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Where does structures in our universe come from?



Big Bang plus
10~%3 seconds

quantum-gravity era

inflation

Big Bang plus
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Big Bang plus
14 billion years

cosmic microwave background




Where does structures in our universe come from?
What can we learn from those structures?

- Better understanding of the late universe
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Where does structures in our universe come from?
What can we learn from those structures?

- Better understanding of the late universe

- Understanding the primordial universe

- Understanding the particle physics of the primordial universe
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Lecture notes:
How to draw a horse?

“O

1. draw two circles 2. add neck and feet 3. add face

4. add hair

- J

5. finally add some details,
That's it!
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Computer Assisted Computation
Nonlinear Fluctuations
Inflationary Massive Fields

Computational Techniques



Apologize for the incompleteness of references.

Most references can be found at 1303.1523.



Part | — Linear Fluctuations

Fluctuations:

on top of homogeneous & isotropic background

d(x,t) = Po(t) + 5p(x,t), similarly for g, (X, t)

Linear:

Linear equation of motion (EoM)
Variation of 2nd order action
Results in @ Gaussian random field

The statistics is 2-point correlation function



A brief review of the inflationary background

Minimal model: — [%q's?—x/(q;)
Metric:

Scale factor: a(t) ~ et ~ —1/(Ht) Early:t - —oo, late: 7 - 0
EoM:

Slow roll: c=_ 1 =
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A Spectator Field in de Sitter

| Overview > Spectator ---



A Spectator Field in de Sitter

warm-up exercise

Two approximations:
- de Sitter: a = ef't
- Ignore slow roll: e x H = 0
- lgnore the end of inflation
- Spectator:
- No back-reaction to FRW

- Massless

“Overview > Spectator > Metric > Gauge > 0&( > Power > GWs



A Spectator Field in de Sitter

Roughly: quantum fluctuations — classical fluctuations
May be understood in a few ways:

- Cosmological Schwinger effect

- Stretch of the vacuum wave function of o

- Broken of WKB & particle production

- Quantum fluctuation in a “finite” box (outside: frozen)

- Explicit calculations (will do now)

_Overview ) Spectator > Metric > Gauge > 86&7 > Power > GWs_



A Spectator Field in de Sitter

}) Fourier transform

Expand into “mode function” +
creation/annihilation operators

lax, ax:] = 0, [ax, al,] = (27)%8% (k — k')

“Overview > Spectator > Netric > Gauge > 60&¢ > Power > GWs



A Spectator Field in de Sitter

}) Fourier transform

Expand into “mode function” +
creation/annihilation operators

lax, ax:] = 0, [ax, al,] = (27)%8% (k — k')

How to decide ¢; and ¢,?
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A Spectator Field in de Sitter

How to decide ¢; and ¢,?

Method 1: Compare with flat QFT

Method 2:
} consistent

J

Vacuum has lowest energy

-
H < cyc] + cc5 at T — —o00

_Overview ) Spectator > Metric > Gauge > 86&7 > Power > GWs_



A Spectator Field in de Sitter

The 1-point statistics vanishes: (0|0 |0) = 0

The 2-point statistics is hon-trivial:

V/ N N

space (but not FRW time) power spectrum scale-invariant

translation symmetry (of dS space)

_Overview ) Spectator > Metric > Gauge > 86&7 > Power > GWs_



From Spectator to Inflaton (Roughly)

S

= Fluctuate down with 6¢ %
— shorter e-fold { = 6N = —Hét = —H8¢p /¢,

— earlier reheating — energy drop faster

— |lower energy density = hotter spot on CMB

_Overview ) Spectator > Metric > Gauge > 86&7 > Power > GWs_



Massive Spectator Fields

U = ze'(””ﬂ\/_H( 732 HV (=kT)

coefficient, —
HZ
and choice of H(D:

match massless

at7 > —

“Overview > Spectator > Metric > Gauge > 0&( > Power > GWs



Massive Spectator Fields

LogLinearPlot [

Amyid g (x)*? HankelH1[v, x]] L Ve = —ijei+ D% ‘/Q'EH(—T)WEHIEH(—.QT)
{{v=3/2}, (v>1/2}, {v- 0}, {v~31}}], (x, .e01, 10},

Evaluate [Re [e

PlotLegends -» {"v=3/2 (m=0)", "v=1/2 (m="/2H)", "v=0 (m=3H/2)",
"v=3i (m=3.4H)"}]
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Massive Spectator Fields

2
% < 0(€,n): Field fluctuation exists until the end of inflation

2
m—z > 0(€,n): Field fluctuation decays away before the end of inflation
H

1.0}

' |
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Massive Spectator Fields

2
0(e,n) < % < z : Over-damped oscillator

2

m 9 .
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The Metric Fluctuations

Motivation:
Gravity tells matter how to move; Matter tells gravity how to curve.
FRW scalar fields, etc Gy = 8nG Ty,
AV ‘Q
=g, g~V 0
V=8, 870u%% T 2 9,00, V($)
¢ = ¢o(t) + 50 (x,t)
{ ¢o =0 =T, ~0(5p*) = 8g,, is small
¢$o #0->T,,~0(8¢) — g,, may be large

True for the inflaton! d

| Overview >_Spectator > Metric > _Gauge > 86 &% > Power > GWs_



How to Perturb the Metric?

Consider g, (X, t) = glg?,)(t) + 69, (X, t), where gfﬁ) is the FRW metric.
We need to further decompose 69, (X,t),

because the space-time symmetry is spontaneously broken by ¢, (t) and a(t).

How to decompose 89, (X, t)?

| Overview >_Spectator > Metric > _Gauge > 86 &% > Power > GWs_



How to Perturb the Metric?

Consider g, (X, t) = glg?/)(t) + 89,y (X, t), where gff? is the FRW metric.
We need to further decompose 69, (X,t),

because the space-time symmetry is spontaneously broken by ¢, (t) and a(t).

How to decompose 89, (X, t)?

Remaining 3d symmetry.

(4D tensor) — (3D scalar) X 4 + (3D div-free vector) X 2 + (3D tensor) X 1

Here we use the ADM decomposition.

S8



ADM Decomposition of 9uv

Nidt dz'
"% ds

i

x r'+dz!
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ADM Decomposition of 9uv

Some quantities can be calculated in closed form:

| Overview > Spectator > Metric > _Gauge > 86 &7 > Power > GWs_



ADM Decomposition of 9uv

The Ricci scalar has a convenient form:

Much easier to compute, if the boundary term can be dropped.

| Overview > Spectator > Metric > _Gauge > 86 &7 > Power > GWs_



ADM Decomposition of 9uv

No time derivative on N and N;

In the Einstein-Hilbert action.
Thus N and N; can be solved as constraints.

| Overview > Spectator > Metric > _Gauge > 86 &7 > Power > GWs_



ADM Decomposition of 9uv

Further decomposing h;;:

Scalar sector: a, 3, (, E

Vector sector: b;, F;

Tensor sector: y;;

| Overview > Spectator > Metric > _Gauge > 86 &7 > Power > GWs_



Gauge Invariance and Fixing

GR: we are free to choose coordinates (“gauge”):

| Overview >_Spectator > Metric > _Gauge > 86 &Z > _Power > GWs_



Gauge Invariance and Fixing

An explicit example: freedom of choosing equal-time slices

t  tixd tixb
A A

o
3F '*r::__'_t" S faaedc el

L
2F *:;_'_‘L-_ s

7"I"*~-- constant density slices
| posperpregresssybipenhuvee constant curvature slices




Gauge Invariance and Fixing

How to get gauge (coordinate choice) independent predictions?
Method 1: Choose gauge invariant combinations.

For example, undert — t =t + 6t(t, x), we have

Thus the combination

is gauge invariant at linear order.

| Overview >_Spectator > Metric > _Gauge > 86 &Z > _Power > GWs_



Gauge Invariance and Fixing

How to get gauge (coordinate choice) independent predictions?
Method 2: To fix a gauge. Typically, we choose E = 0.
Many choices for the other gauge condition:
- Spatial flat gauge (6¢-gauge): Choose ¢ = 0.
Pros: intuitive and simple (minimize metric fluctuations)
- Uniform inflaton gauge ({-gauge): Choose 6¢ = 0.
Pros: { is conserved on super-Hubble (if no isocurvature)

- Newtonian gauge: scalar part of shift vector § = 0

Pros: @ is Newtonian potential = connect to astrophysics

T



Gravitational Perturbations

The way of calculating linear cosmological perturbations with gravity:
Choose a gauge, identify the perturbation variables
Expand the action to second order in perturbations
Transform into Fourier space, with 9; = —ik;

1

2

3

4. Solve the constraints N and N;

5. Insert the constraints into the second order action
6

Do IBP to bring the action into standard form
. : : * +
Quantize the fields using ug (7)ay + u, (t)a, ~

8. Derive and solve the classical EoM for 1, (7)

>— Done with a

+ : :
9. [ak, ak], [¢, I1], and vacuum — integration constants spectator field

10. Calculate the 2-point correlation function

50 .1



Perturbations in the 6 ¢-Gauge

| Overview >_Spectator > Metric > Gauge > 8&% > _Power > GWs_



Perturbations in the 6 ¢p-Gauge

Effective mass:

1. This is different from V'’ ~ n,H?, if € is not too small (wait for GW to tell!)
2. Still small compared to H? (energy scale of the perturbations).
3. Can we neglect this small mass?

Should be careful on super-Hubble, because N, X1 ~ 0(1)

Will return to this issue in {-gauge

Power spectrum (under slow roll approximation):

T



Perturbations in the {-Gauge

Exactly massless (Goldstone, see Prof. Senatore’s lectures)
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Perturbations in the {-Gauge

| Overview >_Spectator > Metric > Gauge > 8&% > _Power > GWs_



From { to 6 N-formalism

The separate universe assumption (for long wavelength modes)

comoving coordinate p = p(p)

| Overview >_Spectator > Metric > Gauge > 8&% > _Power > GWs_



The Power Spectrum

Calculated at

Hubble-crossing

The power spectrum is well measured: P, =~ 2 X 10~° (COBE).

Sometimes Ag = /P is used.

Spectral index:

Observed value: ng — 1 = —0.032 + 0.006 (non-zero at > 50 CL)
Running (not yet observed):

Observed bound: a; = —0.0065 + 0.0076

| Overview >_Spectator > Metric > _Gauge > 86 &7 > Power > GWs_



Beyond the Curvature Perturbation

Can we directly observe other primordial fluctuations (other than {)?
There may be additional light scalars (isocurvature fluctuations).

There must be gravitational waves (tensor mode of the metric).

| Overview >_Spectator > Metric > Gauge > 86 &7 > Power > GWs_



Primordial Gravitational Waves
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Primordial Gravitational Waves
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Primordial Gravitational Waves

Assuming: GW only “cares” the
- GW from vacuum fluctuation |:> energy scale of inflation
- Expansion (constant mode dominate) in Planck unit

| Overview >_Spectator > Metric > _Gauge > 86 &7 > Power > GWs_



Primordial Gravitational Waves

c.f. : “cares” about H and ¢.

Thus see GW (unfortunately not yet)

— know energy scale of inflation

Assuming:

- GW from vacuum fluctuation |:>

GW only “cares” the
energy scale of inflation

- Expansion (constant mode dominate) in Planck unit

| Overview >_Spectator > Metric > _Gauge > 86 &7 > Power > GWs_



Primordial Gravitational Waves

r < 0.07 (Planck + BICEP2 + Keck)

Future: Ar~1073 (LiteBIRD, CMB stage 4, see also Ali)
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Primordial Gravitational Waves

r < 0.07 (Planck + BICEP2 + Keck)

consistency relation for single field inflation
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Primordial Gravitational Waves

Recall:
P, tells energy scale
P; tells (energy scale) / (rolling speed of the inflaton)

Thus 7 tells rolling speed of the inflaton

For 60 e-folds of inflation:

Detectable r — challenge for the EFT of inflationary background

| Overview >_Spectator > Metric > _Gauge > 86 &7 > Power > GWs_



Summary of This Lecture

Fluctuations, from quantum to classical

Spectator: Lagrangian, quantization, EoM, solution, power spectrum
Curvature (69, ()

} similar to spectator field
Gravitational waves

50 .1



