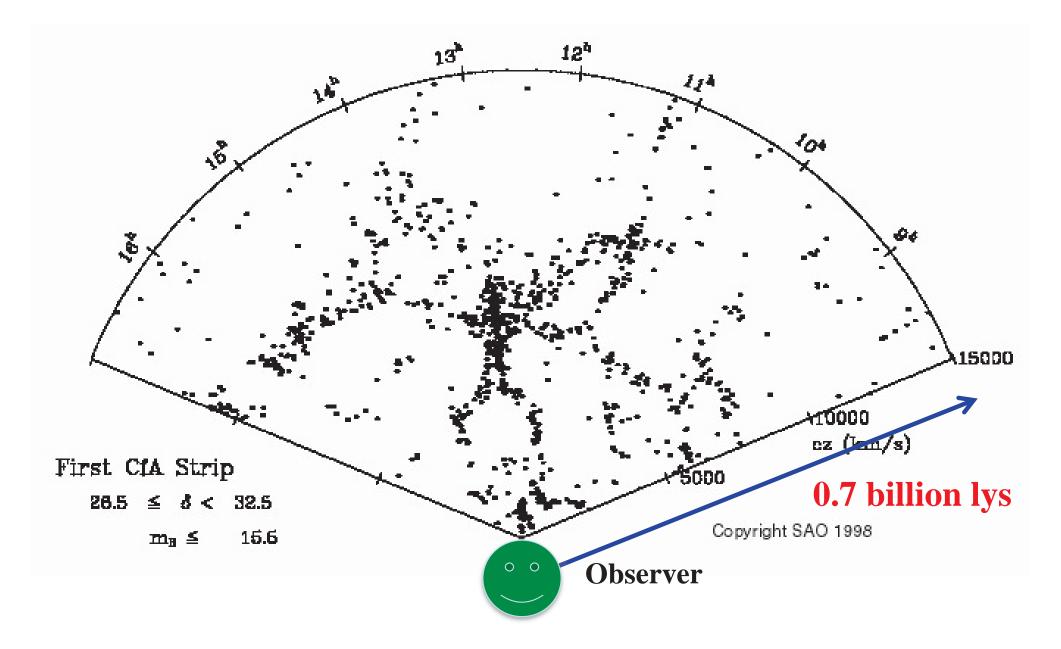
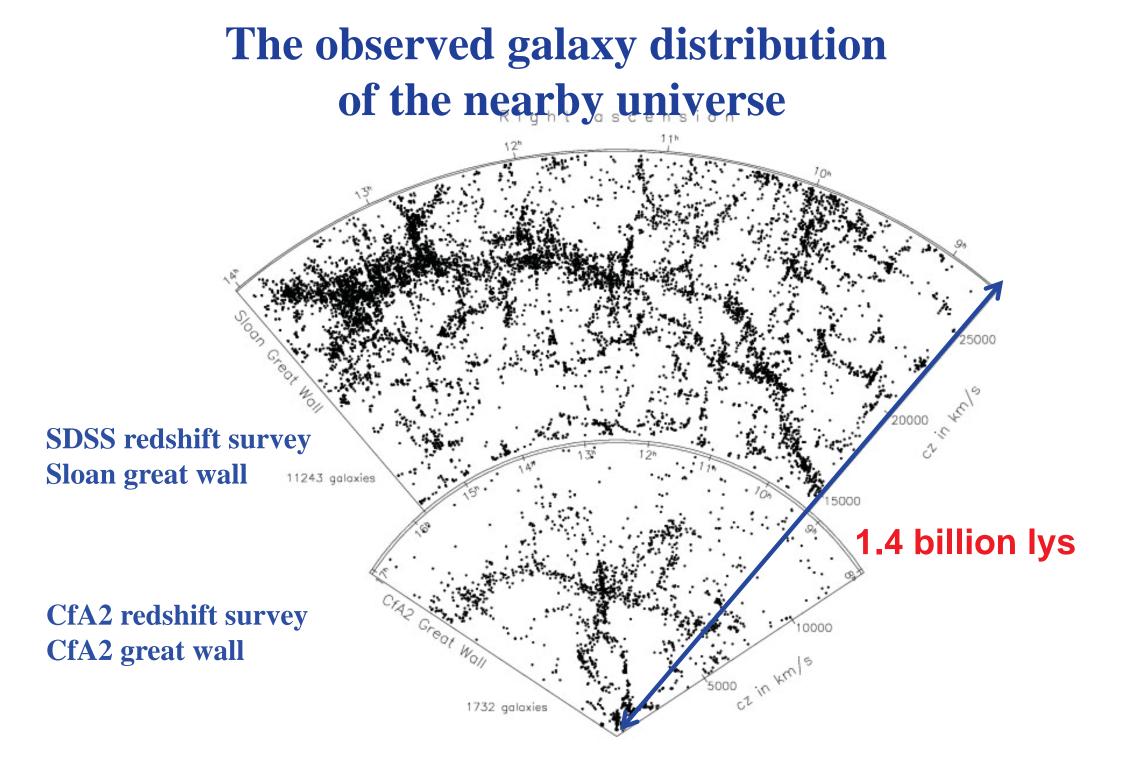
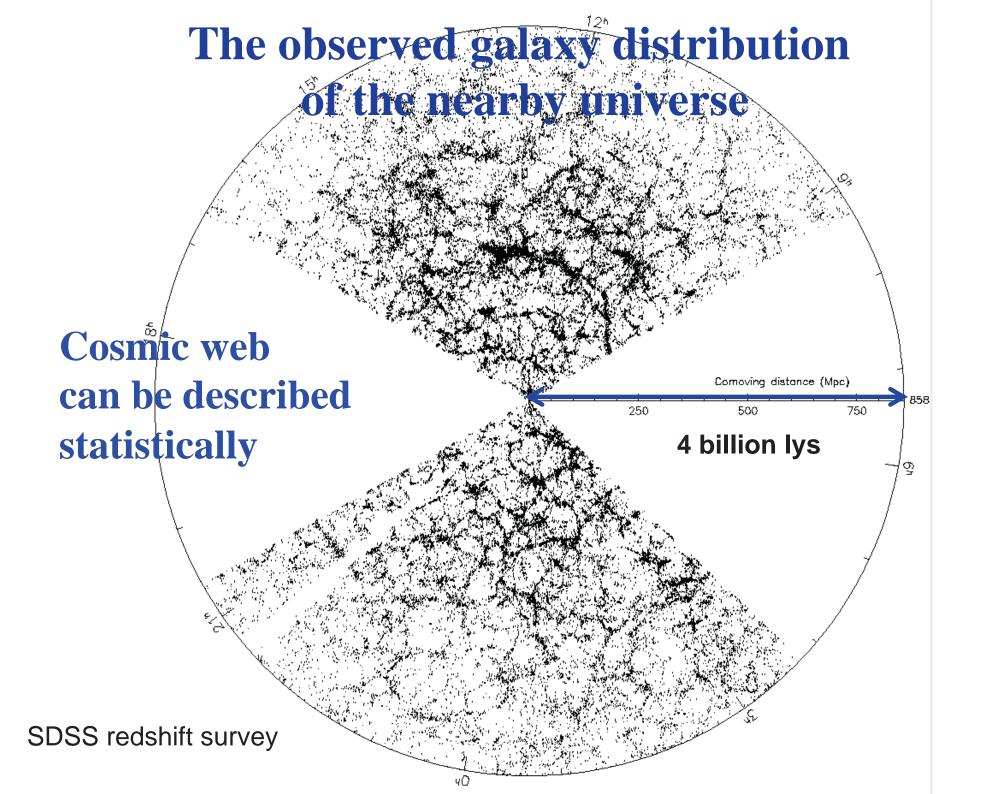
Physics of the Large Scale Structure

张鹏杰 Pengjie Zhang Department of Astronomy Shanghai Jiao Tong University

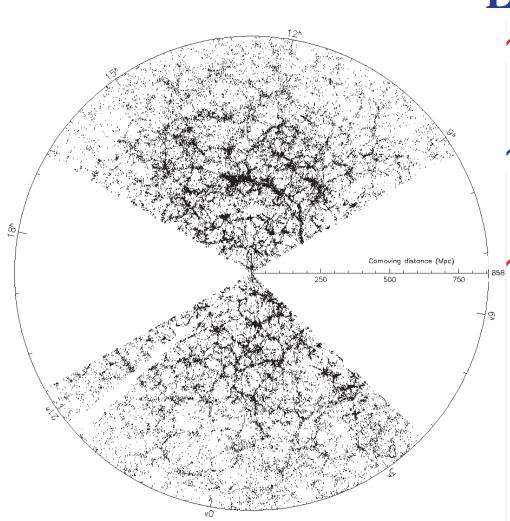
The observed galaxy distribution of the nearby universe







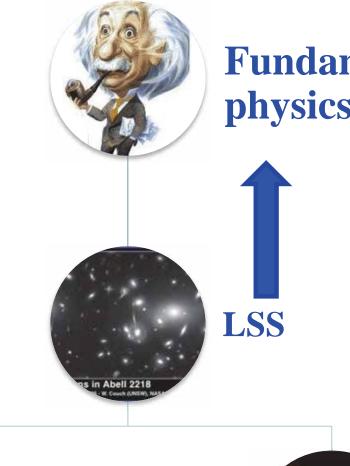
What is the large scale structure?



Large scale structure **Intrinsic inhomogeneities** ✓ Not illusion of observation **beyond randomness** ✓ Not fluke of randomness $\frac{1}{750} \xrightarrow{\text{At}} At > \sim Mpc scale$ ✓ Not internal structure of galaxies ✓ Not distribution at specific region (since we do not know the initial condition)

✓ Ensemble average -> volume average

The large scale structure of the universe



Fundamental physics

Precision modeling Precision measurement

Galaxy clustering, weak lensing, clusters, void, SZ, ISW, peculiar velocities, etc.

The large scale structure of the universe

Part 1:

- Deciphering the large scale structure (LSS)
 - With statistics and physics

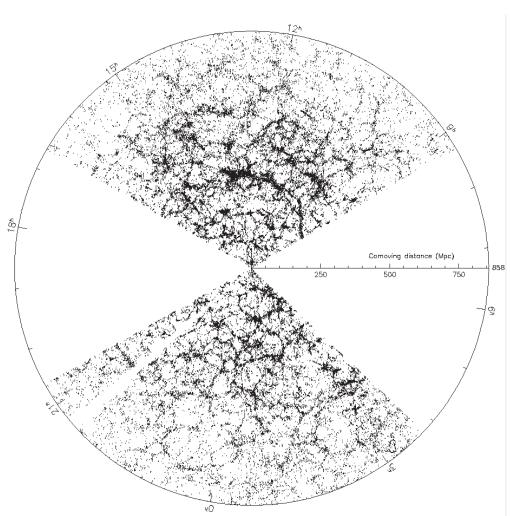
Part 2:

- Tracers of LSS
 - Broadband power spectrum, BAO, redshift distortion, weak lensing, SZ effect, etc.

Part 3

- Synergies of LSS tracers
 - Probe DM, DE, MG, neutrino, etc.
 - Reduce statistical errors
 - Control systematic errors

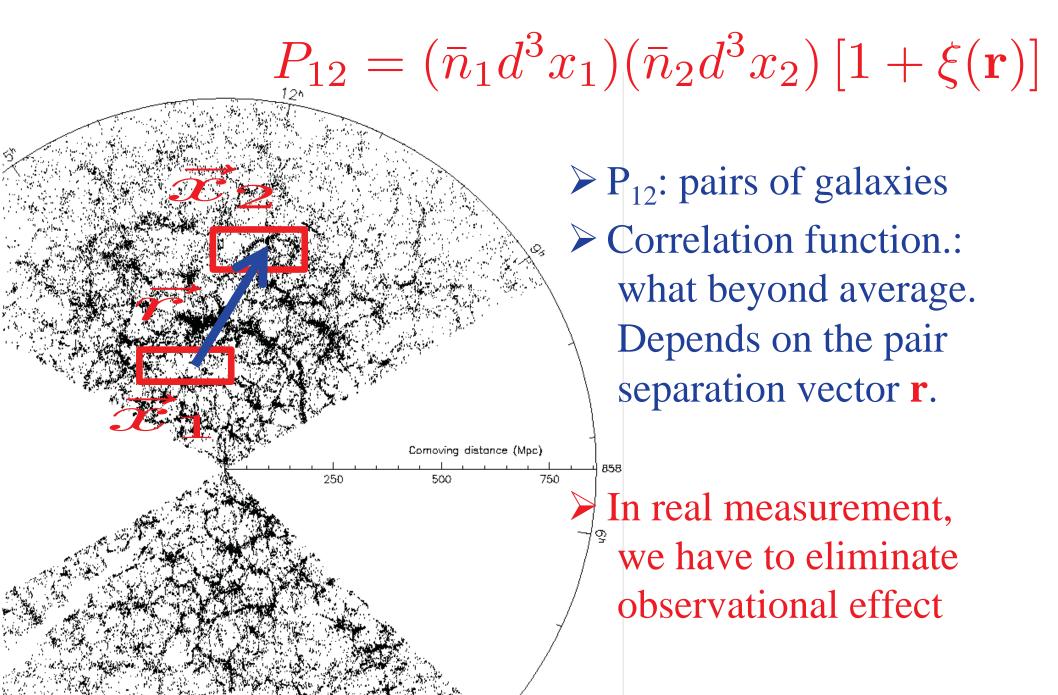
How to describe the large scale structure?



With statistics!

- N-point correlation functions and their Fourier transforms
 - 2-point correlation power spectrum
- > N-point joint PDF
- Peak analysis
- Topological descriptions:
 Minkowski functionals
 (and genus in particular),
 etc.

Two-point correlation function



Correlation function: correlated feild

$$P_{12} = (\bar{n}_1 d^3 x_1)(\bar{n}_2 d^3 x_2) \left[1 + \xi(\mathbf{r})\right]$$

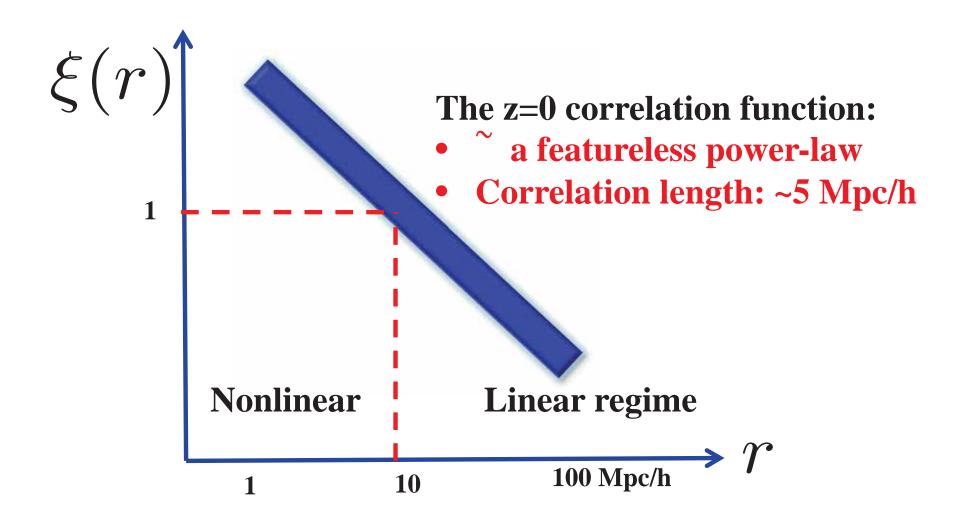
The overdensity
$$\delta(\vec{x}) \equiv \frac{n(\vec{x}) - \langle n \rangle}{\langle n \rangle}$$

$\xi(\vec{r}) \equiv \langle \delta(\vec{x})\delta(\vec{x}+\vec{r}) \rangle_{\vec{x}}$

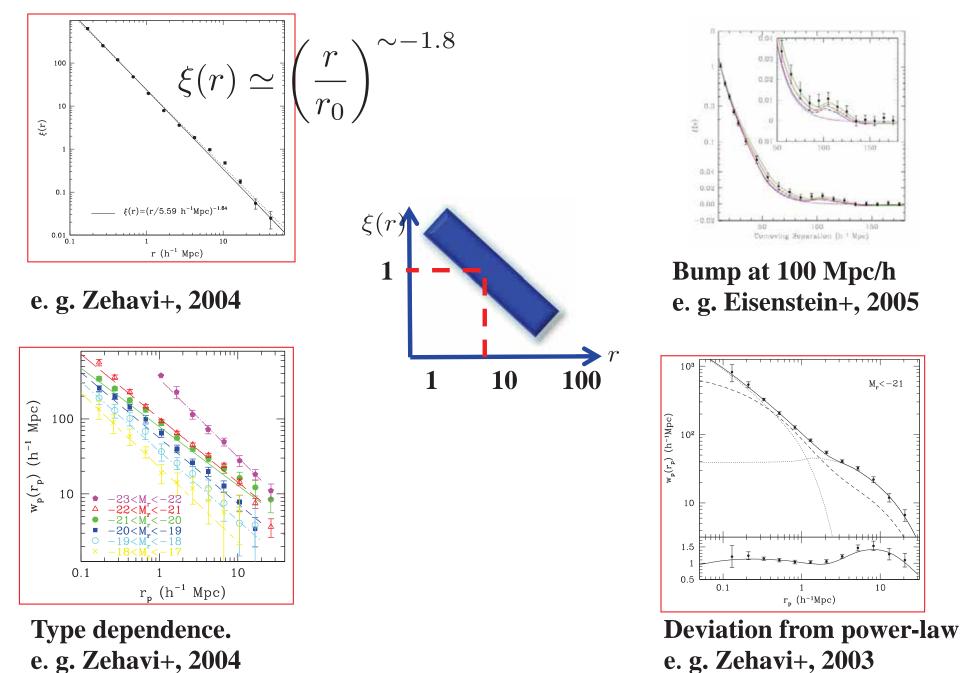
The observed galaxy correlation function

Smaller scale measurement: requires high number denisty

Larger scale measurement: requires large volume



Features in the galaxy correlation function



Closer look at the correlation function

$$P_{12} = (\bar{n}_1 d^3 x_1)(\bar{n}_2 d^3 x_2) \left[1 + \xi(\mathbf{r})\right]$$

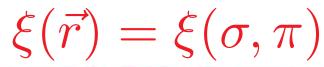
$$P_{12}(\vec{x}_1, \vec{x}_2) = (\bar{n}_1 d^3 x_1)(\bar{n} d^3 x_2)[1 + \xi(\vec{r} \equiv \vec{x}_2 - \vec{x}_1, \vec{x}_1)]$$

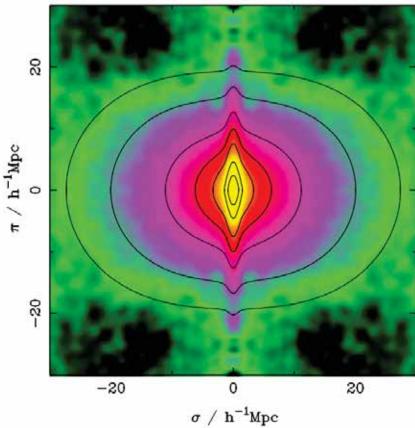
Our universe should be homogeneous $\xi(\vec{r} \equiv \vec{x}_2 - \vec{\mathbf{x}}_1, \vec{x}_1) \rightarrow \xi(\vec{r} \equiv \vec{x}_2 - \vec{\mathbf{x}}_1)$

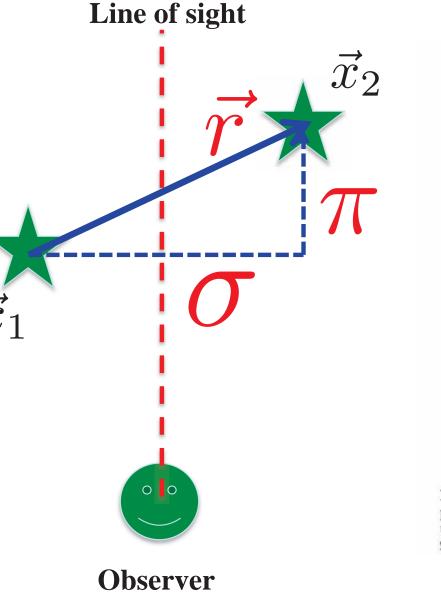
Our universe should be isotropic

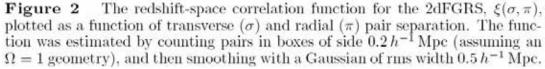
 $\xi(\vec{r} \equiv \vec{x}_2 - \vec{x}_1) \to \xi(r)$

More features: anisotropies

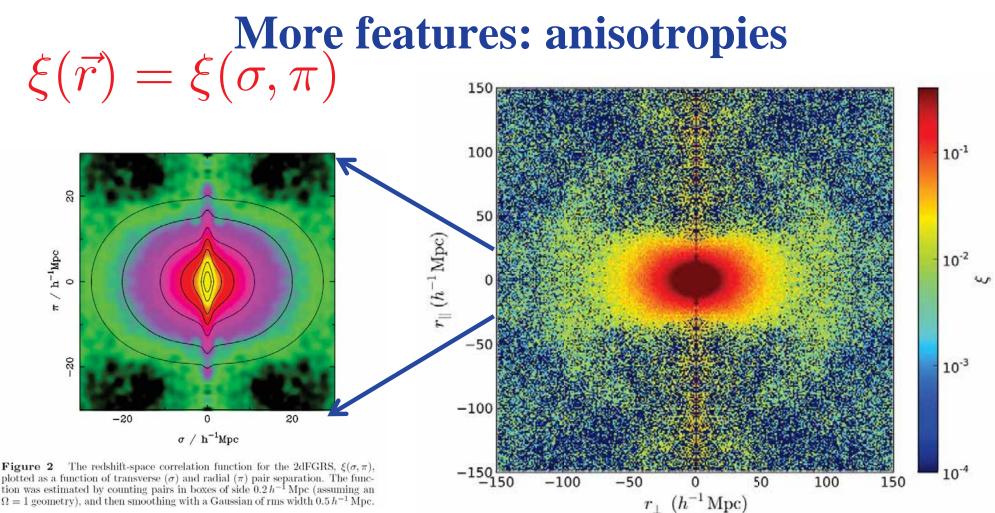








e.g. Peacock+, 2001, with 141,000 2dF galaxies

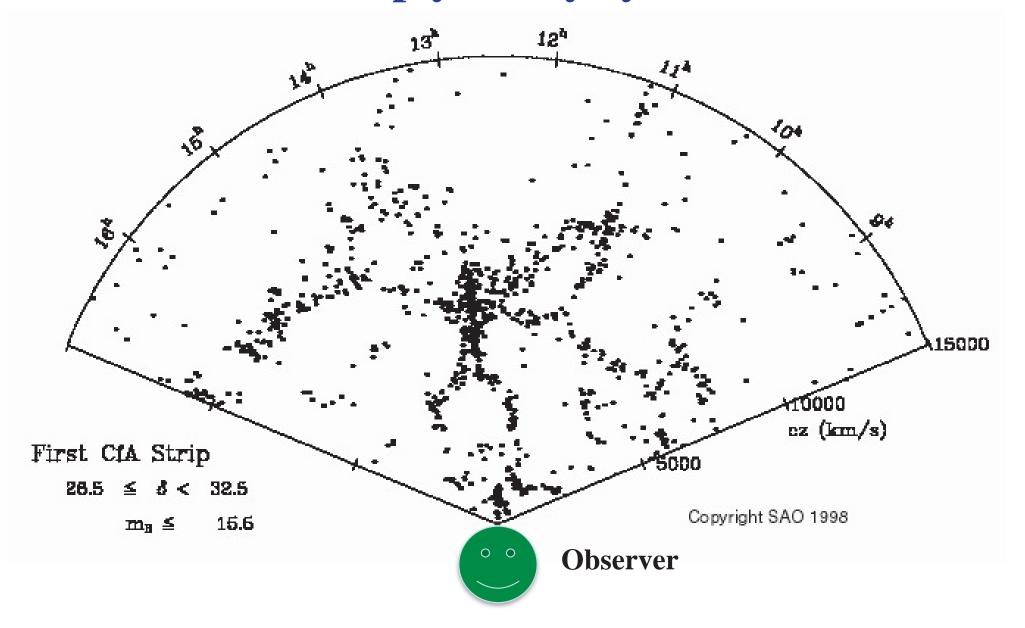


plotted as a function of transverse (σ) and radial (π) pair separation. The function was estimated by counting pairs in boxes of side $0.2 h^{-1}$ Mpc (assuming an $\Omega = 1$ geometry), and then smoothing with a Gaussian of rms width $0.5 h^{-1}$ Mpc.

e.g. Peacock+, 2001, with 141,000 2dF galaxies

2010+: larger scale coverage, higher accuracy e.g. Li+, 2016, with 0.5M BOSS galaxies

Some anisotropies are so prominent that we can simply see by eyes in 1980s!



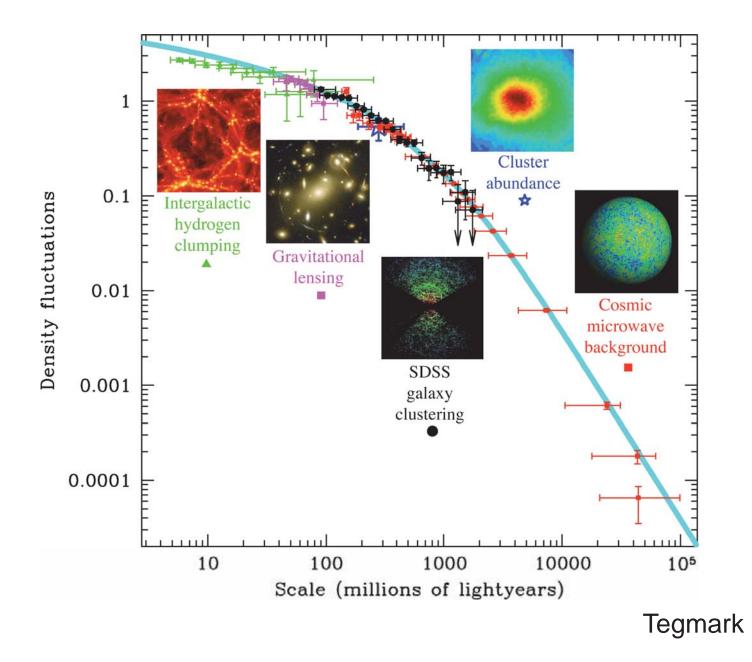
Correlation function -> Power spectrum

$$\begin{split} \delta(\vec{x}) &\equiv \frac{n(\vec{x}) - \langle n \rangle}{\langle n \rangle} \\ \delta(\vec{k}) &\equiv \int d^3 x \delta(\vec{x}) e^{i \vec{k} \cdot \vec{x}} \\ & \text{homogeneity} \end{split}$$

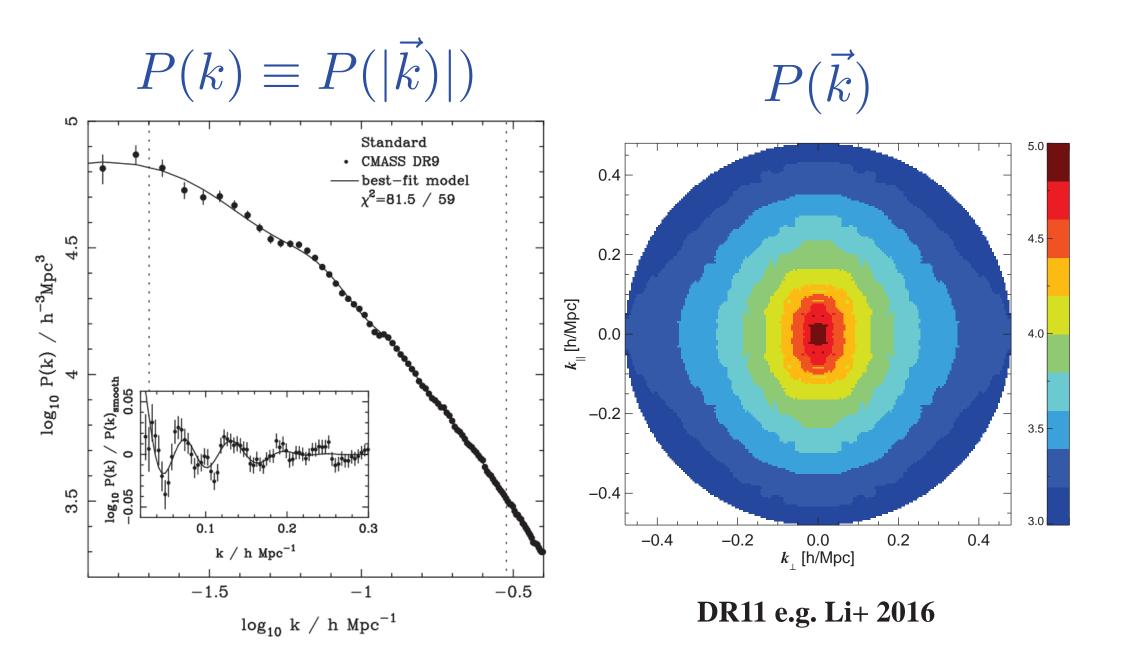
$$\langle \delta(\vec{k})\delta(\vec{k}')\rangle = (2\pi)^3 \delta_{3D}(\vec{k}+\vec{k}')P(\vec{k})$$

$$P(\vec{k}) = \int d^3r \xi(\vec{r}) e^{i\vec{k}\cdot\vec{r}}$$

Rich features in the power spectrum



Rich features in the power spectrum



Even more features: "abnormal" correlation at horizon scales

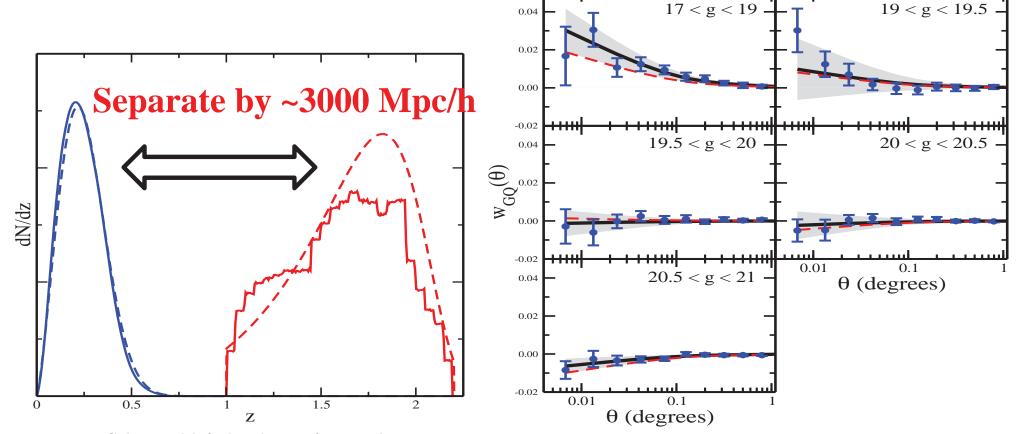
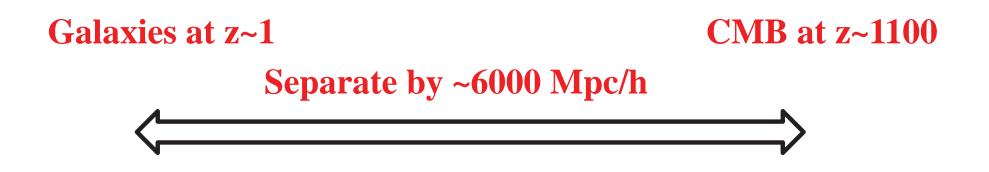


FIG. 1.— Galaxy redshift distribution from applying our 17 < r < 21 magnitude limit to the CNOC2 luminosity function and quasar redshift distribution inferred from quasar photometric redshifts (solid lines). The fitted redshift distributions from Equation 8 are shown with dashed lines. In all cases, the amplitude scaling is arbitrary.

Non-vanishing correlation! First detected by Scranton+, 2005 at ~10sigma and then by other data

Even more features: "abnormal" correlation at horizon scales



Non-vanishing correlation detected at ~4sigma, by NVSS/SDSS/WISE +WMAP/Planck

Understanding LSS with physics

Initial conditions set at early time

tiny fraction of a second inflation

13.7

billion

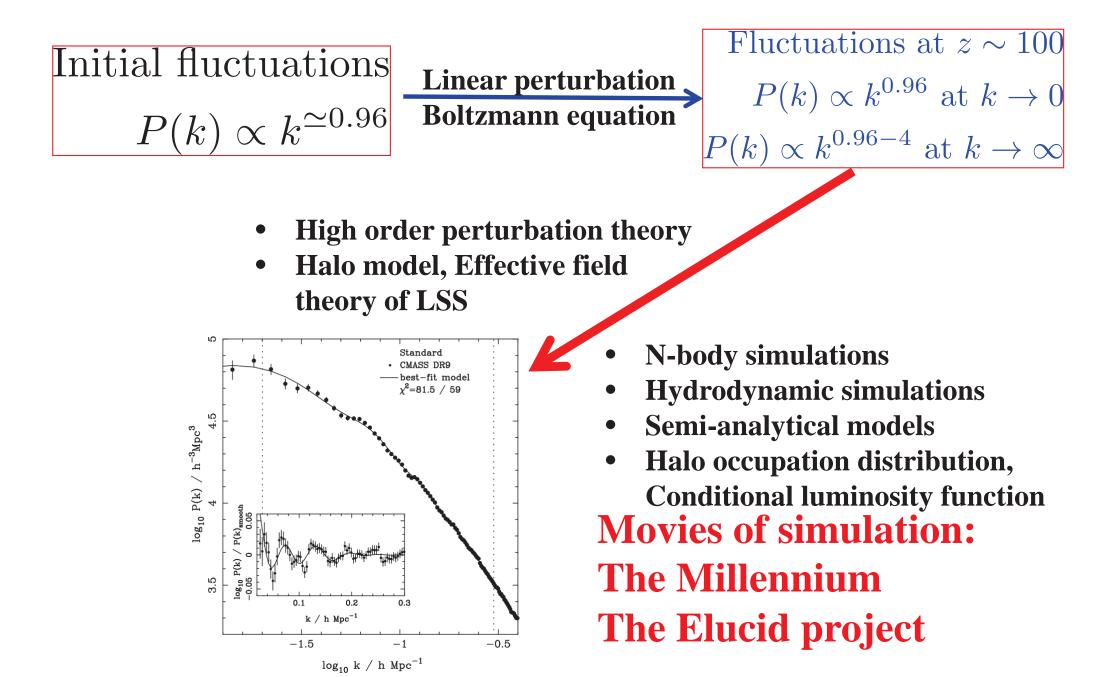
years

Evolution under laws of physics

380,000 years

LSS we observe at late time

Understanding LSS with physics



Complexities to understand LSS

- **Task: evolve the universe from z~100 to z~0**
- > Complexities
 - Dark matter, baryons, photons, neutrinos, dark energy
 - Gravity: nonlinear evolution at <~10 Mpc/h under gravity, GR effect at >~10³ Mpc/h
 - Non-gravitational forces: gastrophysics, galaxy formation and feedback
 - Mapping underlying matter/energy into observable signals (galaxy distribution, galaxies shapes, secondary CMB, etc.)
 - Eliminating observational contaminations in the desired cosmological signals

An example of simplified treatment

- > Set neutrinos=0, photons=0.
- Neglect gastrophysics of baryons. Then only gravity. Baryons behave the same as DM
- Assume smooth dark energy. Then DE only affects the expansion. Assume DE=Lambda
- > Assume flatness

The universe to evolve

- Dark matter (=DM+baryons), Lambda
- > Flat
- > gravity

Two steps

> Step 1: evolution of the dark matter field

- Large scales: linear perturbation (GR effect can be included too)
- Intermediate scales: spherical collapse
- Small scales (and actually all scales): N-body simulations
- Step 2: identify virialized regions (dark matter halos) and put galaxies in
 - Halo mass function, halo bias/spatial clustering
 - Halo occupation distribution/Conditional luminosity function (the number of galaxies as a function of halo mass)

Step 1: linear evolution

 $G_{\mu\nu}(g_{\mu\nu}) = T_{\mu\nu}$ Nonlinear differential equation $g_{\mu\nu} = g_{\mu\nu}^{FRW} + h_{\mu\nu}$ Perturb around the background $G_{\mu\nu}(g_{\mu\nu}^{FRW}) + \frac{\partial G_{\mu\nu}}{\partial g_{\alpha\beta}}h_{\alpha\beta} = T_{\mu\nu} - \frac{1}{2}\frac{\partial^2 G_{\mu\nu}}{\partial g_{\alpha\beta}\partial g_{\gamma\delta}}h_{\alpha\beta}h_{\chi\delta} + \cdots$ **Neglect high order perturbation terms** $ds^{2} = -(1+2\psi)dt^{2} + a^{2}(1+2\phi) \sum dx^{i,2}$ $T_{\mu\nu} = \rho U_{\mu} U_{\nu} \quad (P = 0)$ $\rho = \bar{\rho}(1+\delta)$

Step 1: linear evolution: Lambda: sub-horizon

$$\frac{H^{2}(a) = H_{0}^{2}(\Omega_{m}a^{-3} + \Omega_{\Lambda})}{\frac{d^{2}\delta}{da^{2}} + \frac{d\delta}{da}\left(\frac{dH/da}{H} + \frac{3}{a}\right) - \frac{3}{2}\frac{H_{0}^{2}\Omega_{m}}{H^{2}a^{3}}\frac{\delta}{a^{2}} = 0$$

Linear growth factor

$$\delta(\vec{x},a) \propto \left[H \int_0^a \frac{da}{H^3 a^3} \right] \delta(\vec{x},a=0) \text{ Heath 1977}$$

Carroll, Press & Turner (1992)

$$D(a) \simeq \frac{5\Omega_M(a)a}{2} \left[\Omega_M(a)^{4/7} - \Omega_\Lambda(a) + \left(1 + \frac{\Omega_M(a)}{2} \right) \left(1 + \frac{\Omega_\Lambda(a)}{70} \right) \right]^{-1}$$

From sub-horizon to super-horizon

$$(\nabla^2 + 3K)\phi - 3a^2H^2(\phi'a + \phi) = 4\pi G\bar{\rho}_m a^2\delta_m$$
, **GR effect**

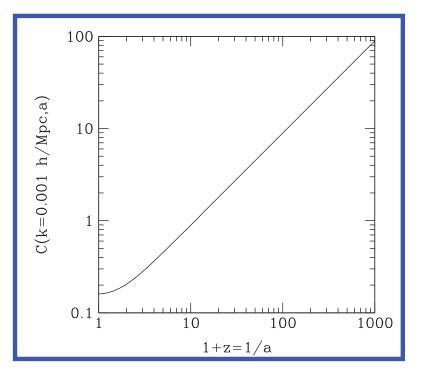
 $aH(\phi'a + \phi) = 4\pi G\bar{\rho}_m a^2 W,$

$$\delta'_m = \frac{\nabla^2 W}{a^2 H} + 3\phi'.$$

$$\tilde{\delta}_m \propto \left[H \int_0^a \frac{da}{H^3 a^3} \right] \times [1 + C(k, a)].$$

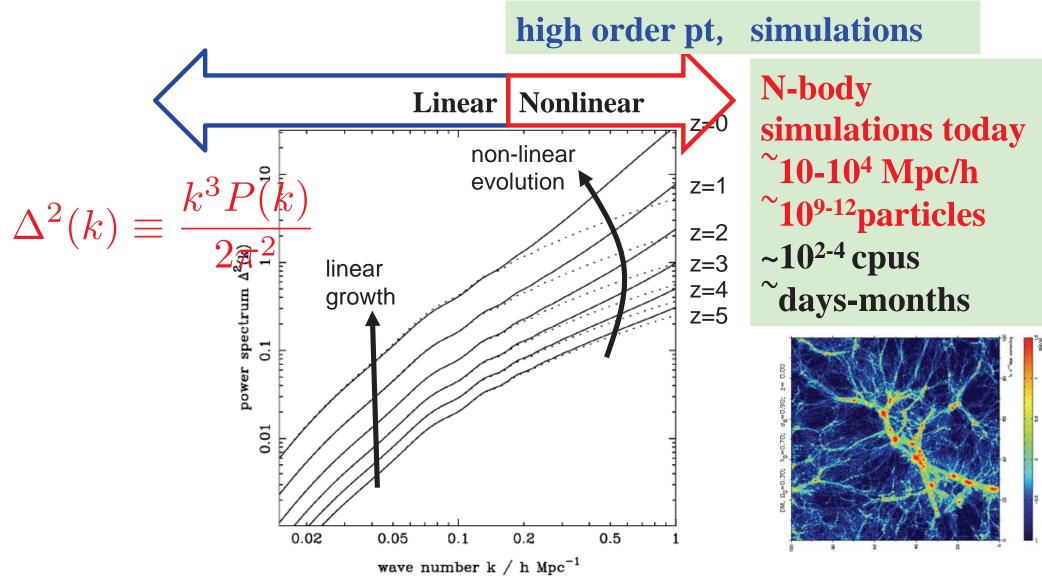
$$C(k,a) = \frac{3a^2H^2}{k^2} \left(\frac{H'a}{H} + \frac{1/H^3a^2}{\int_0^a da/H^3a^3} \right)$$
$$= \frac{a^2(H/H_0)^2}{3(k \times 10^3 h^{-1} \,\mathrm{Mpc})^2} \left(\frac{H'a}{H} + \frac{1/H^3a^2}{\int_0^a da/H^3a^3} \right).$$

ZPJ 2011



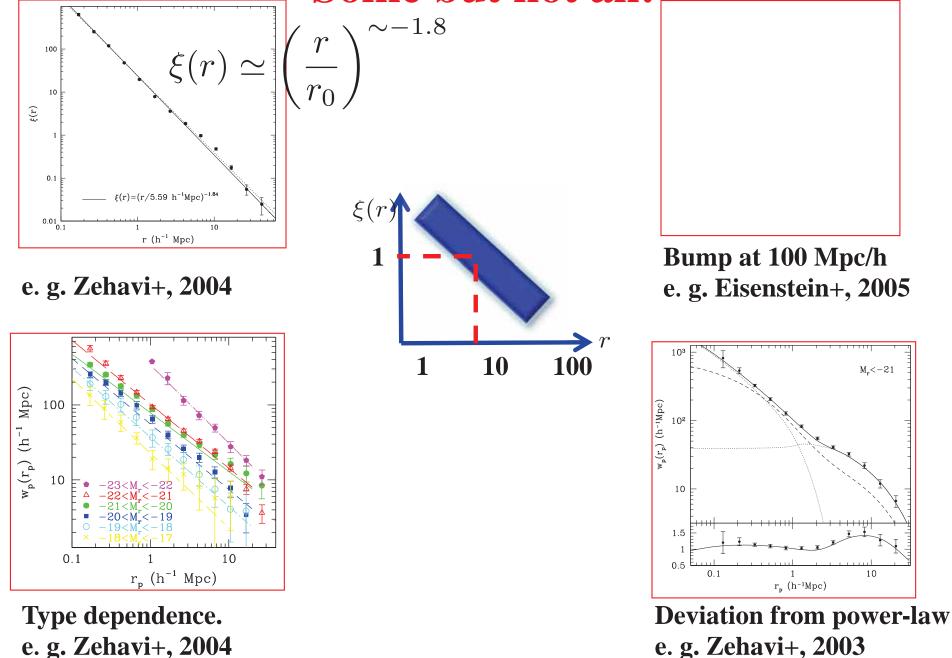
From linear to nonlinear scales

Halo model, halofit, EFT, etc.

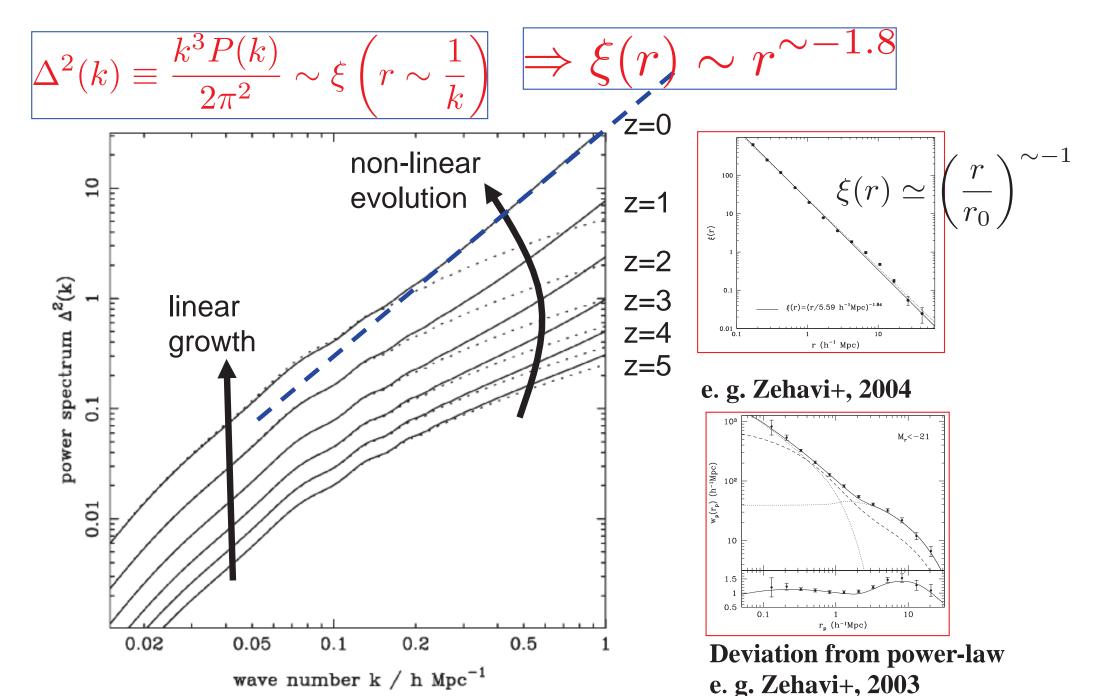


Credit: Percival's lectures

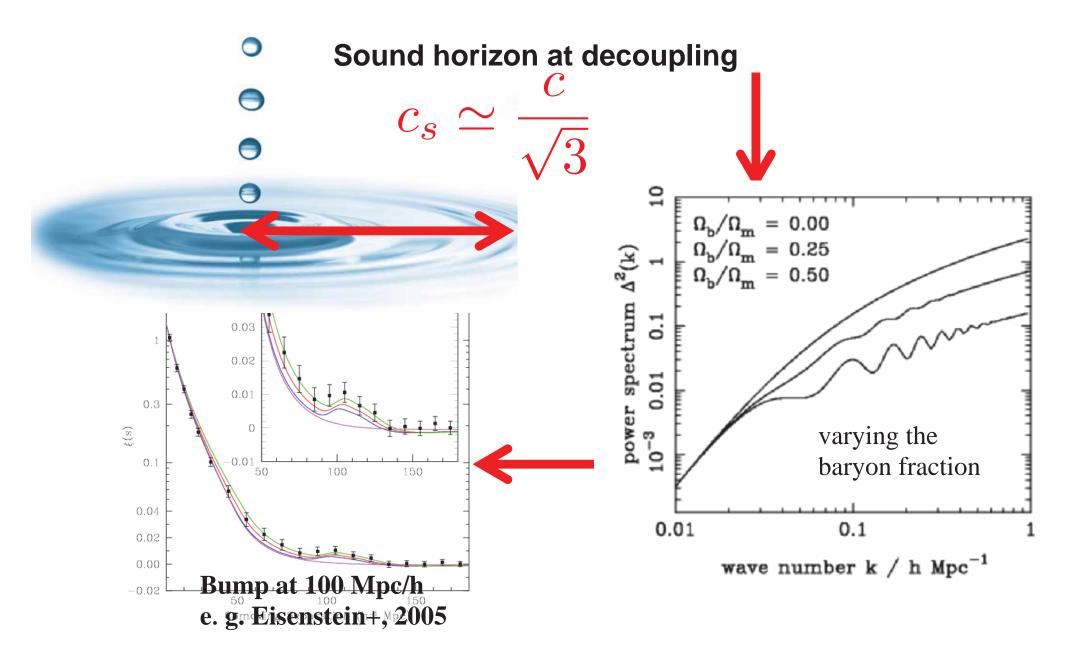
Can it explain the observed galaxy clustering? Some but not all!

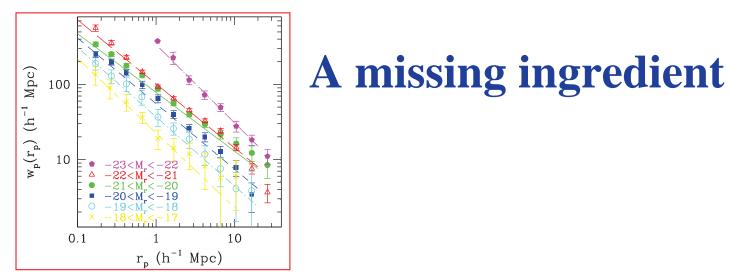


The power-law correlation at ~1 Mpc/h

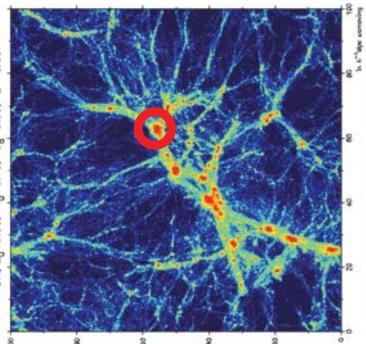


What about the bump at ~100 Mpc/h? Baryon acoustic oscillations





Type dependence. e. g. Zehavi+, 2004

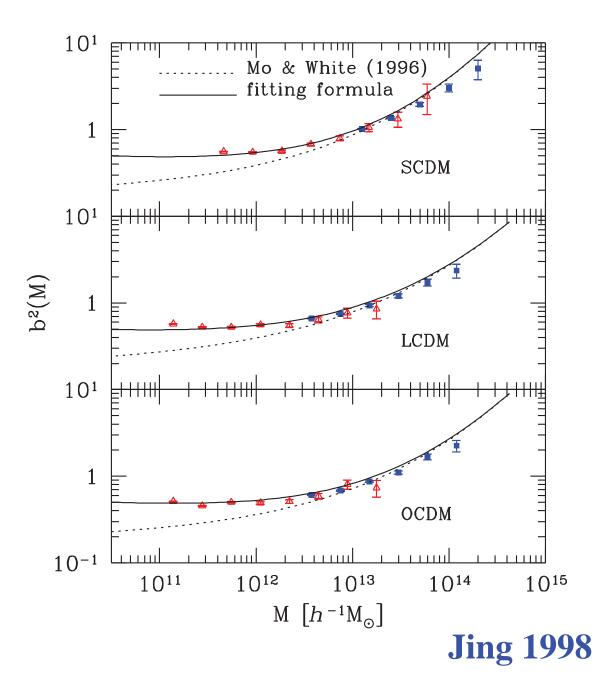


Larger DM halos More/larger galaxies

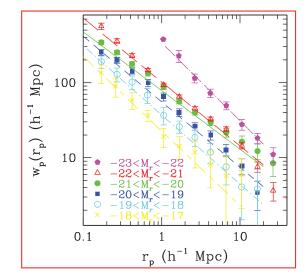
Smaller DM halos Less/smaller galaxies

DM. R0=0.30; A0=0.70; 06=0.90; z= 0.00

Bias

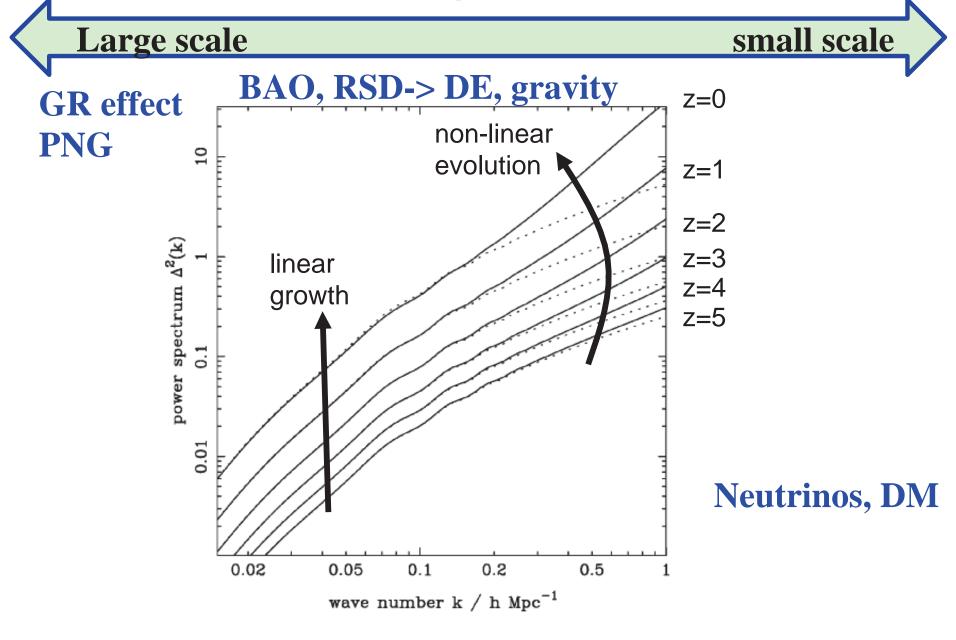


$$\xi_{\rm halo} = b^2(M)\xi_{\rm DM}$$



Type dependence. e. g. Zehavi+, 2004

Rich cosmological information



Cosmic magnification (weak lensing)