

Reheating With an Evolving Equation of State

Jie-Wen Chen, Yu-Bin Li, Yi-Fu Cai, Yang Zhang

Introduction

Reheating is an epoch for the particle production after the inflation, during which the inflaton oscillates around its vacuum. Hence the equation of state (EoS) during reheating may evolve with time rather than be a constant.

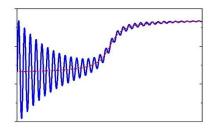
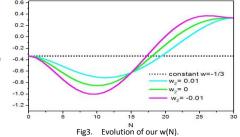
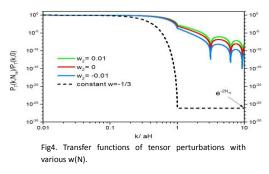
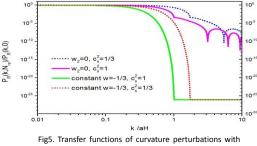



Fig2. Illustration of the EoS in general models.


Cosmography


production.

We use the cosmographic method [1] to give a model independent description of the EoS during reheating with respect to the e-folding number N (w_2 is a parameter here).

$$w(N) = \frac{1}{3} + \sum_{n=1}^{\infty} w_n (N - N_r)^n$$

Transfer Functions

various w(N) and various sound speed c_s .

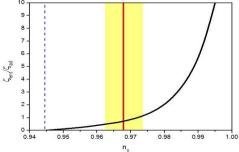


Fig6: Blue: Adiabatic limit. Black: Entropy perturbation involved. Red: $n_c = 0.968$. The entropy perturbation contributions to the curvature perturbations with w = 1/3

Entropy Perturbations In Reheating

Entropy perturbation provides a larger index n_s and a lower tensor-to-scalar ratio r, hence somehow saves the φ^4 model from the CMB constrains.[2][3]

In the Future

With a joint measurement of both the tensor and scalar perturbation on small scales, we can constrain the evolutions of the sound speed (Gauss beam, PBH).

Moncy V. John, Astrophys. J. 614 (2004) 1

[1] Moncy V. John, Astrophys. J. 014 (2004) 1
[2] H. B. Moghaddam, et al Int. J. Mod. Phys. D24 (2015) no.11, 1550082
[3] L. Dai, et al Phys. Rev. Lett. **113**, 041302 (2014).