
The large scale structure of the universe
Part 1:  
•  Deciphering the large scale structure (LSS) 

•  With statistics and physics 

Part 2:  
•  Tracers of LSS 

•  Redshift distortion, weak lensing, broadband power
 spectrum, BAO, SZ effect, ISW, etc. 

Part 3 
•  Synergies of LSS tracers 

•  Probe DM, DE, MG, neutrino, etc. 
•  Reduce statistical errors 
•  Control systematic errors



Major probes of dark energy and cosmic acceleration 

LSS 

BAO

RSD

Weak lensing
Cluster 
abundance

SNe Ia
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Redshift Space Distortion Cosmology: 
Promises and Challenges



Noticed at least as early as 1972

Jackson, 1972, MNRAS Finger of God effect



Peculiar velocity: a window to the dark
 universe 

 Matter distribution in our universe is inhomogeneous 
 Gravitational attraction arising from inhomogeneity perturbs
 galaxies and causes deviation from the Hubble flow  

v 

r 

v 

r 

peculiar 
velocity 

v=Hr v=Hr 



http://www.astr.ua.edu/keel/galaxies/distance.html 



Redshift space distortion

x v
Observer

 We observe galaxies in redshift space (namely infer their
 distances from their redshifts). 
  Peculiar velocity changes the galaxy redshift (cosmological
 z+ Doppler z) and hence distorts the galaxy distribution in
 an anisotropic way 
–  Galaxy clustering along the line of sight is different to that

 perpendicular to the line of sight 

zobs = z +
�v

c
· x̂

�s = �x+
�v · x̂
H(z)

x̂



Statistical isotropy to statistical anisotropy

A. J. S. Hamilton, atrophy/9708102 

BOSS: Samushia et al. 2014.Observe along 
this direction



Measure peculiar velocity at cosmological distance 
heuristic approach

P (k)
v−→ P s(k⊥, k‖)

Directly measurableAlso directly measurable!
P (k) = P s(k⊥ = k, k‖ = 0)

Peculiar velocity can be reconstructed! 
Not only the average statistics, but also the 3D field

Real space 
power spectrum

Redshift space 
power spectrum



RSD and the structure growth

 RSD measures velocity, which is a specific
 combination of structure growth rate

dδm
dt

+∇ · �v = 0 δm(�x, t) = D(t)δi(�x)

⇒ �v ∝ fHδm ∝ fD ∝ fσ8

f ≡ d lnD(a)

d ln a
∝ Ωγ

m(a)

Linearized mass conservation Linearized evolution



Applications (1): Constrain dark energy 

Amendola, Quercellini &Giallongo 2004 

BAO 

BAO+RD 

 RD helps to 
improve dark energy  
constraints 

 However, the  
improvement 
is not significant for 
future big surveys 
 Because if smooth 

dark energy, BAO 
and RD basically 
probes the same H(z) 

w ≡ PDE

ρDE
= w0 + w1(1− a)



More important application of peculiar velocity:
 constrain gravity 

 At scales larger than galaxy clusters,  directly probes
 gravity (t-t component): 

 

 The most direct measure of the t-t metric
 perturbation (Jain & ZPJ, 2008) 

 In combination with weak lensing, allows for direct
 measurement of a key parameter of gravity (ZPJ+,
 2008) 

 

ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)dx2

d(a2�v)

dt
= −∇Ψ

η ≡ −Φ

Ψ



Applications (2): test GR 

Jennings et al. 2012

GR

f(R)Velocity power  
spectrum

Identical expansion rate 
Different structure growth rate
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Existing measurements of f sigma_8: 
10% accuracy

VIPERS, arXiv: 1612.05647



The clustering of galaxies in the completed SDSS-III
Baryon Oscillation Spectroscopic Survey: constraining
modified gravity

Eva-Maria Mueller1�, Will Percival1, Eric Linder2,3, Shadab Alam4,5,6, Gong-Bo Zhao1,7,
Ariel G. Sánchez8, Florian Beutler1

f � Ωγ
m(z)



The clustering of galaxies in the completed SDSS-III
Baryon Oscillation Spectroscopic Survey: constraining
modified gravity

Eva-Maria Mueller1�, Will Percival1, Eric Linder2,3, Shadab Alam4,5,6, Gong-Bo Zhao1,7,
Ariel G. Sánchez8, Florian Beutler1



Bright future: 5% accuracy in 5 years

eBOSS (Zhao , 2016)



Bright future: 1% accuracy in 10-20 years 
by stage IV (DESI, PFS, Euclid, WFIRST,SKA)



Problems in RSD cosmology  
=opportunities for young researchers )

•  Major one: RSD modeling 
•  Minor one: RSD measurement 



RSD modeling: Kaiser formula
Mapping : �x → �s = �x+

vz
H

ẑ

Mapping : (1 + δ)d3x = (1 + δs)d3s

δs =
1 + δ∣∣ ds
dx

∣∣ − 1

δs � δ −∇zvz/H

⇒ δs(�k) � δ(�k)(1 + fu2)

⇒ P s(�k) = P (k)(1 + fu2)2 u ≡ kz
k

z : line of sight

∣∣∣∣ dsdx
∣∣∣∣ = 1 +∇zvz/H



Including Finger of God

F (y) = exp(−y2) or (1 + y2)−1

P s(k, u) = P (k)(1 + fu2)F (y ≡ kuσv/H)



Systematic error detected at 10% level

Torre & Guzzo, 1202.5559 Okumura & Jing, 2010

And many more works
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Results vary between different groups

Li+, 2017 ApJ



Although data shows deviation from GR, no
 one has confidence to defeat Einstein!

VIPERS, arXiv: 1612.05647



What go wrong?



xs = x+
v · x̂
H

x̂ xs = x+
vz
H

ẑ

P s(k) =

∫
〈(1 + δ1)(1 + δ2)e

ikz(v1z−v2z)/H〉eik·rd3x

P s
g (k, u) =

[
Pg(k)(1 + βW̃ (k)u2)2 + u4PθSθS (k) + · · ·

]
DFOG(ku)

Distant observer

v

P s
g (k, u) = Pg(k)(1 + βu2)2DFOG(ku)

Single streaming 
No magnification bias

Cumulant expansion theorem

Deterministic 
density-velocity 

Linear density-velocity 
relation, no velocity bias

Negligible high 
order corrections

Further approximations  often used in observations 
•  Scale independent galaxy density bias 
•  DFOG: Gaussian, Lorentz, more complicated? Meaning of v? 

Incomplete list of approximations/simplifications in RSD modeling

Neglecting AP/relativistic effects/lensing distortion 



Challenging to achieve 1% accuracy

 Many works to improve RSD model 
–  e.g. Peebles 1980,…, Kaiser 1987,…, Hamilton 1992,…,  Scoccimarro, 2000, …, White

 2001,…, Yang et al. 2002,…, Kang et al. 2002,…, Szapudi 2004,…, Zu et al. 2007,…,
 Tinker 2007, …,  Matsubara 2008,…,Taruya et al. 2010,…, Kwan et al. 2011,…, Seljak
 & McDonald, 2011,..,Reid & White 2011,…Jennings et al. 2012,… 

 Entangled complexities 
–  Nonlinear mapping between real and redshift space 

•  Redshift space 2pt is the sum of all N-pt in real space 

–  Nonlinearity in the dark matter density and velocity statistics 
•  Non-Gaussianity, no compact expression of redshift space ps 
•  Stochastic velocity-density relation 

–  Nonlinear galaxy-dark matter relation 
•  Stochastic scale dependence density bias 
•  Velocity bias 

 Disentangle RSD!  
–  ZPJ, Pan & Zheng, 2013; Zheng et al. 2013; ZPJ, Zheng & Jing, 2015, Zheng et al. 2015a

,2015b; Yu et al. 2015; 2016; Zheng et al. 2016 



Disentangle RSD (1): real space-redshift space mapping

ZPJ, Pan, Zheng, 2013
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P s(k, u) =
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P (k)(1 + fW̃ (k)u2)2 + Pθsθs(k)u
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The cumulant expansion theorem

〈ef 〉 = exp

[ ∞∑
N=1

〈fN 〉c
N !

]

〈fN 〉c = 〈fN 〉 − 〈fN 〉G

〈f〉 = 0



Disentangle RSD: Finger of God

Zheng et al. 2013

P s(k, u) =
[
P (k)(1 + fW̃ (k)u2)2 + Pθsθs(k)u

4 + CG(k, u) + CNG,3(k, u)
]
DFOG(ku)

DFOG = 〈exp ikzvz/H〉2
� exp(−k2zσ

2
v)

 All velocity components contribute!  

 Large scale bulk flow (instead of
 small scale random motion)
 dominates! 

 Well approximated by a Gaussian
 profile (1% at k<0.3h/Mpc)

]
DDFOG(ku)



Problem: the measured FOG is larger than
 the theoretical expetcation!

Zheng & Song, 2016

Theoretical expectation 
 under single streaming

σ2
v =

1

3

∫
dk

k3

2π2
Pv(k)



First quantification of multi-steaming in RSD
Single 
streaming �s = �x+

vz
H

ẑ (1 + δ)d3x = (1 + δs)d3s

δssingle(k) =

∫
d3x exp(ik · x)[1 + δ(x)] exp

(
i
kzvz
H

)
.

The density power spectrum in redshift space is then

P s
single =

∫
d3r exp(ik · r)

〈
(1 + δ1)e

i
kzv1z

H (1 + δ2)e
−i

kzv2z
H

〉

Dmulti(k) ≡
P s
multi(k)

P s
single(k)

< 1

Zheng, ZPJ & Oh, 2016



Multi-streaming

Zheng, ZPJ & Oh, 2016

Detection in simulations
It is the missing link  
in explaining FOG



Disentangle RSD (2): Nonlinear evolution in the DM
 density and velocity 

Zheng et al. 2013

P s(k, u) =
[
P (k)(1 + fW̃ (k)u2)2 + Pθsθs(k)u

4 + CG(k, u) + CNG,3(k, u)
]
DFOG(ku)

 Velocity growth is
 suppressed w.r.t density.  
 Leading order correction to
 the Kaiser formula 
 10% at k=0.1h/Mpc and
 z=0

+++++++ ffW̃ (((((((((((((((kkkkkkkkk



Nonlinear evolution: stochastic velocity-density

Zheng et al. 2013

P s(k, u) =
[
P (k)(1 + fW̃ (k)u2)2 + Pθsθs(k)u

4 + CG(k, u) + CNG,3(k, u)
]
DFOG(ku)

 Stochastic velocity vS has a
 leading order contribution
 with u4 directional
 dependence 

 O(1%) effect at k=0.1h
/Mpc and z=0-2.

Pθsθs/Pθδθδ

+++++++ PPPPPθPP sθs(k)u
4 ++++++++++++++++



Disentangle RSD (3) : velocity bias
 Most cosmological constraints based on RSD assume no
 velocity bias at large scale (e.g. k=0.1h/Mpc) 
–  Refer to Guo Hong’s talk on velocity bias at small scale 

 But in reality velocity bias exists!  
–  Environmental effect: halos locate at density peaks which are

 correlated with velocity 
•  10% velocity bias at k=0.1h/Mpc was predicted (BBKS 1986;

 Desjacques & Sheth 2010) 
–  Gastrophysics (e.g. ram pressure) 

 How large?  
–  Have to understand the velocity bias to 1% level accuracy at k~0.1h

/Mpc.



Severe numerical artifacts

bv ≡
√

Ph,vv

PDM,vv

  The apparent bv<1 is caused by
 the sampling artifact in
 measuring the volume weighted
 velocity statistics. 

–  Velocity where is no particles is ill
 defined/sampled. 

–  Where there is no galaxy, velocity
 can be large 

–  This sampling artifact depends on
 the particle number density and
 clustering 

 
  No velocity bias detected after

 correcting sampling artifact!
 (Preliminary) Zheng et al. 2015b

DM

Halo



Understand and self-calibrate sampling
 artifacts

  We develop a theoretical
 model to understand and
 self-calibrate sampling
 artifact 

–  ZPJ, Zheng & Jing, 2015 
  Leading order
 approximation works to a
 few percent 

–  Zheng et al. 2015 
  Higher order corrections
 also derived. 

 
  Promising to measure 1%
 level velocity bias  
  Stay tuned on the halo
 velocity bias 

Zheng et al. 2015a

P̂
(1)
E (k) = PE(k)S(k)

P̂
(2)
E (k) �

∑
m �=0

PE(qm) cos2 θmW

(
qm,

2π

Lbox
m

)

10−3(Mpc/h)3
10−2(Mpc



Halo velocity bias, after sampling artifact
 correction 

Halo velocity 
DM v

Need significantly improved understanding of sampling artifact  
or significantly improved velocity assignment method  
to reach 1%



Problems in RSD cosmology  
=opportunities for young researchers )

•  Major one: RSD modeling 
•   fail at ~10% 

•  Minor one: RSD measurement 
•  needs better data analysis method



DD = number of galaxy-galaxy pairs
DR = number of galaxy-random pairs
RR = number of random-random 
pairs

All calculated as a function of 
separation and direction to LOS

Landy & Szalay 1993; ApJ 412, 64

Landy & Szalay (1993) 
considered noise from these 
estimators, and showed that this 
has the best noise properties 

  
   

  
 

 
 

 

 

 
 

 

 

Galaxies

Randoms

Survey 
volume

ξ =
DD

RR
− 1

ξ =
DD

DR
− 1

ξ =
DDRR

DR2
− 1

ξ =
DD − 2DR

RR
+ 1

RSD correlation function measurement

Coutesy of Percival’s lecture



RSD power spectrum measurement
Ordinary FFT does not work since it mixes different lines of sight and 
then smooths away the RSD anisotropy. 



Power spectrum measurement in redshift space

 Spherical Fourier Bessel (SFB) decomposition.  

 
  Moving l.o.s. approximation and RSD moments
 measurement with FFT (Yamamoto + 2005;
 Bianci + 2015; Scoccimarro 2015) 
 Correlation function -> power spectrum (Jing &
 Borner 2001; Li+, 2016). 
–  Window/mask deconvolved 
–  Unbiased moments measurement 
–  Can be as fast as FFT methods 

�x = (x, θ, ϕ) (θ, ϕ) ↔ Ylm(θ, ϕ)

x ↔ j�(x)



We have tested our method and applied to
 BOSS DR11,12

The redshift-space galaxy correlation function is mea-
sured using the Landy-Szalay estimator,

ξsg(s, μs) =
DD− 2DR+ RR

RR
. (2)

P s
g (k, μ)=

∫
ξsg(s⊥, s‖)e

ik·sd3s

=

∫
ξsg(s⊥, s‖)e

i(k‖s‖+k⊥s⊥ cos(φ))s⊥ds⊥dφds‖

=

∫
ξsg(s⊥, s‖)K(k⊥, k‖; s⊥, s‖)s⊥ds⊥ds‖ , (3)

Fig. 1.— 2D power spectrum of mock galaxies in the CosmicGrowth simulation. The nine panels show kP (k, μ)/2π2 distribution as a
function of k, for specific μ bins. The power spectrum we obtained with our method are shown as red solid lines and those using FFT
method are shown as black plus signs in the top sub-box of each panel. The error bars for the data points of FFT method are estimated
according to Eq. 6. In the bottom sub-box of each panel shows the difference between the two methods, (P (k, μ)−PFFT(k, μ))/PFFT(k, μ).
The Celadon green (Chrome yellow) band shows 1σ (2σ) confidence level. The two methods show good consistency. The differences
between them are well within the 1σ level.



Another problem

 Mocks for RSD analysis 
 We need of the order 10^3 mocks of 100 Gpc^3
 volume to well understand the error bars, selection
 effect, and various other issues. 
 Existing mock generation methods have various
 problems to overcome



Weak lensing Cosmology: 
Promises and Challenges



Weak lensing: the cause of “abnormal”
 correlation at horizon scales

0 0.5 1 1.5 2
z

dN
/d

z

Fig. 1.— Galaxy redshift distribution from applying our 17 <
r < 21 magnitude limit to the CNOC2 luminosity function and
quasar redshift distribution inferred from quasar photometric red-
shifts (solid lines). The fitted redshift distributions from Equa-
tion 8 are shown with dashed lines. In all cases, the amplitude
scaling is arbitrary.

Separate by ~3000 Mpc/h

Non-vanishing correlation!  
First detected by Scranton+, 
2005 at ~10sigma and then by 
other data

δbackg + gκ

κ =
∑

wiδi = wfδfg + · · ·

δfg



Gravitational lensing:  
generic consequence of metric gravity

EP
Light 
deflection in 
curved 
spacetime

GR field 
equations

Curvature by 
matter/energy

Strong lensing 
(1979)

Weak lensing  
Galaxy clusters 
(1990) 
Blank sky (2000)

Microlensing – probe DM

Solar eclipse (1919) 



Source plane/sphere

Image plane/sphere

θS

θI

Gravitational lensing single lens) 

α depends on only the lens.
δθ depends on also the geometry

DSθ
I = DSθ

S +DLSα

θI = θS +
DLS

DS
α

α =
4GM

bc2
δθ =

DLS

DS
α

DLS

DS
→ 1− χL

χS

Flat geometry



Relativistic view of weak lensing

e.g. Modern cosmology by Scott Dodelson

ds2 = −(1− 2Φ)dt2 + (1 + 2Φ)a2dX2

GeometryStructure growth

d2xα

dλ2
+ Γα

μν

dxμ

dλ

dxν

dλ
= 0 .

Aij ≡ ∂θiS
∂θj



Weak lensing statistics
•  Weak lensing is completely described by the transformation

 matrix. Symmetric (3 apparent DOFs) 
•  Lensing signal: Only one real DOF (the lensing convergence

 kappa, the so called E-mode) 

 
•  In GR, with the Poisson equation, 

κ(n̂) =

∫ zs

0

(−∇2Φ(χ(zL), n̂))W (zL, zs)dzL

κ(n̂) =

∫ zs

0

δ(χ(zL), n̂)W (zL, zs)dzL

W (zs, zL) =
3

2
Ωm(1 + zL)

χL

c/H0
(1− χL

χs
)

H0

H(zL)



Map of lensing convergence

Fig. 1.— An initial noise-free κ map in the N-body simulation of a Ωm =0.3 ΛCDM cos-

mology with a map width of 3.02 degrees and 20482 pixels, and the scale is in units of

κ.

Zhang, Tongjie 2003

Peak analysis

2pt correlation 
3pt correlation



The Limber approximation

y(n̂) =

∫
δ(χ, n̂)W (χ)dχ

�2C(�)

2π
=

π

�

∫
Δ2

δ

(
k =

�

χ
, z

)
W 2(χ)χdχ

The 2D field y is the 3D field delta projected along the line of sight

•  The power spectrum of y is the power spectrum of delta  
projected along the line of sight  
•  When the correlation length of delta is much smaller than 

the projection length of y,

χ ≡ χ(z) : distance to z.



The weak lensing power spectrum

Figure 14.3: The lensing power spectra constructed from galaxies split into three broad redshift bins: z < 0.7, 0.7 <
z < 1.2, and 1.2 < z < 3. The solid curves are predictions for the fiducial ΛCDM model and include nonlinear

evolution. The boxes show the expected measurement error due to the sample variance and intrinsic ellipticity errors

(see text for details). The thin curves are the predictions for a dark energy model with w = −0.9. Clearly such a

model can be distinguished at very high significance using information from all bins in � and z. Note that many more

redshift bins are expected from LSST than shown here, leading to over a hundred measured auto- and cross-power

spectra.

redshift



Weak lensing to probe cosmology

2
2 2 2( , ) ( , ) ( , )

2

source
l

i L S L
L Lobserver

l C l lk z D k z W x x dz
l x x
π

π
= Δ = =∫

Angular power 
spectrum
+higher order 
 
Measurable

Initial 
fluctuations 
(cosmic origin)

(Nonlinear) growth factor -> 
neutrino, DM, DE, gravity

Lensing geometry-
> expansion rate-
>DM, DE, gravity



Observable consequences

Cosmic shear (s ape 
distortion 2000-

Cosmic magnification (number 
distortion, through galaxy-
galaxy lensing,

CMB lensing (anisotropies 
and non-Gaussianities in 
CMB,  ACT/SPT/Planck, 
2012-)



Weak lensing measurements: cosmic shear 

 First detections in 2000 by 4
 group 
 G2. CFHTLenS, SDSS,
 COSMOS, etc. 
 G3. KiDS, RCSLenS,
 DES,HSC 
 G4. LSST, Euclid, WFIRST,
 etc.

εi → εi + 2γi



Weak lensing measurements: cosmic shear 
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Figure 14. Two-point correlation functions ξE (blue circles) and ξB (red

crosses) for the full RCSLenS shear catalogue.

RCSLenS: The Red Cluster Sequence Lensing Survey�

H. Hildebrandt,1† A. Choi,2 C. Heymans,2 C. Blake,3 T. Erben,1 L. Miller,4

B systematics



KiDS-450. Hildebrandt +, 2016

Intrinsic alignment  
systematic



More problems in  
weak lensing cosmology  

=better opportunities for young researchers )

•  How to measure it accurately? 
•  How to model it accurately? 
•  Aim: 1% or better!



Precise accurate!



Challenges to cosmic shear cosmology

  Systematic errors in observational measurement 
–  Galaxy shape measurement (e.g. GREAT3 test) 
–  Galaxy intrinsic alignment (e.g. Troxel et al. 2015 review) 
–  Photo-z error (in particular outliers) 
–  Many more (e.g. LSST science book) 

  Systematic errors in theoretical modeling 
–  Baryon effects non-gravitational processes such as gas cooling, SN and

 AGN feedback, affect the matter clustering) 
–  Nonlinear and  non-Gaussian evolution 
–  Second order corrections: source-lens clustering, Born deviation, lens

-lens coupling, reduced shear, etc. 
–  Many more 



e.g. GREAT3 test results for constant 

gobsi − gtruei = mig
true
i + ci  



CMB lensing

TL(θL) = T (θ)

E(θL) 
= E(θ)

B(θL) 
= B(θ)



Lensing changes CMB E-mode into B-mode 
Contamination to gravitational wave B-mode
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CMB lensing reconstruction 



Weak lensing: cosmic Magnification 



gδκδ += gL
g

Io += γγ

)1(2 −≡ αg

δ κ



Cosmic magnification statistics 

Cross correlation of foreground and background galaxies 

δ κ



SDSS galaxy-quasar cross correlation 

Scranton et al. 2005 

Weighting quasars by their αα-1 
 (Menard & Bartelmann 2002) 

8σ 



  δ and cosmic
 magnification have
 different flux
 dependences The key
 to measure cosmic
 magnification by
 counting galaxies.  
  ZPJ & Pen, 2005; Yang &
 ZPJ, 2011; Yang+, 2015;
 Yang+2017 (The ABS
 method)

N
(F,z) 

F 

signal 
noise 



ABS eliminates O(1000) contaminations, 
recovers the input lensing power spectrum, 

without assumptions of  contaminations

Yang+2017 (The ABS method)


