The large scale structure of the universe

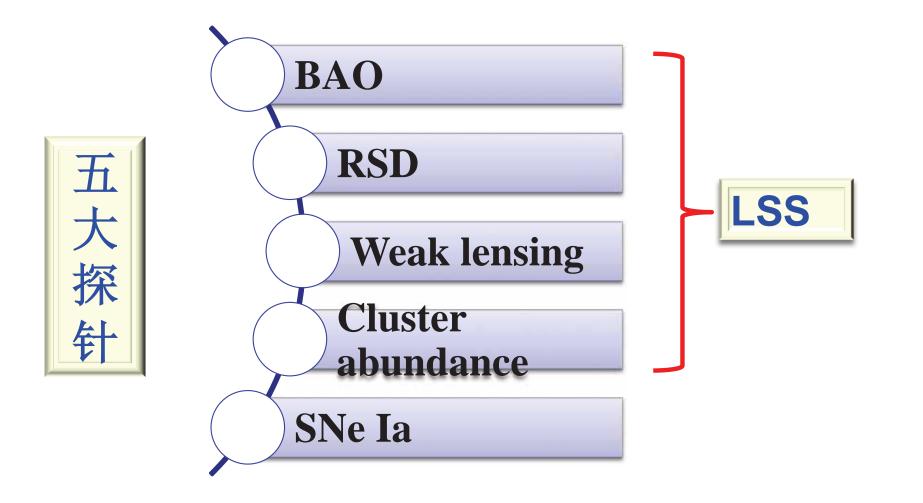
Part 1:

- Deciphering the large scale structure (LSS)
 - With statistics and physics
- Part 2:
- Tracers of LSS
 - Redshift distortion, weak lensing, broadband power spectrum, BAO, SZ effect, ISW, etc.

Part 3

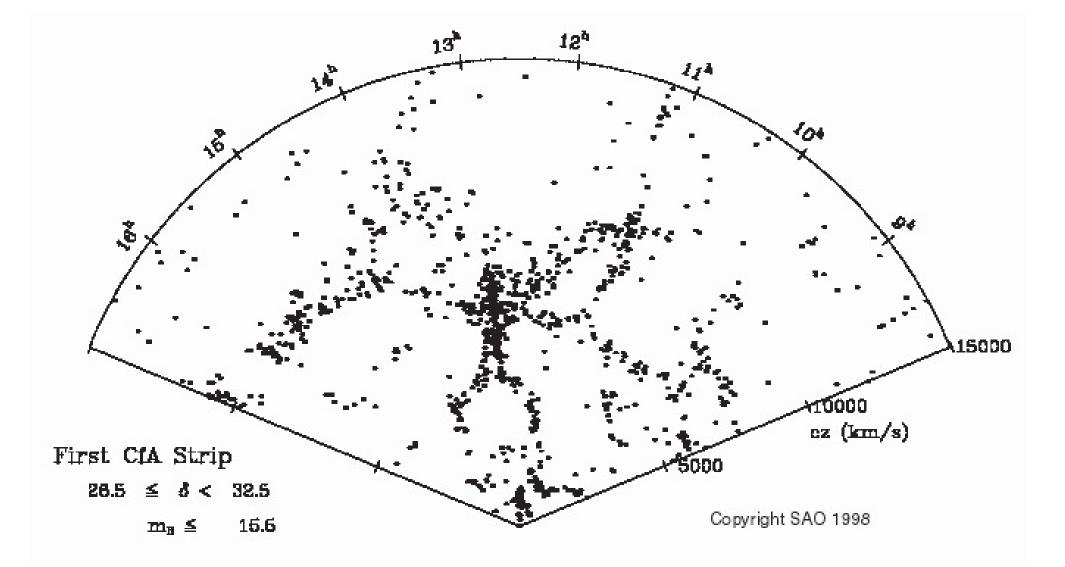
- Synergies of LSS tracers
 - Probe DM, DE, MG, neutrino, etc.
 - Reduce statistical errors
 - Control systematic errors

Major probes of dark energy and cosmic acceleration



- 暗能量特别工作组报告(2006)-DOE、NASA、NSF
- DOE/HEP 暗能量科学项目报告(2012)

Redshift Space Distortion Cosmology: Promises and Challenges



Noticed at least as early as 1972 Declination ő ŝ lane of Salaxy Local □ Distance D (Mpc) Q 5 0 S S

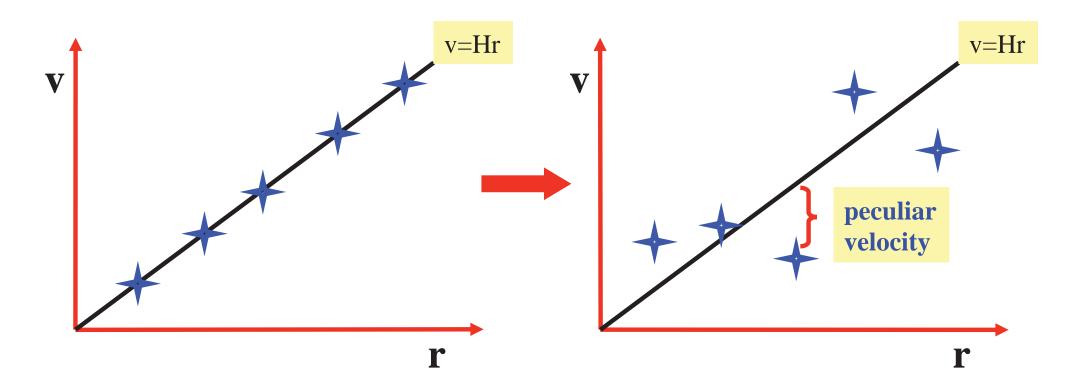
FIG. 1. The apparent space distribution of nearby galaxies with $10h \le RA < 11h$, assuming radial velocity to be a good distance indicator.

Fig. 1 shows the spatial distribution of all galaxies with right ascensions in the range 10–11 hr, and known positive radial velocities (relative to the local group) less than 2000 km s⁻¹. The 'distance' D used in this plot is defined as velocity/ 100 km/sec/Mpc. The galaxies appear to fall into long chains or cigar-shaped configurations, all pointing at the Earth. Unless one is prepared to assign to the

Jackson, 1972, MNRAS . Finger of God effect

Peculiar velocity: a window to the dark universe

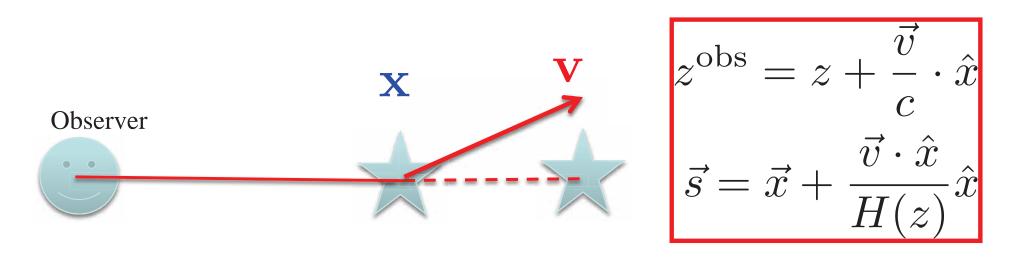
- > Matter distribution in our universe is inhomogeneous
- Gravitational attraction arising from inhomogeneity perturbs galaxies and causes deviation from the Hubble flow





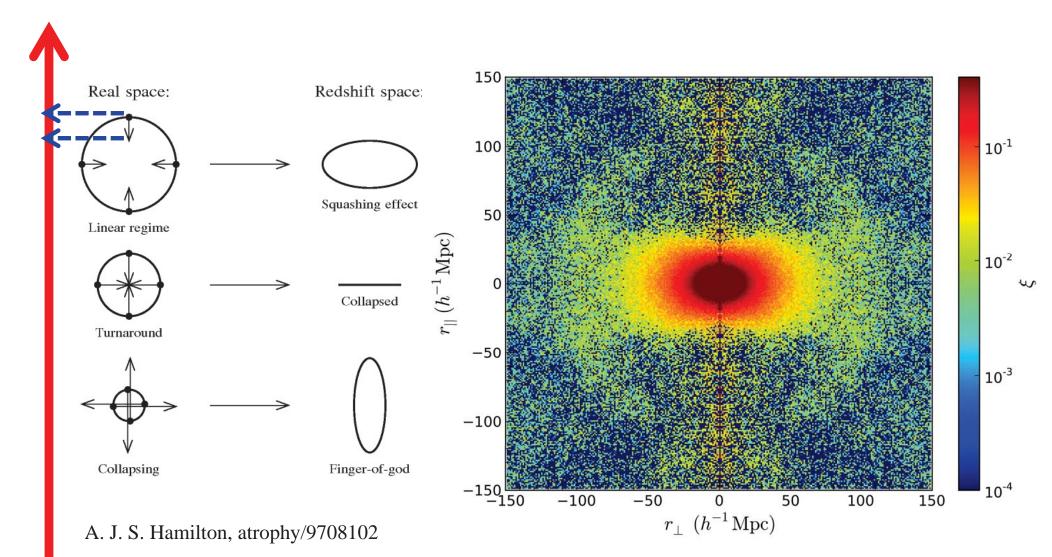
http://www.astr.ua.edu/keel/galaxies/distance.html

Redshift space distortion



- We observe galaxies in redshift space (namely infer their distances from their redshifts).
- Peculiar velocity changes the galaxy redshift (cosmological z+ Doppler z) and hence distorts the galaxy distribution in an anisotropic way
 - Galaxy clustering along the line of sight is different to that perpendicular to the line of sight

Statistical isotropy to statistical anisotropy

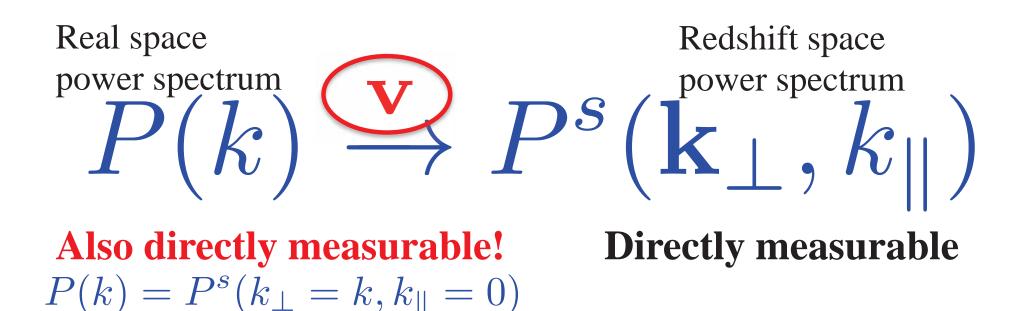


Observe along this direction

BOSS: Samushia et al. 2014.

Measure peculiar velocity at cosmological distance heuristic approach

Peculiar velocity can be reconstructed! Not only the average statistics, but also the 3D field

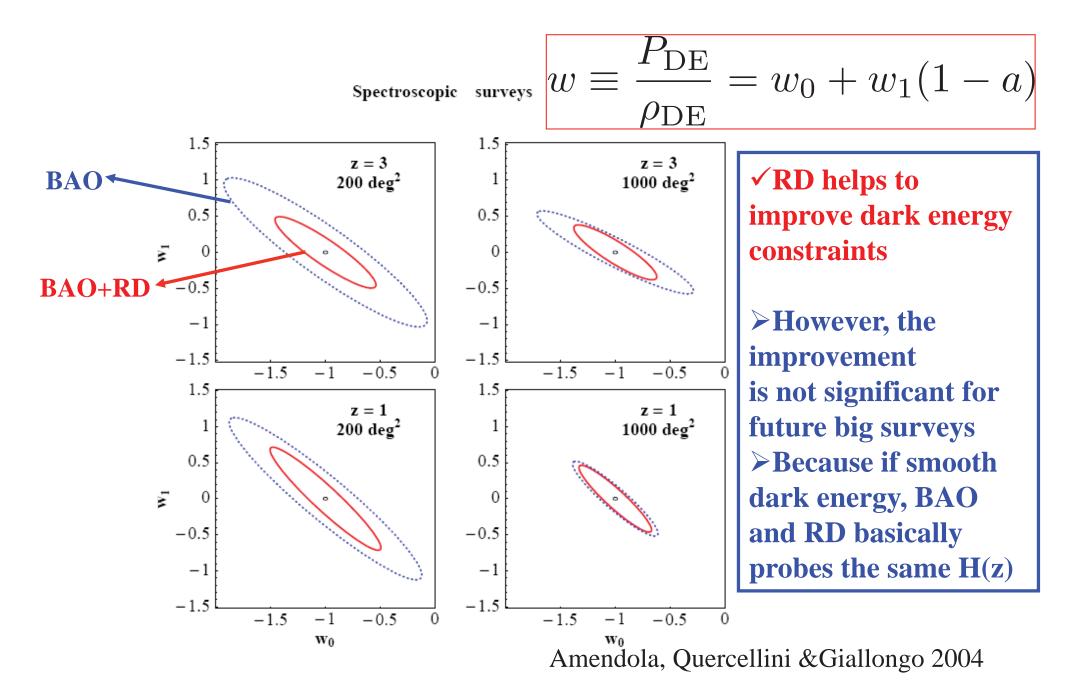


RSD and the structure growth

RSD measures velocity, which is a specific combination of structure growth rate

Linearized mass conservation Linearized evolution $\frac{d\delta_m}{dt} + \nabla \cdot \vec{v} = 0 \qquad \delta_m(\vec{x}, t) = D(t)\delta_i(\vec{x})$ $\Rightarrow \vec{v} \propto fH\delta_m \propto fD \propto f\sigma_8$ $f \equiv \frac{d \ln D(a)}{d \ln a} \propto \Omega_m^{\gamma}(a)$

Applications (1): Constrain dark energy



More important application of peculiar velocity: constrain gravity

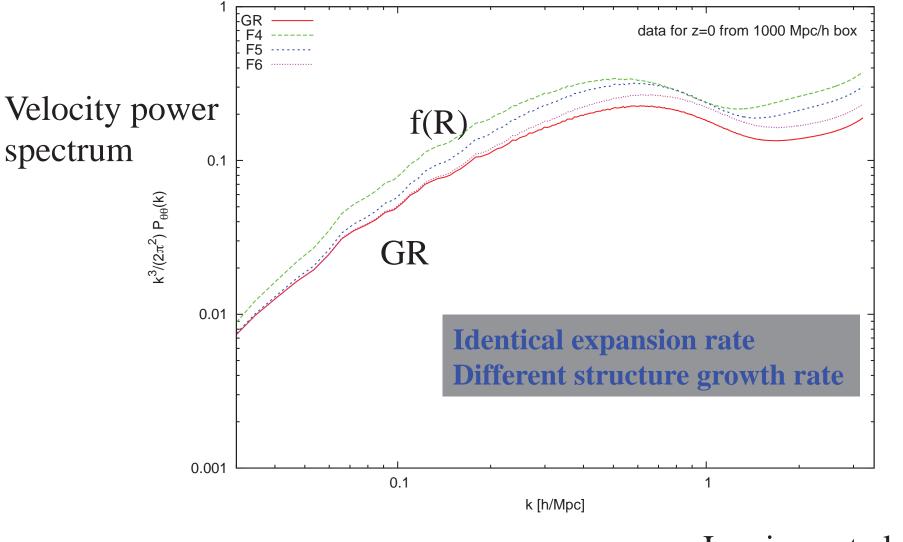
✓ At scales larger than galaxy clusters, directly probes gravity (t-t component): $ds^2 = -(1+2\Psi)dt^2 + a^2(1+2\Phi)d\mathbf{x}^2$

$$\frac{d(a^2\vec{v})}{dt} = -\nabla\Psi$$

✓ The most direct measure of the t-t metric perturbation (Jain & ZPJ, 2008)

✓ In combination with weak lensing, allows for direct measurement of a key parameter of gravity (ZPJ+, 2008) $\eta \equiv -\frac{\Phi}{W}$

Applications (2): test GR



Jennings et al. 2012

Existing measurements of f*sigma_8: ~10% accuracy

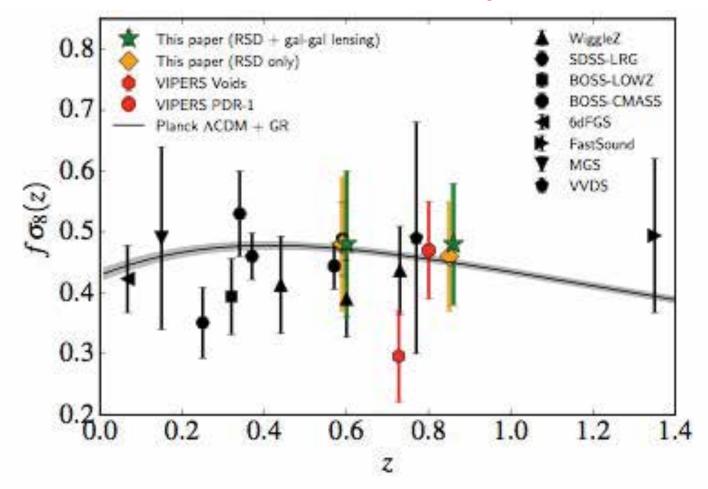
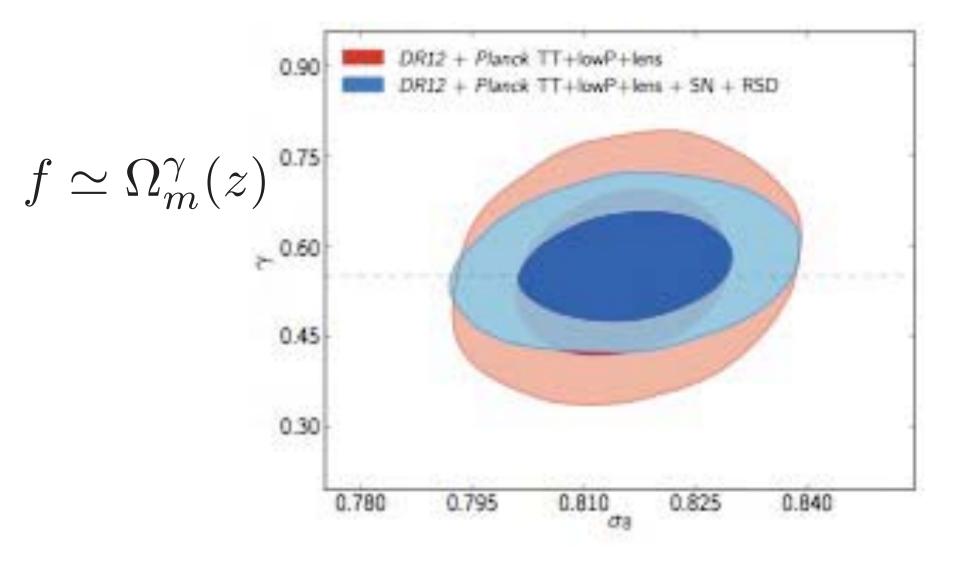


Fig. 12. $f\sigma_1$ as a function of redshift, showing VIPERS results contrasted with a compilation of recent measurements. The previous results from VVDS (Guzzo et al. 2008), SDSS LRG (Cabré & Gaztañaga 2009; Samushia et al. 2012), WiggleZ (Blake et al. 2012), 6dFGS (Beutler et al. 2012), VIPERS PDR-1 (de la Torre et al. 2013), MGS (Howlett et al. 2015), FastSound (Okumura et al. 2016), BOSS-LOWZ (Gil-Marín et al. 2016), BOSS-CMASS (Gil-Marín et al. 2016; Chuang et al. 2016), and VIPERS PDR-2 voids (Hawken et al. 2016) are shown with the different symbols (see labels). The solid curve and associated shaded area correspond to the expectations and 68% uncertainty for General Relativity in a ACDM background model set to TT+lowP+lensing Planck 2015 predictions (Planck Collaboration et al. 2015).

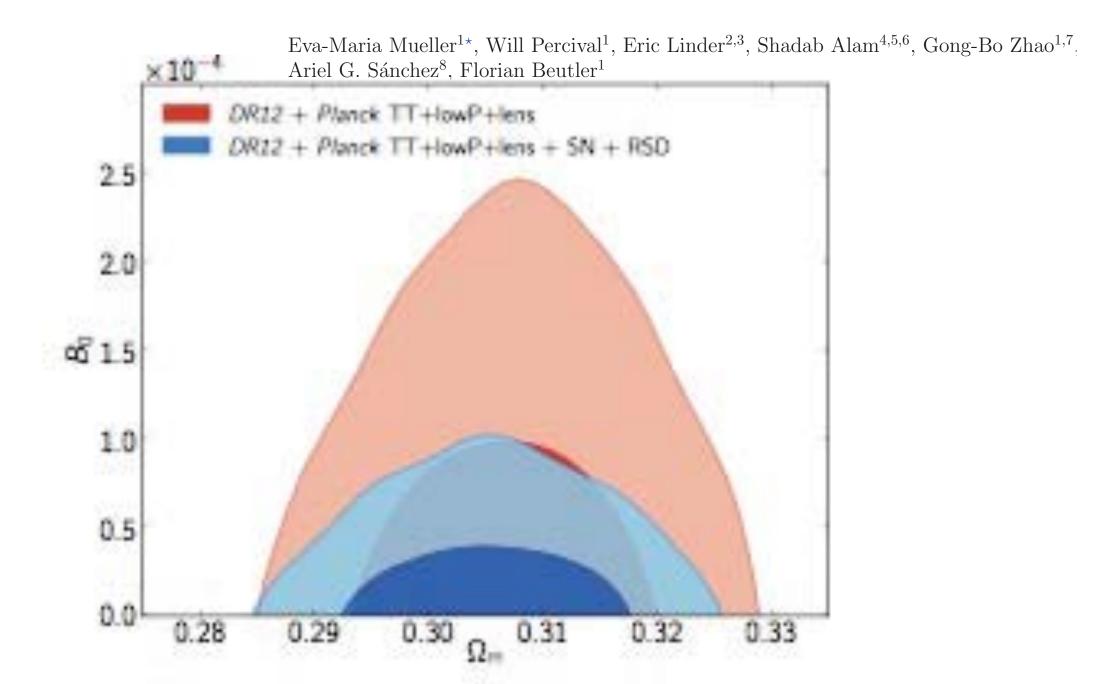
VIPERS, arXiv: 1612.05647

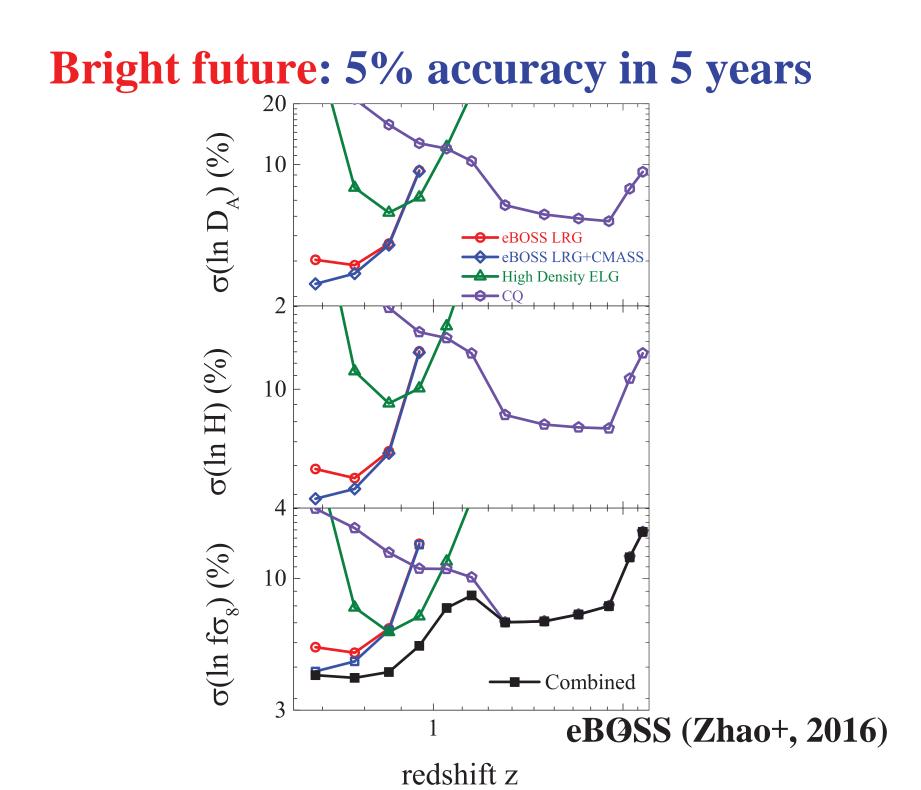
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: constraining modified gravity

Eva-Maria Mueller^{1*}, Will Percival¹, Eric Linder^{2,3}, Shadab Alam^{4,5,6}, Gong-Bo Zhao^{1,7}, Ariel G. Sánchez⁸, Florian Beutler¹



The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: constraining modified gravity





Bright future: 1% accuracy in 10-20 years by stage IV (DESI, PFS, Euclid, WFIRST,SKA)

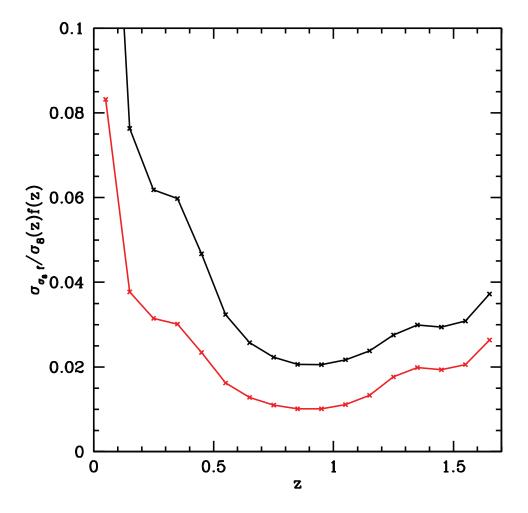


Figure 2.3: Constraints, derived from redshift-space distortions, on $\sigma_8(z)f(z)$ (amplitude of the power times growth rate), for bins of $\Delta z = 0.1$, for $k_{\text{max}} = 0.1$ or $0.2 \ h\text{Mpc}^{-1}$ (upper and lower lines, respectively).

Problems in RSD cosmology (=opportunities for young researchers)

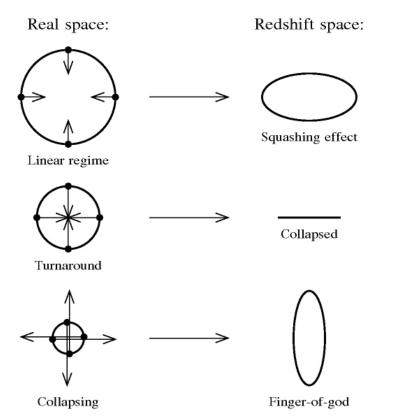
- Major one: RSD modeling
- Minor one: RSD measurement

RSD modeling: Kaiser formula Mapping: $\vec{x} \to \vec{s} = \vec{x} + \frac{v_z}{H}\hat{z}$ Mapping: $(1+\delta)d^3x = (1+\delta^s)d^3s$ $\delta^s = \frac{1+\delta}{\left|\frac{ds}{dx}\right|} - 1 \qquad \left|\frac{ds}{dx}\right| = 1 + \nabla_z v_z / H$ $\simeq \delta - \nabla_z v_z / H$

$$\Rightarrow \delta^{s}(\vec{k}) \simeq \delta(\vec{k})(1 + fu^{2})$$
$$\Rightarrow P^{s}(\vec{k}) = P(k)(1 + fu^{2})^{2}$$

$$u \equiv \frac{k_z}{k}$$
$$z : \text{ line of sight}$$

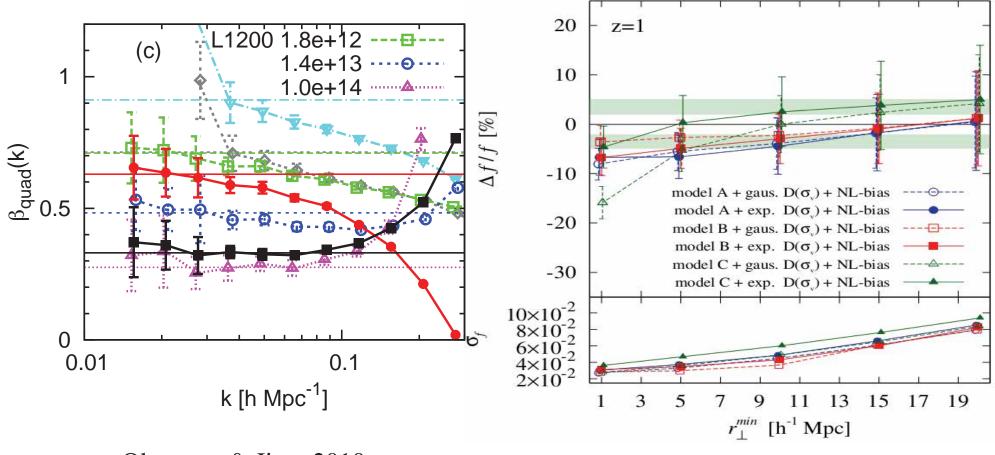
Including Finger of God



$$P^{s}(k,u) = P(k)(1 + fu^{2})F(y \equiv ku\sigma_{v}/H)$$

$$F(y) = \exp(-y^2)$$
 or $(1+y^2)^{-1}$

Systematic error detected at 10% level

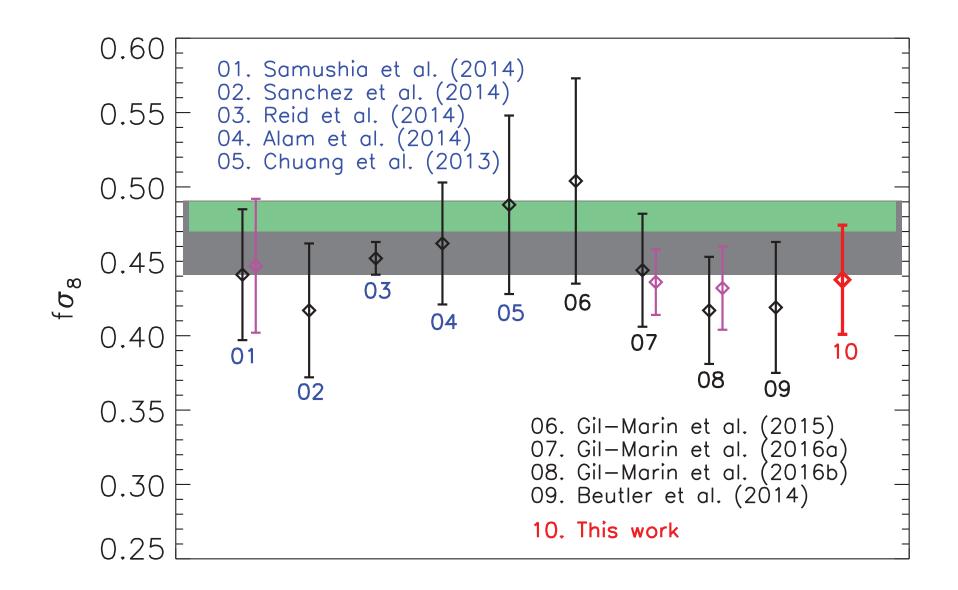


Okumura & Jing, 2010

Torre & Guzzo, 1202.5559

And many more works

Results vary between different groups



Li+, 2017, ApJ

Although data shows deviation from GR, no one has confidence to defeat Einstein!

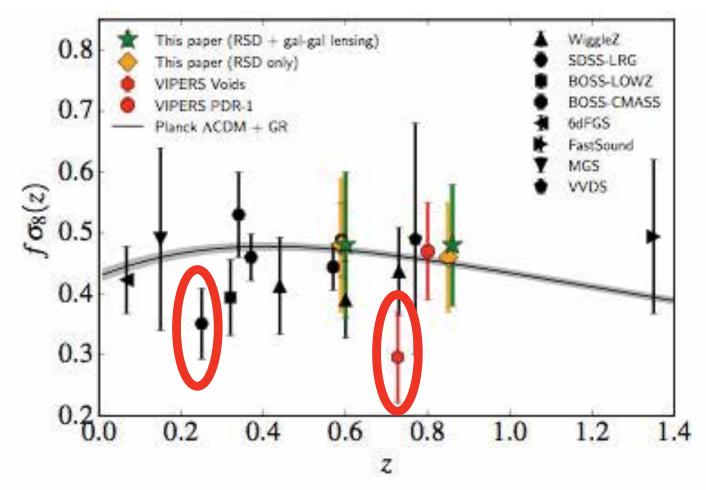


Fig. 12. $f\sigma_F$ as a function of redshift, showing VIPERS results contrasted with a compilation of recent measurements. The previous results from VVDS (Guzzo et al. 2008), SDSS LRG (Cabré & Gaztañaga 2009; Samushia et al. 2012), WiggleZ (Blake et al. 2012), 6dFGS (Beutler et al. 2012), VIPERS PDR-1 (de la Torre et al. 2013), MGS (Howlett et al. 2015), FastSound (Okumura et al. 2016), BOSS-LOWZ (Gil-Marín et al. 2016; Chuang et al. 2016), and VIPERS PDR-2 voids (Hawken et al. 2016) are shown with the different symbols (see labels). The solid curve and associated shaded area correspond to the expectations and 68% uncertainty for General Relativity in a ACDM background model set to TT+lowP+lensing Planck 2015 predictions (Planck Collaboration et al. 2015).

VIPERS, arXiv: 1612.05647

What go wrong?

Incomplete list of approximations/simplifications in RSD modeling

Distant observer

$$\mathbf{x}^s = \mathbf{x} + \frac{\mathbf{v} \cdot x}{H}\hat{x}$$

ſ

Neglecting AP/relativistic effects/lensing distortion

 \wedge

$$\mathbf{x}^s = \mathbf{x} + \frac{v_z}{H}\hat{z}$$

Single streaming No magnification bias

$$P^{s}(\mathbf{k}) = \int \langle (1+\delta_{1})(1+\delta_{2})e^{ik_{z}(v_{1z}-v_{2z})/H} \rangle e^{i\mathbf{k}\cdot\mathbf{r}}d^{3}x$$

Cumulant expansion theorem

$$P_g^s(k,u) = \left[P_g(k)(1+\beta \tilde{W}(k)u^2)^2 + u^4 P_{\theta_S \theta_S}(k) + \cdots \right] D^{\text{FOG}}(ku)$$

Linear density-velocity relation, no velocity bias

Deterministic density-velocity

Negligible high order corrections

$$P_g^s(k,u) = P_g(k)(1+\beta u^2)^2 D^{\text{FOG}}(ku)$$

Further approximations often used in observations

- Scale independent galaxy density bias
- **D**^{FOG}: Gaussian, Lorentz, more complicated? Meaning of σ_{v} ?

Challenging to achieve 1% accuracy

> Many works to improve RSD model

e.g. Peebles 1980,..., Kaiser 1987,..., Hamilton 1992,..., Scoccimarro, 2000, ..., White 2001,..., Yang et al. 2002,..., Kang et al. 2002,..., Szapudi 2004,..., Zu et al. 2007,..., Tinker 2007, ..., Matsubara 2008,...,Taruya et al. 2010,..., Kwan et al. 2011,..., Seljak & McDonald, 2011,...,Reid & White 2011,...Jennings et al. 2012,...

Entangled complexities

- Nonlinear mapping between real and redshift space
 - Redshift space 2pt is the sum of all N-pt in real space
- Nonlinearity in the dark matter density and velocity statistics
 - Non-Gaussianity, no compact expression of redshift space ps
 - Stochastic velocity-density relation
- Nonlinear galaxy-dark matter relation
 - Stochastic scale dependence density bias
 - Velocity bias
- Disentangle RSD!
 - ZPJ, Pan & Zheng, 2013; Zheng et al. 2013; ZPJ, Zheng & Jing, 2015, Zheng et al., 2015a
 ,2015b; Yu et al. 2015; 2016; Zheng et al. 2016

Disentangle RSD (1): real space-redshift space mapping $\lambda \equiv ik_z(v_{1z} - v_{2z})/H.$

$$P_{\delta\delta}^{s}(\mathbf{k}) = \int \langle (1 + \delta_{1})(1 + \delta_{2}) \exp \lambda \rangle \exp (-i\mathbf{k} \cdot \mathbf{r}) d^{3}\mathbf{r},$$

$$D_{\delta}^{\text{FOG}}(k_{z}) \Big[1 + \langle \delta_{1}\delta_{2} \rangle + i\frac{k_{z}}{H} \langle \delta_{2}v_{1} - \delta_{1}v_{2} \rangle + \frac{k_{z}^{2}}{H^{2}} \langle v_{1}v_{2} \rangle + C_{NG}(\mathbf{r}, k_{z}) + C_{G}(\mathbf{r}, k_{z}) \Big].$$

$$C_{NG} = \sum_{j \geq 3} C_{NG,j}(\mathbf{r}, k_{z}) + \frac{k_{z}^{2}}{H^{2}} \langle v_{1}v_{2} \rangle + C_{NG}(\mathbf{r}, k_{z}) + C_{G}(\mathbf{r}, k_{z}) \Big].$$

$$C_{NG} = \sum_{j \geq 3} C_{NG,j}(\mathbf{r}, k_{z}) + \frac{k_{z}^{2}}{H^{2}} \langle v_{1}v_{2} \rangle + C_{NG}(\mathbf{r}, k_{z}) + C_{G}(\mathbf{r}, k_{z}) \Big].$$

$$C_{NG} = \sum_{j \geq 3} C_{NG,j}(\mathbf{r}, k_{z}) + \frac{k_{z}^{2}}{H^{2}} \langle v_{1}v_{2} \rangle + \frac{k_{z}^{2}}{H^{2}} \langle v_{1}v_{2} \rangle + C_{NG}(\mathbf{r}, k_{z}) + C_{G}(\mathbf{r}, k_{z}) \Big].$$

$$C_{NG} = \sum_{j \geq 3} C_{NG,j}(\mathbf{r}, k_{z}) + \frac{k_{z}^{2}}{H^{2}} \langle v_{1}v_{2} \rangle + \frac{k_{z}^{2}}{H^{2}} \langle v_{1}v_{2}$$

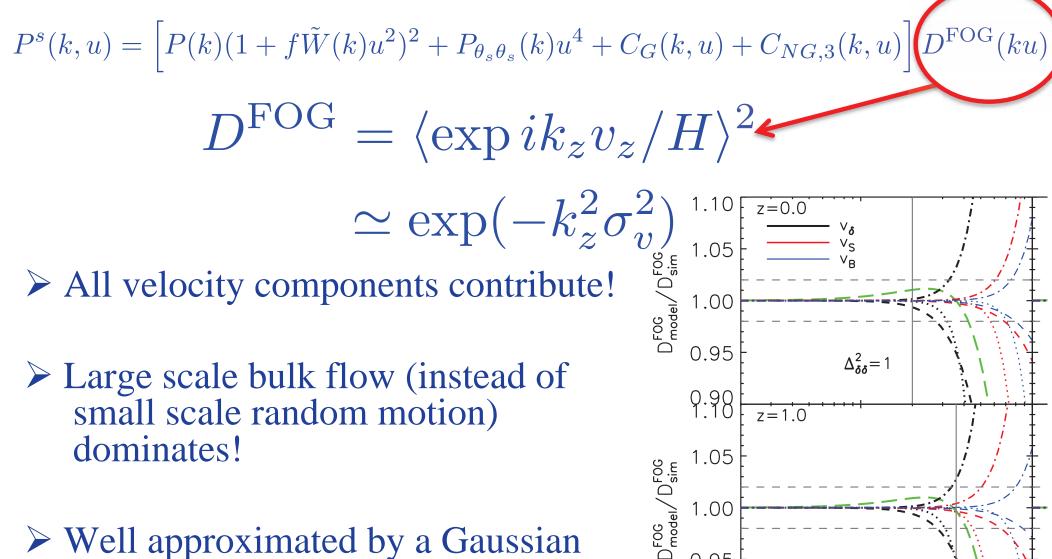
ZPJ, Pan, Zheng, 2013

The cumulant expansion theorem

$$\langle e^f \rangle = \exp\left[\sum_{N=1}^{\infty} \frac{\langle f^N \rangle_c}{N!}\right] \quad \langle f \rangle = 0$$

$$\langle f^N \rangle_c = \langle f^N \rangle - \langle f^N \rangle_G$$

Disentangle RSD: Finger of God



Zheng et al. 2013

profile (1% at k<0.3h/Mpc)

0.95

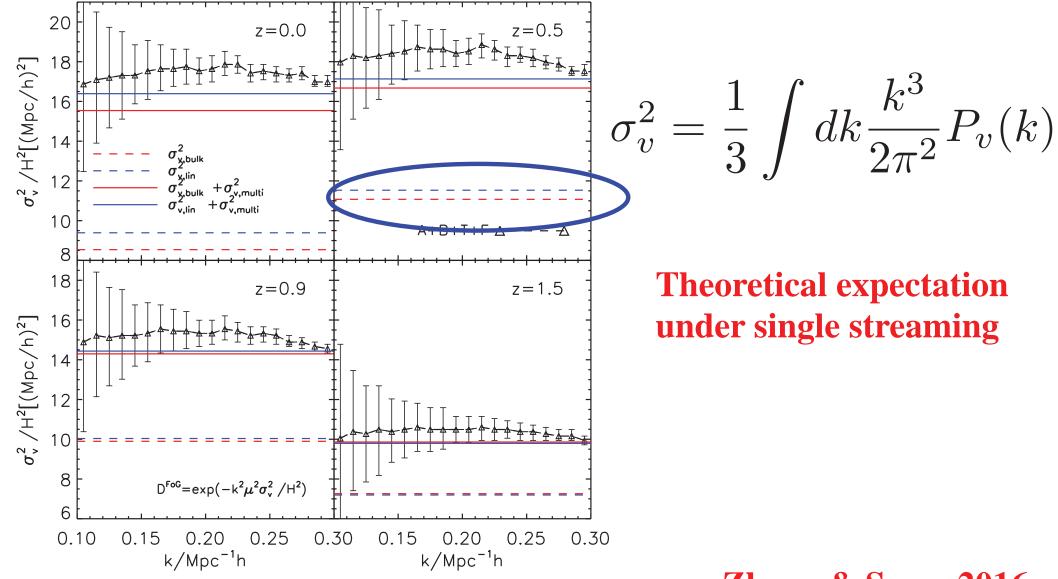
0.90

0.1

k,/Mpc⁻¹h

1.0

Problem: the measured FOG is larger than the theoretical expetcation!



Zheng & Song, 2016

First quantification of multi-steaming in RSD

$$\vec{s} = \vec{x} + \frac{v_z}{H}\hat{z}$$
 Single
streaming $(1+\delta)d^3x = (1+\delta^s)d^3s$

$$\delta_{\text{single}}^{s}(\mathbf{k}) = \int d^{3}\mathbf{x} \exp(i\mathbf{k} \cdot \mathbf{x}) [1 + \delta(\mathbf{x})] \exp\left(i\frac{k_{z}v_{z}}{H}\right) \,.$$

The density power spectrum in redshift space is then

$$P_{\text{single}}^{s} = \int d^{3}\mathbf{r} \exp(i\mathbf{k}\cdot\mathbf{r}) \left\langle (1+\delta_{1})e^{i\frac{k_{z}v_{1z}}{H}}(1+\delta_{2})e^{-i\frac{k_{z}v_{2z}}{H}} \right\rangle$$

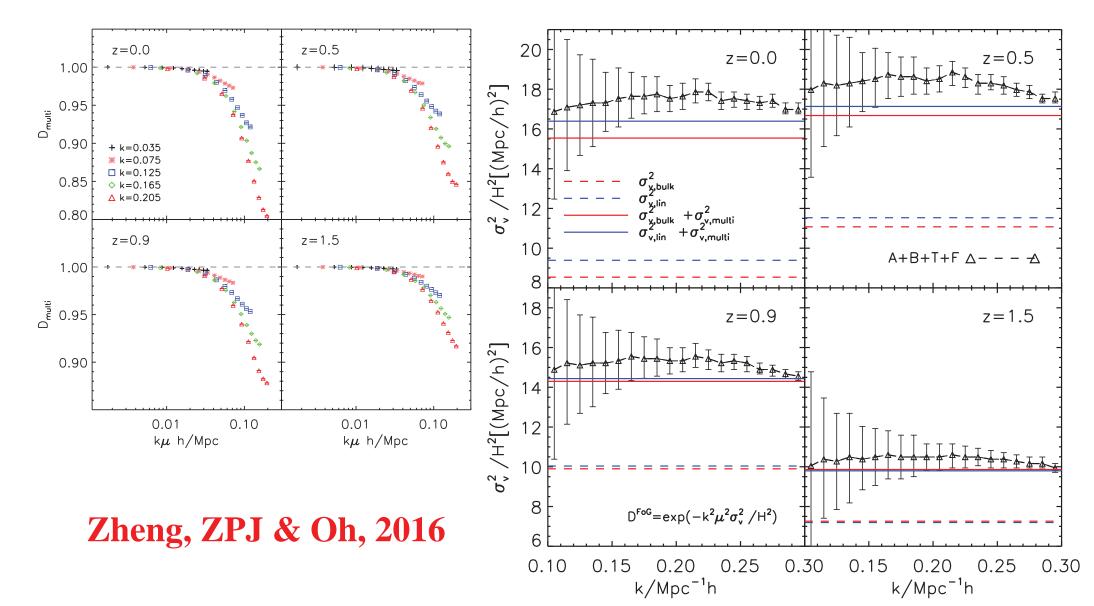
$$D_{\text{multi}}(\mathbf{k}) \equiv \frac{P_{\text{multi}}^{s}(\mathbf{k})}{P_{\text{single}}^{s}(\mathbf{k})} < 1$$

Zheng, ZPJ & Oh, 2016

Multi-streaming

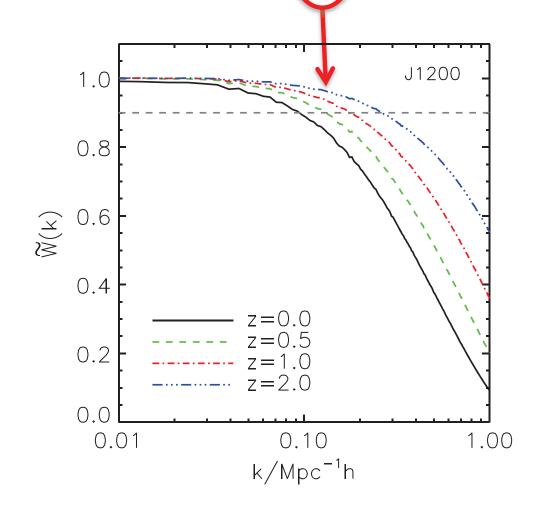
Detection in simulations

It is the missing link in explaining FOG



Disentangle RSD (2): Nonlinear evolution in the DM density and velocity

 $P^{s}(k,u) = \left[P(k)(1 + f\tilde{W}(k)u^{2})^{2} + P_{\theta_{s}\theta_{s}}(k)u^{4} + C_{G}(k,u) + C_{NG,3}(k,u)\right]D^{FOG}(ku)$

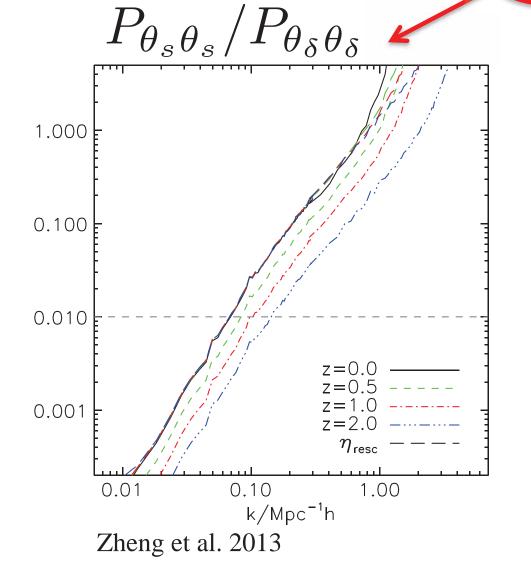


- Velocity growth is suppressed w.r.t density.
- Leading order correction to the Kaiser formula
- > 10% at k=0.1h/Mpc and z=0

Zheng et al. 2013

Nonlinear evolution: stochastic velocity-density

 $P^{s}(k,u) = \left[P(k)(1 + f\tilde{W}(k)u^{2})^{2} + P_{\theta_{s}\theta_{s}}(k)u^{4} + C_{G}(k,u) + C_{NG,3}(k,u)\right]D^{FOG}(ku)$



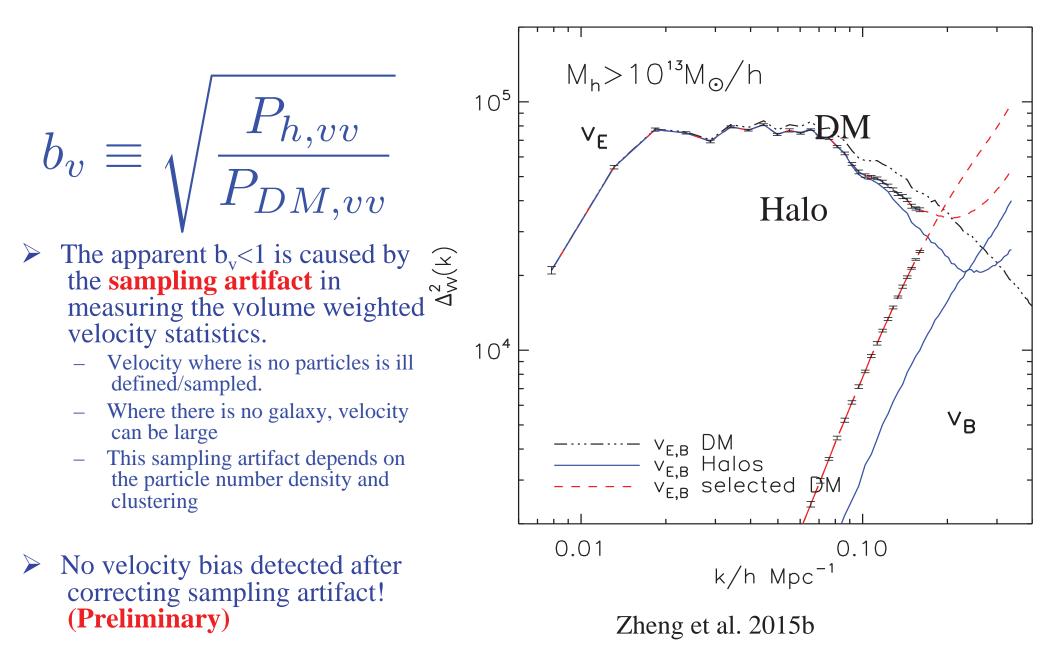
Stochastic velocity v_s has a leading order contribution with u⁴ directional dependence

O(1%) effect at k=0.1h
/Mpc and z=0-2.

Disentangle RSD (3) : velocity bias

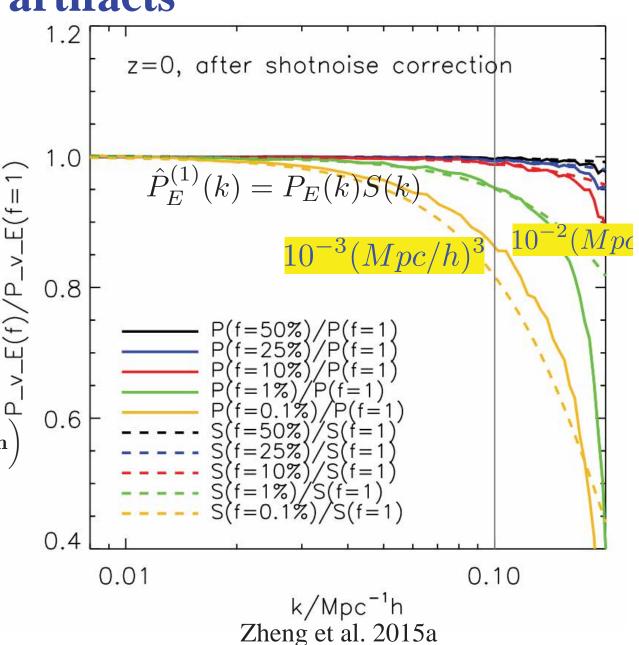
- Most cosmological constraints based on RSD assume no velocity bias at large scale (e.g. k=0.1h/Mpc)
 - Refer to Guo Hong's talk on velocity bias at small scale
- > But in reality velocity bias exists!
 - Environmental effect: halos locate at density peaks which are correlated with velocity
 - 10% velocity bias at k=0.1h/Mpc was predicted (BBKS 1986; Desjacques & Sheth 2010)
 - Gastrophysics (e.g. ram pressure)
- ≻ How large?
 - Have to understand the velocity bias to 1% level accuracy at k~0.1h /Mpc.

Severe numerical artifacts

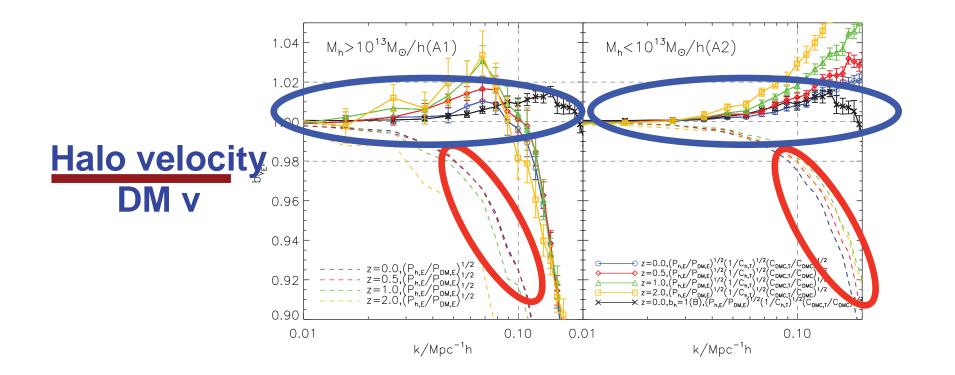


Understand and self-calibrate sampling artifacts

- We develop a theoretical model to understand and self-calibrate sampling artifact
 - ZPJ, Zheng & Jing, 2015
- Leading order approximation works to a few percent
 - Zheng et al. 2015
- Higher order corrections also derived.
- $\hat{P}_{E}^{(2)}(\mathbf{k}) \simeq \sum_{\mathbf{m}\neq\mathbf{0}} P_{E}(q_{\mathbf{m}}) \cos^{2}\theta_{\mathbf{m}} W\left(\mathbf{q}_{\mathbf{m}}, \frac{2\pi}{L_{\text{box}}}\mathbf{m}\right)$ Promising to measure 1%
 - level velocity bias
- Stay tuned on the halo velocity bias



Halo velocity bias, after sampling artifact correction



Need significantly improved understanding of sampling artifact or significantly improved velocity assignment method to reach 1%

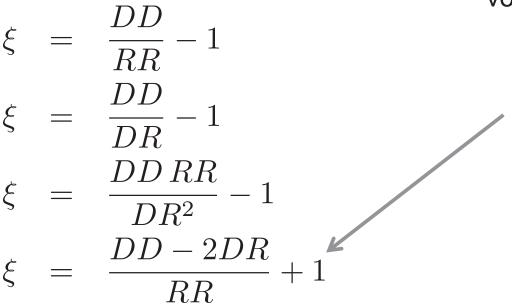
Problems in RSD cosmology (=opportunities for young researchers)

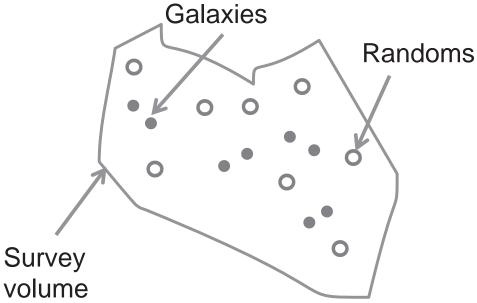
- Major one: RSD modeling
 fail at ~10%
- Minor one: RSD measurement
 - needs better data analysis method

RSD correlation function measurement

DD = number of galaxy-galaxy pairs DR = number of galaxy-random pairs RR = number of random-random pairs

All calculated as a function of separation **and** direction to LOS





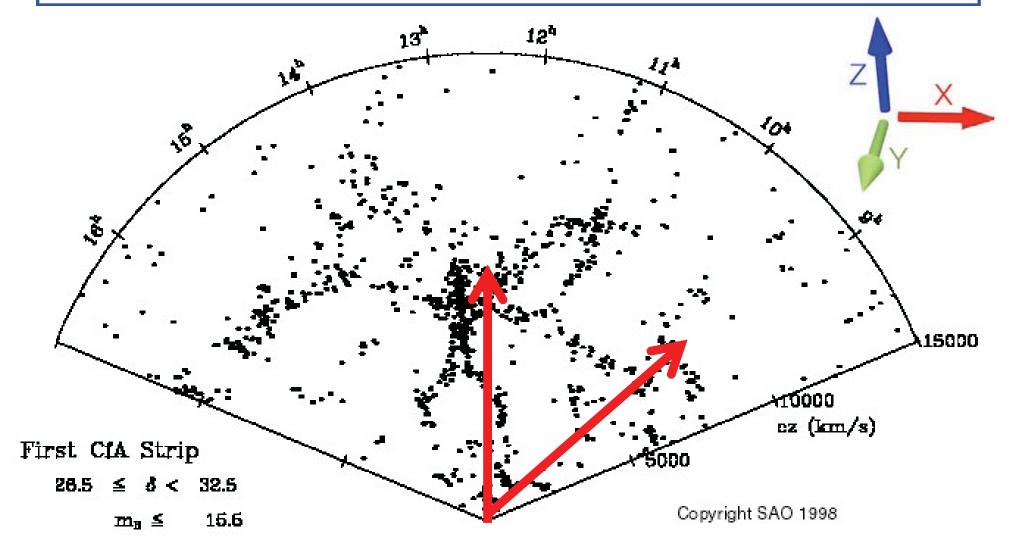
Landy & Szalay (1993) considered noise from these estimators, and showed that this has the best noise properties

Landy & Szalay 1993; ApJ 412, 64

Coutesy of Percival's lecture

RSD power spectrum measurement

Ordinary FFT does not work since it mixes different lines of sight and then smooths away the RSD anisotropy.



Power spectrum measurement in redshift space

- Spherical Fourier Bessel (SFB) decomposition. $\vec{x} = (x, \theta, \varphi)$ $(\theta, \varphi) \leftrightarrow Y_{lm}(\theta, \varphi)$
- $x \leftrightarrow j_{\ell}(x)$ > Moving l.o.s. approximation and RSD moments measurement with FFT (Yamamoto + 2005; Bianci + 2015; Scoccimarro 2015)
- Correlation function -> power spectrum (Jing & Borner 2001; Li+, 2016).
 - Window/mask deconvolved
 - Unbiased moments measurement
 - Can be as fast as FFT methods

We have tested our method and applied to BOSS DR11,12

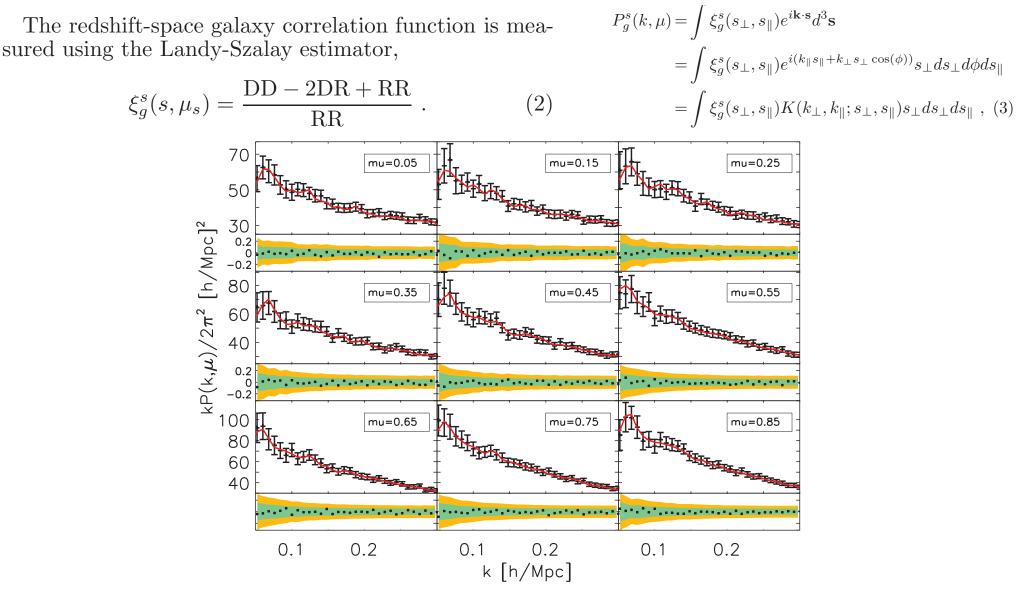
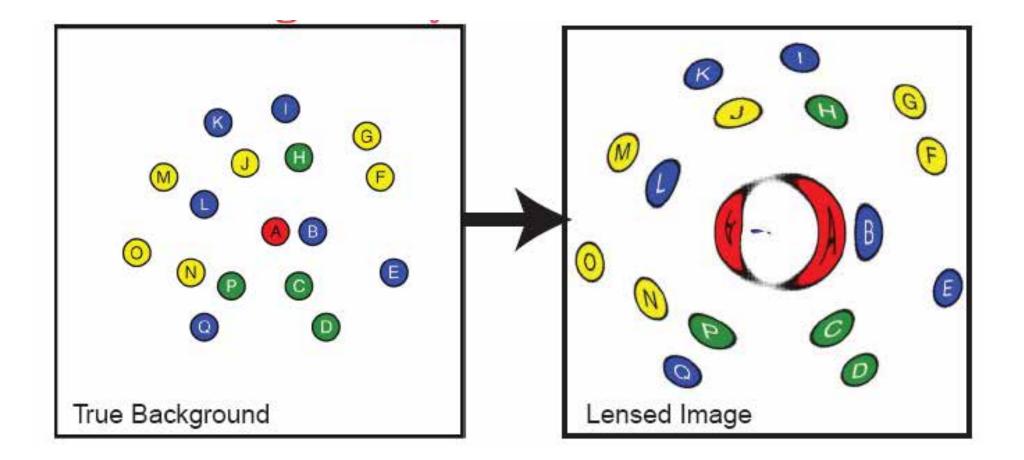


FIG. 1.— 2D power spectrum of mock galaxies in the CosmicGrowth simulation. The nine panels show $kP(k,\mu)/2\pi^2$ distribution as a function of k, for specific μ bins. The power spectrum we obtained with our method are shown as red solid lines and those using FFT method are shown as black plus signs in the top sub-box of each panel. The error bars for the data points of FFT method are estimated according to Eq. 6. In the bottom sub-box of each panel shows the difference between the two methods, $(P(k,\mu) - P_{\rm FFT}(k,\mu))/P_{\rm FFT}(k,\mu)$. The Celadon green (Chrome yellow) band shows 1σ (2σ) confidence level. The two methods show good consistency. The differences between them are well within the 1σ level.

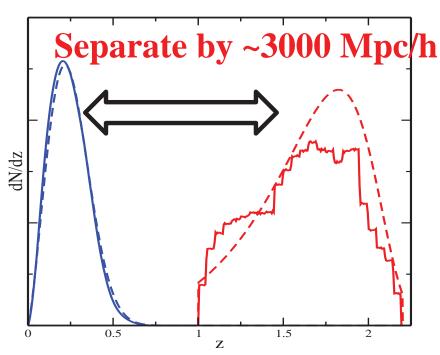
Another problem

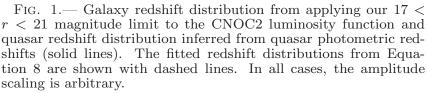
- ➢ Mocks for RSD analysis
- We need of the order 10^3 mocks of 100 Gpc^3 volume to well understand the error bars, selection effect, and various other issues.
- Existing mock generation methods have various problems to overcome

Weak lensing Cosmology: Promises and Challenges

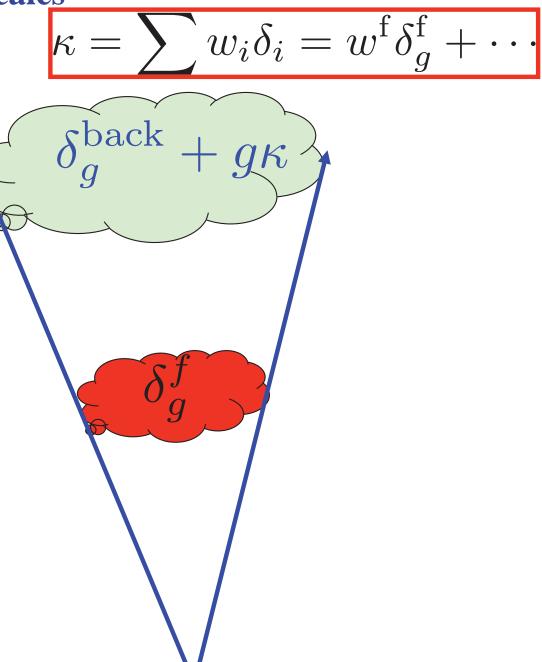


Weak lensing: the cause of "abnormal" correlation at horizon scales





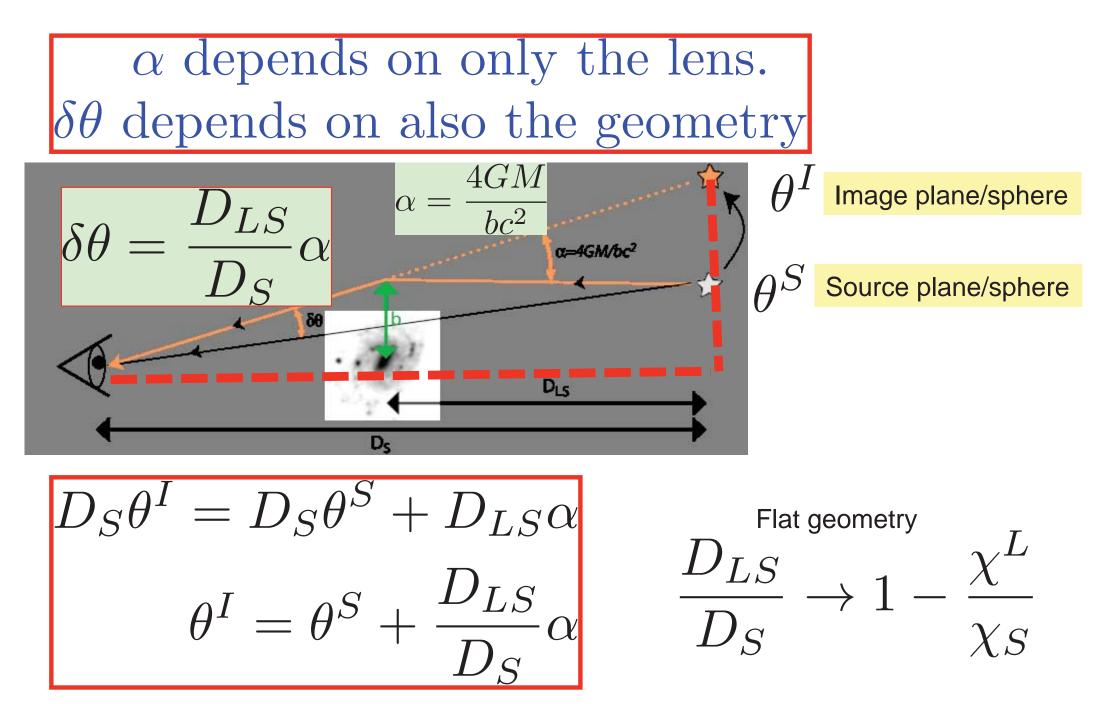
Non-vanishing correlation! First detected by Scranton+, 2005 at ~10sigma and then by other data



Gravitational lensing: generic consequence of metric gravity Side View Light EP deflection in curved Solar eclipse (1919) spacetime Weak lensing: **Galaxy clusters** View from Earth **GR** field **Curvature by** (1990)17 matter/energy equations Blank sky (2000) Hypothesized... **Strong lensing** (1979)57 Strong Lensing - Multiple Images

Microlensing – probe DM

Gravitational lensing (single lens)



Relativistic view of weak lensing

$$ds^{2} = -(1 - 2\Phi)dt^{2} + (1 + 2\Phi)a^{2}dX^{2}$$

$$\frac{d^{2}x^{\alpha}}{d\lambda^{2}} + \Gamma^{\alpha}_{\mu\nu}\frac{dx^{\mu}}{d\lambda}\frac{dx^{\nu}}{d\lambda} = 0 .$$

$$\theta_{S}^{i} = \theta^{i} + 2\int_{0}^{\chi}d\chi \left[\Phi_{,i}\left(\vec{x}(\chi')\right)\left(1 - \frac{\chi'}{\chi}\right) \right]$$

$$A_{ij} \equiv \frac{\partial\theta_{S}^{i}}{\partial\theta^{j}}$$

$$A_{ij} - \delta_{ij} = \begin{pmatrix} -\kappa - \gamma_{1} & -\gamma_{2} \\ -\gamma_{2} & -\kappa + \gamma_{1} \end{pmatrix} = 2\int_{0}^{\chi}d\chi' \Phi_{,ij}\left(\vec{x}(\chi')\right)\chi'\left(1 - \frac{\chi'}{\chi}\right)$$

e.g. Modern cosmology by Scott Dodelson

Weak lensing statistics

- Weak lensing is completely described by the transformation matrix. Symmetric (3 apparent DOFs)
- Lensing signal: Only one real DOF (the lensing convergence kappa, the so called E-mode)

$$\kappa(\hat{n}) = \int_0^\infty (-\nabla^2 \Phi(\chi(z_L), \hat{n})) W(z_L, z_s) dz_L$$

• In GR, with the Poisson equation,

$$\kappa(\hat{n}) = \int_0^{z_s} \delta(\chi(z_L), \hat{n}) W(z_L, z_s) dz_L$$

$$W(z_s, z_L) = \frac{3}{2} \Omega_m (1 + z_L) \frac{\chi_L}{c/H_0} (1 - \frac{\chi_L}{\chi_s}) \frac{H_0}{H(z_L)}$$

Map of lensing convergence

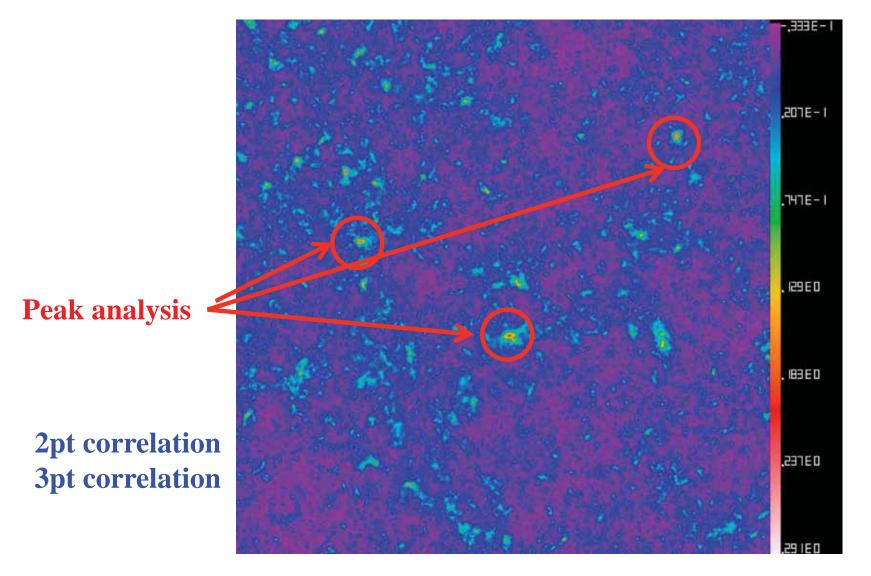


Fig. 1.— An initial noise-free κ map in the N-body simulation of a $\Omega_m = 0.3 \text{ ACDM}$ cosmology with a map width of 3.02 degrees and 2048² pixels, and the scale is in units of κ .

Zhang, Tongjie + 2003

The Limber approximation

The 2D field y is the 3D field delta projected along the line of sight

$$y(\hat{n}) = \int \delta(\chi, \hat{n}) W(\chi) d\chi$$

- The power spectrum of y is the power spectrum of delta projected along the line of sight.
- When the correlation length of delta is much smaller than the projection length of y,

$$\frac{\ell^2 C(\ell)}{2\pi} = \frac{\pi}{\ell} \int \Delta_{\delta}^2 \left(k = \frac{\ell}{\chi}, z\right) W^2(\chi) \chi d\chi$$

 $\chi \equiv \chi(z)$: distance to z.

The weak lensing power spectrum

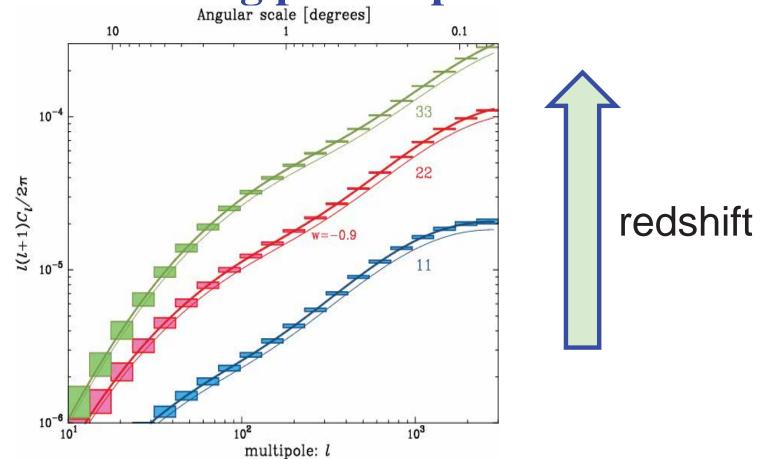
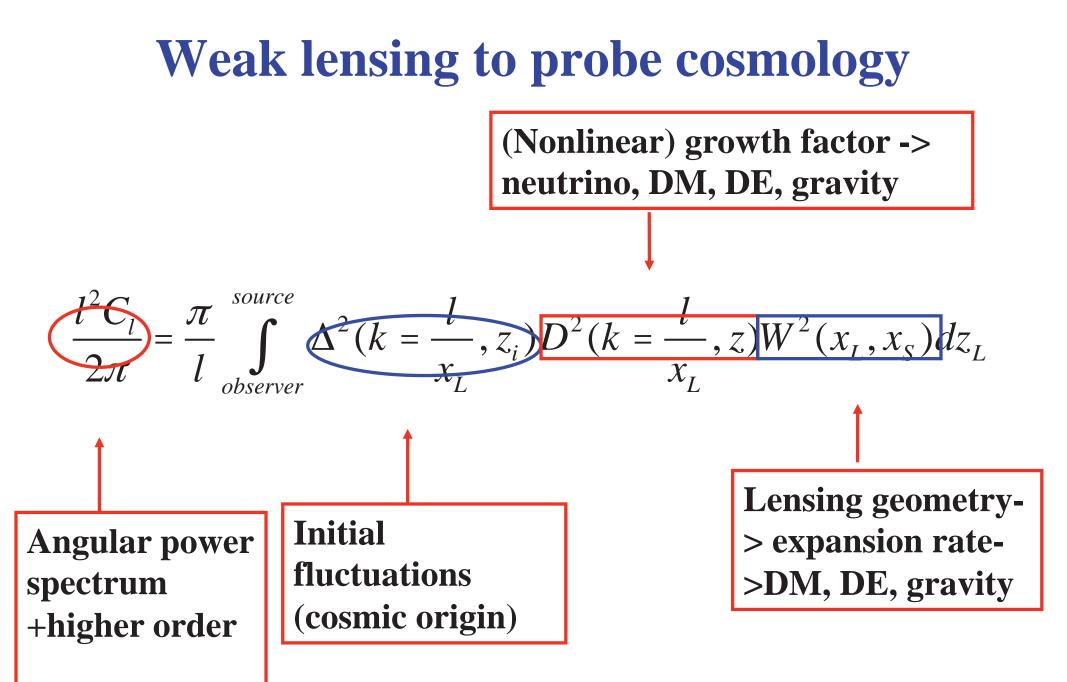
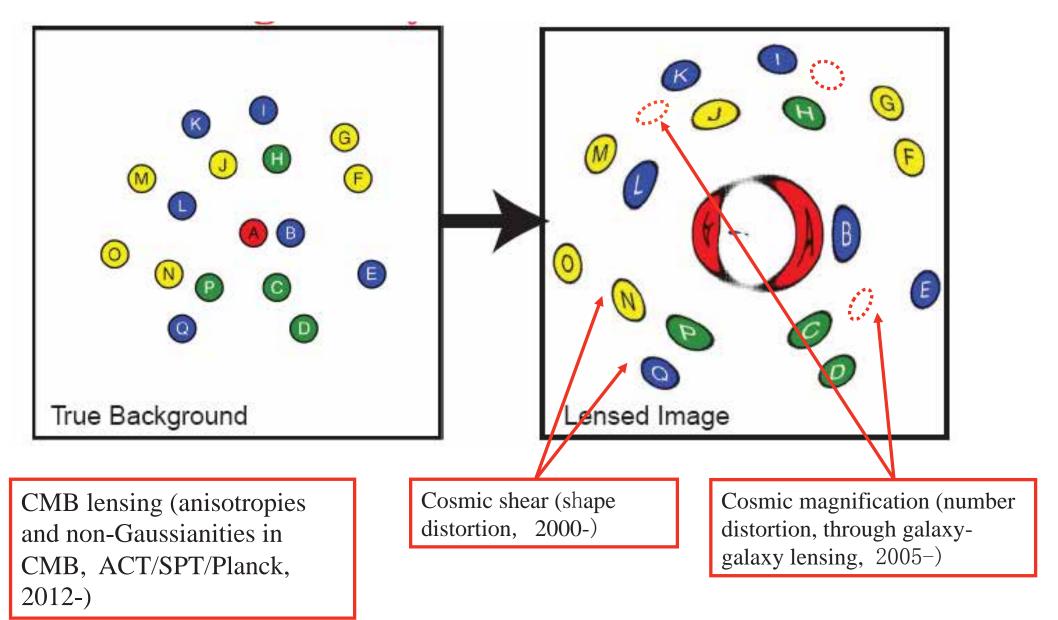


Figure 14.3: The lensing power spectra constructed from galaxies split into three broad redshift bins: z < 0.7, 0.7 < z < 1.2, and 1.2 < z < 3. The solid curves are predictions for the fiducial ACDM model and include nonlinear evolution. The boxes show the expected measurement error due to the sample variance and intrinsic ellipticity errors (see text for details). The thin curves are the predictions for a dark energy model with w = -0.9. Clearly such a model can be distinguished at very high significance using information from all bins in ℓ and z. Note that many more redshift bins are expected from LSST than shown here, leading to over a hundred measured auto- and cross-power spectra.

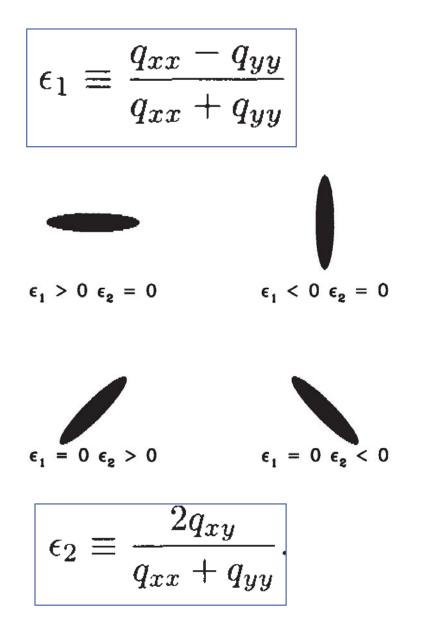


Measurable

Observable consequences



Weak lensing measurements: cosmic shear



$$\epsilon_i \to \epsilon_i + 2\gamma_i$$

First detections in 2000 by 4 group

- G2. CFHTLenS, SDSS, COSMOS, etc.
- ➢ G3. KiDS, RCSLenS, DES,HSC
- G4. LSST, Euclid, WFIRST, etc.

Weak lensing measurements: cosmic shear

RCSLenS: The Red Cluster Sequence Lensing Survey^{*}

H. Hildebrandt,¹[†] A. Choi,² C. Heymans,² C. Blake,³ T. Erben,¹ L. Miller,⁴

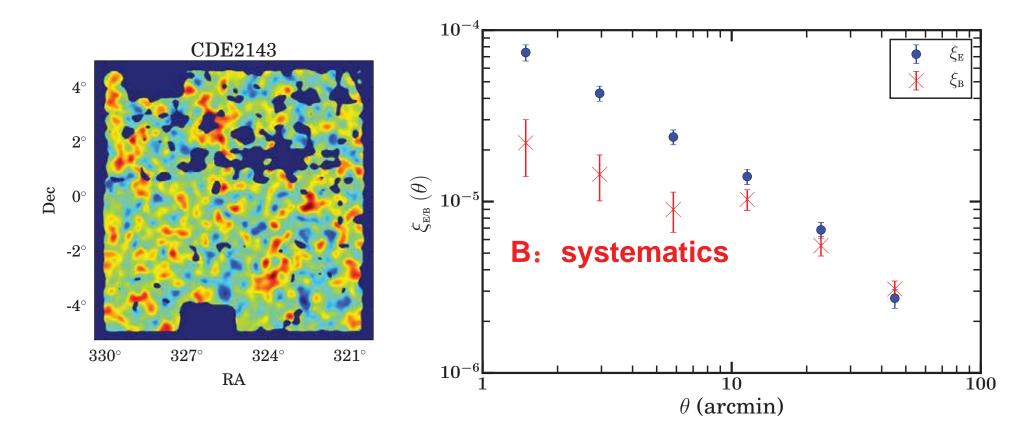
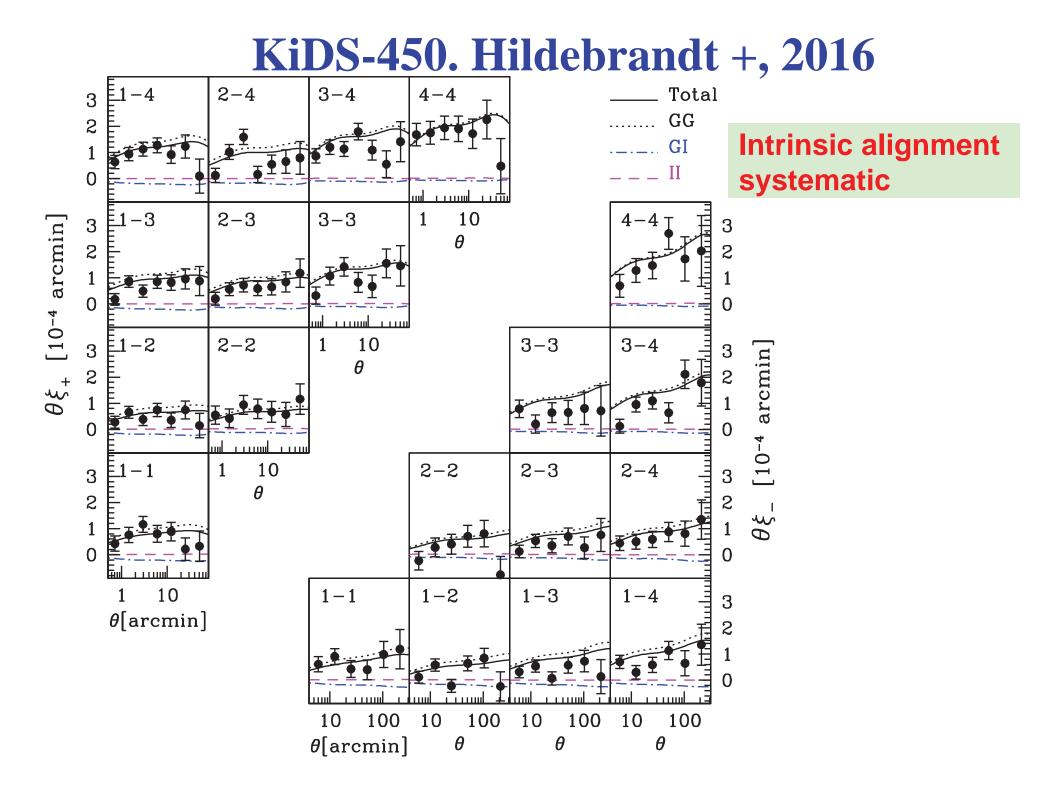
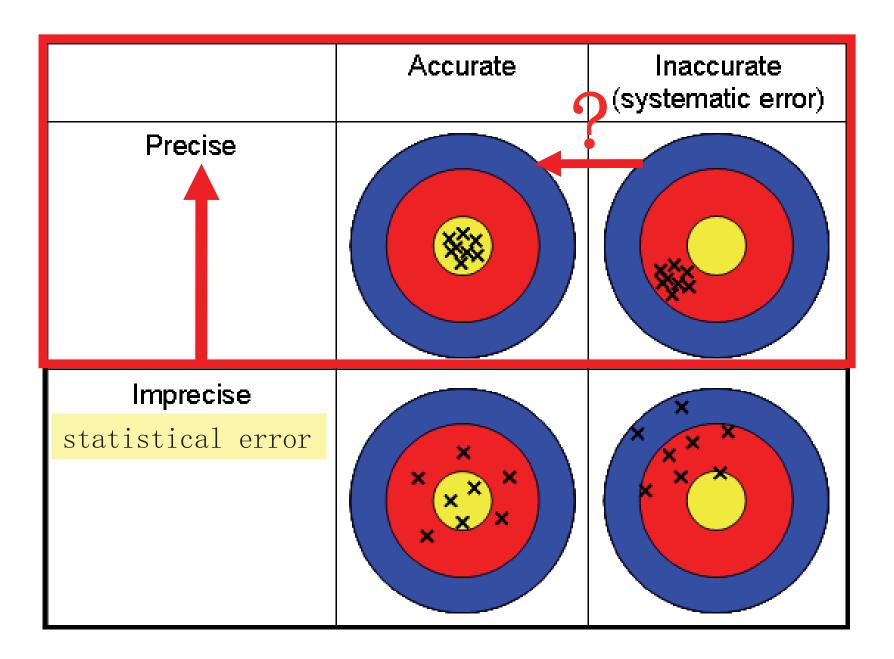


Figure 14. Two-point correlation functions ξ_E (blue circles) and ξ_B (red crosses) for the full RCSLenS shear catalogue.



More problems in weak lensing cosmology (=better opportunities for young researchers)

- How to measure it accurately?
- How to model it accurately?
- Aim: 1% or better!



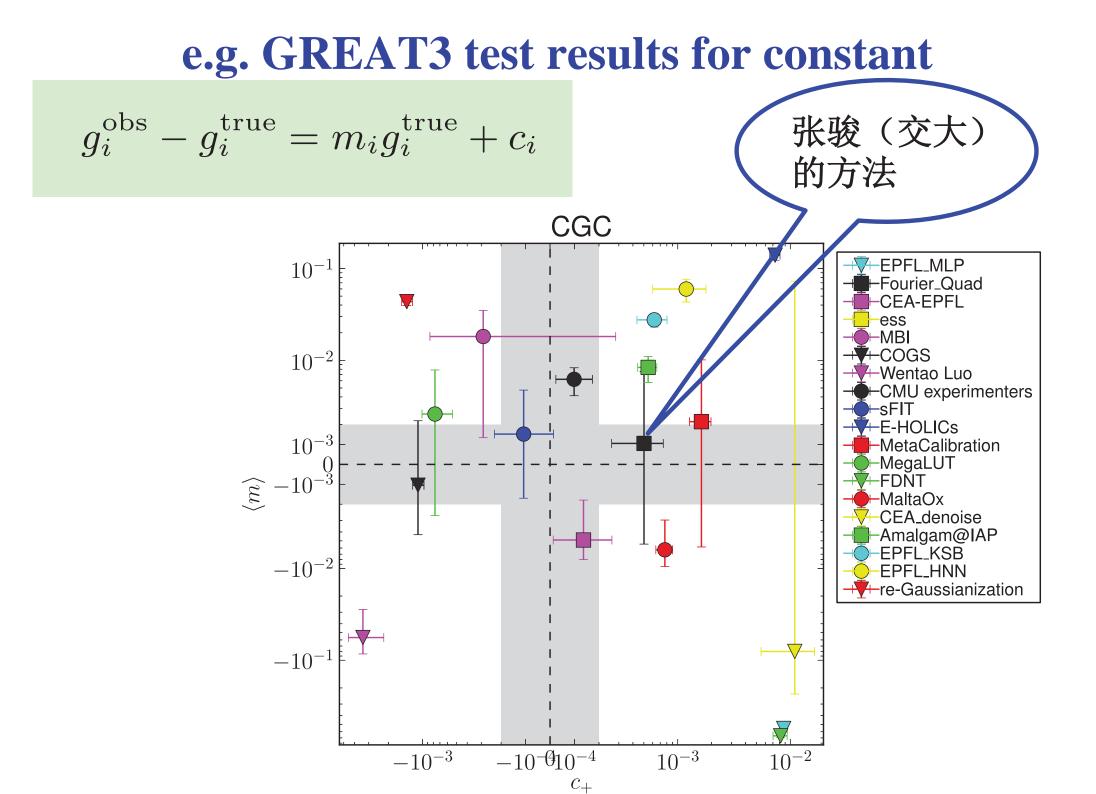
Challenges to cosmic shear cosmology

> Systematic errors in observational measurement

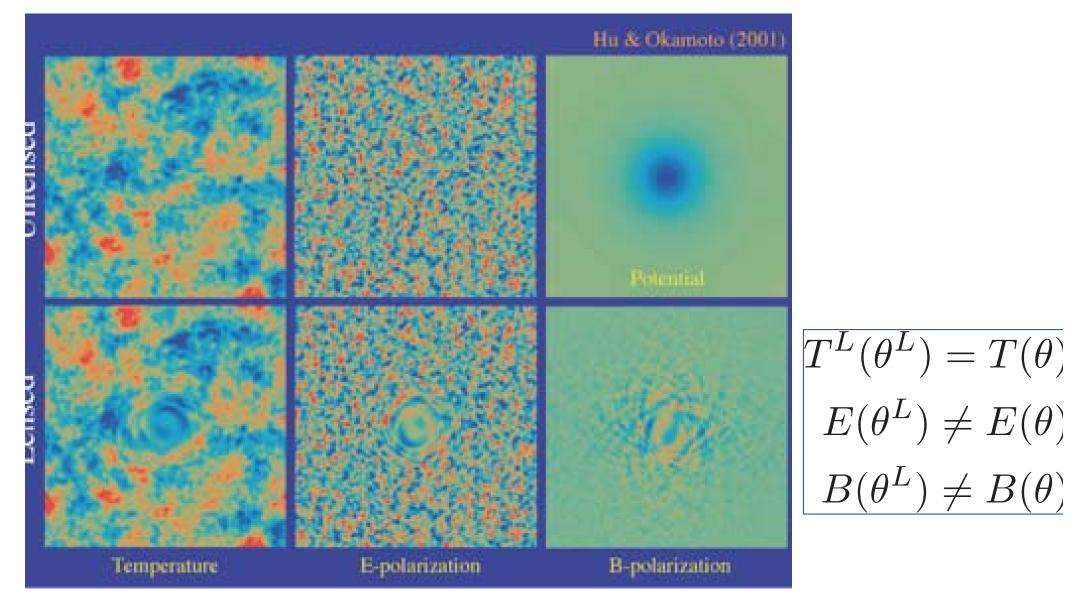
- Galaxy shape measurement (e.g. GREAT3 test)
- Galaxy intrinsic alignment (e.g. Troxel et al. 2015 review)
- Photo-z error (in particular outliers)
- Many more (e.g. LSST science book)

Systematic errors in theoretical modeling

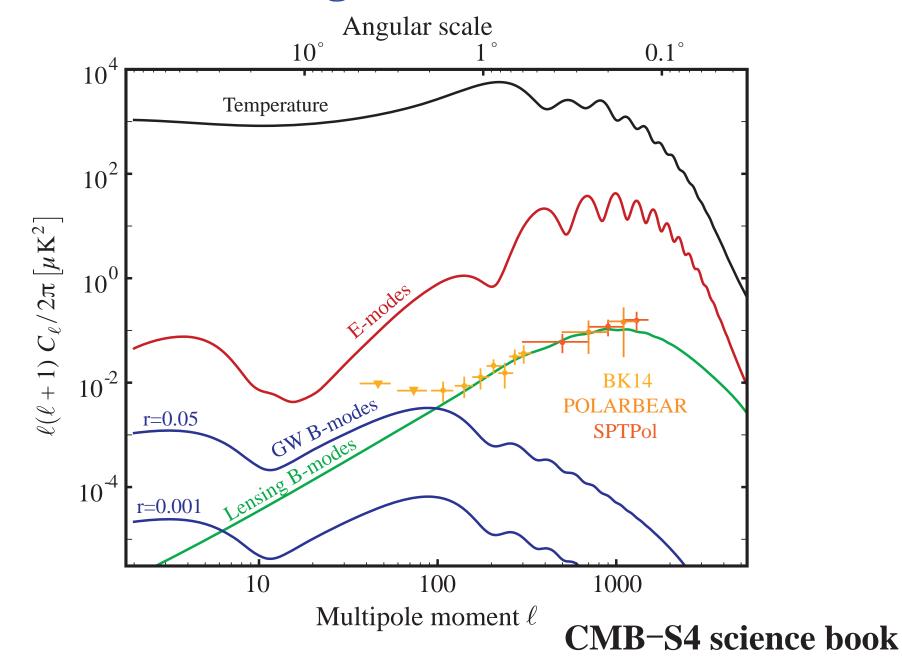
- Baryon effects (non-gravitational processes such as gas cooling, SN and AGN feedback, affect the matter clustering)
- Nonlinear and non-Gaussian evolution
- Second order corrections: source-lens clustering, Born deviation, lens
 -lens coupling, reduced shear, etc.
- Many more



CMB lensing



Lensing changes CMB E-mode into B-mode Contamination to gravitational wave B-mode



CMB lensing reconstruction

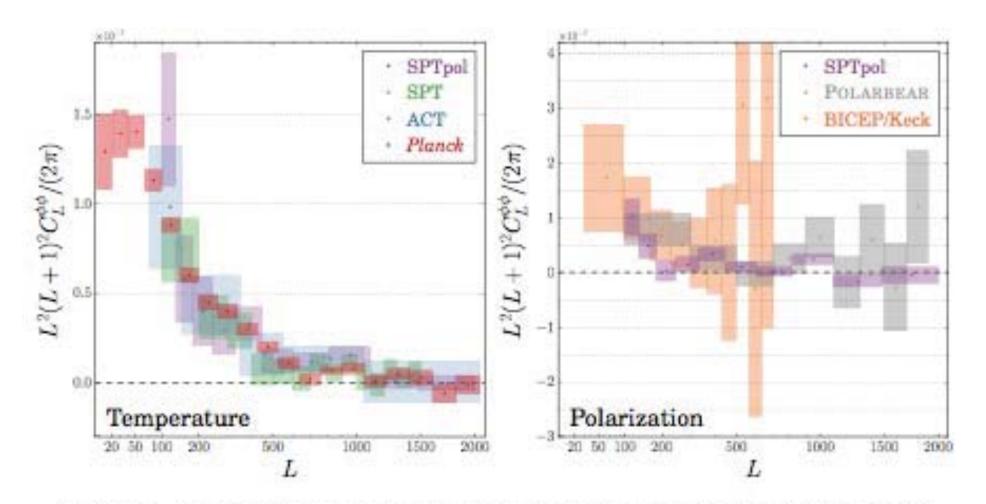
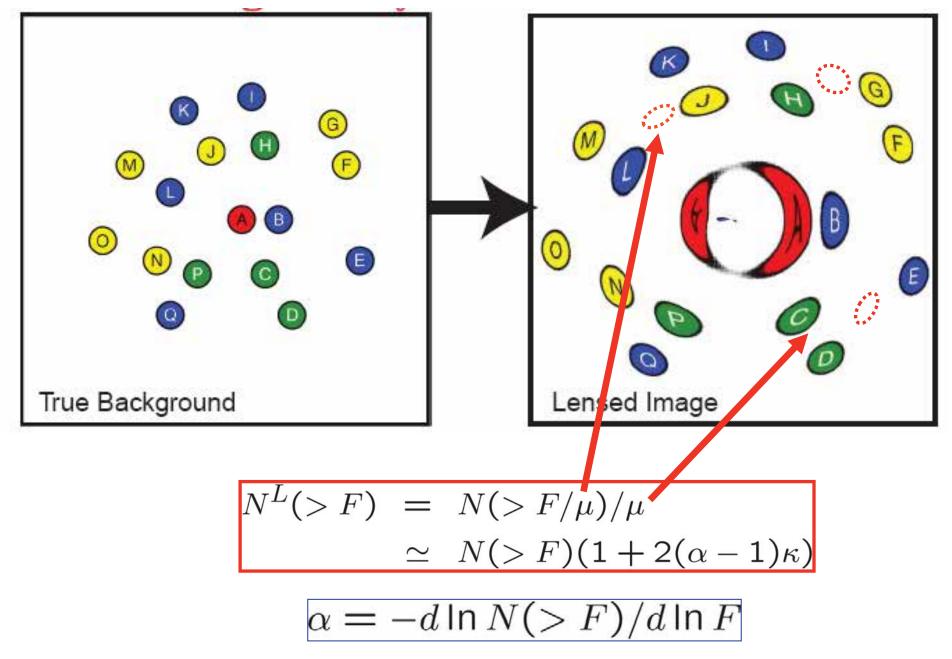
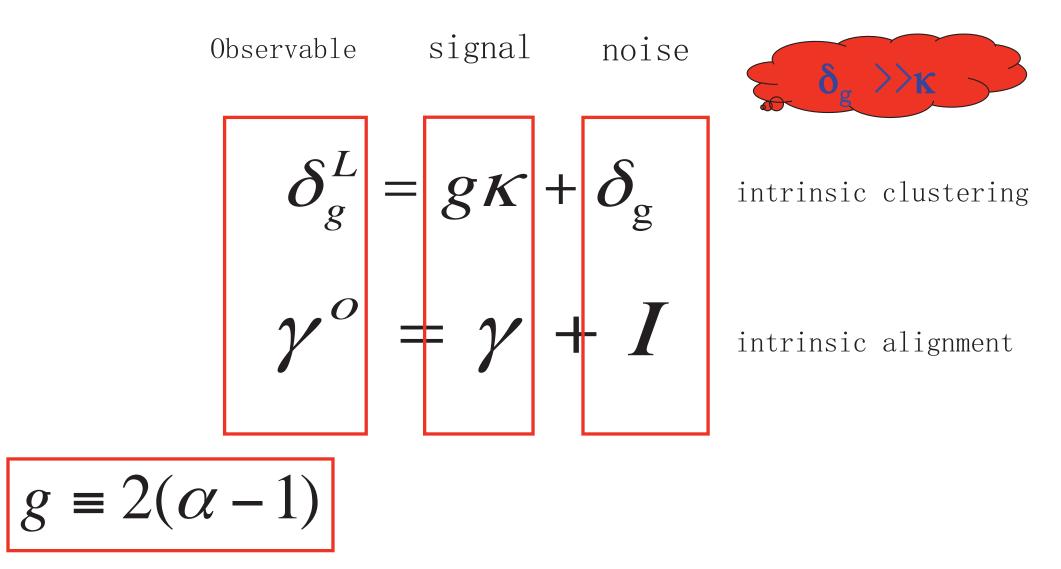


Figure 48. Compendium of lensing power spectrum measurements since first measurements in 2011.

Weak lensing: cosmic Magnification



Cosmic magnification vs. cosmic shear



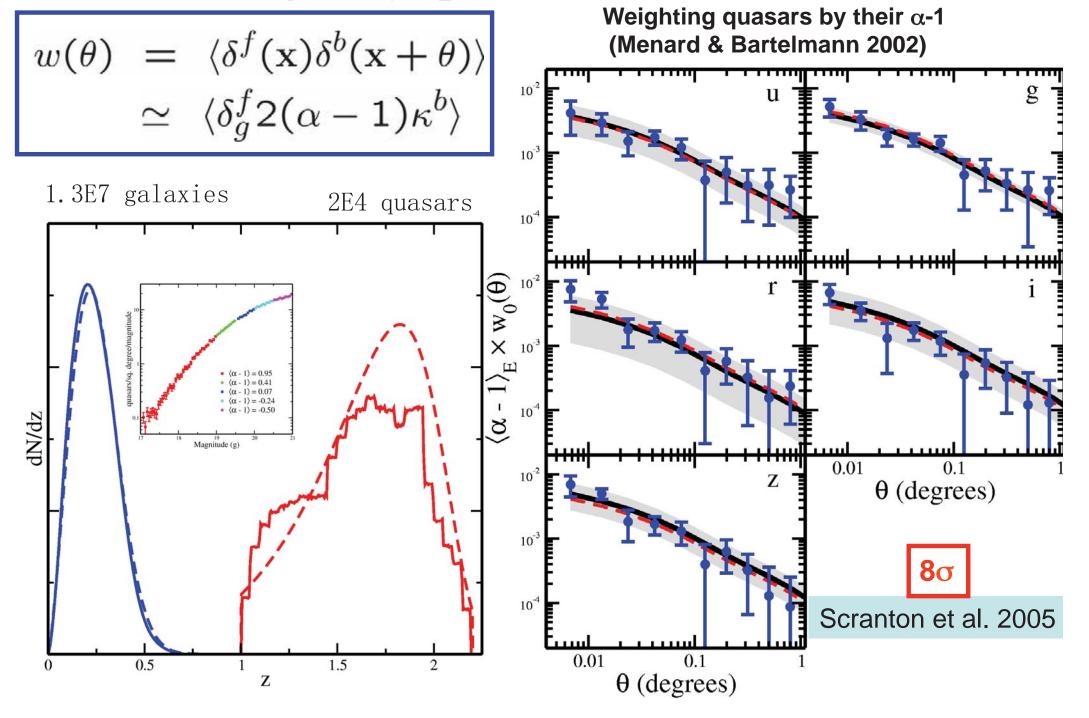
Cosmic magnification statistics

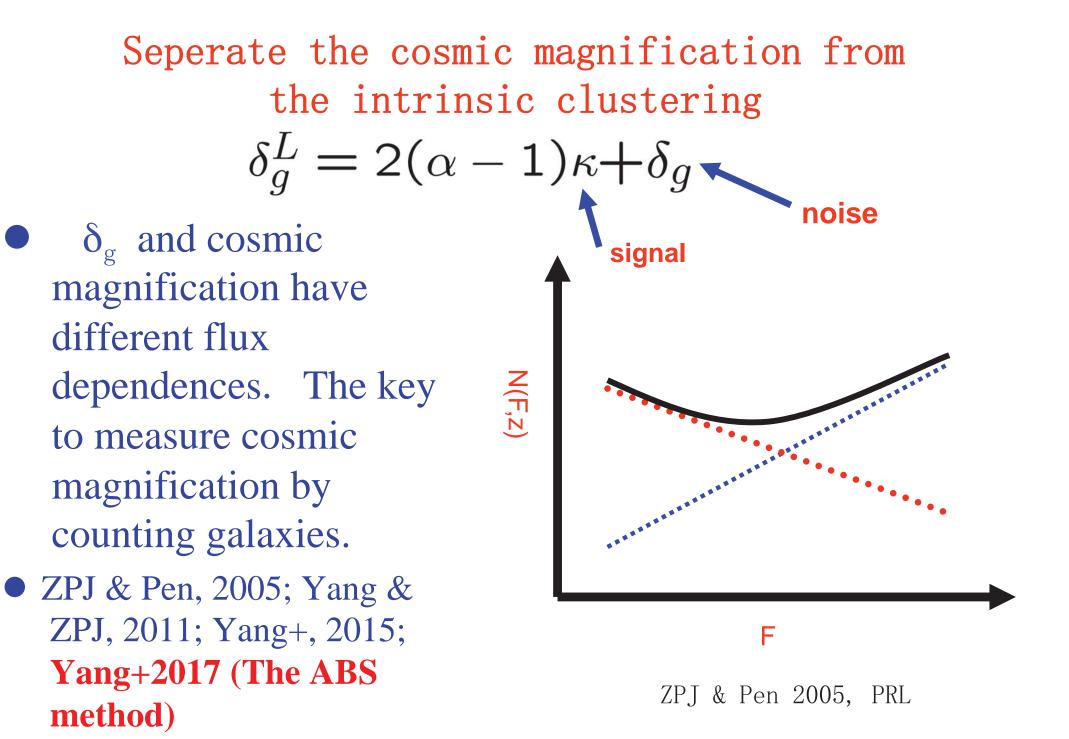
$$\delta_g^L = 2(\alpha - 1)\kappa + \delta_g$$

Cross correlation of foreground and background galaxies

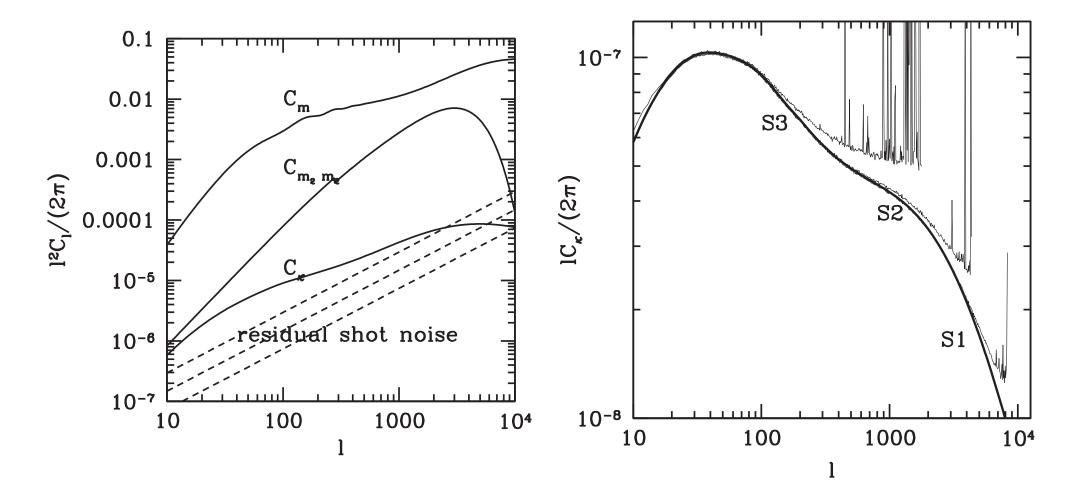
 $w(\theta) = \langle \delta^{f}(\mathbf{x})\delta^{b}(\mathbf{x}+\theta) \rangle$ $\simeq~\langle \delta^f_q 2(lpha-1)\kappa^b
angle$

SDSS galaxy-quasar cross correlation





ABS eliminates O(1000) contaminations, recovers the input lensing power spectrum, without assumptions of contaminations



Yang+2017 (The ABS method)