Baker-Campbell-Hausdorff formula revisited

SHANZHONG SUN
Capital Normal University, BEIJING

2020.09.18-09.20
The 3rd Conference on Operad Theory and Related Topics
Jilin/Online
Based on joint works with Y. LI (Chern Institute) and D.
SAUZIN (IMCCE)

BCH via Mould



Outline

Outline

© Mould Calculus
@ Mould Algebra

@ Comoulds and Mould Expansions

@ Symmetrality and Alternality

BCH via Mould



Outline

Outline

© Mould Calculus
@ Mould Algebra

@ Comoulds and Mould Expansions

@ Symmetrality and Alternality
© Baker-Campbell-Hausdorff Formulas
@ BCH Theorem
@ Dynkin’s Formula
@ Kimura's Formula
@ From Kimura to BCH

BCH via Mould



Outline

Outline

© Mould Calculus
@ Mould Algebra

@ Comoulds and Mould Expansions

@ Symmetrality and Alternality
© Baker-Campbell-Hausdorff Formulas
@ BCH Theorem
@ Dynkin’s Formula
@ Kimura's Formula
@ From Kimura to BCH
© Benifits
o Generalizations

@ Relation Between Dynkin and Kimura

=
BCH via Mould



Mould Algebra
Comoulds and Mould Expansions
Symmetrality and Alternality

Outline

© Mould Calculus
@ Mould Algebra

BCH via Mould



Mould Algebra
Comoulds and Mould Expansions
Symmetrality and Alternality

Letters and Words

e N:={0,1,2,3,---} := {0} UN*
o N: alphabet (the elements: "letters”’) , e.g.
N =Q = {x,y}, a two-letter alphabet

@ N the corresponding set of "words” (or "strings”):
N:={n=n--n|reN, n,....,n e N}

eg Q= {xPrydt...xPry9|p; q; € N}
@ The concatenation law

(al"'arabl"'bs)EMXM'_)al"'arbl"'bSGM

@ monoid structure, with the empty word @ as unit.
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Symmetrality and Alternality

@ A k-valued mould on A is a function on A:

o The set of all moulds is denoted by k.
eeg k=Q, /1, € Q2 are defined by

o 1 if w is the one-letter word x
0 else,

i {1 if w is the one-letter word y
y =

0 else.
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Mould Multiplication

@ for any two moulds M, N € kX, the mould multiplication is
(M x N) = 3 M2NL  for n e N,

(a,b) such that n=ab
@ For instance,

(M x N)™™ = M2 N™"  MMN"2 4 M2 N2,

o kX js an associative k-algebra, noncommutative if N has
more than one element, whose unit is the mould 1 defined by
19=1and 12=0forn# &

BCH via Mould
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Two important moulds: Exp and Log

@ a mould M has order > p if M2 = 0 for each word n of length
< p.

o If ord M > p and ord N > g, then ord(M x N) > p+gq. In
particular, if M? = 0, then ord M*k > k for each k € N*,

@ hence the following moulds are well-defined
= ZkeN k1| Mk
log(1 + M) := ZkeN*
(because, for each n € M, only finitely many terms contribute
to (eM)2 or (log(1 + M))™).
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Two important moulds: Exp and Log

We thus get mutually inverse bijections
exp
(MekY | M?=0} = {Mek|mM?=1}
log

BCH via Mould
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Exp and Log

o Example:Sq = el x elv
°
1 . .
—— if wis of the form xPy9 with p,g € N
s = ¢ plg!
0 else,
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Complete Filtered Associative Algebra A

@ To deal with infinite expansions, we need complete filtered
associative algebra, i.e. there is an order function
ord: A — NU {oo} compatible with sum and product,! such
that every family (Xj);c; of A is formally summable provided,
for each p € N, all the X;'s have order > p except finitely
many of them.

@ For the talk,

A= Allt]]

for the associative algebra A with the order function relative

to powers of t,
here ord(X + Y) > min{ord X, ord Y} and ord(XY) > ord X + ord Y for
any X,Y € A, and ord X = ¢ iff X = 0.
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Associative Comould

@ Suppose that we are given a family (B,)nen in A such that
all the B,'s have order > 1 and, for each p € N, only finitely
many of them are not of order > p.

@ We call associative comould generated by (B,),cn the family
(Bn)nen defined by By =14 and

Bny.n, = Bp, -+ Bp, forallr>1and ny,...,n €N.

r

o For Q= {x,y}, Bx:=tX, B, :=tY € A[[t]];
Byrya = tPTIXPY T € A[[t]]

BCH via Mould
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Mould-Comould Expansion

@ The formula

MekM s MB:=Y" MB,c A

neN
defines a morphism of associative algebras (Associative mould
expansion)
@ Moreover,
M? =0 = (eMB=eVB,
M? =1 = (log M)B = log(MB)
by

(M x N)B = (MB)(NB)
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An Example

e Given X, Y € A, an associative algebra, and A = A[[t]]
o k=Q N =0Q:={x,y}

@ the associative comould generated by
By = tX, B, :=tY.

o tX = I,B, tY = I,B with I, l, € Q2 defined by

o 1 if w is the one-letter word x
0 else,

0 eX =ekB etY =elB, and
@R = S5qB, Sq = ek x el

BCH via Mould
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An Example
°
r .. P
s _ W if w is of the form xPy9 with p,q € N
0 else,
@ we get another way of writing eXetY = ;p,;c,l XPY4,

°
log(e™etY) = ToB

with Tq = log Sq.
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Lie Comoulds

@ Lie algebra structure on A induced by the commutators
ada B = [A, B]

@ We call Lie comould generated by (B)),cnr the family
(B{n])nen of A defined by Bjg) := 0 and

B[,,l...,,r] ::adBn1 adB,, B Bn, = [Bnys [ [Bn,_1> Bn,] - - 1I-

e Lie mould expansion associated with a mould M € k& by the
formula ,
M[B] = ——M2B
[ ] Z I’(Q) [ﬂ] S .A,
neN\{2}

where r(n) denotes the length of a word n.
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Lie Comoulds

@ Division by r(n) is just a convenient normalization choice.

@ we will prove the BCH theorem by showing how to pass from
log(eetY) = TqB = (log Sq)B

to a Lie mould expansion.
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Shuffling

@ the shuffling of two words a = wj ---wy and b= wyy1---wy is
the set of all the words n which can be obtained by
interdigitating the letters of a and those of b while preserving

their internal order in g and b,

o i.e. the words which can be written n = w;(1) - - wr(,) with a
permutation 7 such that? 771(1) < --- < 771(¢) and
T H4+1) <o < m7(r).

2Indeed, 771(i) is the position in n of w;, the i-th letter of a b.
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Shuffling

o the shuffling coefficient sh(2,2) is just the number of such

permutations T,

a,b

e we set sh(2,2) := 0 whenever n does not belong to the

shuffling of a and b.

@ For instance, if n, m, p, g are four distinct elements of A/,
nmp, mq nmp, mq nmp, mq
sh( >:0, sh( >:1, sh( ):2
nmgpm mngmp nmmgqp
@ We also define, for arbitrary words n and a,

Sh(é’ﬂg) = Sh(gf) =1if a=n, 0 else.
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Alternal and Symmetral Moulds

e A mould M € kX is said to be alternal if M2 = 0 and

Z sh (é;ﬁ) M™% =0 for any two nonempty words a, b.
neN .

o A mould M € kX is said to be symmetral if M? =1 and

Z sh (g, b) M2 = M2ME for any two words a, b.
neN a

BCH via Mould
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Alternal and Symmetral Moulds: Examples

@ any mould M whose support is contained in the set of
one-letter words (i.e. r(n) # 1 = M2 = 0) is alternal.

@ For instance, the moulds /; and /, are alternal.

@ An elementary example of symmetral mould is E defined by
E~ — @ Indeed, since the total number of words obtained

by shuffling of any a, b € A (counted with multiplicity) is
r(ab)
( r(a) )'

Z sh(é’ b)Eﬂ: r(ab)t 1 Faph.
25 g r(a)!r(b)! " r(ab)
o the moulds e’, e’ and Sq are symmetral, and that Tgq is
alternal.
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Alternal v.s. Symmetral

we are interested in the shuffling coefficients because of the
following classical relation between the Lie comould and the

associative comould:

Theorem (Ecalle)

Bin) = Z (—1)"®r(a) sh (é’ b) By, forallne N,
(a,b) EN XN a -

where, for an arbitrary word b = b; - - - bs, we denote by E the

reversed word: E =bs--- by

BCH via Mould
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Alternal v.s. Symmetral

An immediate and useful consequence is

Theorem (Ecalle)
If M is an alternal mould, then M[B] = MB, i.e.

1 n n
> @Mfs[ﬂ] =Y M8,

neN\{o} neN

o Note that by definition, MB € A, however now MB € Lie(A)
due to the fact that M is alternal.

@ The above theorem is a highly nontrivial fact for alternal
mould which makes the mould calculus a powerful tool in

many situations.
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Alternal v.s. Symmetral

PROOF:
M[B] = 3 > (-1)®

n#2 a,b

I8 sh(2L) M2 By . Now,
sh(22) # 0= r(n) = r(a) + r(b), hence

, r a, b
MIB] =3 (g r(pyza (-1 M(ZneN Sh( . )M )B'Ea
= Z#@ M2B, = MB
(the internal sum is M2 when b = & and it does not contribute

when a or b # & because of alternality, nor when a = & because

of the factor r(a)).
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Alternal v.s. Symmetral

@ Any mould expansion associated with an alternal mould thus
belongs to the (closure of the) Lie subalgebra of A generated
by the B,'s, since it can be rewritten as a Lie mould

expansion, involving only commutators of the B,'s.

@ it is related to the classical Dynkin-Specht-Wever projection

lemma in the context of free Lie algebras

@ the concepts of symmetrality and alternality are related to
certain combinatorial Hopf algebras, as emphasized by
F. Menous in his work on the renormalization theory in

perturbative quantum field theory
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Alternal v.s. Symmetral

@ The product of two symmetral moulds is symmetral.
@ The logarithm of a symmetral mould is alternal.

@ The exponential of an alternal mould is symmetral.
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Alternal v.s. Symmetral

@ The mould / defined by

{1 if r(n) =1

0 else,

is alternal (being supported in one-letter words).

@ The symmetral mould E is ¢’.

BCH via Mould
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Alternal v.s. Symmetral

@ the set of all symmetral moulds is a group for mould
multiplication,

@ the set of all alternal moulds is a Lie algebra for mould
commutator,

o M, N alternal = [M, N][B] = [M][B], N[B]].

@ Let us also mention a manifestation of the antipode of the

Hopf algebra related to moulds:
M alternal = S(M) = —M,
M symmetral = S(M) = multiplicative inverse of M,
where S(M)m=nr = (—1)"M" M,



Mould Algebra
Comoulds and Mould Expansions
Symmetrality and Alternality

Hopf-algebraic aspects of mould calculus

@ Denote by k \ the linear span of the set of words, i.e. the
k-vector space consisting of all formal sums ¢ = >_ ¢, n with
finitely many nonzero coefficients ¢, € k.

@ The set of moulds can be identified with the set of linear
forms on kA, any M € kM being identified with the linear
form ¢ — > M"¢c, (in other words, we extend the function
M: N — k to k N by linearity).

@ Now, kN is a Hopf algebra

BCH via Mould
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Hopf-algebraic aspects of mould calculus

o if we define multiplication by extending

(a,b) > alwb:=> sh(32)n

by bilinearity (“shuffling product” of two words),

@ comultiplication by extending

by linearity,
@ and antipode by extending ny---n, — (—=1)"n,---ny by
linearity

@ the unit is @ and the counit is ¢ — ¢y

BCH via Mould



Mould Algebra
Comoulds and Mould Expansions
Symmetrality and Alternality

Hopf-algebraic aspects of mould calculus

@ The associative algebra structure of kY is then dual to the
coalgebra structure of k A/

@ the set of symmetral moulds identifies itself with the group of
characters of k AV, since a mould M is symmetral if and only if
M(2) =1 and M(cw c') = M(c)M(c’) for all ¢, c’,

@ the set of alternal moulds identifies itself with the Lie algebra

of infinitesimal characters of k \, since a mould M is alternal
if and only if M(cw ¢’) = M(c)c + caM(c).

BCH via Mould
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BCH Formulas Dynkin’s Formula

Kimura’s Formula
From Kimura to BCH

BCH Theorem

Let A be an associative algebra. We now use mould calculus to

prove

Theorem (BCH Theorem)
Suppose X, Y € A. Let W = eXetY € A = A[[t]]. Then

log W € Lie(X, Y)[[t]],

where Lie(X, Y) is the Lie subalgebra of A generated by X and Y.

BCH via Mould
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From Kimura to BCH

BCH Theorem: Proof

@ Half of the work has already been done in our main Example!
e With the two-letter alphabet Q = {x,y}, Bx = tX and
B, = tY, we have logW = ToB with Tq = log Sq,

b s ely

Sqo=¢
@ The mould Sq is symmetral: /, and /, are alternal (they are
supported in the set of one-letter words) hence e’ and e/ are
symmetral and so is their product.
@ It follows that Tq is alternal.
@ then
logW = ToB = Tq[B].
In particular, being expressed as a Lie mould expansion, log W

el ie X
BCH via Mould
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Benefits

Dynkin’s Formula

Theorem (Dynkin)

In the above situation,

o (_1)k_1tU[Xplyql...XPkYQk]
Y

with summation over all k € N* and

(pla ql)a to )(pka CIk) e NxN \ {(0’0)}7 where
oc=p1+aq1+- -+ px+ gk and

[XPLYat... XPeY 9] = ad adt - - adiF ad% Y if gx > 1 and
ad¥ ady - - adf{le if qx = 0.

BCH via Mould
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Dynkin's Formula: Proof

With the same notation as before, by definition,

T = Z % Z Sgl oo S%k for each word w,

k>1 Wl wkeQ\{o}
w=w!-w
SO
)kl 1
logW =" &= > ms 54 BU“’]
k>1 wh...,wkeQ\{o}

This exactly gives us the Dynkin formula!

BCH via Mould
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Kimura's Formula(2017)

Theorem (Kimura, 2017)
Let X,Y € A as in BCH Theorem. Then ¥ = eXetY can be

written

(oo} o 1
V=1 Dn"'Dn
‘A+Z Z nr(nr_i_nril)...(nr_k..._|_n1) 1 r

r=1 ny,...,n,=1
n

with D, =

R adf{l(X +Y) foreachn>1.

BCH via Mould
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Kimura's Formula(2017):Proof

¥ = eXetY s the unique element of A = A[[t]] such that

Wi = 14, t0,V = DV, where D = teX(X + Y)e X,

BCH via Mould
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From Kimura to BCH

Kimura's Formula(2017):Proof

Let A/ := N* and consider the associative comould associated with

the family (D,)nen defined above. We have

D=> D,=ID,

neN

where D in the LHS is the element of A[[t]] defined in the lemma,
while the RHS is the mould expansion associated with the mould /.

BCH via Mould
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Kimura's Formula(2017):Proof

Lemma
For any mould S € QX

t0:(SD) = (VS)D,
where VS is the mould defined by

(VS)™ " = (ny+---+n,)S™"™ for each word ny---n, € N.

BCH via Mould
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From Kimura to BCH

Kimura's Formula(2017):Proof

@ These lemmas inspire us to look for a solution to t0;V = DV

in the form of a mould expansion:

e W = SD will be solution if S € QX is solution to the mould
equation
S9 =1, VS=1xS§

(indeed: we have (VS)D = t0;V on the one hand, and
(I x S)D = (ID)(SD) = DV on the other hand, and $¢ =1
ensures ord(W — 14) > 1 because ord D, > 1 for all nonempty

word n).
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From Kimura to BCH

Kimura's Formula(2017):Proof

@ Now the second part of mould equation is equivalent to
(m+---+4n,)S™ " = 8™ for each nonempty word ny - - n, €/

@ thus the mould equation has a unique solution: the mould
Sx € QX defined by
1
ne(ny+ne—1)---(nr+ -+ n)
@ In conclusion, Sy is a solution to the mould equation, thus
Sy D is a solution to td; W = DV, thus

S = for each ny---n, € N..

SyD =W = ¢XetY

and Kimura's formula is proved.

BCH via Mould
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From Kimura to BCH

Syr is symmetral

The mould Sy € QY that we have just constructed happens to be
a very common and useful object of mould calculus. It is
well-known

Lemma

The mould Syr defined by the formula

1
n(np+ne—1)---(nr+---+ n)

Sj\]}mnr — for each n---n, € M

is symmetral.

BCH via Mould



BCH Theorem

BCH Formulas Dynkin’s Formula
Kimura’s Formula

From Kimura to BCH

a new formula for log W

From this, the Lie character is manifest—the new formula thus

contains the BCH theorem:

Corollary

Let Thr = log Sy € QY. Then, with the notation of Kimura’s
Theorem, we have log VW = Txr[D], i.e

1
Iog x tY Z Z ; T/,\1/} o [Dn17['"[Dnr_anr]"']] € Le(X7

r>1 ny,...,n,=1

BCH via Mould
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BCH Formula

-1

From the definition Ty = Z (Syr — 1)*k, we can write

down the coefficients for words of small length:

T — §m — i
n

Tn1n2 — Sn1n2 . lsnlsnz — n — n2
2

2n1n2(n1 + n2)

T”1n2n3 — 5"1n2"3 _ 15"1”25”3 _ 15"15”2”3 + 15"15"25"3
2 2 3

Tmn2ning _ gmmnzng _ 15n15n2n3n4 . 15n1n25n3n4 . 15n1n2n35n4

1 1 1 1
~ chichncn3ng = chicmn3 cha S cmmcnacns _ —cnichagn
T 3 Sms™mS T 3 SMmSEmmi g 3 §mnsn s 2 5§ms™S

BCH via Mould
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BCH recovered from Lie Mould Expansion log W = T/[D]

o0 o 1
logW=>" T"Dyp + Y. 5 T""[Dn Dy}

m=1 ny,np=1

> 1 ninan
+ Z §T e 3[Dn17[Dn27Dn3]]

ny,nz,n3=1
o

1
+ Z Z Tn1n2n3n4[Dn17 [Dnza [Dn37 Dn4]]] + e

ni,nz,n3,ns=1

BCH via Mould
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BCH recovered from Lie Mould Expansion log W = T/[D]

2 3 4
HX +Y) + X, Y]+ %[x, X, Y11+ 516 DX 1 YT

5)
X DG X DX YT+

3 4

— S+ Y),1 YT = 5 (10X + Y), 1 X, YD)
t5
10

t° t°
5

t
s [+ V), O+ VLI + V), DG VI =+ -+

BCH via Mould

5
[[X? Y]v[Xv [X7 Y]]] - ;70[(X+ Y)v[X7 [Xv[X7 Y]]]]+



BCH recovered from Lie Mould Expansion log W = T/[D]

HX +Y) + [x Y]+ ts([x X, Y] + [V, [, X))

—L[Y XX YT = =55 [X [X X, X YT

720

[Y [Y, [Y, 1Y XTI+ [X [y, [Y, [V, XII]]

720 360

260 LY GG X YT+ 5 1Y G TY X Y]

360

+ﬁ[x [Y, X IYS XD+ -

120
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Generalizations

Relation Between Dynkin and Kimura

Benefits Future Plan

One of the merits of the mould calculus approach is that the

formulas are easily generalized to the case of
V=X e e Al[H]],

where A is our associative algebra and Xi,..., Xy € A for some
N > 2.

BCH via Mould
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The First Generalization: Dynkin

Let NN .= {peNN|p +---+py>1}. We have
1 1 k k
g U Z (=1)k1¢o [lel...xl‘\’lN...lel “.XIF\)/N]
ogV = —
g k o P%!"'Pllv!"'Pf!"'Pkl!
with summation over all k € N* and p',--- , pX € NV, where
kK N
o= > p; and the bracket denote nested commutators as
=il=i
before.

BCH via Mould
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The Second Generalization: Kimura

X1, ..

In the above situation, V = e etXN can also be written

oo o 1
V=1 b Dy
‘A+Z Z nr(nr_.l_nril)...(nr_‘_..._|_n1)©1 @r

r=1 ny,...,n,=1

mj]_

_ . N ady! ---ady X
with ®, =t Z Z mll—mj_ll)g, Vn > 1.

my,...,mj_1EN
my+-+mj_31=n—1

BCH via Mould
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The Second Generalization: Kimura

Note that formula (1) involves exactly the same rational
coefficients as in the case N = 2. The only difference in the
formula is that the D,'s have been generalized to the ®,'s which
are defined in (2) and read

Dp=t(X1+--+Xy)forn=1
when n > 1,
ad}:l

Dn= TRt okt )
' mi+-+my_1=n—1
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The Second Generalization: Kimura

Notice that the mould Sy is still symmetral, the mould
Ty = log Sy is still alternal, whence

logV = TA® = Ty[9], (3)

i.e.

log(c™t---e®M) =3 >, LT o[ [Dn Dl

r>1 nm,...,n,=1

which thus belongs to Lie(Xi, ..., Xn)[[t]], in accordance with the
BCH theorem.
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Two Kinds of Moulds in Dynkin and Kimura

@ The first kind involves an N-element alphabet
Q:={xy,...,xy} and the comould generated by the family
(By)weq defined by By, := tX; € A[[t]].

@ For the second one, the alphabet is AV := N* and the comould
is generated by the family (®,)n,en and boils down to the
D,'s when N = 2.

@ A natural question is: What is the relation between both

kinds of mould expansion?

@ i.e. can one pass from the representation of the product W as
Sq B to its representation as Sy®, or from logV = T B to
logW = TAD?
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Two Kinds of Moulds in Dynkin and Kimura

@ We can define a new operation on moulds, which allows one

to pass directly from Sy to Sq, or from Txr to Tq.

o We take N = 2 for simplicity but the generalization to
arbitrary N is easy.
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Two Kinds of Moulds in Dynkin and Kimura

Let Q := {x,y}. The formula

1 if w=x
_1)9
weQ— UL = ( I)I if w is of the form xPyx? for some p,q € N
p'q!
0 else

defines an alternal mould U € Q% such that
D, = U,B for each n € N*,
where the RHS is the mould expansion associated with

U, := restriction of U to the words of length n.
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Two Kinds of Moulds in Dynkin and Kimura

In fact U = e (I, + I,) = ek x (I + I,) x e~’, which allows us
to relate D-mould expansions and B-mould expansions:
Let AV := N*. Define a linear map M € Q¥ — Mo U € Q2 by

(M U)® = M2, (4)
(Mo U)2:=>" Z Myt p forw € Q\ {@
s>1 w=

Wl W EQ\{Q}
(5)
Then

MD = (M ® U)B for any M € Q.
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Two Kinds of Moulds in Dynkin and Kimura

The relations SyyD = SqB (which coincides with W) and
Ty D = ToB (which coincides with log W) now appear as a
manifestation of above Theorem and the following
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Further Problems

o BCH for L, algebras
@ Deformation Quantization

@ Kashiwara-Vergne Lie Algebra
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THANK YOU
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