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Embedding tensors

The embedding tensor formalism was introduced by Nicolai and
Samtleben in the gauging procedure of 3D supergravity theories.
An embedding tensor is a linear map f : V → g, where

1 V is the space of fields;
2 g is the Lie algebra of the rigid symmetry group G;

satisfying

f(ξ . x) = [ξ, f(x)]g, ∀ξ ∈ h = Im(f), x ∈ V.

f is said to be strict, if this relation holds for all ξ ∈ g. In other
words, f is an averaging operator of g. Any (strict) embedding
tensor induces a Leibniz algebra structure ◦ on V

x ◦ y := f(x) . y, ∀x, y ∈ V.
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Goal of this talk

Question

1 What is the “correct” notion of homotopy embedding tensor?
2 What algebraic structures can we obtain from homotopy

embedding tensors?

For the first question, we first show that an embedding tensor is an
algebra over a 2-colored operad. Then we consider its
Boardman-Vogt resolution due to Berger and Moerdijk. We define
a homotopy embedding tensors as an algebra over the cofibrant
2-colored operad obtained from BV resolution.
For the second question, we will show that homotopy Leibniz
algebras arise from homotopy embedding tensors, whose structure
maps can be realized as a sum over rooted forests.
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Definition of a colored dg operad

A colored (dg) operad (a.k.a. multicategory) C consists of the
following data:

A finite set {X,Y, Z, · · · } of objects or colors of C .

For every finite set I, every I-indexed collection of colors
{Xi}i∈I , and every color Y , a cochain complex
C ({Xi}i∈I , Y ).

For each color X ∈ C a unit element idX ∈ C (X,X).

For every map of finite sets I → J with fibers {Ij}j∈J , every
finite collections of colors XI = {Xi}i∈I and YJ = {Yj}j∈J ,
and every color Z, a composition map

µZYJ : C ({Yj}j∈J , Z)⊗
⊗
j∈J

C ({Xi}i∈Ij , Yj)→ C ({Xi}i∈I , Z).
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Definition of a colored dg operad: continued

These data are supposed to satisfy the following conditions:
1 Each cochain complex C ({Xi}i∈I , Y ) admits a (right)

representation of the permutation group Sn, where n = |I| is
the cardinal number of the finite set I, defined by

σ ∈ Sn →
(
C ({Xi}i∈I , Y ) 7→ C ({Xσ(i)}i∈I , Y )

)
.

2 (Equivariance) The composition map is equivariant under the
symmetry group action.

3 (Unit axiom) For all colors X,X1, · · · , Xn ∈ C and each
f ∈ C ({Xi}ni=1, X), we have

µXX(idX , f) = µXX1,··· ,Xn
(f, idX1 , · · · , idXn) = f.

4 (Associativity) The composition is associative in the natural
way (cf. Definition 2.1.1.1 in Higher algebras by Lurie).
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The module operad introduced by Kapranov-Manin

Let P be a dg operad. A P-module operad (or P-moperad) P1

consists of

a collection of right dg Sk-modules P1(k), k ≥ 0;

a unit element id1 ∈P1(0);

composition morphisms

µ1,k : P1(k)⊗P1(m0)⊗P(m1)⊗· · ·⊗P(mk)→P1

(
k∑
i=0

mi

)
.

satisfying
1 Equivariance: compositions are S-equivariant.
2 Unit axiom: For all k ≥ 0 and all a ∈P1(k),

µ1,0(id1, a) = µ1,k(a, id1, id, · · · , id) = a,

where id ∈P(1) is the unit element for the dg operad P.
3 Associativity.(cf. Definition 9 in the homotopy braces

formality morphism by Willwacher.)
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The 2-colored dg operad arising from a dg operad and its
moperad

Let P be a dg operad and P1 its moperad. We have a 2-colored
dg operad C (P,P1) with the set of colors {1, 2} as follows:

1 P(k) is the space of operations with k-inputs and the output
of color 1;

2 P1(k) is the space of operations with the first input and the
output of color 2, and the last k-inputs of color 1.

Example

P = Lie, P1 = LieMod. Then the corresponding 2-colored dg
operad C (Lie,LieMod) governs dg Lie algebras and their
representations.
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Definition of operadic embedding

P: a dg operad. P1: a P-moperad. An operadic P1-P
embedding E is a morphism of P-moperad from P1 to P:

a collection of right dg Sk-modules E (k) for k = 0, 1, · · · ,
thought of as a space of operations with one input in color 2,
k-input and the output in color 1;
composition morphisms

e
(l)
1,k : P(k + 1)⊗ E (m0)⊗P(m1)⊗ · · · ⊗P(mk)

→ E (m0 + · · ·+mk),

e
(r)
1,k,l : E (k)⊗P1(l)⊗P(n1)⊗ · · ·P(nl)⊗P(m1)⊗ · · ·P(mk)

→ E (n1 + · · ·+ nl +m1 + · · ·+mk),

satisfying axioms equivariance, unit axiom, and associativity.

Proposition (Chen-Ge-Xiang)

The triple (P,P1,E ) determines a new 2-colored dg operad
C (P,P1,E ).
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Example

Consider the 2-colored dg operad (Lie,LieMod). We define an
operadic LieMod−Lie embedding E (k) as follows:

1 E (0) is the 1-dimensional space generated by the operation
2→ 1;

2 E (k), k ≥ 1 is obtained by grafting E (0) on the base elements
in Lie(k). In other words, they are generated by Lie and E (0)

via the composition e
(l)
1,k, i.e.,

E (k) = e
(l)
1,k(Lie(k + 1)⊗ E (0)⊗ Lie(1)⊗ · · · ⊗ Lie(1)).

Proposition (Chen-Ge-Xiang)

The algebra over the 2-colored dg operad C (Lie,LieMod,E ) is a
strict embedding tensor of dg Lie algebras.
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Partial history on resolutions of operads

Boardman and Vogt introduced an explicit resolution, called
the W-construction, for topological operads;

Ginzburg-Kapranov (cf. also Getzler-Jones,
Kontsevich-Soibelman, and Dolgushev-Rogers) introduced the
cobar-bar resolution for operads in (co)chain complexes (or dg
operads);

Berger and Moerdijk generalized the W-construction of
Boardman-Vogt, also called the Boardman-Vogt (BV for
short) resolution, for colored operads in monoidal model
categories, which is isomorphic to the cobar-bar resolution
when the monoidal model category is the one of (co)chain
complexes.
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An explicit description of the free colored operad

Let C be a colored operad. Intuitively speaking, elements in the
free colored operad F (C ) are represented by rooted trees with

inputs labelled by 1, · · · , n;

edges labelled colors of C ;

vertices labelled by an element in C ({ci}ni=1, c) if its incoming
edges are labelled by the colors {ci}ni=1 and its outgoing edge
is labelled by color c.

Furthermore, some identifications arising from tree-automorphisms
are made. And compositions are given by grafting of trees.
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An interval object in the category of cochain complexes

A interval in a cofibrantly generated monoidal model category E
with cofibrant unit I is a factorization of the codiagonal

I t I (0,1)−−−→ H
ε−→ I,

where (0, 1) is a cofibration and the counit ε is a weak equivalence,
equipped with an associative operation ∨ : H ⊗H → H, satisfying
0 is neutral and 1 is absorbing, i.e., 0 ∨ x = x ∨ 0 = x and
1 ∨ x = x ∨ 1 = 1.
The projective monoidal model category of cochain complexes of
vector spaces has an interval object H = N∗(∆1), where
N0(∆1) = span{γ0, γ1}, and N−1(∆1) = span{γ}, satisfying

dγ = γ1 − γ0.

The binary relation ∨ : N∗(∆1)⊗N∗(∆1)→ N∗(∆1) is
determined by requiring that γ0 is neutral and γ1 is absorbing.
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The BV resolution W (H,C ) of C

Elements in W (H,C ) are represented by the rooted planar trees as
in F (C ), with an additional assignment of elements in H for each
internal edge.
(1) edges of length γ0 are contracted via the operation in C ;
(2) edges around a vertex labelled by a unit in C (c; c) are
contracted into a single edge, deleting the vertex and assigning the
operation ∨ of the corresponding lengths as new length.

Theorem (Berger-Moerdijk)

The counit F (C )→ C of the free-forgetful adjunction has a
factorization

F (C )�W (H,C )
'−→ C ,

where F (C )�W (H,C ) is defined by assigning length γ1 for all

internal edges, and W (H,C )
'−→ C is defined by forgetting the

length and applying compositions in C .
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The definition of homotopy embedding tensors

Consider the 2-colored dg operad C (Lie,LieMod,E ) obtained
from the operadic LieMod−Lie embedding E . Applying the BV
resolution, we obtain a new 2-colored dg operad

W (H,C (Lie,LieMod,E )).

Definiton

A homotopy embedding tensor is an algebra over the 2-colored dg
operad W (H,C (Lie,LieMod,E )).

Unfolding the data, we obtain

Proposition (Chen-Ge-X)

A homotopy embedding tensor consists of a triple (L, V, f), where
1 L is an L∞-algebra, V is an L∞ L-module;
2 f : V → L is an L∞-morphism of L-modules.
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Homotopy embedding tensors via formal dg geometry

According to Buijs and Murillo, if adding certain locally finite
constraints (a.k.a. mild conditions), we obtain two functors

C∞(−) : mLie∞ → CDGA, C∞(L,−) : mModL → Modsf
C∞(L) .

Via the functor C∞(L,−), a homotopy embedding tensor
f : V → L (with certain local finite constraints) is identified as a
morphism of dg C∞(L)-modules

F := C∞(L, f) : C∞(L, V )→ C∞(L,L).

Moreover, if we view L as a formal pointed dg manifold

L[1]“ = ” spec(C∞(L)),

then the category of homotopy embedding tensors is identified as
that of morphisms of dg vector bundles over L[1] to its shifted
tangent bundle T [−1]L[1].
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SH Leibniz algebras from homotopy embedding tensors

Definiton

An SH Leibniz algebra (or Leibniz∞[1]-algebra) over a locally finite
L∞-algebra L is a semi-free dg C∞(L)-module C∞(L, V ),
equipped with a sequence of C•(L)-linear maps

λk : C•(L, V )⊗k → C•(g, V ), k ≥ 2,

such that (C∞(L, V ), {λk}k≥2) is a Leibniz∞[1] algebra.

Theorem (Chen-Ge-X)

Let f : V  L be a homotopy embedding tensor with certain
finiteness constraints. Then the dg C∞(L)-module C∞(L, V )
admits a Leibniz∞[1] algebra structure {λk}k≥2 over L. All those
higher structure maps are given by a summation over rooted trees
that we will discuss in the coming slides.
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Rooted trees

A rooted tree is a directed tree T , whose set V (T ) of vertices
admits a distinguished element vR ∈ V (T ) of valency 1, called root
vertex, such that the tree T is oriented toward the root vertex vR.
The orientation of T determines a map

N : V (T )→ V (T ),

which maps vR to itself, and assigns to each non-root vertex v the
next vertex along the unique path from v to vR. The map N
defines a partial order on V (T ):

v1 ≺ v2 ⇔ ∃k ≥ 1, s.t.v2 = Nk(v1).

The height of any v ∈ V (T )− {vR} is the minimal integer nv
satisfying Nk

T (v) = vR for all k ≥ nv.
The height of T is h(T ) = max{nv | v ∈ V (T )}.
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Monotonic orderings on rooted trees

A monotonic ordering l on a rooted tree T ∈ RT(n) is given by an
order-preserving bijection

l : V (T )− {vR} → [n] := {1, 2, · · · , n}.

Two monotonic orderings l and l′ on T are said to be equivalent, if
there exists an automorphism σ : V (T )→ V (T ) satisfying
(1) l′(v) = l(σ(v)) for all v ∈ V (T )− {vR};
(2) σ(N(v)) = N(σ(v)) for all v ∈ V (T ).
Denote by [O(T )] the equivalent classes of monotonic orderings on
T .
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Examples of monotonic orderings

l

1

2

3 4 vR

∼

l′

2

1

3 4 vR,

l

1 2

3

4 vR

�

2

l′
1 3 4 vR
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Decoration by homotopy embedding tensor

Given a homotopy embedding tensor f : V  L, let

F : C•(L, V )→ C•(L,L[1])[−1].

For each x ∈ V •, F (x) is a finite sum of “trees” by local finiteness
constraint. We now explain how to associate a multilinear map

Θl
T : (V •)⊗n → C•(L,L)[1− n]

to a rooted tree T ∈ RT(n) of height h(T ) = k + 1 with a
monotonic ordering l. For all x1, · · · , xn ∈ V •, we define
Θl
T (x1, · · · , xn) as follows:

(1) Label each non-root vertex v ∈ V (T )− {vR} by the element
xl(v);
(2) Replace labels on tails vt ∈ Vt(T ) by

L(vt) = F (xl(vt)) ∈ C
•(L,L[1]);
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Decoration continued

(3) Replace labels on internal vertices inductively as follows:
Assume that each internal vertex vj ∈ V j

i (T ) of height j for
3 ≤ j ≤ k has been relabelled by L(vj) ∈ C•(L,L[1]). For each

internal vertex vj−1 ∈ V j−1
i (T ) of height j − 1 such that

N−1(vj−1) = {v1j , · · · , v
|vj−1|
j } ⊂ V j(T ), we relabel the vertex

vj−1 by

L(vj−1) := F (xl(vj−1))•|vj−1|

(
L(v1j ), · · · , L(v

|vj−1|
j )

)
∈ C•(L,L[1]).

(4) We define Φl
T (x1, · · · , xn) by

Θl
T (x1, · · · , xn) = F (xl(v1)) •|v1|

(
L(v12), · · · , L(v

|v1|
2 )

)
where v1 is the unique vertex of height 1 that is adjacent to the

root vertex vR, and {v12, · · · , v
|v1|
2 } = N−1(v1) ⊂ V 2(T ).
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Examples

T0 ∈ RT(1) of height 1:

vRF (x1)

T0 :

T1 ∈ RT(2) of height 2:

F (x1) F (x2) •1 F (x1) vR

T3, T4 ∈ RT(3) with height h(T3) = 3 and h(T4) = 2:

F (x1) F (x2) •1 F (x1)

F (x3) •1 (F (x2) •1 F (x1))

vR

T3 F (x1)

F (x3) •2 (F (x1), F (x2))

vRT4

F (x2)
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Linear maps from decorated trees

Note that the map Θl
T : ⊗nV • → C•(L,L[1])[−n] only depends

on the equivalence classes of the monotonic ordering. Let

[ORT(n)] = {(T, l) | T ∈ RT(n), l ∈ [O(T )]}

be the set of equivalent monotonic ordered rooted trees with n
non-root vertices. We define a multi-C•(L)-linear map

Θn : ⊗nC•(L) C
•(L, V )→ C•(L,L)[1− n]

by

Θn(x1, · · · , xn) :=
∑

(T,l)∈[ORT(n)]

Θl
T (x1, · · · , xn),

for all x1, · · · , xn ∈ V •.
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Homotopy Leibniz algebra structure by summation over
rooted trees

Theorem (Chen-Ge-X)

Let f : V  L be a finite homotopy embedding tensor. Then the
higher structure maps {µn+1}n≥1 of the Leibniz∞ C(L)-algebra
structure on C∞(L, V ) has the form

µn+1(x1, · · · , xn+1) =

n∑
k=1

∑
n1+···nk=n

∑
σ∈sh(n1,··· ,nk)

ε(σ)

k!

µVk+1(Θn1(xσ(1), · · · , xσ(n1)),Θn2(xσ(n1+1), · · · , xσ(n1+n2)),

· · · ,Θnk
(xn−nk+1, · · · , xn), xn+1),

for all x1, · · · , xn ∈ V •. Here µV• is the C•(L)-linear extension of
the structure maps of the mild L∞-module V .
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End

Thank you for your attention.
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