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Abstract

Blood circulation is considered to play an important role in heat transfer between living tissues, particularly, in

peripheral vessels wherein the temperature is, generally, closely related with blood flow rate. The aim of this paper is to

study the influence of blood flow rate on body temperature by means of a one-dimensional thermo-fluid model. This

model has been recently developed for the circulation system of the upper limb and involves arteries, capillaries, and

veins. Computed results of the blood flow, cross-sectional area, and temperature of each vessel are presented, and are

then compared with available experimental data. The influence of the bending stiffness of the vessel walls as well as that

of blood viscosity on blood pressure and temperature is analyzed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Human body temperature depends on the circulation

system as well as the various aspects of its control

mechanism. In addition to this, environmental temper-

ature also affects the physiological functions of blood

vessels and other organs. Therefore, a comprehensive

study on the relationship between blood flow rate and

body temperature is of great physiological significance.

Several experimental studies point out that the flow rate

in the peripheral vessels of the hand is closely related to

fingertip temperature: e.g., haemodynamics change

while smoking, and mental stress affects fingertip tem-

perature [1,2]. It is also reported that there exists a dif-

ference in thermal regulation ability between men and

women due to a difference in their ability to control the
* Corresponding author. Tel.: +81-48-467-4536; fax: +81-48-

467-4532.

E-mail addresses: heying@riken.jp, heyingshao@hotmail.

com (Y. He).

0017-9310/$ - see front matter � 2004 Elsevier Ltd. All rights reserv

doi:10.1016/j.ijheatmasstransfer.2003.10.041
blood flow rate [3]. Additionally, aging may result in a

decrease in thermoregulatory ability due to the variation

in vessel wall properties and blood flow rate [4]. The

one-dimensional fluid dynamic model in an elastic tube

model of blood vessels is frequently applied to analyze

blood pressure and flow waveform in arteries. Kitawaki

et al. [5] proposed a one-dimensional model to investi-

gate the effect of unsteady viscosity in a single tube,

when the tube law was used to express the viscoelasticity

of the arterial wall. The scheme (Jameson–Baker) has

fourth-order accuracy in space and time. The simulated

results were in agreement with the measurements when

compared to the experimental results obtained using the

silicone rubber tube. Although their work is of signifi-

cance in investigating the viscoelasticity of arterial

blood, the high-order accuracy scheme may limit its

application to the computation of systemic blood cir-

culation.

Many other models have also been proposed to

analyze the pressure and flow waveforms for the circu-

lation system of the entire human body from the

viewpoint of clinical applications. Among them, the
ed.
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Nomenclature

A cross-sectional area of blood vessel (m2)

As surface area of blood vessel per unit (m)

B, C parameters defined in Eqs. (8) and (9)

c specific heat (J/kgK)

E Young’s modulus (kg/s2 m)

F friction term defined in Eq. (10)

G, GF parameters defined in Eq. (19)

h wall thickness of blood vessel (m)

hves heat transfer coefficient (W/m2 K)

kp proportional factor in Eq. (5) (Pa)

k1, k3 proportional parameters in Eq. (6) (kg/s2 m)

k2 proportional parameter in Eq. (6) (m�1)

L length of blood vessel (m)

N total number of vessels included in the

equivalent blood vessel

p pressure (Pa)

q flow rate (m3/s)

r radius of blood vessel (m), r direction in

cylindrical coordinate (m)

S total cross-sectional area of the equivalent

blood vessel (m2)

T temperature (K)

t time (s)

u velocity in x direction (m/s)

x axial length coordinate (m)

d thickness of the boundary layer (m)

k thermal conductivity (W/mK)

m kinematic viscosity (m2/s)

h h direction in cylindrical coordinate

q density (kg/m3)

x blood perfusion rate (m3/s/m3)

w radial frequency (rad/s)

Dt time increment (s)

Dx spatial increment (m)

Subscripts

0 initial state, initial point in the daughter or

east vessel

b blood

bot bottom

d1, d2 daughter vessels

e east

in parameter at inlet

i, j, k spatial indices

m the last point in the mother or west vessel

met metabolic

p parent vessel

t tissue

top top

tmn mean tissue temperature at position x
w west

r r direction
h h direction

Superscript

n, nþ 1 time step

2736 Y. He et al. / International Journal of Heat and Mass Transfer 47 (2004) 2735–2745
structured-tree model of systemic arteries by Olufsen

et al. [6] may be the latest one. They created a systemic

artery tree based on magnetic resonance measurements

and statistical relationships. The blood flow in the larger

arteries is modeled by using the one-dimensional equa-

tions derived from the axisymmetric Navier–Stokes

equations for flow in an elastic tube. For the blood flow

in small arteries and arterioles, a linearized governing

equation was introduced to calculate the root impedance

of the structured arterial tree. The blood flow and

pressure are computed as functions of time and axial

distance within each of the arteries. The computed blood

flow and pressure in each artery showed a satisfactory

agreement with the magnetic resonance measurements.

On the other hand, various models have been devel-

oped to simulate the human blood circulation system

(arteries, capillaries, and veins). For example, Zagzoule

and Marc-Vergnes [7] presented a global mathematical

model of cerebral circulation in humans. Li and Cheng

[8] explored the global response of pulmonary circula-

tion using a nonlinear model, and Sheng et al. [9]

developed a computational model to investigate the
behavior of the entire human systemic circulation. The

distinguishing characteristic of their work is that they

considered the entire circulation system in their models.

However, they used the traditional mathematical gov-

erning equation wherein the axisymmetric and no-slip

conditions were not considered. In this regard, Olufsen

et al. [6] made an improvement in their study.

With respect to the mathematical model for bio-heat

transfer, Keller and Seiler [10,11] have presented a

model that considers the heat transfer among separate

tissues, arteries, and venous parts, and they derived

steady-state energy equations for the arteries, veins, and

tissues. However, the variations in blood vessels are not

considered.

Although the variations in blood flow, blood pres-

sure, and temperature are investigated separately in the

above models, the relationships between them are not

studied. Craciunescu and Clegg [12] used the coupled

Navier–Stokes and energy equations to investigate the

effect of blood velocity pulsations on bio-heat transfer.

Although they obtained important results regarding the

relationship between the pulsating axial velocity and
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Fig. 1. A schematic diagram of the arterial and venous systems

of the human upper limb.
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temperature profile and the effect of the Womersley

number variation, they did not consider the variations

in the vessel tube and the global effect of blood flow.

In the authors’ previous study [13], a two-dimensional,

finite element thermo-fluid model was developed to

investigate the effect of blood flow on the temperature

distribution of a finger. The finger consists of counter-

current major arterial and venous blood vessels, bone,

tendon, and skin. We assumed that the blood vessels were

rigid, and the basic Navier–Stokes equations and the

energy equation were employed to describe the behavior

of the blood flow and the solid tissues. The computed

results showed that the skin temperature decreased with

decreasing blood flow velocity. However, the degree of

temperature variation with differing blood flow velocity

was quite minimal, implying that the effect of the cross-

sectional area of a blood vessel should be used in inves-

tigating the relationship between the blood flow rate and

temperature in the peripheral circulation system. The

development of a one-dimensional thermo-fluid model of

a blood vessel that incorporates the effects of blood flow

rate, transmural pressure, cross-sectional area, and elas-

ticity of the blood vessel would, therefore, be valuable.

This paper presents a thermo-fluid model of blood

circulation in the upper limb of humans. Not only are

the blood flow rates and pressures in larger arteries

considered, but the flow rates and pressures in arterioles,

capillaries, and veins are also included. Based on the

model by Olufsen et al. [6], the fluid dynamic model is

developed, where the properties of the vessel wall in the

arteries, microcirculation, and veins are assumed to vary

in different ways. The energy equation in compliant

vessels is developed based on Keller and Seiler’s ana-

lytical method.

The two-step Lax-Wendroff method is employed in

computing the flow rate and cross-sectional area, and

the upwind scheme is used to transform the energy

equation into an algebraic form. The blood pressure,

flow rate, and temperature are obtained for different

vessels. The blood pressure signals are in favorable

agreement with available experimental data [14]. The

predicted temperature shows a moderate changing ten-

dency from arteries to veins. The influence of the

bending stiffness of arteries as well as that of blood

viscosity is also investigated.
2. Morphology of the blood circulation in the upper limb

Fig. 1 shows the schematic diagram of an arterial and

venous system of the human upper limb. The circulation

begins from the ascending aorta (No. 1). The bifurca-

tions of the vessels are based on anatomic knowledge.

Following the ascending aorta, are the anonyma artery,

the subclavian artery, and the two ulnar arteries (The

ulnar arteries are before and after the bifurcation of the
interosseous artery), numbered as 2, 3, 4, and 5 respec-

tively. There are many kinds of bifurcations in palmar

arteries. Here, we assumed that the arteries in the pal-

mar side have the same kind of bifurcation as the

arteries in the dorsal side, and that they are formed only

from the ulnar artery (Nos. 6–23). About 27% of the

general population has this kind of structure [15].

The microcirculation includes terminal arteries,

arterioles, capillaries, venules, terminal veins, and pal-

mar veins (Nos. 24–29). In this component, each equiv-

alent vessel is made up of a number of vessels having the

same diameter and length.

The vessels of Nos. 30–34 represent the returning

veins in the upper limb. They are the basilic vein, the

brachial vein, the subclavian vein, the anonyma vein,

and the superior vena cava, respectively.

The diameters and lengths of the vessels are defined

on the basis of statistical data in previous studies

[6,7,9,16], and the anatomic atlas [15]. The arterial ves-

sels are assumed to taper exponentially along the axial

direction [6], that is,

r0ðxÞ ¼ rtop exp log
rbot
rtop

� �
x
L

� �
: ð1Þ



Table 1

Physiological data of the arteries for the thermo-fluid model

Segment number Vessels Length (m) Proximal radius (m) Distal radius (m) Number of vessels

1 Ascending aorta 0.07 1.25e)2 1.14e)2 1

2 Anonyma artery 0.035 0.7e)2 0.7e)2 1

3 Subclavian artery 0.43 0.44e)2 0.28e)2 1

4 Ulnar artery 0.067 0.215e)2 0.215e)2 1

5 Ulnar artery 0.171 0.203e)2 0.184e)2 1

6 Proper palmar digital artery 0.14 0.055e)2 0.045e)2 1

7 Superficial palmar arch 0.01 0.18e)2 0.18e)2 1

8 Common palmar digital artery 0.08 0.68e)2 0.68e)2 1

9 Proper palmar digital artery 0.08 0.05e)2 0.05e)2 1

10 Proper palmar digital artery 0.08 0.05e)2 0.05e)2 1

11 Superficial palmar arch 0.006 0.16e)2 0.16e)2 1

12 Common palmar digital artery 0.08 0.068e)2 0.068e)2 1

13 Proper palmar digital artery 0.08 0.05e)2 0.05e)2 1

14 Proper palmar digital artery 0.08 0.05e)2 0.05e)2 1

15 Superficial palmar arch 0.006 0.144e)2 0.144e)2 1

16 Common palmar digital artery 0.08 0.068e)2 0.068e)2 1

17 Proper palmar digital artery 0.08 0.05e)2 0.05e)2 1

18 Proper palmar digital artery 0.08 0.05e)2 0.05e)2 1

19 Common palmar digital artery 0.006 0.13e)2 0.13e)2 1

20 Proper palmar digital artery 0.15 0.06e)2 0.05e)2 1

21 Principal artery of thumb 0.02 0.1e)2 0.1e)2 1

22 Proper palmar digital artery 0.06 0.066e)2 0.066e)2 1

23 Proper palmar digital artery 0.06 0.066e)2 0.066e)2 1

Table 2

Physiological data of the capillaries and veins for the thermo-fluid model

Segment number Vessels Length (m) Area (m2) Number of vessels

24 Terminal arteries 0.08 0.063e)4 32

25 Arterioles 0.018 0.75e)4 2.4e+5

26 Capillaries 0.002 7.5e)4 1.0e+6

27 Venules 0.02 2.55e)4 0.36e+6

28 Terminal veins 0.08 0.42e)4 36

29 Dorsal venous network of hand 0.08 0.43e)4 2

30 Ulnar veins 0.3 1e)4 2

31 Brachial vein 0.15 0.85e)4 1

32 Subclavian vein 0.2 0.9e)4 1

33 Anonyma vein 0.065 2.5e)4 1

34 Superior vena cava 0.045 4.5e)4 1
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The diameters of capillaries and veins are assumed to

be constant along the axial direction. The morpho-

logical data used in this model are listed in Tables 1

and 2.
3. Governing equations

Predicting the temperature of blood flowing in a

compliant vessel requires four governing equations:

two to ensure the conservation of mass and the con-

servation of momentum, one to obey the law of elas-

ticity, and one to satisfy the conservation of energy.
The continuity and momentum equations may be

respectively defined as:

oA
ot

þ oq
ox

¼ 0; ð2Þ

oq
ot

þ o

ox
q2

A

� �
þ A

q
oP
ox

¼ � 2pmr
d

q
A
: ð3Þ

The state equation in the arteries is written as,

P ðx; tÞ � P0 ¼
4

3

Eh
r0

1

 
�

ffiffiffiffiffi
A0

A

r !
: ð4Þ



x direction
Heat exchange between artery and 
tissue

x
enthalpy  

x + dx  
enthalpy

Arterial 
blood

Energy transfered from artery to capillaries

Fig. 2. A schematic view of heat exchange between an artery

element and the surroundings.
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waiting waiting 
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Fig. 3. The coupling method for the blood circulation and

thermal models.
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The state equation in microcirculation and veins may be

expressed as [17],

p � p0 ¼ kp 1

"
� A

A0

� ��3=2
#
; ð5Þ

where kp is the coefficient proportional to the bending

stiffness of the tube wall. We assumed kp to be constant

in all the microcirculation vessels and veins. The value of

kp is taken as 0.5· 106 Pa. The relationship between the

Young’s modulus, vessel radius, and wall thickness is

expressed empirically, such as,

Eh
r0

¼ k1 expðk2r0Þ þ k3; ð6Þ

where k1 ¼ 2:00� 106 kg/s2 m, k2 ¼ �2:253� 103 m�1,

and k3 ¼ 8:65� 104 kg/s2 m.

The momentum equation can be expressed as a

function of q and A by substituting the state Eq. (4) into

Eq. (3) such that,

oq
ot

þ o

ox
q2

A

�
þ B

�
¼ � 2

ffiffiffi
p

p
m

d
qffiffiffi
A

p þ C: ð7Þ

For the blood flow in the arteries, parameters B and C
can be written as,

B ¼
ffiffiffiffiffiffi
pA

p 1

q
4

3
Eh;

C ¼
ffiffiffiffiffiffi
pA

p 8

3

1

q
o

ox
ðEhÞ � 4

3

A
q

o

ox
Eh
r0

� �
:

ð8Þ

For the blood flow in microcirculation and veins, they

are expressed as,

B ¼ � 3

q
kp

ffiffiffiffiffi
A3
0

A

r
;

C ¼ 0:

ð9Þ

Note that the friction term for the equivalent tube has

the following form:

F ¼ 2
ffiffiffi
p

p
m

d
qffiffiffiffiffiffiffiffiffi
S=N

p ; ð10Þ

where S is the total cross-sectional area of the equivalent

tube, and N is the total number of vessels.

The energy equation for the elastic vessel is derived

based on Keller and Seiler’s analytical method [10,11].

As shown in Fig. 2, the energy balance equation for the

arterial element may be written as,

oðqbAcbTbÞ
ot

¼ � oðqbAucbTbÞ
ox

� xqbcbATb

� hvesAsðTb � TtmnÞ: ð11Þ

Since the density and specific heat are assumed to be

constant, and the blood flow rate can be expressed as

q ¼ Au, Eq. (10) can thus be rewritten in the following

non-conservative form, as,
oTb
ot

þ q
A
oTb
ox

¼ �xTb �
hvesAs

qbcbA
ðTb � TtmnÞ: ð12Þ

Note that, unlike in Keller and Seiler’s model, the cross-

sectional area varies with time and space. Eq. (12) re-

veals that the energy change in unit time within unit

distance is equal to the energy transferred from the ar-

tery to the tissues and capillaries. When Eq. (12) is used

to compute the blood temperature in capillaries and

veins, the first term on the right hand side becomes 0 and

xTb.
With respect to the mean tissue temperatures Ttmn,

here, we assumed that the mean tissue temperature

throughout the upper limb, except the part of the finger

remained constant at 35 �C. The tissue temperature in

the finger was computed from Pennes’ bioheat equation

[18,19], which was written as,

qtct
oTt
ot

¼ 1

r
o

or
rkr

oTt
or

� �
þ 1

r
o

oh
kh
r
oTt
oh

� �
þ qmet

þ xqbcbðTb � TtÞ: ð13Þ

Hence, by coupling the blood-flow model with the

thermal model of solid tissues, the arterial, venuous,

capillary, and mean tissue temperature can be obtained.

Fig. 3 shows the method of transferring data between
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the blood circulation model and the thermal model.

Initially, the blood circulation model provides the blood

flow rate of the capillaries, as well as the arterial, ven-

uous, and capillary temperature to the thermal model.

Then, the averaged tissue temperature, which is needed

in the blood circulation model, is specified by the ther-

mal model. These steps are repeated until the steady

state is attained.
4. Numerical method

The flow rate at an inlet to the ascending aorta is

specified in the form of a physiological volumetric flow

rate, which is expressed as [20,21],

qin ¼ qmaxð0:251þ 0:290ðcosUþ 0:97 cos 2U

þ 0:47 cos 3Uþ 0:14 cos 4UÞÞ

U ¼ wt �
ffiffiffiffi
w
p

r
: ð14Þ

The maximum flow rate qmax is defined as in Ref. [6].

The output pressure at the superior vena cava is taken

to be constant and assumed to be 5 mmHg (660 Pa).

As the flow, pressure, and temperature are continuous

at the bifurcations of the blood vessels, the inter-

nal boundary conditions at the bifurcation can be

expressed as,

qp ¼ qd1 þ qd2;

pp ¼ pd1 ¼ pd2;

Tp ¼ Td1 ¼ Td2:

ð15Þ

With respect to the junction between two equivalent

tubes, the boundary conditions are given as,

qw ¼ qe; pw ¼ pe; Tw ¼ Te: ð16Þ

Inflow blood temperature at the ascending aorta is

assumed to be 37 �C.
Eqs. (2) and (7) are transformed into an algebraic

form using the two-step Lax-Wendroff method. The

differencing equation has second-order accuracy in space

and time.

Firstly, the flow rate q and cross-sectional area A at

the time nþ 1=2 are computed such as,

Anþ1=2
j ¼ 1

2
Anþ1=2
jþ1=2

�
þ Anþ1=2

j�1=2

�
� Dt
2Dx

qnjþ1=2

�
� qnj�1=2

�
;

ð17Þ

qnþ1=2
j ¼ 1

2
qnjþ1=2

�
þ qnj�1=2

�
� Dt
2Dx

Gn
jþ1=2

�
� Gn

j�1=2

�

þ Dt
2

1

2
Gn

Fjþ1=2

�
þ Gn

Fj�1=2

�
; ð18Þ
where

j ¼ iþ 1=2 or i� 1=2; G ¼ q2=Aþ B;

GF ¼ � 2
ffiffiffi
p

p
m

d
qffiffiffi
A

p þ C:
ð19Þ

Secondly, the flow rate and the cross-sectional area at

time nþ 1 are computed as,

Anþ1
i ¼ An

i �
Dt
Dx

qnþ1=2
iþ1=2

�
� qnþ1=2

i�1=2

�
; ð20Þ

qnþ1
i ¼ qni �

Dt
Dx

Gnþ1=2
iþ1=2

�
�Gnþ1=2

i�1=2

�
þDt

2
Gnþ1=2

Fiþ1=2

�
þGnþ1=2

Fi�1=2

�
:

ð21Þ

The cross-sectional area at the time nþ 1=2 and

nþ 1 for the inlet can be extrapolated using Eqs. (17)

and (20).

Solutions of the flow rates and the cross-sectional

areas for the outlet and the internal joint points are not

as direct as those at inside points, because the q and A
are explicitly unknown. With respect to the flow rates

and cross-sectional areas at the bifurcations, the discrete

equations of the continuity equation at the point

m� 1=2 for the parent vessel, and at the point 1=2 for

the daughter vessel are used [7].

Anþ1
m�1

þAnþ1
m

2
� An

m�1
þAn

m

2

Dt
þ qnþ1

m � qnþ1
m�1

Dx
¼ 0; ð22Þ

Anþ1
0

þAnþ1
1

2
� An

0
þAn

1

2

Dt
þ qnþ1

0 � qnþ1
1

Dx
¼ 0: ð23Þ

Substituting Eqs. (22) and (23) into the boundary con-

ditions (Eqs. (15) and (16)) results in a set of nonlinear

equations which may be solved using Newton’s method.

A similar method may also be used in computing the

flow rates and the cross-sectional areas at other joint

points.

The blood temperature can be obtained by the dis-

cretization of Eq. (12), in which the upwind scheme is

introduced for the convective term, as:

T nþ1
bi

¼ T n
bi
� Dt
Dx

qni
An
i

T n
bk

�
� T n

bk�1

�
� DtxT n

bi

� Dt
qbcb

hvesAn
si

An
i

T n
bi

�
� Ttmn

�
; ð24Þ

where

k ¼ i if q=A > 0;
iþ 1 if q=A < 0:

�
ð25Þ

With regard to the temperature at a new step at the last

point of a single vessel, when the reverse flow appears,

we assume that the temperature at a ghost point mþ 1

is equal to the temperature at point m, such that,
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T nþ1
bm

¼ T n
bm

� DtxT n
bm

� Dt
qbcb

hvesAn
sm

An
m

T n
bm

�
� Ttmn

�
if q=A < 0: ð26Þ

The stability criterion for the linearized equations is,

Dt6
Dx
c
; ð27Þ

where c is the wave propagation velocity defined as [6],

c ¼ q
A

					 �

ffiffiffiffiffiffiffiffiffiffi
A
q
op
oA

s 					: ð28Þ

Accordingly, Dx is taken as larger than 1· 10�3 m, and

Dt is taken as less than 1 · 10�5 s in the present model.

The flow chart of the computation is depicted in Fig. 4.
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Table 3

Parameters used in the numerical analysis

m (m2/s) 4.0· 10�6

qb (kg/m3) 993

cb (J kg/K) 3300

hart (W/m2 K) 1800

x (m3 blood/s/m3 tissue) 0.0005–0.0008

0 5 10

0

50

100

150

No. 1

No. 10

No. 26

Pr
es

su
re

 (m
m

H
g)

Capillaries

Proper palmar digital artery

Ascending aorta

No. 30 Ulnar vein

One period T = 0.8 s

Fig. 5. Computed pressure signals in different blood vessels.
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pressures in the aorta, arteries, capillaries, and veins are

100, 90, 30–20, and 15–10 mmHg respectively.)

Fig. 6 shows the computed blood velocities in four

different vessels (Nos. 1, 10, 26 and 30). From the

ascending aorta to the capillaries, the pulsatile feature

tends to be damped due to viscous friction, but is

gradually enhanced from the capillaries to the returning

veins. The blood velocities in the proper palmar artery,

measured by the Bi-directional Doppler DVM-4300

(HADECO) are plotted for the comparison with the

predicted velocities in vessel No. 10. It is observed that

the computed results are larger than the measurements.

This is due to the fact that we only considered the main

bifurcations in the peripheral region; this resulted in

higher flow rates in that peripheral region. There is little

available data on blood velocity in capillaries. We

plotted the computational data on cerebral capillaries

obtained by Zagzoule and Marc-Vergnes [7]. Compared

to their data, the velocities computed by the present

model are lower. However, the computed mean velocity

(0.17 cm/s) is higher than the data provided in Ref. [14]

(< 0.1 cm/s). The computed average velocities from the

venules to the vena cava are between 0.5–13 cm/s, which

is a reasonable range compared to the data in Ref. [14]

(0.3–30 cm/s).

Correspondingly, the temporal variations of the

temperature in the steady state for the same vessels are

shown in Fig. 7. In the arteries, the temperature varies
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with the pulsation of the blood flow corresponding to

the heart beat period. With a decrease in the arterial

diameters, there is a decrease in the temperature pul-

sation varying approximately from 0.06 �C in the

ascending aorta, to 0.01 �C in the proper palmar artery.

The temperature pulsating is not observed in the capil-

laries and veins. Fig. 7b shows the average tissue tem-

perature of the finger, computed by coupling the thermal

model [19]. An extremely small pulsating variation can

be observed in the average tissue temperature of the

finger.

Fig. 8 shows the average blood temperature (a) and

blood flow rate (b, c) distribution in the circulation

system of the human upper limb. The horizontal axis

depicts the number of vessels shown in Fig. 1. The sta-

tistical data on the blood flow temperature [22] are also

plotted. We can see that the computed average blood

temperature shows the same tendency as the statistical

data. It is noted that the temperatures in the peripheral

artery (No. 10) and veins (No. 27, 30) have larger

deviations compared with the statistical data. It is con-

sidered that this is due to the effect of the perfusion rate

of blood flow, x. It is not easy to determine the local

perfusion rate of blood flow. In this model, for larger

arteries, veins, and capillaries (Nos. 1–5, 31–34, and 26),

the perfusion rates are set as 0 (there is no blood flow

perfused to/from capillaries), and a constant perfusion

rate is considered for the other blood vessels. Thus, the
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Fig. 8. Average blood temperature distribution (a) and blood

flow rate distribution (b, c) in the circulation system of the

human upper limb.
blood perfusion rate can significantly affect the temper-

ature in these vessels.

The average blood flow rates in different vessels are

plotted in Fig. 8b and c. Fig. 8c shows the blood flow

rates in peripheral vessels. It is observed that the blood

temperatures are closely related to the variations in the

blood flow rate, especially in the peripheral region.

In the present model, two parameters are introduced

to represent vessel wall stiffness. The term Eh=r0 ex-

presses the stiffness of the tube wall in the arteries, and

kp represents the stiffness of the tube wall in the arteri-

oles, capillaries, and veins. Fig. 9a and b show the

temperature profile and pressure distribution when the

bending stiffness of the arterial wall varies. It can be seen

that the diastolic arterial pressure tends to increase, but

the systolic arterial pressure decreases as the wall of the

arterial vessel becomes stiffer. However, the temperature

variation is minimal, and the arterial and venous tem-

peratures are only slightly higher than those in a normal

physiological situation.

The influence of blood viscosity on pressure and

temperature was investigated. In the present model, we

assumed that the fluid kinematic viscosity is constant in

all the vessels. This approximation may be reasonable

with respect to most blood vessels. The temperature and

pressure profiles with varying blood viscosity are plotted

in Fig. 10a and b. The results show that, as viscosity

increases, the highest and lowest pressure also increases

significantly, and the blood temperature in the periphe-

ral arteries decreases accordingly.

Smoking is considered to increase blood viscosity

[23]. The predicted tendency of the pressure and blood

flow is in agreement with experimental studies carried

out on the influence of smoking [2].
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Although the present model cannot yet predict the ef-

fects of wall stiffness and viscosity with certainty, the

investigation provides a good beginning.

6. Concluding remarks

A one-dimensional thermo-fluid model of blood cir-

culation in the upper limb of humans has been devel-

oped. The hemodynamic model of arteries, capillaries,

and veins is developed, based on the structured-tree

arterial model [6]. In the energy equation, not only the

blood flow rate, but also the cross-sectional area of the

blood vessel is included. Hence, the present model can

predict the influence of the blood flow rate, and the

blood pressure as well as that of the cross-sectional

area on the blood temperature.

The computed results of blood flow in four different

vessels obtained using the statistical morphological data,

are presented and discussed. The comparison with the

limited measurements and the available data in the ref-

erences shows that the computed results are, basically, in

agreement with this data. The influence of the stiffness of

the vessel wall as well as that of the viscosity of the

blood is discussed. With the present model, we have

conducted a series of experimental and theoretical

studies on the relationship between the blood flow rate,

the blood pressure, and the blood temperature.
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