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History

• History
The deformation of algebraic structures began with the

seminal work of Gerstenhaber for associative algebras:

M. Gerstenhaber, On the deformation of rings and algebras.
Ann. Math. (2) 79 (1964), 59-103.
Then it is extended to Lie algebras by Nijenhuis and

Richardson. Deformations of other algebraic structures such as
pre-Lie algebras, Leibniz algebras, n-Lie algebras have also been
well developed. More generally, deformation theory for algebras
over quadratic operads was developed by Balavoine.

D. Balavoine, Deformations of algebras over a quadratic
operad. Operads: Proc. of Renaissance Conferences (Hartford,
CT/Luminy, 1995), Contemp. Math. 202 Amer. Math. Soc.,
Providence, RI, 1997, 207-34.
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Slogan

• Slogan
There is a well known slogan, often attributed to Deligne,

Drinfeld and Kontsevich: every reasonable deformation theory is
controlled by a differential graded Lie algebra (an L∞-algebra),
determined up to quasi-isomorphism. This slogan has been made
into a rigorous theorem by Lurie and Pridham.

J. Lurie, DAG X: Formal moduli problems, available at
http://www.math.harvard.edu/ lurie/papers/DAG-X.pdf.

J. P. Pridham, Unifying derived deformation theories. Adv.
Math. 224 (2010), 772-826.

Rong Tang Relative Rota-Baxter Lie algebras



Goal

• What do we want to do

Idea: we try to extend the above deformation theories to the
study of deformations of relative Rota-Baxter Lie algebras.

Goal: we develop a deformation theory of relative Rota-Baxter
Lie algebras which is remarkably consistent with the general
principles of deformation theories.

1 There is a suitable L∞-algebra whose Maurer-Cartan elements
characterize relative Rota-Baxter Lie algebras and their
deformations.

2 There is a cohomology theory which controls the infinitesimal
and formal deformations of relative Rota-Baxter Lie algebras.
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Rota-Baxter type operators

The concept of Rota-Baxter operators on associative algebras
was introduced by G. Baxter in his study of probability theory. It
has found many applications, including Connes-Kreimer’s algebraic
approach to the renormalization in perturbative quantum field
theory. Moreover, Rota-Baxter operators on associative algebras
are closely related to symmetric functions and double Poisson
algebras.

In the Lie algebra context, a Rota-Baxter operator was
introduced independently as the operator form of the classical
Yang-Baxter equation that plays important roles in integrable
systems and quantum groups.

Rota-Baxter operators lead to the splitting of operads. For
further details on Rota-Baxter operators, see Li Guo’s book.

L. Guo, An introduction to Rota-Baxter algebra. Surveys of
Modern Mathematics, 4. International Press, Somerville, MA;
Higher Education Press, Beijing, 2012. xii+226 pp.
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Relative Rota-Baxter Lie algebras

Definition

A relative Rota-Baxter Lie algebra is a triple ((g, [·, ·]g), ρ, T ),
where (g, [·, ·]g) is a Lie algebra, ρ : g −→ gl(V ) is a representation
of g on a vector space V and T : V −→ g is a relative Rota-Baxter
operator, i.e.

[Tu, Tv]g = T
(
ρ(Tu)(v)− ρ(Tv)(u)

)
, ∀u, v ∈ V.

When the representation is the adjoint representation, we
obtain Rota-Baxter Lie algebras.

B. A. Kupershmidt, What a classical r-matrix really is. J.
Nonlinear Math. Phys. 6 (1999), 448-488.
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Triangular Lie bialgebra

Definition-Example

Let (g, [·, ·]g) be a Lie algebra. We also use the notation [·, ·]g to
denote the graded Lie bracket on the exterior algebra ∧•g. An
element r ∈ ∧2g is called a skew-symmetric r-matrix if r satisfies
the classical Yang-Baxter equation (CYBE):

[r, r]g = 0.

A skew-symmetric r-matrix gives rise to a relative Rota-Baxter
operator r] : g∗ −→ g with respect to the coadjoint representation
ad ∗, where r] is defined by

〈r](ξ), η〉 = 〈r, ξ ∧ η〉.

A skew-symmetric r-matrix will give rise to a triangular Lie
bialgebra, which we denote by (g, r).
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Nijenhuis-Richardson bracket

Let g be a vector space. We consider the graded vector space
C∗(g, g) = ⊕+∞

n=0C
n(g, g) = ⊕+∞

n=0Hom (∧n+1g, g). Then C∗(g, g)
equipped with the Nijenhuis-Richardson bracket

[P,Q]NR = P ◦̄Q− (−1)pqQ◦̄P, ∀P ∈ Cp(g, g), Q ∈ Cq(g, g),

is a graded Lie algebra, where P ◦̄Q ∈ Cp+q(g, g) is defined by

(P ◦̄Q)(x1, · · · , xp+q+1)

=
∑
σ

(−1)σP (Q(xσ(1), · · · , xσ(q+1)), xσ(q+2), · · · , xσ(p+q+1)).

Lemma

For µ ∈ Hom (∧2g, g) and ρ ∈ Hom (g⊗ V, V ). Then µ is a Lie
algebra structure on g and ρ is a representation of Lie algebra g on
V if and only if

[µ+ ρ, µ+ ρ]NR = 0.
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Maurer-Cartan elements characterizing LieRep pairs

Definition

A LieRep pair consists of a Lie algebra (g, [·, ·]g) and a
representation ρ : g −→ gl(V ) of g on a vector space V .

Denote by
LLieRep = ⊕+∞

k=0(Hom (∧k+1g, g)⊕Hom (∧kg⊗ V, V )).

Proposition (Arnal)

Let g and V be two vector spaces. Then
(
LLieRep, [·, ·]NR

)
is a

graded Lie algebra. Its MC elements are precisely LieRep pairs.

D. Arnal, Simultaneous deformations of a Lie algebra and its
modules. Differential geometry and mathematical physics
(Liege, 1980/Leuven, 1981), 3-15, Math. Phys. Stud., 3,
Reidel, Dordrecht, 1983.
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Cohomologies of LieRep pairs

Let
(
(g, µ); ρ

)
be a LieRep pair. Define the set of n-cochains

Cn(g, ρ) to be

Cn(g, ρ) := Hom (∧ng, g)⊕Hom (∧n−1g⊗ V, V ).

Define the coboundary operator ∂ : Cn(g, ρ) −→ Cn+1(g, ρ) by

∂f := (−1)n−1[µ+ ρ, f ]NR.

Then ∂ ◦ ∂ = 0. Thus we obtain the complex (⊕+∞
n=0C

n(g, ρ), ∂).

Definition

The cohomology of the cochain complex (⊕+∞
n=0C

n(g, ρ), ∂) is
called the cohomology of the LieRep pair

(
(g, µ); ρ

)
. The resulting

n-th cohomology group is denoted by Hn(g, ρ).
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Maurer-Cartan elements characterizing relative
Rota-Baxter operators

Let (V ; ρ) be a representation of a Lie algebra g. Consider the
graded vector space

C∗(V, g) := ⊕+∞
k=0Hom (∧kV, g).

Define a skew-symmetric bracket operation

[[·, ·]] : Hom (∧nV, g)×Hom (∧mV, g) −→ Hom (∧m+nV, g)

by
[[P,Q]] := (−1)n[[µ+ ρ, P ]NR, Q]NR.
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Maurer-Cartan elements characterizing relative
Rota-Baxter operators

Proposition

(C∗(V, g), [[·, ·]]) is a gLa. Its Maurer-Cartan elements are precisely
the relative Rota-Baxter operators on g with respect to (V ; ρ).

Proof. The Nijenhuis-Richardson bracket [·, ·]NR associated to g⊕ V gives rise
to a graded Lie algebra (⊕k≥0Hom (∧k(g⊕ V ), g⊕ V ), [·, ·]NR). Obviously
⊕k≥0Hom (∧kV, g) is an abelian subalgebra. A linear map µ : ∧2g −→ g is a
Lie algebra structure and ρ : g⊗V −→ V is a representation of g on V iff µ+ ρ
is a Maurer-Cartan element of the gLa (⊕k≥0Hom (∧k(g⊕ V ), g⊕ V ), [·, ·]NR),
defining a differential dµ+ρ via dµ+ρ = [µ+ ρ, ·]NR. Further, the differential
dµ+ρ gives rise to a graded Lie algebra structure on the graded vector space
⊕k≥0Hom (∧kV, g) via the derived bracket

[[P,Q]] := (−1)n[[µ+ρ, P ]NR, Q]NR, ∀P ∈ Hom (∧nV, g), Q ∈ Hom (∧mV, g),

which is exactly the above bracket.
For T : V −→ g, we have

[[T, T ]](u1, u2) = 2
(
T (ρ(Tu1)u2)− T (ρ(Tu2)u1)− [Tu1, Tu2]

)
.

Thus, Maurer-Cartan elements are relative Rota-Baxter operators.
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Cohomology of relative Rota-Baxter operators

Now we define the cohomology governing deformations of a
relative Rota-Baxter operator T : V −→ g. Define the vector space
of n-cochains Cn(T ) as Cn(T ) = Hom (∧n−1V, g).

Define the coboundary operator δ : Cn(T ) −→ Cn+1(T ) by

δθ = (−1)n−2 [[T, θ]] = (−1)n−2[[µ+ ρ, T ]NR, θ]NR. (1)

Then (⊕+∞
n=0C

n(T ), δ) is a cochain complex.

Definition

The cohomology of the cochain complex (⊕+∞
n=0C

n(T ), δ) is called
the cohomology of the relative Rota-Baxter operator T : V −→ g.
The corresponding n-th cohomology group is denoted by Hn(T ).
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The relation with pre-Lie algebras

Definition

A pre-Lie algebra is a pair (V, ·V ), where V is a vector space and
·V : V ⊗ V −→ V is a bilinear multiplication satisfying that for all
x, y, z ∈ V , the associator

(x, y, z) := (x ·V y) ·V z − x ·V (y ·V z)

is symmetric in x, y, that is, (x, y, z) = (y, x, z), or equivalently,

(x ·V y) ·V z − x ·V (y ·V z) = (y ·V x) ·V z − y ·V (x ·V z).

Theorem

Let T : V → g be a relative Rota-Baxter operator on a Lie algebra
g with respect to a representation (V ; ρ). Then (V, ·T ) is a pre-Lie
algebra, where

u ·T v = ρ(Tu)(v), ∀u, v ∈ V.
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The relation with pre-Lie algebras

Let V be a vector space. For α ∈ Hom (∧nV ⊗ V, V ) and
β ∈ Hom (∧mV ⊗ V, V ), define α ◦ β ∈ Hom (∧n+mV ⊗ V, V ) by

(α ◦ β)(u1, · · · , um+n+1)

=
∑

σ∈S(m,1,n−1)

(−1)σα(β(uσ(1), · · · , uσ(m+1)), uσ(m+2), · · · , uσ(m+n), um+n+1)

+(−1)mn
∑

σ∈S(n,m)

(−1)σα(uσ(1), · · · , uσ(n), β(uσ(n+1), · · · , uσ(m+n), um+n+1)).

Then C∗(V, V ) := ⊕k≥0Hom (∧kV ⊗ V, V ) equipped with the
Matsushima-Nijenhuis bracket [·, ·]C given by

[α, β]C := α ◦ β − (−1)mnβ ◦ α,

is a graded Lie algebra.
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The relation with pre-Lie algebras

Remark

For α ∈ Hom (V ⊗ V, V ), we have

[α, α]C(u, v, w)

= 2
(
α(α(u, v), w)− α(α(v, u), w)− α(u, α(v, w)) + α(v, α(u,w))

)
.

Thus, α defines a pre-Lie algebra structure on V if and only if
[α, α]C = 0, that is, α is a Maurer-Cartan element of the graded
Lie algebra (C∗(V, V ), [·, ·]C).
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The relation with pre-Lie algebras

Define a linear map
Φ : Hom (∧kV, g) −→ Hom (∧kV ⊗ V, V ), k ≥ 0, by

Φ(f)(u1, · · · , uk, uk+1) = ρ(f(u1, · · · , uk))(uk+1).

Proposition

Let (V ; ρ) be a representation of a Lie algebra g. Then Φ is a
homomorphism of graded Lie algebras from (C∗(V, g), [[·, ·]]) to
(C∗(V, V ), [·, ·]C).

R. Tang, C. Bai, L. Guo and Y. Sheng, Deformations and their
controlling cohomologies of O-operators, Comm. Math. Phys.
368 (2019), 665õ700.
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L∞-algebra

Definition

An L∞-algebra is a Z-graded vector space g = ⊕k∈Zgk equipped
with a collection (k ≥ 1) of linear maps lk : ⊗kg −→ g of degree 1
with the property that, for any homogeneous elements
x1, · · · , xn ∈ g, we have

(i) (graded symmetry) for every σ ∈ Sn,

ln(xσ(1), · · · , xσ(n−1), xσ(n)) = ε(σ)ln(x1, · · · , xn−1, xn),

(ii) (generalized Jacobi identity) for all n ≥ 1,

n∑
i=1

∑
σ∈S(i,n−i)

ε(σ)ln−i+1(li(xσ(1), · · · , xσ(i)), xσ(i+1), · · · , xσ(n)) = 0.
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Maurer-Cartan elements

Definition

The set of MC elements, denoted by MC(g), of a filtered
L∞-algebra g is the set of those α ∈ g0 satisfying the MC equation

+∞∑
k=1

1

k!
lk(α, · · · , α) = 0.

Remark

The condition of being filtered ensures convergence of the series
figuring in the definition of MC elements and MC twistings.

V. A. Dolgushev and C. L. Rogers, A version of the
Goldman-Millson Theorem for filtered L∞-algebras. J. Algebra
430 (2015), 260-302.
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V -structure

Definition (Voronov)

A V -structure consists of a quadruple (L, h, P,∆) where

• (L, [·, ·]) is a graded Lie algebra,

• h is an abelian graded Lie subalgebra of (L, [·, ·]),

• P : L −→ L is a projection, that is P ◦ P = P , whose image
is h and kernel is a graded Lie subalgebra of (L, [·, ·]),

• ∆ is an element in ker(P )1 such that [∆,∆] = 0.

Th. Voronov, Higher derived brackets and homotopy algebras.
J. Pure Appl. Algebra 202 (2005), 133-153.
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Higher derived brackets

Theorem (Voronov)

Let (L, h, P,∆) be a V -structure. Then the graded vector space
L[1]⊕ h is an L∞-algebra, where lk are given by

l1(x, a) = (−[∆, x], P (x+ [∆, a])),

l2(x, s
−1y) = (−1)x[x, y],

lk(x, a1, · · · , ak−1) = P [· · · [[x, a1], a2] · · · , ak−1], k ≥ 2,

lk(a1, · · · , ak−1, ak) = P [· · · [[∆, a1], a2] · · · , ak], k ≥ 2.

Here a, a1, · · · , ak ∈ h and x, y ∈ L.

Voronov’s higher derived brackets, which is a useful tool to
construct explicit L∞-algebras.

Remark

Let L′ be a graded Lie subalgebra of L that satisfies [∆, L′] ⊂ L′.
Then L′[1]⊕ h is an L∞-subalgebra of the above L∞-algebra.
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V-structure

Let g and V be two vector spaces.

Proposition

We have a V -structure (L, h, P,∆) as follows:

• the graded Lie algebra (L, [·, ·]) is given by(
⊕+∞
n=0 C

n(g⊕ V, g⊕ V ), [·, ·]NR
)
;

• the abelian graded Lie subalgebra h is given by

h := ⊕+∞
n=0Hom (∧n+1V, g);

• P : L −→ L is the projection onto the subspace h;

• ∆ = 0.

Consequently, we obtain an L∞-algebra (L[1]⊕ h, {lk}+∞k=1), where lk are given
by

l1(s−1Q, θ) = P (Q),

l2(s−1Q, s−1Q′) = (−1)Qs−1[Q,Q′]NR,

lk(s−1Q, θ1, · · · , θk−1) = P [· · · [Q, θ1]NR, · · · , θk−1]NR,

for θ, θ1, · · · , θk−1 ∈ h, Q,Q′ ∈ L.
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The L∞-algebra governing relative RB Lie algebra

Recall that
LLieRep = ⊕+∞

k=0(Hom (∧k+1g, g)⊕Hom (∧kg⊗ V, V )) is a
subalgebra of L.

Corollary

With the above notation, (LLieRep[1]⊕ h, {li}+∞i=1 ) is an
L∞-algebra, where lk are given by

l2(Q,Q
′) = (−1)Q[Q,Q′]NR,

lk(Q, θ1, · · · , θk−1) = P [· · · [Q, θ1]NR, · · · , θk−1]NR,

for θ1, · · · , θk−1 ∈ h, Q,Q′ ∈ LLieRep.
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Main Theorem

Theorem

Let g and V be two vector spaces, µ ∈ Hom (∧2g, g),
ρ ∈ Hom (g⊗ V, V ) and T ∈ Hom (V, g). Then ((g, µ), ρ, T ) is a
relative Rota-Baxter Lie algebra if and only if (µ+ ρ, T ) is an MC
element of the L∞-algebra (LLieRep[1]⊕ h, {li}+∞i=1 ).
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Deformations of relative RB Lie algebra

Define l
(µ+ρ,T )
k : ⊗k(LLieRep[1]⊕ h) −→ LLieRep[1]⊕ h by

l
(µ+ρ,T )
k (x1, · · · , xk) =

+∞∑
n=0

1

n!
lk+n((µ+ ρ, T ), · · · , (µ+ ρ, T )︸ ︷︷ ︸

n

, x1, · · · , xk).

Theorem

With the above notation, we have the twisted L∞-algebra(
LLieRep[1]⊕ h, {l(µ+ρ,T )k }+∞k=1

)
.

Moreover, for linear maps T ′ ∈ Hom (V, g), µ′ ∈ Hom (∧2g, g) and
ρ′ ∈ Hom (g, gl(V )), the triple ((g, µ+ µ′), ρ+ ρ′, T + T ′) is again
a relative Rota-Baxter Lie algebra if and only if

(
(µ′+ ρ′), T ′

)
is an

MC element of the above twisted L∞-algebra.
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Extensions of L∞-algberas

Theorem

Let ((g, µ), ρ, T ) be a relative Rota-Baxter Lie algebra. Then the

L∞-algebra (LLieRep[1]⊕ h, {l(µ+ρ,T )k }+∞k=1) is a strict extension of
the L∞-algebra (dgla) LLieRep[1] by the L∞-algebra (dgla)
⊕+∞
k=1Hom (∧kV, g), that is, we have the following short exact

sequence of L∞-algebras:

0 −→ ⊕+∞
k=1Hom (∧kV, g)

ι−→ LLieRep[1]⊕h
p−→ LLieRep[1] −→ 0,

where ι(θ) = (0, θ) and p(f, θ) = f .
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Cohomology of relative Rota-Baxter Lie algebras

Define the space of n-cochains Cn(g, ρ, T ) by

Cn(g, ρ, T ) := Cn(g, ρ)⊕ Cn(T )

=
(

Hom (∧ng, g)⊕Hom (∧n−1g⊗ V, V )
)
⊕Hom (∧n−1V, g).

Define the coboundary operator
D : Cn(g, ρ, T ) −→ Cn+1(g, ρ, T ) by

D(f, θ) = (−1)n−2(−[π, f ]NR, [[π, T ]NR, θ]NR+
1

n!
[· · · [[︸ ︷︷ ︸
n

f, T ]NR, T ]NR, · · · , T ]NR

)
,

where f ∈ Hom (∧ng, g)⊕Hom (∧n−1g⊗ V, V ) and θ ∈ Hom (∧n−1V, g).

Define a linear operator hT : Cn(g, ρ) −→ Cn+1(T ) by

hT f := (−1)n−2 1

n!
[· · · [[︸ ︷︷ ︸
n

f, T ]NR, T ]NR, · · · , T ]NR.

Then the coboundary operator can be written as

D(f, θ) = (∂f, δθ + hT f).
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Cohomology of relative Rota-Baxter Lie algebras

Theorem

With the above notation, (⊕+∞
n=0C

n(g, ρ, T ),D) is a cochain
complex, i.e. D ◦ D = 0.

Proof.

It follow from

D(f, θ) = (−1)n−2l
(µ+ρ,T )
1 (f, θ).

Definition

The cohomology of the cochain complex (⊕+∞
n=0C

n(g, ρ, T ),D) is
called the cohomology of the relative Rota-Baxter Lie algebra
((g, µ), ρ, T ). Denote its n-th cohomology group by Hn(g, ρ, T ).

Rong Tang Relative Rota-Baxter Lie algebras



Cohomology of relative Rota-Baxter Lie algebras

Theorem

With the above notation, (⊕+∞
n=0C

n(g, ρ, T ),D) is a cochain
complex, i.e. D ◦ D = 0.

Proof.

It follow from

D(f, θ) = (−1)n−2l
(µ+ρ,T )
1 (f, θ).

Definition

The cohomology of the cochain complex (⊕+∞
n=0C

n(g, ρ, T ),D) is
called the cohomology of the relative Rota-Baxter Lie algebra
((g, µ), ρ, T ). Denote its n-th cohomology group by Hn(g, ρ, T ).

Rong Tang Relative Rota-Baxter Lie algebras



Cohomology of relative Rota-Baxter Lie algebras

Now we give the formulas for hT in terms of multilinear maps.

Lemma

The operator
hT : Hom (∧ng, g)⊕Hom (∧n−1g⊗ V, V ) −→ Hom (∧nV, g) is
given by

(hT f)(v1, · · · , vn) = (−1)nfg(Tv1, · · · , T vn)

+

n∑
i=1

(−1)i+1TfV
(
Tv1, · · · , T vi−1, T vi+1, · · · , T vn, vi

)
,

where f = (fg, fV ), and fg ∈ Hom (∧ng, g),
fV ∈ Hom (∧n−1g⊗ V, V ) and v1, · · · , vn ∈ V.
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Relations among cohomologies

D can be well-explained by the following diagram:

· · · −→ Cn(g, ρ)

hT

''

∂ // Cn+1(g, ρ)

hT

((

∂ // Cn+2(g, ρ) −→ · · ·

· · · −→ Cn(T ) δ // Cn+1(T ) δ // Cn+2(T ) −→ · · · .

Theorem

There is a short exact sequence of the cochain complexes:

0 −→ (⊕+∞
n=0C

n(T ), δ)
ι−→ (⊕+∞

n=0C
n(g, ρ, T ),D)

p−→ (⊕+∞
n=0C

n(g, ρ), ∂) −→ 0,

and there is a long exact sequence of the cohomology groups:

· · · −→ Hn(T )
Hn(ι)−→ Hn(g, ρ, T )

Hn(p)−→ Hn(g, ρ)
cn−→ Hn+1(T ) −→ · · · ,

where the connecting map cn is defined by cn([α]) = [hTα], for all
[α] ∈ Hn(g, ρ).
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Cohomology of RB Lie algebras

Let (g, [·, ·]g, T ) be a Rota-Baxter Lie algebra. Define the
space of n-cochains CnRB(g, T ) by

CnRB(g, T ) := CnLie(g; g)⊕ Cn(T ) = Hom (∧ng, g)⊕Hom (∧n−1g, g).

Define DRB : CnRB(g, T ) −→ Cn+1
RB (g, T ) by

DRB(f, θ) =
(

dCEf, δθ + Ωf
)
, ∀f ∈ Hom (∧ng, g), θ ∈ Hom (∧n−1g, g),

where Ω : Hom (∧ng, g) −→ Hom (∧ng, g) is defined by

(Ωf)(x1, · · · , xn) = (−1)n
(
f(Tx1, · · · , Txn)

−
n∑
i=1

Tf(Tx1, · · · , Txi−1, xi, Txi+1, · · · , Txn)
)
.
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Define DRB : CnRB(g, T ) −→ Cn+1
RB (g, T ) by

DRB(f, θ) =
(

dCEf, δθ + Ωf
)
, ∀f ∈ Hom (∧ng, g), θ ∈ Hom (∧n−1g, g),

where Ω : Hom (∧ng, g) −→ Hom (∧ng, g) is defined by

(Ωf)(x1, · · · , xn) = (−1)n
(
f(Tx1, · · · , Txn)

−
n∑
i=1

Tf(Tx1, · · · , Txi−1, xi, Txi+1, · · · , Txn)
)
.
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Cohomology of RB Lie algebras

Theorem

The map DRB is a coboundary operator, i.e. DRB ◦ DRB = 0.

Definition

Let (g, [·, ·]g, T ) be a Rota-Baxter Lie algebra. The cohomology of
the cochain complex (⊕+∞

n=0C
n
RB(g, T ),DRB) is taken to be the

cohomology of the Rota-Baxter Lie algebra (g, [·, ·]g, T ). Denote
the n-th cohomology group by HnRB(g, T ).
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Cohomology of triangular Lie bialgebras

Let (g, [·, ·]g, r) be a triangular Lie bialgebra. Define the space
of n-cochains CnTLB(g, r) by

CnTLB(g, r) := Hom (∧ng, g)⊕ ∧ng.

Define the coboundary operator DTLB : Cn
TLB(g, r) −→ Cn+1

TLB(g, r) by

DTLB(f, χ) =
(

dCEf,Θf + drχ
)
, ∀f ∈ Hom (∧ng, g), χ ∈ ∧ng,

where dr : ∧ng −→ ∧n+1g is given by drχ = [r, χ]g and
Θ : Hom (∧ng, g) −→ ∧n+1g is defined by

〈Θf, ξ1 ∧ · · · ∧ ξn+1〉 =

n+1∑
i=1

(−1)
i+1〈ξi, f(r

]
(ξ1), · · · , r](ξi−1), r

]
(ξi+1), · · · , r](ξn+1))〉.
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Cohomology of triangular Lie bialgebras

Theorem

The map DTLB is a coboundary operator, i.e. DTLB ◦ DTLB = 0.

Definition

Let (g, [·, ·]g, r) be a triangular Lie bialgebra. The cohomology of
the cochain complex (⊕+∞

n=0C
n
TLB(g, r),DTLB) is called the

cohomology of the triangular Lie bialgebra (g, [·, ·]g, r). Denote the
n-th cohomology group by HnTLB(g, r).

A. Lazarev, Y. Sheng and R. Tang, Deformations and
homotopy theory of relative Rota-Baxter Lie algebras. The
MPIM preprint series, 2020.
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Working in progress

Explain the cohomology of Rota-Baxter Lie algebras by
Ext-functor over the enveloping algebras of Rota-Baxter Lie
algebras;

Construct cofibrant resolution of the operad of Rota-Baxter
associative algebras.
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The End

Thanks for your attention!
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