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Letters and Words

N := {0, 1, 2, 3, · · · } := {0} ∪ N∗

N : alphabet (the elements: ”letters”) , e.g.

N = Ω := {x , y}, a two-letter alphabet

N the corresponding set of ”words” (or ”strings”):

N := {n = n1 · · · nr | r ∈ N, n1, . . . , nr ∈ N}.

e.g. Ω = {xp1yq1 · · · xpr yqr | pi , qi ∈ N}

The concatenation law

(a1 · · · ar , b1 · · · bs) ∈ N ×N 7→ a1 · · · ar b1 · · · bs ∈ N

monoid structure, with the empty word ∅ as unit.

BCH via Mould
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Mould

A k-valued mould on N is a function on N :

M : N → k

n 7→ Mn

The set of all moulds is denoted by kN .

e.g. k := Q, Ix , Iy ∈ QΩ are defined by

Iωx :=

{
1 if ω is the one-letter word x

0 else,

Iωy :=

{
1 if ω is the one-letter word y

0 else.
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Mould Multiplication

for any two moulds M,N ∈ kN , the mould multiplication is

(M × N)n :=
∑

(a,b) such that n=a b

MaNb for n ∈ N ,

For instance,

(M × N)n1n2 = M∅Nn1n2 + Mn1Nn2 + Mn1n2N∅.

kN is an associative k-algebra, noncommutative if N has

more than one element, whose unit is the mould 1 defined by

1∅ = 1 and 1n = 0 for n 6= ∅

BCH via Mould
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Two important moulds: Exp and Log

a mould M has order ≥ p if Mn = 0 for each word n of length

< p.

If ordM ≥ p and ordN ≥ q, then ord(M × N) ≥ p + q. In

particular, if M∅ = 0, then ordM×k ≥ k for each k ∈ N∗,

hence the following moulds are well-defined

eM :=
∑

k∈N
1
k!M

×k

log(1 + M) :=
∑

k∈N∗
(−1)k−1

k M×k

(because, for each n ∈ N , only finitely many terms contribute

to (eM)n or (log(1 + M))n).

BCH via Mould
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Two important moulds: Exp and Log

We thus get mutually inverse bijections

{M ∈ kN | M∅ = 0 }
exp

�
log

{M ∈ kN | M∅ = 1 }.

BCH via Mould
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Exp and Log

Example:SΩ := eIx × eIy

S
ω
Ω =


1

p!q!
if ω is of the form xpyq with p, q ∈ N

0 else,

BCH via Mould
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Complete Filtered Associative Algebra A

To deal with infinite expansions, we need complete filtered

associative algebra, i.e. there is an order function

ord: A → N ∪ {∞} compatible with sum and product,1 such

that every family (Xi )i∈I of A is formally summable provided,

for each p ∈ N, all the Xi ’s have order ≥ p except finitely

many of them.

For the talk,

A = A[[t]]

for the associative algebra A with the order function relative

to powers of t,
1here ord(X + Y ) ≥ min{ordX , ordY } and ord(XY ) ≥ ordX + ordY for

any X ,Y ∈ A, and ordX =∞ iff X = 0.
BCH via Mould
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Associative Comould

Suppose that we are given a family (Bn)n∈N in A such that

all the Bn’s have order ≥ 1 and, for each p ∈ N, only finitely

many of them are not of order ≥ p.

We call associative comould generated by (Bn)n∈N the family

(Bn)n∈N defined by B∅ := 1A and

Bn1···nr := Bn1 · · ·Bnr for all r ≥ 1 and n1, . . . , nr ∈ N .

For Ω = {x , y}, Bx := tX , By := tY ∈ A[[t]];

Bxpyq = tp+qX pY q ∈ A[[t]]

BCH via Mould
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Mould-Comould Expansion

The formula

M ∈ kN 7→ MB :=
∑
n∈N

MnBn ∈ A

defines a morphism of associative algebras (Associative mould

expansion)

Moreover,

M∅ = 0 ⇒ (eM)B = eMB ,

M∅ = 1 ⇒ (logM)B = log(MB)

by

(M × N)B = (MB)(NB)

BCH via Mould
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An Example

Given X ,Y ∈ A, an associative algebra, and A = A[[t]]

k = Q, N = Ω := {x , y}
the associative comould generated by

Bx := tX , By := tY .

tX = IxB, tY = IyB with Ix , Iy ∈ QΩ defined by

Iωx :=

{
1 if ω is the one-letter word x

0 else,

etX = eIxB, etY = eIyB, and

etX etY = SΩB, SΩ := eIx × eIy

BCH via Mould
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An Example

S
ω
Ω =


1

p!q!
if ω is of the form xpyq with p, q ∈ N

0 else,

we get another way of writing etX etY =
∑ tp+q

p!q!X
pY q.

log(etX etY ) = TΩB

with TΩ := log SΩ.
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Lie Comoulds

Lie algebra structure on A induced by the commutators

adA B = [A,B]

We call Lie comould generated by (Bn)n∈N the family

(B[ n ])n∈N of A defined by B[∅] := 0 and

B[n1···nr ] := adBn1
· · · adBnr−1

Bnr = [Bn1 , [· · · [Bnr−1 ,Bnr ] · · · ]].

Lie mould expansion associated with a mould M ∈ kN by the

formula

M[B] :=
∑

n∈N\{∅}

1

r(n)
MnB[ n ] ∈ A,

where r(n) denotes the length of a word n.

BCH via Mould
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Lie Comoulds

Division by r(n) is just a convenient normalization choice.

we will prove the BCH theorem by showing how to pass from

log(etX etY ) = TΩB = (log SΩ)B

to a Lie mould expansion.
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Shuffling

the shuffling of two words a = ω1 · · ·ω` and b = ω`+1 · · ·ωr is

the set of all the words n which can be obtained by

interdigitating the letters of a and those of b while preserving

their internal order in a and b,

i.e. the words which can be written n = ωτ(1) · · ·ωτ(r) with a

permutation τ such that2 τ−1(1) < · · · < τ−1(`) and

τ−1(`+ 1) < · · · < τ−1(r).

2Indeed, τ−1(i) is the position in n of ωi , the i-th letter of a b.
BCH via Mould
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Shuffling

the shuffling coefficient sh
(
a, b
n

)
is just the number of such

permutations τ ,

we set sh
(
a, b
n

)
:= 0 whenever n does not belong to the

shuffling of a and b.

For instance, if n,m, p, q are four distinct elements of N ,

sh
( nmp,mq

nmqpm

)
= 0, sh

( nmp,mq

mnqmp

)
= 1, sh

( nmp,mq

nmmqp

)
= 2.

We also define, for arbitrary words n and a,

sh
(
a,∅
n

)
= sh

(∅, a
n

)
= 1 if a = n, 0 else.

BCH via Mould
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Alternal and Symmetral Moulds

A mould M ∈ kN is said to be alternal if M∅ = 0 and∑
n∈N

sh
(
a, b

n

)
Mn = 0 for any two nonempty words a, b.

A mould M ∈ kN is said to be symmetral if M∅ = 1 and

∑
n∈N

sh
(
a, b

n

)
Mn = MaMb for any two words a, b.

BCH via Mould
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Alternal and Symmetral Moulds: Examples

any mould M whose support is contained in the set of

one-letter words (i.e. r(n) 6= 1⇒ Mn = 0) is alternal.

For instance, the moulds Ix and Iy are alternal.

An elementary example of symmetral mould is E defined by

En := 1
r(n)! . Indeed, since the total number of words obtained

by shuffling of any a, b ∈ N (counted with multiplicity) is(r(a b)
r(a)

)
,∑
n∈N

sh
(
a, b

n

)
En =

r(a b)!

r(a)!r(b)!
· 1

r(a b)!
= E aEb.

the moulds eIx , eIy and SΩ are symmetral, and that TΩ is

alternal.
BCH via Mould
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Alternal v.s. Symmetral

we are interested in the shuffling coefficients because of the

following classical relation between the Lie comould and the

associative comould:

Theorem (Écalle)

B[ n ] =
∑

(a,b)∈N×N

(−1)r(b)r(a) sh
(
a, b

n

)
B

b̃ a
for all n ∈ N ,

where, for an arbitrary word b = b1 · · · bs , we denote by b̃ the

reversed word: b̃ = bs · · · b1

BCH via Mould
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Alternal v.s. Symmetral

An immediate and useful consequence is

Theorem (Écalle)

If M is an alternal mould, then M[B] = MB, i.e.

∑
n∈N\{∅}

1

r(n)
MnB[ n ] =

∑
n∈N

MnBn.

Note that by definition, MB ∈ A, however now MB ∈ Lie(A)

due to the fact that M is alternal.

The above theorem is a highly nontrivial fact for alternal

mould which makes the mould calculus a powerful tool in

many situations.
BCH via Mould
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Alternal v.s. Symmetral

PROOF:

M[B] =
∑
n 6=∅

∑
a,b

(−1)r(b) r(a)
r(n) sh

(
a, b
n

)
Mn B

b̃ a
. Now,

sh
(
a, b
n

)
6= 0⇒ r(n) = r(a) + r(b), hence

M[B] =
∑

r(a)+r(b)≥1(−1)r(b) r(a)
r(a)+r(b)

(∑
n∈N sh

(
a, b

n

)
Mn

)
B

b̃ a

=
∑

a 6=∅MaBa = MB

(the internal sum is Ma when b = ∅ and it does not contribute

when a or b 6= ∅ because of alternality, nor when a = ∅ because

of the factor r(a)).

BCH via Mould
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Alternal v.s. Symmetral

Any mould expansion associated with an alternal mould thus

belongs to the (closure of the) Lie subalgebra of A generated

by the Bn’s, since it can be rewritten as a Lie mould

expansion, involving only commutators of the Bn’s.

it is related to the classical Dynkin-Specht-Wever projection

lemma in the context of free Lie algebras

the concepts of symmetrality and alternality are related to

certain combinatorial Hopf algebras, as emphasized by

F. Menous in his work on the renormalization theory in

perturbative quantum field theory

BCH via Mould
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Alternal v.s. Symmetral

The product of two symmetral moulds is symmetral.

The logarithm of a symmetral mould is alternal.

The exponential of an alternal mould is symmetral.

BCH via Mould
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Alternal v.s. Symmetral

The mould I defined by

I n =

{
1 if r(n) = 1

0 else,

is alternal (being supported in one-letter words).

The symmetral mould E is eI .

BCH via Mould
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Alternal v.s. Symmetral

the set of all symmetral moulds is a group for mould

multiplication,

the set of all alternal moulds is a Lie algebra for mould

commutator,

M, N alternal ⇒ [M,N][B] =
[
M[B],N[B]

]
.

Let us also mention a manifestation of the antipode of the

Hopf algebra related to moulds:

M alternal ⇒ S(M) = −M,

M symmetral ⇒ S(M) = multiplicative inverse of M,

where S(M)n1···nr := (−1)rMnr ···n1 .

BCH via Mould
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Hopf-algebraic aspects of mould calculus

Denote by kN the linear span of the set of words, i.e. the

k-vector space consisting of all formal sums c =
∑

cn n with

finitely many nonzero coefficients cn ∈ k.

The set of moulds can be identified with the set of linear

forms on kN , any M ∈ kN being identified with the linear

form c 7→
∑

Mncn (in other words, we extend the function

M : N → k to kN by linearity).

Now, kN is a Hopf algebra

BCH via Mould
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Hopf-algebraic aspects of mould calculus

if we define multiplication by extending

(a, b) 7→ a� b :=
∑

sh
(
a, b
n

)
n

by bilinearity (“shuffling product” of two words),

comultiplication by extending

n 7→
∑
n=a b

a⊗ b

by linearity,

and antipode by extending n1 · · · nr 7→ (−1)rnr · · · n1 by

linearity

the unit is ∅ and the counit is c 7→ c∅

BCH via Mould
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Hopf-algebraic aspects of mould calculus

The associative algebra structure of kN is then dual to the

coalgebra structure of kN

the set of symmetral moulds identifies itself with the group of

characters of kN , since a mould M is symmetral if and only if

M(∅) = 1 and M(c � c ′) = M(c)M(c ′) for all c, c ′,

the set of alternal moulds identifies itself with the Lie algebra

of infinitesimal characters of kN , since a mould M is alternal

if and only if M(c � c ′) = M(c)c ′∅ + c∅M(c ′).

BCH via Mould
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BCH Theorem

Let A be an associative algebra. We now use mould calculus to

prove

Theorem (BCH Theorem)

Suppose X ,Y ∈ A. Let Ψ = etX etY ∈ A = A[[t]]. Then

log Ψ ∈ Lie(X ,Y )[[t]],

where Lie(X ,Y ) is the Lie subalgebra of A generated by X and Y .
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BCH Theorem: Proof

Half of the work has already been done in our main Example!

With the two-letter alphabet Ω = {x , y}, Bx = tX and

By = tY , we have log Ψ = TΩB with TΩ = log SΩ,

SΩ = eIx × eIy .

The mould SΩ is symmetral: Ix and Iy are alternal (they are

supported in the set of one-letter words) hence eIx and eIy are

symmetral and so is their product.

It follows that TΩ is alternal.

then

log Ψ = TΩB = TΩ[B].

In particular, being expressed as a Lie mould expansion, log Ψ

lies in Lie(X ,Y )[[t]].
BCH via Mould
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Dynkin’s Formula

Theorem (Dynkin)

In the above situation,

log Ψ =
∑ (−1)k−1

k

tσ

σ

[X p1Y q1 · · ·X pkY qk ]

p1!q1! · · · pk !qk !

with summation over all k ∈ N∗ and

(p1, q1), · · · , (pk , qk) ∈ N× N \ {(0, 0)}, where

σ := p1 + q1 + · · ·+ pk + qk and

[X p1Y q1 · · ·X pkY qk ] := adp1

X adq1

Y · · · adpk
X adqk−1

Y Y if qk ≥ 1 and

adp1

X adq1

Y · · · adpk−1
X X if qk = 0.
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From Kimura to BCH

Dynkin’s Formula: Proof

With the same notation as before, by definition,

T
ω
Ω =

∑
k≥1

(−1)k−1

k

∑
ω1,..., ωk∈Ω\{∅}

ω=ω1···ωk

S
ω1

Ω · · · S
ωk

Ω for each word ω,

so

log Ψ =
∑
k≥1

(−1)k−1

k

∑
ω1,..., ωk∈Ω\{∅}

1
r(ω1)+···+r(ωk )

S
ω1

Ω · · · S
ωk

Ω B[ω1···ωk ].

This exactly gives us the Dynkin formula!

BCH via Mould



Mould

BCH Formulas

Benefits

BCH Theorem

Dynkin’s Formula

Kimura’s Formula

From Kimura to BCH

Outline

1 Mould Calculus

Mould Algebra

Comoulds and Mould Expansions

Symmetrality and Alternality

2 Baker-Campbell-Hausdorff Formulas

BCH Theorem

Dynkin’s Formula

Kimura’s Formula

From Kimura to BCH

3 Benifits

Generalizations

Relation Between Dynkin and Kimura

Future Plan BCH via Mould



Mould

BCH Formulas

Benefits

BCH Theorem

Dynkin’s Formula

Kimura’s Formula

From Kimura to BCH

Kimura’s Formula(2017)

Theorem (Kimura, 2017)

Let X ,Y ∈ A as in BCH Theorem. Then Ψ = etX etY can be

written

Ψ = 1A +
∞∑
r=1

∞∑
n1,...,nr=1

1

nr (nr + nr−1) · · · (nr + · · ·+ n1)
Dn1 · · ·Dnr

with Dn :=
tn

(n − 1)!
adn−1

X (X + Y ) for each n ≥ 1.
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From Kimura to BCH

Kimura’s Formula(2017):Proof

Lemma

Ψ = etX etY is the unique element of A = A[[t]] such that

Ψ|t=0 = 1A, t∂tΨ = DΨ, where D := t etX (X + Y ) e−tX .
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From Kimura to BCH

Kimura’s Formula(2017):Proof

Let N := N∗ and consider the associative comould associated with

the family (Dn)n∈N defined above. We have

D =
∑
n∈N

Dn = ID,

where D in the LHS is the element of A[[t]] defined in the lemma,

while the RHS is the mould expansion associated with the mould I .
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From Kimura to BCH

Kimura’s Formula(2017):Proof

Lemma

For any mould S ∈ QN ,

t∂t(SD) = (∇S)D,

where ∇S is the mould defined by

(∇S)n1···nr := (n1 + · · ·+ nr )Sn1···nr for each word n1 · · · nr ∈ N .

BCH via Mould



Mould

BCH Formulas

Benefits

BCH Theorem

Dynkin’s Formula

Kimura’s Formula

From Kimura to BCH

Kimura’s Formula(2017):Proof

These lemmas inspire us to look for a solution to t∂tΨ = DΨ

in the form of a mould expansion:

Ψ = SD will be solution if S ∈ QN is solution to the mould

equation

S∅ = 1, ∇S = I × S

(indeed: we have (∇S)D = t∂tΨ on the one hand, and

(I × S)D = (ID)(SD) = DΨ on the other hand, and S∅ = 1

ensures ord(Ψ− 1A) ≥ 1 because ordDn ≥ 1 for all nonempty

word n).
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Kimura’s Formula(2017):Proof

Now the second part of mould equation is equivalent to

(n1+· · ·+nr )Sn1···nr = Sn2···nr for each nonempty word n1 · · · nr ∈ N ,

thus the mould equation has a unique solution: the mould

SN ∈ QN defined by

Sn1···nr
N :=

1

nr (nr + nr−1) · · · (nr + · · ·+ n1)
for each n1 · · · nr ∈ N .

In conclusion, SN is a solution to the mould equation, thus

SND is a solution to t∂tΨ = DΨ, thus

SND = Ψ = etX etY

and Kimura’s formula is proved.
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SN is symmetral

The mould SN ∈ QN that we have just constructed happens to be

a very common and useful object of mould calculus. It is

well-known

Lemma

The mould SN defined by the formula

Sn1···nr
N :=

1

nr (nr + nr−1) · · · (nr + · · ·+ n1)
for each n1 · · · nr ∈ N .

is symmetral.
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a new formula for log Ψ

From this, the Lie character is manifest—the new formula thus

contains the BCH theorem:

Corollary

Let TN := log SN ∈ QN . Then, with the notation of Kimura’s

Theorem, we have log Ψ = TN [D], i.e.

log(etX etY ) =
∑
r≥1

∞∑
n1,...,nr=1

1

r
T n1···nr
N [Dn1 , [· · · [Dnr−1 ,Dnr ] · · · ]] ∈ Lie(X ,Y )[[t]].
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BCH Formula

From the definition TN =
∞∑
k=1

(−1)k−1

k (SN − 1)×k , we can write

down the coefficients for words of small length:

T n1 = Sn1 =
1

n1

T n1n2 = Sn1n2 − 1

2
Sn1Sn2 =

n1 − n2

2n1n2(n1 + n2)

T n1n2n3 = Sn1n2n3 − 1

2
Sn1n2Sn3 − 1

2
Sn1Sn2n3 +

1

3
Sn1Sn2Sn3

T n1n2n3n4 = Sn1n2n3n4 − 1

2
Sn1Sn2n3n4 − 1

2
Sn1n2Sn3n4 − 1

2
Sn1n2n3Sn4

+
1

3
Sn1Sn2Sn3n4 +

1

3
Sn1Sn2n3Sn4 +

1

3
Sn1n2Sn3Sn4 − 1

4
Sn1Sn2Sn3Sn4
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BCH recovered from Lie Mould Expansion log Ψ = TN [D]

log Ψ =
∞∑

n1=1

T n1Dn1 +
∞∑

n1,n2=1

1

2
T n1n2 [Dn1 ,Dn2 ]

+
∞∑

n1,n2,n3=1

1

3
T n1n2n3 [Dn1 , [Dn2 ,Dn3 ]]

+
∞∑

n1,n2,n3,n4=1

1

4
T n1n2n3n4 [Dn1 , [Dn2 , [Dn3 ,Dn4 ]]] + · · ·
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BCH recovered from Lie Mould Expansion log Ψ = TN [D]

t(X + Y ) +
t2

2
[X ,Y ] +

t3

3!
[X , [X ,Y ]] +

t4

4!
[X , [X , [X ,Y ]]]

+
t5

5!
[X , [X , [X , [X ,Y ]]]] + · · ·

− t3

12
([(X + Y ), [X ,Y ]])− t4

24
([(X + Y ), [X , [X ,Y ]]])

− t5

120
[[X ,Y ], [X , [X ,Y ]]]− t5

80
[(X + Y ), [X , [X , [X ,Y ]]]] + · · ·

+
t5

720
[(X + Y ), [(X + Y ), [X , [X ,Y ]]]]− t5

240
[[X ,Y ], [(X + Y ), [X ,Y ]]] + · · ·

+
t5

720
[(X + Y ), [(X + Y ), [(X + Y ), [X ,Y ]]]] + · · ·
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BCH recovered from Lie Mould Expansion log Ψ = TN [D]

t(X + Y ) +
t2

2
[X ,Y ] +

t3

12
([X , [X ,Y ]] + [Y , [Y ,X ]])

− t4

24
[Y , [X , [X ,Y ]]]− t5

720
[X , [X , [X , [X ,Y ]]]]

− t5

720
[Y , [Y , [Y , [Y ,X ]]]] +

t5

360
[X , [Y , [Y , [Y ,X ]]]]

+
t5

360
[Y , [X , [X , [X ,Y ]]]] +

t5

120
[Y , [X , [Y , [X ,Y ]]]]

+
t5

120
[X , [Y , [X , [Y ,X ]]]] + · · · .
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Merits

One of the merits of the mould calculus approach is that the

formulas are easily generalized to the case of

Ψ = etX1 · · · etXN ∈ A[[t]],

where A is our associative algebra and X1, . . . ,XN ∈ A for some

N ≥ 2.
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The First Generalization: Dynkin

Theorem

Let NN
∗ := { p ∈ NN | p1 + · · ·+ pN ≥ 1 }. We have

log Ψ =
∑ (−1)k−1

k

tσ

σ

[
X

p1
1

1 · · ·X
p1
N

N · · ·X
pk1
1 · · ·X

pkN
N

]
p1

1! · · · p1
N ! · · · pk1 ! · · · pkN !

with summation over all k ∈ N∗ and p1, · · · , pk ∈ NN
∗ , where

σ :=
k∑

i=1

N∑
j=1

pij and the bracket denote nested commutators as

before.
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The Second Generalization: Kimura

Theorem

In the above situation, Ψ = etX1 · · · etXN can also be written

Ψ = 1A +
∞∑
r=1

∞∑
n1,...,nr=1

1

nr (nr + nr−1) · · · (nr + · · ·+ n1)
Dn1 · · ·Dnr

(1)

with Dn := tn
N∑
j=1

∑
m1,...,mj−1∈N

m1+···+mj−1=n−1

adm1
X1
· · · ad

mj−1

Xj−1

m1! · · ·mj−1!
Xj ; ∀n ≥ 1.

(2)
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The Second Generalization: Kimura

Note that formula (1) involves exactly the same rational

coefficients as in the case N = 2. The only difference in the

formula is that the Dn’s have been generalized to the Dn’s which

are defined in (2) and read

Dn := t(X1 + · · ·+ XN) for n = 1

when n > 1,

Dn := tn
adn−1

X1

(n − 1)!
X2 + · · ·+ tn

∑
m1+···+mN−1=n−1

adm1
X1
· · · ad

mN−1

XN−1

m1! · · ·mN−1!
XN .
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The Second Generalization: Kimura

Notice that the mould SN is still symmetral, the mould

TN = log SN is still alternal, whence

log Ψ = TND = TN [D], (3)

i.e.

log(etX1 · · · etXN ) =
∑
r≥1

∞∑
n1,...,nr=1

1

r
T n1···nr
N [Dn1 , [· · · [Dnr−1 ,Dnr ] · · · ]]

which thus belongs to Lie(X1, . . . ,XN)[[t]], in accordance with the

BCH theorem.
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Two Kinds of Moulds in Dynkin and Kimura

The first kind involves an N-element alphabet

Ω := {x1, . . . , xN} and the comould generated by the family

(Bω)ω∈Ω defined by Bxi := tXi ∈ A[[t]].

For the second one, the alphabet is N := N∗ and the comould

is generated by the family (Dn)n∈N and boils down to the

Dn’s when N = 2.

A natural question is: What is the relation between both

kinds of mould expansion?

i.e. can one pass from the representation of the product Ψ as

SΩB to its representation as SND, or from log Ψ = TΩB to

log Ψ = TND?
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Two Kinds of Moulds in Dynkin and Kimura

We can define a new operation on moulds, which allows one

to pass directly from SN to SΩ, or from TN to TΩ.

We take N = 2 for simplicity but the generalization to

arbitrary N is easy.
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Two Kinds of Moulds in Dynkin and Kimura

Let Ω := {x , y}. The formula

ω ∈ Ω 7→ Uω :=



1 if ω = x

(−1)q

p!q!
if ω is of the form xpyxq for some p, q ∈ N

0 else

defines an alternal mould U ∈ QΩ such that

Dn = UnB for each n ∈ N∗,

where the RHS is the mould expansion associated with

Un := restriction of U to the words of length n.
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Two Kinds of Moulds in Dynkin and Kimura

In fact U = eadIx (Ix + Iy ) = eIx × (Ix + Iy )× e−Ix , which allows us

to relate D-mould expansions and B-mould expansions:

Let N := N∗. Define a linear map M ∈ QN 7→ M � U ∈ QΩ by

(M � U)∅ := M∅, (4)

(M � U)ω :=
∑
s≥1

∑
ω=ω1···ωs

ω1,..., ωs∈Ω\{∅}

M r(ω1)···r(ωs)Uω1 · · ·Uωs
for ω ∈ Ω \ {∅}.

(5)

Then

MD = (M � U)B for any M ∈ QN .
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Two Kinds of Moulds in Dynkin and Kimura

The relations SND = SΩB (which coincides with Ψ) and

TND = TΩB (which coincides with log Ψ) now appear as a

manifestation of above Theorem and the following

Theorem

SN � U = SΩ, TN � U = TΩ.
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Further Problems

BCH for L∞ algebras

Deformation Quantization

Kashiwara-Vergne Lie Algebra
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