotient operated algebra $\mathbf{k}\|Z\| / I_{\phi, Z}$ where $I_{\phi, Z}$ is the operated ideal of $\mathbf{k}\|Z\|$ generated by the set

$$
\left\{\phi\left(u_{1}, \cdots, u_{k}\right) \mid u_{1}, \cdots, u_{k} \in \mathbf{k}\|Z\|\right\}
$$

- Examples
- When $\phi=[x]-x$, then the quotient $\mathbf{k}\|Z\| / I_{\phi, Z}$ gives the free algebra $\mathbf{k}\langle Z\rangle$ on Z.
- When $\phi=[x y]-x[y]-[x] y$, then the quotient gives the free noncommutative differential polynomial algebra $\mathbf{k}\{Z\}:=\mathbf{k}\langle\Delta(Z)\rangle$ on Z, where $\Delta(X):=\mathbb{Z}_{\geq 0} \times Z$ is the set of "differential variables".
- A major problem is to determine a canonical basis of $\mathbf{k}\|Z\| / I_{\phi, Z}$.

Remarks:

- A classification of linear operators can be regarded as a classification of elements in $\mathbf{k}\|X\|$.
- This problem is precise, but is too broad.
- We remind ourselves that Rota also wanted the operators to be defined on associative algebras.
- This means that the operated identity $\phi \in \mathbf{k}\left\|x_{1}, \cdots, x_{n}\right\|$ should be compatible with the associativity condition.
- What does this mean?

Examples of compatibility with associativity

- Example 1: For $\phi(x, y)=[x y]-[x] y-x[y]$, we have

$$
[x y] \mapsto[x] y+x[y] .
$$

Thus

$$
\begin{aligned}
& {[(x y) z] \mapsto[x y] z+(x y)[z] \mapsto[x] y z+x[y] z+x y[z] .} \\
& {[x(y z)] \mapsto[x](y z)+x[y z] \mapsto[x] y z+x[y] z+x y[z] .}
\end{aligned}
$$

So $[(x y) z]$ and $[x(y z)]$ have the same reduction, indicating that the differential operator is consistent with the associativity condition.

More examples

- Example 2: The same is true for the right multiplier: $\phi(x, y)=[x y]-[x] y:$

$$
\lfloor x\rfloor y z \hookleftarrow\lfloor x y\rfloor z \hookleftarrow[(x y) z]=\lfloor x(y z)\rfloor \mapsto[x] y z
$$

- Example 3: Suppose $\phi(x, y)=[x y]-[y] x$. Then $[x y] \mapsto[y] x$. So

$$
[w] u v \leftarrow[(u v) w]=[u(v w)] \mapsto[v w] u \mapsto[w] v u .
$$

Thus a ϕ-algebra (R, δ) needs to satisfy the weak commutativity:

$$
\delta(w)(u v-v u)=0, \forall u, v, w \in Z
$$

So this operator might not be what Rota had in mind!

Differential type operators

- differential operator $[x y]=[x] y+x[y]$, differential operator of weight $\lambda[x y]=[x] y+x[y]+\lambda[x][y]$, homomorphism $[x y]=[x][y]$, semihomomorphism $[x y]=x[y]$.
- They are of the form $[x y]=N(x, y)$ where

1. $N(x, y) \in \mathbf{k}\|x, y\|$ is in DRF, namely, it does not contain [uv], $u, v \neq 1$, that is, $N(x, y)$ is in $\mathbf{k} \mathfrak{D}(x, y)$;
2. $N(u v, w)=N(u, v w)$ is reduced to zero under the reduction $[x y] \mapsto N(x, y)$.
An operator identity $\phi(x, y)=0$ is said of differential type if $\phi(x, y)=[x y]-N(x, y)$ where $N(x, y)$ satisfies these properties. We call $N(x, y)$ and an operator satisfying $\phi(x, y)=0$ of differential type.

Classification of differential type operators

- (Rota's Problem: the Differential Case) Find all operated polynomial identities of differential type by finding all expressions $N(x, y) \in \mathbf{k}\|x, y\|$ of differential type.
Conjecture (OPIs of Differential Type) Let \mathbf{k} be a field of characteristic zero. Every expression $N(x, y) \in \mathbf{k}\|x, y\|$ of differential type takes one of the forms below for some $a, b, c, e \in \mathbf{k}$:

1. $b(x\lfloor y\rfloor+\lfloor x\rfloor y)+c\lfloor x\rfloor\lfloor y\rfloor+e x y$ where $b^{2}=b+c e$,
2. $c e^{2} y x+e x y+c\lfloor y\rfloor\lfloor x\rfloor-c e(y\lfloor x\rfloor+\lfloor y\rfloor x)$,
3. $a x y[1]+b\lfloor 1] x y+c x y$,
4. $x\lfloor y\rfloor+\lfloor x\rfloor y+a x\lfloor 1\rfloor y+b x y$,
5. $\lfloor x\rfloor y+a(x\lfloor 1\rfloor y-x y\lfloor 1\rfloor)$,
6. $x\lfloor y\rfloor+a(x\lfloor 1\rfloor y-\lfloor 1\rfloor x y)$.

Rewriting systems

$\phi(x, y):=\lfloor x y\rfloor-N(x, y) \in \mathbf{k}\|x, y\|$ defines a rewriting system:

$$
\begin{equation*}
\Sigma_{\phi}:=\{\lfloor a b\rfloor \mapsto N(a, b) \mid a, b \in \mathfrak{M}(Z) \backslash\{1\}\} \tag{1}
\end{equation*}
$$

where Z is a set.

- More precisely, for $g, g^{\prime} \in \mathbf{k}\|Z\|$, denote $g \mapsto_{\Sigma_{\phi}} g^{\prime}$ if g^{\prime} is obtained from g by replacing a subword $\lfloor a b\rfloor$ in a monomial of g by $N(a, b)$.
- A rewriting system Σ is call
- terminating if every reduction $g_{0} \mapsto \Sigma g_{1} \mapsto \cdots$ stops after finite steps,
- confluent if any two reductions of g can be reduced to the same element.
- convergent if it is both terminating and confluent.
- Theorem $\phi=[x y]-N(x, y)$ defines a differential type operator if and only if the rewriting system Σ_{ϕ} is convergent.

Monomial well orderings

- Let Z be a set. Let $\mathfrak{M}^{\star}(Z)$ denote the bracketed words in $Z \cup\{\star\}$ where \star appears exactly once.
- For $q \in \mathfrak{M}^{\star}(Z)$ and $u \in \mathfrak{M}(Z)$, let $\left.q\right|_{u}$ denote the bracketed word in $\mathfrak{M}(Z)$ when \star in q is replaced by u.
- Then $g \mapsto \Sigma_{\phi} g^{\prime}$ if there are $q \in \mathfrak{M}^{\star}(Z)$ and $a, b \in \mathfrak{M}(Z)$ such that

1. $q \|_{[a b]}$ is a monomial of g with coefficient $c \neq 0$,
2. $g^{\prime}=g-\left.c q\right|_{[a b]-N(a, b)}$.

- A monomial ordering on $\mathfrak{M}(Z)$ is a well-ordering $<$ on $\mathfrak{M}(X)$ such that

$$
1 \leq u \text { and } u<\left.v \Rightarrow q\right|_{u}<\left.q\right|_{v}, \forall u, v \in \mathfrak{M}(X), q \in \mathfrak{M}^{\star}(X) .
$$

- Given a monomial ordering < and a bracketed polynomial $s \in \mathbf{k}\|X\|$, we let \bar{s} denote the leading bracketed word (monomial) of s.
- If the coefficient of \bar{s} in s is 1 , we call s monic with respect to the monomial order $<$.

Gröbner-Shirshov bases

- Bokut, Chen and Qiu (JPAA, 2010) determined Gröbner-Shirshov bases for free nonunitary operated algebras. This can be similarly given for free unitary operated algebras $\mathbf{k}\|Z\|$.
- Let $>$ be a monomial ordering on $\mathfrak{M}(Z)$. Let f, g be two monic bracketed polynomials.
- For $p, q \in \mathfrak{M}^{\star}(Z)$ and $s, t \in \mathbf{k}\|Z\|$, if $w:=\left.p\right|_{\bar{s}}=\left.q\right|_{\bar{t}}$, then call

$$
(f, g)_{w}^{p, q}:=\left.p\right|_{s}-\left.q\right|_{t}
$$

a composition of f and g.

- For $S \subseteq \mathbf{k}\|Z\|$ and $u \in \mathbf{k}\|Z\|$, we call u trivial modulo (S, w) if $u=\left.\sum_{i} c_{i} q_{i}\right|_{s_{i}}$, with $c_{i} \in \mathbf{k}, q_{i} \in \mathfrak{M}^{\star}(Z), s_{i} \in S$ and $\left.q_{i}\right|_{s_{i}}<w$.
- A set $S \subseteq \mathbf{k}\|X\|$ is called a Gröbner-Shirshov basis if, for all $f, g \in S$, all compositions $(f, g)_{w}^{p, q}$ of f and g are trivial modulo (S, w).

Differential type, rewriting systems and Gröbner-

 Shirshov bases- Theorem. (Guo-Sit-R. Zhang, 2013) For $\phi(x, y):=\lfloor x y\rfloor-N(x, y) \in \mathbf{k} \| x, y\rfloor$, the following statements are equivalent.
- $\phi(x, y)$ is of differential type;
- The rewriting system $\Sigma_{\phi}=\{\lfloor a b\rfloor \mapsto N(a, b)\}$ is convergent;
- Let Z be a set with a well ordering. With a predefined monomial order $>$, the set

$$
S:=S_{\phi}:=\{\phi(u, v)=\delta(u v)-N(u, v) \mid u, v \in \mathfrak{M}(Z) \backslash\{1\}\}
$$

is a Gröbner-Shirshov basis in $\mathbf{k}\|Z\|$;

- The free ϕ-algebra on a set Z is the noncommutative polynomial \mathbf{k}-algebra $\mathbf{k}\langle\Delta(Z)\rangle$, together with the operator $d:=d_{z}$ on $\mathbf{k}\langle\Delta(Z)\rangle$ defined by the following recursion:
Let $u=u_{1} u_{2} \cdots u_{k} \in M(\Delta(Z))$, where $u_{i} \in \Delta(Z), 1 \leq i \leq k$.

1. If $k=1$, i.e., $u=\delta^{i}(x)$ for some $i \geq 0, x \in Z$, then define $d(u)=\delta^{(i+1)}(x)$.
2. If $k \geq 1$, then define $d(u)=N\left(u_{1}, u_{2} \cdots u_{k}\right)$.

Rota-Baxter type operators

- What Rota-Baxter operator, average operator, Nijenhuis operator, etc. have in common is that they are of the form

$$
[u][v]=[M(u, v)]
$$

where $M(u, v)$ is in $\mathbf{k} \mathfrak{M}^{\prime}(Z)$.

- The expression $M(u, v)$ is formally associative:

$$
M(M(u, v), w)=M(u, M(v, w))
$$

modulo the relation $\phi_{M}:=[u][v]-[M(u, v)]$.

- The rewriting rule $\lfloor u\rfloor\lfloor v\rfloor \mapsto\lfloor M(u, v)\rfloor$ is convergent.
- A $\phi(x, y):=\lfloor x\rfloor\lfloor y\rfloor-\lfloor M(x, y)\rfloor$ of the above form is called a Rota-Baxter type operator.

Conjecture on Rota-Baxter type operators

- Conjecture. Any Rota-Baxter type operator is of the form

$$
P(x) P(y)=P(M(x, y)),
$$

for an $M(x, y)$ from the following list (new types in red).

$$
\begin{aligned}
& \text { 1. } x P(y) \quad \text { (average operator) } \\
& \text { 2. } P(x) y \quad \text { (reverse average operator) } \\
& \text { 3. } x P(y)+y P(x) \\
& \text { 4. } P(x) y+P(y) x \\
& \text { 5. } x P(y)+P(x) y-P(x y) \quad \text { (Nijenhuis operator) } \\
& \text { 6. } \left.x P(y)+P(x) y+e_{1} x y \quad \text { (RBA with weight } e_{1}\right) \\
& \text { 7. } x P(y)-x P(1) y+e_{1} x y \\
& \text { 8. } P(x) y-x P(1) y+e_{1} x y \\
& \text { 9. } x P(y)+P(x) y-x P(1) y+e_{1} x y \quad\left(T D \text { operator with weight } e_{1}\right) \\
& \text { 10. } x P(y)+P(x) y-x y P(1)-x P(1) y+e_{1} x y \\
& \text { 11. } x P(y)+P(x) y-P(x y)-x P(1) y+e_{1} x y \\
& \text { 12. } x P(y)+P(x) y-x P(1) y-P(1) x y+e_{1} x y \\
& \text { 13. } d_{0} x P(1) y+e_{1} x y \quad \text { (generalized endomorphisms) } \\
& \text { 14. } d_{2} y P(1) x+e_{0} y x \quad
\end{aligned}
$$

Classification of Rota-Baxter type operators

- Theorem (Gao-Guo-Sit-S. Zheng) For $\phi(x, y):=\lfloor x\rfloor\lfloor y\rfloor-\lfloor M(x, y)\rfloor$, the following statements are equivalent.
- $\phi(x, y)$ is of Rota-Baxter type;
- The rewriting system from $\phi(x, y)$ is convergent;
- There is a Gröbner-Shirshove basis for the ideal of $\phi(x, y)$;
- Free algebras in the corresponding category have canonical bases given by the Rota-Baxter words.
- Corollary All operators in the above list are Rota-Baxter type operators.

General formulations for associative algebras

- (Rota's Classification Problem via rewriting systems) Determine all convergent systems of OPIs.
- Example. (Two-sided) averaging operator P is defined to satisfy

$$
P\left(x_{1}\right) P\left(x_{2}\right)=P\left(P\left(x_{1}\right) x_{2}\right)=P\left(x_{1} P\left(x_{2}\right)\right)
$$

It is not convergent.

- (Rota's Classification Problem via Gröbner-Shirshov bases) Determine all Gröbner-Shirshov systems of OPIs.
- A Gröbner-Shirshov system of OPIs is convergent.

Baby model: multiplicative superalgebra

- Consider an algebra $H=H_{1} \oplus H_{0}$ with subalgebras H_{1}, H_{0} such that $H_{i} H_{j} \subseteq H_{i j}, i, j \in\{0,1\}$. So H_{1} is a subalgebra and H_{0} is an ideal.
Such an algebra is called a multiplicative superalgebra.
- Let (A, \cdot) be an algebra. Let $(R, *)$ be an algebra with multiplication $*$. Let $\ell, r: A \rightarrow \operatorname{End}_{\mathbf{k}}(R)$ be two linear maps.
- We call ($R, *, \ell, r$) or simply R an A-bimodule \mathbf{k}-algebra if (R, ℓ, r) is an A-bimodule that is compatible with the multiplication $*$ on R :

$$
\begin{aligned}
& \ell(x)(v * w)=(\ell(x) v) * w,(v * w) r(x)=v *(w r(x)), \\
& (v r(x)) * w=v *(\ell(x) w), \text { for all } x, y \in A, v, w \in R .
\end{aligned}
$$

- Every multiplicative superalgebras is of the form $A \oplus R=A(\mathbf{k} 1 \oplus R)$ where A is an algebra and R is an A-bimodule algebra.
- Free multiplicative superalgebra with given H_{0} is a quotient of $H_{0} \oplus B(M)$, where $B(M)$ is the free A-bimodule algebra spanned by a module M.

Disconnected operads as "superoperads"

- Most studied on operad are focused on the connected ones, that is \mathbb{S}-modules $\mathcal{P}:=\left(\mathcal{P}_{n}\right)_{n \geq 0}$ with $\mathcal{P}_{1}=$ kid (and reduced: $\mathcal{P}_{0}=0$);
- A (reduced) disconnected operad \mathcal{P} has a "super" decomposition $\mathcal{P}=\mathcal{P}_{=1} \oplus \mathcal{P}_{>1}=\mathcal{P}_{=1} \circ \tilde{\mathcal{P}}_{>1}$, where $\mathcal{P}_{=1}$ is the operad with \mathcal{P}_{1} concentrated at arity 1 and $\tilde{\mathcal{P}}_{>1}$ is the connected operad (kid, $\mathcal{P}_{2}, \mathcal{P}_{3}, \cdots$).
- This is similar to a multiplicative superalgebra in the sense that $\mathcal{P}_{>1}$ is closed under compositions with \mathcal{P}_{1}.
- We can regard \mathcal{P} as the connected operad $\mathcal{P}_{\geq 2}$ with linear operations from \mathcal{P}_{1}, and pose an analogous Rota's Classification Problem for operads.

Operad forms of the classification problem

- (Weak form) For a connected operad $\mathcal{P}=\mathcal{T}(M) /(S)$ with generator space spanned by M and relation space spanned by a Gröbner-Shirshov basis S. Determine operators $\mathcal{P}_{=1}=\mathcal{T}(P) /\left(S_{P}\right)$ on \mathcal{P} such that $S \cup S_{P}$ is a Gröbner-Shirshov basis (for $\mathcal{T}(M \oplus P)$).
- (Strong form) Determine operators $\mathcal{P}_{=1}=\mathcal{T}(P) /\left(S_{P}\right)$ such that the weak form holds for every connected operad $\mathcal{P}=\mathcal{T}(M) /(S)$ with generator space spanned by M and relation space spanned by a Gröbner-Shirshov basis S.

Special cases

- Let $\mathcal{P}=\mathcal{T}(M) /(S)$ be a binary quadratic nonsymmetric operad. Define the differential \mathcal{P} operad to be

$$
\mathcal{D P}:=\mathcal{T}\left(M_{d}\right) /\left(\mathcal{S} \sqcup S_{d}\right),
$$

where $M_{d}:=\left(M_{0}, M_{1} \oplus \mathbf{k}\{d\}, M_{2}, \cdots, M_{n}, \cdots\right)$ and S_{d} is a set of Leibniz rules on \mathcal{P}.

- If S is a Gröbner-Shirshov basis in $\mathcal{T}(M)$, then $S \sqcup S_{d}$ is a Gröbner-Shirshov basis in $\mathcal{T}\left(M_{d}\right)$ for the operad $\mathcal{D P}$.
- A similar statement holds for Rota-Baxter operators.

Summary and outlook

- A long standing problem of Rota is the classification of linear operators on algebras that satisfy algebraic identities.
- This problem is made precise in the context of operated polynomial algebras and rewriting systems;
- This problem is treated in two cases: differential type and Rota-Baxter type operators, with the help of rewriting systems and Gröber-Shirshov bases;
- Similar methods can be applied to treat other classes of operators on associative algebras, and further to operads;
- Roughly speaking, the linear operators that interested Rota and maybe other mathematicians (good operators) should be the ones whose defining identities define convergent rewriting systems (good systems), or possesses Gröbner-Shirshov bases (good bases).
- Similar questions can be asked for linear operators on operads.

Thank You!

