Gelfand-Kirillov Dimension of Nonsymmetric Operads

The 3rd Conference on Operad Theory and Related Topics

Zihao Qi

East China Normal University

September 20, 2020

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This talk is based on a joint work with Yongjun Xu, James J. Zhang and Xiangui Zhao.

- History
- Gelfand-Kirillov dimension of associative algebras
- Nonsymmetric operads
- Gelfand-Kirillov dimension of nonsymmetric operads
- Gap theorem of GKdim of nonsymmetric operads
- Another construction of NS operads with given GKdim

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. History

- 1966, Gelfand-Kirillov conjecture
- I.M Gel'fand, A.A. Kirillov, On fields connected with the enveloping algebras of Lie algebras. (Russian) Dokl. Akad. Nauk SSSR 167 1966 503-505.
- I.M Gel'fand, A.A. Kirillov, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie. (French) Inst. Hautes Ètudes Sci. Publ. Math. No. **31** (1966), 5-19.
 - 1968, Milnor, Growth of groups
- J. Milnor, A note on curvature and fundamental group. J. Diff. Geom. **2** (1968), 1-7.
 - 1955, A.S. Švarc
- A.S. Švarc, *A volume invariant of coverings*. (Russian) Dokl. Akad. Nauk SSSR (N.S.) **105** (1955), 32-34.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. History

- 1976, Borho and Kraft showed that GK dimension can be any real number bigger than 2.
- W. Borho and H.Kraft, *Über die Gelfand-Kirillov Dimension*. Math. Ann. **220** (1976), 1-24.
- 1978, Bergman proved the Gap Theorem for GK dimension.
- G.M. Bergman, *A note on growth functions of algebras and semigroups*. Research Note, University of California, Berkeley, (1978).
 - 1984, Warfield gave another construction of algebras with GK dimension any real number bigger than 2.
- R. B. Warfield, The Gelfand-Kirillov dimension of a tensor product. Math. Zeit. 185 (1984), no.4, 441-447.

1. History

Boardman, Vogt

May

- J.M. Boardman and R.M. Vogt, *Homotopy Invariant Algebraic Structures on Topological Spaces*, Lecture Notes in Math., vol. **347**, Springer-Verlag, Berlin · Heidelberg · New York, 1973.
- J. P. May, *The geometry of iterated loop spaces*, Springer-Verlag, Berlin, 1972, Lectures Notes in Mathematics, Vol. **271**.
 - Ginzburg, Kapranov
- V. Ginzburg and M. M. Kapranov, *Koszul duality for operads*, Duke Math. J. **76** (1994), no. 1, 203-272.
 - Kontsevich
 - Tamarkin
- M. Kontsevich, *Deformation quantization of Poisson manifolds*. Lett. Math. Phys. **66**(2003), 157-216.
- D. Tamarkin, Another proof of M. Kontsevich formality theorem, preprint, arXiv:9803025.

- 2020, Bao, Ye and Zhang defined GK dimension of a finitely generated operad.
- Y.-H. Bao, Y. Ye and J.J. Zhang, Truncation of Unitary Operads, Advances in Mathematics. 372 (2020): 107290.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let \mathbb{K} be a field. Let A be a \mathbb{K} -algebra and V be a finite dimensional subspace of A spanned by a_1, \ldots, a_m . For $n \ge 1$, let V^n denote the space spanned by all monomials in a_1, \ldots, a_m of length n. Define

$$d_V(n) = dim(V_n)$$
, where $V_n := \mathbb{K} + V + V^2 + \cdots + V^n$

Definition

The Gelfand-Kirillov dimension of a \mathbb{K} -algebra A is

$$\mathsf{GKdim}(A) = \sup_{V} \overline{\mathsf{lim}} \log_n d_V(n)$$

where the supremum is taken over all finite dimensional subspaces V of A

Remark

For a finitely generated $\mathbb{K}\text{-algebra}\;A$ with finite dimensional generating space V,

 $\operatorname{GKdim}(A) = \overline{\lim} \log_n \overline{d_V(n)},$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

which is independent of the choice of V.

2. GK-dimension of algebras

Proposition

Let A be a finitely generated commutative \mathbb{K} -algbra and cl.Kdim(A) be the classical Krull dimension of A, then

GKdim(A) = cl.Kdim(A).

Proposition

GKdim (A) = 0 if and only if A is locally finite dimensional, meaning that every finitely generated subalgebra is finite dimensional. GKdim $(A) \ge 1$ if algebra A is not locally finite dimensional.

Proposition

Let A be a \mathbb{K} -algebra, and let $B = A[x_1, \dots, x_n]$. Then GKdim(B) = GKdim(A) + n.

Proposition

Let A be a finitely generated commutative \mathbb{K} -algbra and cl.Kdim(A) be the classical Krull dimension of A, then

GKdim(A) = cl.Kdim(A).

Proposition

GKdim (A) = 0 if and only if A is locally finite dimensional, meaning that every finitely generated subalgebra is finite dimensional. $GKdim (A) \ge 1$ if algebra A is not locally finite dimensional.

Proposition

Let A be a \mathbb{K} -algebra, and let $B = A[x_1, ..., x_n]$. Then GKdim(B) = GKdim(A) + n.

Proposition

Let A be a finitely generated commutative \mathbb{K} -algbra and cl.Kdim(A) be the classical Krull dimension of A, then

GKdim(A) = cI.Kdim(A).

Proposition

GKdim (A) = 0 if and only if A is locally finite dimensional, meaning that every finitely generated subalgebra is finite dimensional. $GKdim (A) \ge 1$ if algebra A is not locally finite dimensional.

Proposition

Let A be a \mathbb{K} -algebra, and let $B = A[x_1, ..., x_n]$. Then GKdim(B) = GKdim(A) + n.

Problem

Which real numbers occur as the Gelfand-Kirillov dimension of a \mathbb{K} -algebra?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Borho and Kraft 1976)

For any real number r > 2, there exists a \mathbb{K} -algebra such that GKdim(A) = r.

W. Borho and H.Kraft, *Über die Gelfand-Kirillov Dimension*. Math. Ann. **220** (1976), 1-24.

Theorem (Warfield 1984)

For any real number r > 2, there exists a two-generator algebra $A = \mathbb{K}\langle x, y \rangle / I$ with GKdim(A) = r.

R. B. Warfield, The Gelfand-Kirillov dimension of a tensor product. Math. Zeit. 185 (1984), no.4, 441-447.

Theorem (Borho and Kraft 1976)

For any real number r > 2, there exists a \mathbb{K} -algebra such that GKdim(A) = r.

W. Borho and H.Kraft, *Über die Gelfand-Kirillov Dimension*. Math. Ann. **220** (1976), 1-24.

Theorem (Warfield 1984)

For any real number r > 2, there exists a two-generator algebra $A = \mathbb{K}\langle x, y \rangle / I$ with GKdim(A)=r.

 R. B. Warfield, The Gelfand-Kirillov dimension of a tensor product. Math. Zeit. 185 (1984), no.4, 441-447.

For 1 < r < 2 the existence problem was open for some years until Bergman showed the following theorem.

Theorem (Bergman 1978, Gap Theorem)

No algebra has Gelfand-Kirillov dimension strictly between 1 and 2. So

 $GKdim \in R_{\mathsf{GKdim}} := \{0\} \cup \{1\} \cup [2,\infty) \cup \{\infty\}.$

- 日本 - 4 日本 - 4 日本 - 日本

G.M. Bergman, A note on growth functions of algebras and semigroups. Research Note, University of California, Berkeley, (1978). For 1 < r < 2 the existence problem was open for some years until Bergman showed the following theorem.

Theorem (Bergman 1978, Gap Theorem)

No algebra has Gelfand-Kirillov dimension strictly between 1 and 2. So

 $\textit{GKdim} \in \textit{R}_{\textsf{GKdim}} := \{0\} \cup \{1\} \cup [2,\infty) \cup \{\infty\}.$

G.M. Bergman, A note on growth functions of algebras and semigroups. Research Note, University of California, Berkeley, (1978).

Proposition

If $r \in R_{GKdim}$, then there is a finitely generated monomial algebra A such that GKdim(A) = r.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

J.P. Bell, *Growth functions*, Commutative Algebra and Noncommutative Algebraic Geometry **1** (2015), 1.

Definition (partial definition)

A nonsymmetric operad is a collection of vector spaces $\mathcal{P} = \{\mathcal{P}(n)\}_{n \ge 0}$ (*n* is called the arity) equipped with an element id $\in \mathcal{P}(1)$ and maps

$$\circ_i: \mathcal{P}(m) \otimes \mathcal{P}(n)
ightarrow \mathcal{P}(m+n-1), lpha \otimes eta \mapsto lpha \circ_i eta, \ 1 \leq i \leq m$$

which satisfy the following properties for all $\alpha \in \mathcal{P}(m)$, $\beta \in \mathcal{P}(n)$ and $\gamma \in \mathcal{P}(r)$: (i) $(\alpha \circ_i \beta) \circ_{i+j-1} \gamma = \alpha \circ_i (\beta \circ_j \gamma)$ for $1 \le i \le m, 1 \le j \le n$; (ii) $(\alpha \circ_i \beta) \circ_{j+n-1} \gamma = (\alpha \circ_j \gamma) \circ_i \beta$ for $1 \le i < j \le m$;

(iii) id
$$\circ_1 \alpha = \alpha$$
, $\alpha \circ_i$ id $= \alpha$ for $1 \le i \le n$.

Remark

$$\circ_i : \mathcal{P}(m) \otimes \mathcal{P}(n) \to \mathcal{P}(m+n-1)$$

 $\alpha \otimes \beta \mapsto \alpha \circ_i \beta$

Remark

Remark

Example (operad of nonunital associative algebras)

Define $As = \{As(n)\}_{n \ge 1}$, where $As(1) = \mathbb{K}id$ and $As(n) = \mathbb{K}\mu_n$.

$$\mu_m \circ_i \mu_n := \mu_{m+n-1}, \ 1 \le i \le m.$$

Example

A unital associative algebra A can be interpreted as an operad \mathcal{P} with $\mathcal{P}(1) = A$ and $\mathcal{P}(n) = 0$ for all $n \neq 1$, and the compositions in \mathcal{P} are given by the multiplication of A.

Remark

An operad can be viewed as a generalization of an algebra.

Example (*)

Suppose $A = \bigoplus_{i \ge 0} A_i$ is a graded algebra with unit 1_A . Let $\mathcal{P}(0) = 0$ and $\mathcal{P}(n) = A_{n-1}$ for all $n \ge 1$. Define compositions as follows

$$\circ_i: \mathcal{P}(m)\otimes \mathcal{P}(n) \to \mathcal{P}(n+m-1),$$

$$a_{m-1} \otimes a_{n-1} \mapsto \begin{cases} ca_{m-1} & a_{n-1} = c1_A, \\ a_{m-1}a_{n-1} & a_{n-1} \notin \mathbb{K}1_A, i = 1, \\ 0 & a_{n-1} \notin \mathbb{K}1_A, i \neq 1. \end{cases}$$

Then \mathcal{P} is an operad with $id = 1_A$.

Definition

A collection $\mathcal{P} = \{\mathcal{P}(n)\}_{n\geq 0}$ of spaces (especially, an operad) is called finite dimensional if dim $\mathcal{P} := \dim (\bigoplus_{n\geq 0} \mathcal{P}(n)) < \infty$; It is called locally finite if $\mathcal{P}(n)$ is finite dimensional for all $n \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Given a subcollection \mathcal{V} of operad \mathcal{P} , let $\mathcal{V}^0 = (0, \mathbb{K}id, 0, 0, ...)$ and $\mathcal{V}^m = {\mathcal{V}^m(n)}_{n \ge 0}$ for $m \ge 1$, where $\mathcal{V}^m(n)$ denotes the subspace of $\mathcal{P}(n)$ spanned by all elements that have the following form

$$((\cdots((a_1\circ_{j_1}a_2)\circ_{j_2}a_3)\circ_{j_3}\cdots)\circ_{j_{m-1}}a_m), \text{ each } a_i\in\mathcal{V}. \tag{1}$$

We call \mathcal{V} a generating subcollection of \mathcal{P} if

$$\mathcal{P} = \sum_{m \ge 0} \mathcal{V}^m := \left\{ \sum_{m \ge 0} \mathcal{V}^m(n) \right\}_{n \ge 0}$$

Definition

An operad \mathcal{P} is called *finitely generated* if it has a finite dimensional generating subcollection $\mathcal{V} = \{\mathcal{V}(n)\}_{n \ge 0}$.

Definition (Bao-Ye-Zhang 2020)

Let \mathcal{P} be a locally finite operad. The *Gelfand-Kirillov dimension* (*GK-dimension* for short) of \mathcal{P} is defined to be

$$\mathsf{GKdim}(\mathcal{P}) := \overline{\mathsf{lim}} \log_n \left(\sum_{i=0}^n \dim \mathcal{P}(i) \right).$$

When we talk about the GK-dimension of an operad \mathcal{P} , we usually implicitly assume that \mathcal{P} is locally finite.

Y.-H. Bao, Y. Ye and J.J. Zhang, Truncation of Unitary Operads, Advances in Mathematics. 372 (2020): 107290.

Example

Since dim(As(n)) = 1 for all $n \ge 1$,

$$GKdim(As) = \overline{\lim} \log_n \left(\sum_{i=0}^n dim(As(n)) \right)$$
$$= \overline{\lim} \log_n(n)$$
$$= 1.$$

Proposition

 $GKdim(\mathcal{P}) = 0$ if and only if \mathcal{P} is finite dimensional.

Proposition

For any $r \in R_{GKdim}$, there exists a finitely generated operad \mathcal{P} such that $GKdim(\mathcal{P}) = r$.

Idea of proof: As in Example (*), we can construct a finitely generated operad $\mathcal{P} := (0, \mathbb{K}, A_1, A_2, ...)$ from a monomial algebra A which is naturally graded, such that $\mathsf{GKdim}(\mathcal{P}) = \mathsf{GKdim}(A)$.

Proposition

 $GKdim(\mathcal{P}) = 0$ if and only if \mathcal{P} is finite dimensional.

Proposition

For any $r \in R_{GKdim}$, there exists a finitely generated operad \mathcal{P} such that $GKdim(\mathcal{P}) = r$.

Idea of proof: As in Example (*), we can construct a finitely generated operad $\mathcal{P} := (0, \mathbb{K}, A_1, A_2, ...)$ from a monomial algebra A which is naturally graded, such that $\mathsf{GKdim}(\mathcal{P}) = \mathsf{GKdim}(A)$.

Remark (Algebra Case)

For a finitely generated $\mathbb{K}\text{-algebra}\;A$ with finite dimensional generating space V,

 $\operatorname{GKdim}(A) = \overline{\operatorname{lim}} \log_n d_V(n).$

Proposition

Suppose \mathcal{P} is a locally finite operad generated by a finite dimensional subcollection \mathcal{V} . Let $d_{\mathcal{V}}(n) = \dim(\sum_{i=0}^{n} \mathcal{V}^{i})$. Then

 $\mathsf{GKdim}(\mathcal{P}) = \overline{\lim} \log_n d_{\mathcal{V}}(n).$

5. Gap theorem of GKdim of NS operads

Problem

Which real numbers occur as the Gelfand-Kirillov dimension of a nonsymmetric operad?

Theorem (Qi-Xu-Zhang-Zhao)

The range of GK-dimension of nonsymmetric operads is

 $R_{\mathsf{GKdim}} := \{0\} \cup \{1\} \cup [2,\infty) \cup \{\infty\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5. Gap theorem of GKdim of NS operads

Problem

Which real numbers occur as the Gelfand-Kirillov dimension of a nonsymmetric operad?

Theorem (Qi-Xu-Zhang-Zhao)

The range of GK-dimension of nonsymmetric operads is

 $R_{\mathsf{GKdim}} := \{0\} \cup \{1\} \cup [2,\infty) \cup \{\infty\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

No finitely generated nonsymmetric operad has GK-dimension strictly between 0 and 1.

Idea of proof:

Suppose dim $(\mathcal{P}) = \infty$. We claim that $\mathcal{V}^{m+1} \neq \mathcal{V}^m$ for every *m*. Suppose to the contrary that $\mathcal{V}^{m+1} = \mathcal{V}^m$ for some *m*. Then by induction, one sees that $\mathcal{V}^n = \mathcal{V}^m$ for every n > m. So $\mathcal{P} = \bigcup_{n > m} \mathcal{V}^n = \mathcal{V}^m$, which is finite dimensional. Therefore dim $\mathcal{V}^m \ge m+1$ for every *m*, and consequently,

$$\operatorname{\mathsf{GKdim}}(\mathcal{P}) = \overline{\operatorname{\mathsf{lim}}} \log_n \left(\sum_{i=0}^n \dim \mathcal{V}^i \right) \ge \overline{\operatorname{\mathsf{lim}}} \log_n (n+1) = 1$$

5. Gap theorem of GKdim of NS operads

Theorem (Qi-Xu-Zhang-Zhao 2020, Gap Theorem)

No finitely generated nonsymmetric operad has GK-dimension strictly between 1 and 2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

5. Gap theorem of GKdim of NS operads

Idea of proof:

- If GKdim(𝒫) < 2, then there exists a positive integer d such that dim𝒱ⁱ ≤ d for all i.
- So we have that

$$d_{\mathcal{V}}(n) = dim(\sum_{i=0}^{n} \mathcal{V}^{i}) \leq dn.$$

Consequently,

$$\mathsf{GKdim}(\mathcal{P}) = \overline{\mathsf{lim}} \mathsf{log}_n d_{\mathcal{V}}(n) \leq 1.$$

イロト イポト イヨト イヨト

6. Another construction of NS operads with given GKdim

Definition

An operad is called single-branched if it has a $\mathbb{K}\text{-basis}$ that consists of elements of the form

$$x_1 \circ_{i_1} (x_2 \circ_{i_2} (\cdots (x_{n-2} \circ_{i_{n-2}} (x_{n-1} \circ_{i_{n-1}} x_n)) \cdots)).$$

Definition

An operad is called single-generated if it is generated by a single element.

Theorem (Qi-Xu-Zhang-Zhao)

If $r \in R_{GKdim}$, then there is a single-generated single-branched locally finite nonsymmetric operad \mathcal{P} such that $GKdim(\mathcal{P}) = r$.

Idea of proof:

If $r \in R_{GKdim}$, then there is a finitely generated monomial algebra A such that GKdim(A) = r.

For any finitely generated graded monomial algebra A, construct a single-generated single-branched nonsymmetric operad P such that

 $\mathsf{GKdim}(\mathcal{P}) = \mathsf{GKdim}(\mathcal{A}).$

Thank you!