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2. GK-dimension of algebras

Let K be a field. Let A be a K-algebra and V be a finite dimensional
subspace of A spanned by a1, . . . , am. For n ≥ 1, let V n denote the space
spanned by all monomials in a1, . . . , am of length n. Define

dV (n) = dim(Vn), where Vn := K + V + V 2 + · · ·+ V n

Definition

The Gelfand-Kirillov dimension of a K-algebra A is

GKdim(A) = sup
V

lim logn dV (n)

where the supremum is taken over all finite dimensional subspaces V of A



2. GK-dimension of algebras

Remark

For a finitely generated K-algebra A with finite dimensional generating
space V ,

GKdim(A) = lim logn dV (n),

which is independent of the choice of V .



2. GK-dimension of algebras

Proposition

Let A be a finitely generated commutative K-algbra and cl .Kdim(A) be
the classical Krull dimension of A, then

GKdim(A) = cl .Kdim(A).

Proposition

GKdim (A) = 0 if and only if A is locally finite dimensional, meaning that
every finitely generated subalgebra is finite dimensional.
GKdim (A) ≥ 1 if algebra A is not locally finite dimensional.

Proposition

Let A be a K-algebra, and let B = A[x1, . . . , xn]. Then
GKdim(B) = GKdim(A) + n.
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2. GK-dimension of algebras

Problem

Which real numbers occur as the Gelfand-Kirillov dimension of a
K-algebra?



2. GK-dimension of algebras

Theorem (Borho and Kraft 1976)

For any real number r > 2, there exists a K-algebra such that
GKdim(A) = r .

W. Borho and H.Kraft, Über die Gelfand-Kirillov Dimension. Math.
Ann. 220 (1976), 1-24.

Theorem (Warfield 1984)

For any real number r > 2, there exists a two-generator algebra
A = K〈x , y〉/I with GKdim(A)=r .

R. B. Warfield, The Gelfand-Kirillov dimension of a tensor product.
Math. Zeit. 185 (1984), no.4, 441-447.
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2. GK-dimension of algebras

For 1 < r < 2 the existence problem was open for some years until
Bergman showed the following theorem.

Theorem (Bergman 1978, Gap Theorem)

No algebra has Gelfand-Kirillov dimension strictly between 1 and 2. So

GKdim ∈ RGKdim := {0} ∪ {1} ∪ [2,∞) ∪ {∞}.

G.M. Bergman, A note on growth functions of algebras and
semigroups. Research Note, University of California, Berkeley,
(1978).
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2. GK-dimension of algebras

Proposition

If r ∈ RGKdim, then there is a finitely generated monomial algebra A such
that GKdim(A) = r .

J.P. Bell, Growth functions, Commutative Algebra and
Noncommutative Algebraic Geometry 1 (2015), 1.



3. Nonsymmetric operads

Definition (partial definition)

A nonsymmetric operad is a collection of vector spaces P = {P(n)}n≥0
(n is called the arity) equipped with an element id ∈ P(1) and maps

◦i : P(m)⊗ P(n)→ P(m + n − 1), α⊗ β 7→ α ◦i β, 1 ≤ i ≤ m

which satisfy the following properties for all α ∈ P(m), β ∈ P(n) and
γ ∈ P(r):

(i) (α ◦i β) ◦i+j−1 γ = α ◦i (β ◦j γ) for 1 ≤ i ≤ m, 1 ≤ j ≤ n;

(ii) (α ◦i β) ◦j+n−1 γ = (α ◦j γ) ◦i β for 1 ≤ i < j ≤ m;

(iii) id ◦1α = α, α ◦i id = α for 1 ≤ i ≤ n.



3. Nonsymmetric operads

Remark

◦i : P(m)⊗ P(n)→ P(m + n − 1)

α⊗ β 7→ α ◦i β

α ⊗ β 7→

α

β

i
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Remark

(i) (α ◦i β) ◦i+j−1 γ = α ◦i (β ◦j γ) for 1 ≤ i ≤ m, 1 ≤ j ≤ n

α

β

γ

i

i+j-1

=

α ◦i β
α

β

γ

i

j β ◦j γ



3. Nonsymmetric operads

Remark

(ii) (α ◦i β) ◦j+n−1 γ = (α ◦j γ) ◦i β for 1 ≤ i < j ≤ m

α

β

γ

i j

j+n-1

=

α ◦i β
α

β

γ
i j

i

α ◦j γ



3. Nonsymmetric operads

Example (operad of nonunital associative algebras)

Define As = {As(n)}n≥1, where As(1) = Kid and As(n) = Kµn.

µm ◦i µn := µm+n−1, 1 ≤ i ≤ m.

Example

A unital associative algebra A can be interpreted as an operad P with
P(1) = A and P(n) = 0 for all n 6= 1, and the compositions in P are
given by the multiplication of A.

Remark

An operad can be viewed as a generalization of an algebra.



3. Nonsymmetric operads

Example (?)

Suppose A = ⊕i≥0Ai is a graded algebra with unit 1A. Let P(0) = 0 and
P(n) = An−1 for all n ≥ 1. Define compositions as follows

◦i : P(m)⊗ P(n)→ P(n + m − 1),

am−1 ⊗ an−1 7→


cam−1 an−1 = c1A,

am−1an−1 an−1 /∈ K1A, i = 1,

0 an−1 /∈ K1A, i 6= 1.

Then P is an operad with id = 1A.



3. Nonsymmetric operads

Definition

A collection P = {P(n)}n≥0 of spaces (especially, an operad) is called
finite dimensional if dimP := dim (⊕n≥0P(n)) <∞;
It is called locally finite if P(n) is finite dimensional for all n ∈ N.



3. Nonsymmetric operads

Given a subcollection V of operad P, let V0 = (0,Kid , 0, 0, . . . ) and
Vm = {Vm(n)}n≥0 for m ≥ 1, where Vm(n) denotes the subspace of
P(n) spanned by all elements that have the following form

((· · · ((a1 ◦j1 a2) ◦j2 a3) ◦j3 · · · ) ◦jm−1 am), each ai ∈ V. (1)

We call V a generating subcollection of P if

P =
∑
m≥0

Vm :=

∑
m≥0

Vm(n)


n≥0

.

Definition

An operad P is called finitely generated if it has a finite dimensional
generating subcollection V = {V(n)}n≥0.



4. GK-dimension of NS operads

Definition (Bao-Ye-Zhang 2020)

Let P be a locally finite operad. The Gelfand-Kirillov dimension
(GK-dimension for short) of P is defined to be

GKdim(P) := lim logn

(
n∑

i=0

dimP(i)

)
.

When we talk about the GK-dimension of an operad P, we usually
implicitly assume that P is locally finite.

Y.-H. Bao, Y. Ye and J.J. Zhang, Truncation of Unitary Operads,
Advances in Mathematics. 372 (2020): 107290.



4. GK-dimension of NS operads

Example

Since dim(As(n)) = 1 for all n ≥ 1,

GKdim(As) = lim logn

(
n∑

i=0

dim(As(n))

)
= lim logn(n)

= 1.



4. GK-dimension of NS operads

Proposition

GKdim(P) = 0 if and only if P is finite dimensional.

Proposition

For any r ∈ RGKdim, there exists a finitely generated operad P such that
GKdim(P) = r .

Idea of proof:
As in Example (?), we can construct a finitely generated operad
P := (0,K,A1,A2, . . . ) from a monomial algebra A which is naturally
graded, such that GKdim(P) = GKdim(A).
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4. GK-dimension of NS operads

Remark (Algebra Case)

For a finitely generated K-algebra A with finite dimensional generating
space V ,

GKdim(A) = lim logn dV (n).

Proposition

Suppose P is a locally finite operad generated by a finite dimensional
subcollection V. Let dV(n) = dim(

∑n
i=0 V i ). Then

GKdim(P) = lim logn dV(n).



5. Gap theorem of GKdim of NS operads

Problem

Which real numbers occur as the Gelfand-Kirillov dimension of a
nonsymmetric operad?

Theorem (Qi-Xu-Zhang-Zhao)

The range of GK-dimension of nonsymmetric operads is

RGKdim := {0} ∪ {1} ∪ [2,∞) ∪ {∞}.
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5. Gap theorem of GKdim of NS operads

Proposition

No finitely generated nonsymmetric operad has GK-dimension strictly
between 0 and 1.

Idea of proof:
Suppose dim(P) =∞. We claim that Vm+1 6= Vm for every m. Suppose
to the contrary that Vm+1 = Vm for some m. Then by induction, one sees
that Vn = Vm for every n > m. So P = ∪n>mVn = Vm, which is finite
dimensional. Therefore dimVm ≥ m + 1 for every m, and consequently,

GKdim(P) = lim logn

(
n∑

i=0

dimV i

)
≥ lim logn(n + 1) = 1.



5. Gap theorem of GKdim of NS operads

Theorem (Qi-Xu-Zhang-Zhao 2020, Gap Theorem)

No finitely generated nonsymmetric operad has GK-dimension strictly
between 1 and 2.



5. Gap theorem of GKdim of NS operads

Idea of proof:

If GKdim(P) < 2, then there exists a
positive integer d such that dimV i ≤ d
for all i .

So we have that

dV(n) = dim(
n∑

i=0

V i ) ≤ dn.

Consequently,

GKdim(P) = limlogndV(n) ≤ 1.

v1

v2

bounded

periodic

bounded



6. Another construction of NS operads with given GKdim

Definition

An operad is called single-branched if it has a K-basis that consists of
elements of the form

x1 ◦i1 (x2 ◦i2 (· · · (xn−2 ◦in−2 (xn−1 ◦in−1 xn)) · · · )).

Definition

An operad is called single-generated if it is generated by a single element.



6. Another construction of NS operads with given GKdim

Theorem (Qi-Xu-Zhang-Zhao)

If r ∈ RGKdim, then there is a single-generated single-branched locally
finite nonsymmetric operad P such that GKdim(P) = r .

Idea of proof:
If r ∈ RGKdim, then there is a finitely generated monomial algebra A such
that GKdim(A) = r .
For any finitely generated graded monomial algebra A, construct a
single-generated single-branched nonsymmetric operad P such that

GKdim(P) = GKdim(A).



Thank you!


