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The observed galaxy distribution  
of the nearby universe

SDSS redshift survey

4 billion lys

Cosmic web 
 can be described 
statistically 



What is the large scale structure?
Large scale structure  
 Intrinsic inhomogeneities 

 Not illusion of observation 

  beyond randomness 
 Not fluke of randomness 

 At >~ Mpc scale 
 Not internal structure of
 galaxies 
 Not distribution at specific
 region (since we do not know
 the initial condition) 
 Ensemble average > volume
 average



Fundamental 
physics

LSS

Dark 
matter Baryons 

The large scale structure of the universe 

Precision modeling 
Precision measurement 

Galaxy clustering weak 
lensing clusters, void, SZ, 
ISW, peculiar velocities, etc. 



The large scale structure of the universe
Part 1:  
•  Deciphering the large scale structure (LSS) 

•  With statistics and physics 

Part 2:  
•  Tracers of LSS 

•  Broadband power spectrum, BAO, redshift distortion,
 weak lensing, SZ effect, etc. 

Part 3 
•  Synergies of LSS tracers 

•  Probe DM, DE, MG, neutrino, etc. 
•  Reduce statistical errors 
•  Control systematic errors



How to describe the large scale structure?

With statistics! 
 N-point correlation
 functions and their
 Fourier transforms 
–  2-point correlation– power

 spectrum 

 N-point joint PDF 
 Peak analysis 
 Topological descriptions:
 Minkowski functionals
 (and genus in particular),
 etc.  



Two point correlation function
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P12 = (n̄1d
3x1)(n̄2d

3x2) [1 + ξ(r)]

 P12: pairs of galaxies 
 Correlation function.:
 what beyond average.
 Depends on the pair
 separation vector r. 

 
 In real measurement,
 we have to eliminate
 observational effect



Correlation function: correlated feild

P12 = (n̄1d
3x1)(n̄2d

3x2) [1 + ξ(r)]

δ(�x) ≡ n(�x)− 〈n〉
〈n〉

ξ(�r) ≡ 〈δ(�x)δ(�x+ �r)〉�x

The overdensity  
field



The observed galaxy correlation function
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Smaller scale measurement: 
requires high number denisty

Larger scale measurement: 
requires large volume

The z=0 correlation function: 
•  a featureless power-law 
•  Correlation length: ~5 Mpc/h 

Nonlinear              Linear regime 



Features in the galaxy correlation function
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Type dependence.  
e g. Zehavi+, 2004

Deviation from power-law 
e g. Zehavi+, 2003

e g. Zehavi+, 2004

ξ(r) �
(

r

r0

)∼−1.8

Bump at 100 Mpc/h 
e g. Eisenstein+, 2005
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Closer look at the correlation function

P12 = (n̄1d
3x1)(n̄2d

3x2) [1 + ξ(r)]

P12(�x1, �x2) = (n̄1d
3x1)(n̄d

3x2)[1 + ξ(�r ≡ �x2 − �x1, �x1)]

ξ(�r ≡ �x2 − �x1, �x1) → ξ(�r ≡ �x2 − �x1)
Our universe should be homogeneous

Our universe should be isotropic

ξ(�r ≡ �x2 − �x1) → ξ(r)



More features: anisotropies

Observer

π
σ

Line of sight

e.g. Peacock+, 2001,  
with 141,000 2dF galaxies

�r

ξ(�r) = ξ(σ, π)

�x1

�x2



More features: anisotropies

e.g. Peacock+, 2001,  
with 141,000 2dF galaxies 2010+: larger scale coverage, higher accuracy 

e.g. Li+, 2016, with 0.5M BOSS galaxies

ξ(�r) = ξ(σ, π)



Some anisotropies are so prominent  
that we can simply see by eyes in 1980s!

Observer



Correlation function –> Power spectrum

δ(�k) ≡
∫

d3xδ(�x)ei
�k·�x

〈δ(�k)δ(�k′
)〉 = (2π)3δ3D(�k + �k

′
)P (�k)

P (�k) =

∫
d3rξ(�r)ei

�k·�r

δ(�x) ≡ n(�x)− 〈n〉
〈n〉

homogeneity



Rich features in the power spectrum

Tegmark



Rich features in the power spectrum
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P (k) ≡ P (|�k)|) P (�k)



Even more features:  
“abnormal” correlation at horizon scales
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Fig. 1.— Galaxy redshift distribution from applying our 17 <
r < 21 magnitude limit to the CNOC2 luminosity function and
quasar redshift distribution inferred from quasar photometric red-
shifts (solid lines). The fitted redshift distributions from Equa-
tion 8 are shown with dashed lines. In all cases, the amplitude
scaling is arbitrary.
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Separate by ~3000 Mpc/h

Non-vanishing correlation!  
First detected by Scranton+, 
2005 at ~10sigma and then by 
other data



Even more features:  
“abnormal” correlation at horizon scales

Non-vanishing correlation detected at ~4sigma, 
by NVSS/SDSS/WISE +WMAP/Planck 

Separate by ~6000 Mpc/h
Galaxies at z~1 CMB at z~1100



Understanding LSS with physics

Evolution under 
laws of physics 

LSS we observe at late time  

Initial conditions set at early time 



Understanding LSS with physics

Initial fluctuations

P (k) ∝ k�0.96

Fluctuations at z ∼ 100

P (k) ∝ k0.96 at k → 0

P (k) ∝ k0.96−4 at k → ∞
Linear perturbation 
Boltzmann equation

•  High order perturbation theory 
•  Halo model, Effective field 

theory of LSS 

•  N-body simulations 
•  Hydrodynamic simulations 
•  Semi-analytical models 
•  Halo occupation distribution, 

Conditional luminosity function
Movies of simulation: 
The Millennium  
The Elucid project



Complexities to understand LSS

 Task: evolve the universe from z~100 to z~0 
 Complexities 

–  Dark matter, baryons, photons, neutrinos, dark energy 
–  Gravity: nonlinear evolution at ~10 Mpc/h under

 gravity  GR effect at >~103 Mpc/h 
–  Non-gravitational forces: gastrophysics, galaxy

 formation and feedback 
–  Mapping underlying matter/energy  into observable

 signals (galaxy distribution, galaxies shapes, secondary
 CMB, etc.) 

–  Eliminating observational contaminations in the desired
 cosmological signals 



An example of  simplified treatment
 Set neutrinos=0, photons=0.   
 Neglect gastrophysics of baryons. Then only
 gravity. Baryons behave the same as DM 
 Assume smooth dark energy.  Then DE only
 affects the expansion. Assume DE=Lambda 
 Assume flatness 

 
The universe to evolve 
 Dark matter (=DM+baryons), Lambda 
 Flat 
  gravity 



Two steps

 Step 1: evolution of the dark matter field 
–  Large scales: linear perturbation (GR effect can be

 included too) 
–  Intermediate scales: spherical collapse 
–  Small scales (and actually all scales):  N-body

 simulations 

 Step 2: identify virialized regions (dark matter
 halos) and put galaxies in 
–  Halo mass function, halo bias/spatial clustering 
–  Halo occupation distribution/Conditional luminosity

 function (the number of galaxies as a function of halo
 mass)
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Nonlinear differential equation

Perturb around the background

Neglect high order perturbation terms 

Step 1 linear evolution

ds2 = −(1 + 2ψ)dt2 + a2(1 + 2φ)
∑
i

dxi,2

Tμν = ρUμUν (P = 0)

ρ = ρ̄(1 + δ)



Step 1 linear evolution: Lambda: sub-horizon

H2(a) = H2
0 (Ωma−3 +ΩΛ)

d2δ

da2
+

dδ

da

(
dH/da

H
+

3

a

)
− 3

2

H2
0Ωm

H2a3
δ

a2
= 0

δ(�x, a) ∝
[
H

∫ a

0

da

H3a3

]
δ(�x, a = 0)

Carroll, Press & Turner (1992)

Linear growth factor

Heath 1977



From sub-horizon to super-horizon

GR effect

GR effect

ZPJ 2011

ðr2 þ 3KÞ	� 3a2H2ð	0aþ	Þ ¼ 4�G ��ma
2�m;
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�0
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z=0

z=1

z=2
z=3
z=4
z=5

linear
growth

non-linear
evolution

From linear to nonlinear scales

Credit: Percival’s lectures

Linear Nonlinear

high order pt simulations

N-body 
simulations today 
10-104 Mpc/h 
109-12particles 

~102-4 cpus 
days-months 

Δ2(k) ≡ k3P (k)

2π2

Halo model, halofit, EFT, etc.



Can it explain the observed galaxy clustering?
 Some but not all!

1 10 100
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Type dependence.  
e g. Zehavi+, 2004

Deviation from power-law 
e g. Zehavi+, 2003

Bump at 100 Mpc/h 
e g. Eisenstein+, 2005e g. Zehavi+, 2004

ξ(r) �
(
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r0

)∼−1.8



z=0

z=1

z=2
z=3
z=4
z=5

linear
growth

non-linear
evolution

The power-law correlation at ~1 Mpc/h

Δ2(k) ≡ k3P (k)

2π2
∼ ξ

(
r ∼ 1

k

) ⇒ ξ(r) ∼ r∼−1.8

e g. Zehavi+, 2004

ξ(r) �
(

r

r0

)∼−1

Deviation from power-law 
e g. Zehavi+, 2003



What about the bump at ~100 Mpc/h? 
Baryon acoustic oscillations

Bump at 100 Mpc/h 
e g. Eisenstein+, 2005

Sound horizon at decoupling

cs � c√
3

varying the 
baryon fraction 



A missing ingredient

Type dependence.  
e g. Zehavi+, 2004

Larger DM halos 
More/larger galaxies

Smaller DM halos 
Less/smaller galaxies



Bias

Jing 1998

ξhalo = b2(M)ξDM

Type dependence.  
e g. Zehavi+, 2004



z=0

z=1

z=2
z=3
z=4
z=5

linear
growth

non-linear
evolution

Rich cosmological information

GR effect 
PNG

Neutrinos, DM

BAO, RSD-> DE, gravity

Cosmic magnification (weak lensing)

Large scale                                                       small scale


