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Why nonlinear fluctuations (non-Gaussianities)?

1.

They exist (gravity is nonlinear)

They tell “which inflation model”

They tell “what additional” happened
They turn inflation into a particle collider

They tell evolution history of primordial universe



The in-in formalism

Particle collider physics: in-out formalism
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Particle collider physics: in-out formalism
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The in-in formalism

Particle collider physics: in-out formalism

The case of cosmological correlation functions:
- Initial states not prepared
- Final states not infinite future

So, the quick answer:
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The in-in formalism

Derive the formalism: Step 1: Split the Hamilton into BG and perturbation parts.

Given Hamiltonian

(Formally U = e~ H(T=T0))
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The in-in formalism

Step 2: Further split the perturbation Hamiltonian into free and interacting.

Define interaction picture fields §¢., such that

where U, is related to H, (similar to U and H) by

Together with

we can get
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The in-in formalism

Step 3: Features and solutions of F = U1 U:

- F relates Heisenberg picture fields and interaction picture fields:

- F has mild time dependence, thus can be expanded & solved order-by-order
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The in-in formalism

Step 4: the time evolution of the vacuum: Problem:
we need to work with the interacting vacuum |[(2),

but only know the free vacuum |0)

T—=7="7(1-—1€)

Issues: Do we have the true infinite past? (See non-BD section)
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The in-in formalism

The result:

(up to e-dependent terms, which will eventually cancel)
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The in-in formalism

Faces of the in-in formalism
Factorized form:
15t order:

2nd order:

10047

Euclidean factorized form:  (@Q()I) = () [Q’(f}ﬂxp (— | H:(m)rfm)} 0)

— oG T

 yIm(7) B - |111l“(1":| = (0|T [QI(T} exp (—/ Hi(r + I'TE]"-’ETE)] 10}
>—I_[{:(r} ---- --:-.-1 [ Re(r) -

Commutator form:

Mixed form:
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The in-in formalism

More faces: Two copies of fields (more helpful for formal problems)

(See, e.g. 0707.0842 by van der Meulen & Smit, 1010.4565 by Leblond & Pajer)
t
Z1),. )] = Z“f’qu"'th)_exp [1/ dt'/dﬂx (LloT) - Llo7] + 40" + -0~ )]
t
Pairs of variations w.r.t. J, and J_ defines four Green’s functions:

(GH{L y) G*(z.y) )
G~*(z,y) G (zy) )

G~ H(z,y) = i (6(x)d(y)) G (x,y) = i(o(y)o(r)) ,
G (z,y) = i (To(x)o(y)) G~ (z,y) = i(To(x)o(y)) -

(T (6(21) - (@) T ($(@ns1) - - - H(Tnsm))) =

™ Z( 1y, =, p(tin))
(5.}_(;1?1) "Es 5J—(In) 6J+(In+l) B 5J+ (In+m)

Jpd—=0
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Single field slow roll

Minimal inflation: Minimal non-Gaussianity (Maldacena 2002)
Steps of calculation:

1. Calculate the gravitational 37 order Lagrangian

(Need 3pt of { because it is conserved nonlinearly)

Method 1: 6¢-gauge + gauge transformation

Method 2: {-gauge directly (lots of integration-by-parts to do)
Redefine fields (i.e. apply EoM) to simplify the Lagrangian
Transform to the 3" order Hamiltonian

Use in-in formalism to calculate 3-point correlation function

oo WN

Extract non-Gaussianity from 3pt
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Single field slow roll

The 3 order gravitational Lagrangian ({-gauge)
1. Expand the gravitational action
2. Solve the constraints N and N;
To calculate n-th order Lagrangian (n = 3),
need to solve constraint to (n-2)-th order
(last two orders vanish due to first two orders constraint egs)
Thus for 3 order Lagrangian, we still only need linear constraints
3. Insert the constraints back

4. Integration by parts
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Single field slow roll

Before inserting the constraints:
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Single field slow roll

After inserting the constraints & integration by parts:

The terms proportional to EoM motivate us to redefine the fields:

(=G — f(¢) Then the f({) term is eliminated in S3
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Single field slow roll

After inserting the constraints & integration by parts:

0(€?)

The inflaton self-interaction:

About 100 times weaker!
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Single field slow roll

From action to Hamiltonian:
Steps:
1. Write down full Lagrangian up to 3th order (or n-th needed)

2. Transform to the full Hamiltonian up to same order

Note: Il = g—g is defined nonlinearly (precise up to n-1 order)

3. Split H (¢, II) into free and interaction parts
4. Change into interaction picture H = Hy(¢p;, I1;) + Hine(Pg, ;)

Note: the time dependence of ¢; & I1; follow from H, instead of H

. OH, :
5. Define ¢; = a_no and use ¢; to replace II;
I
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Single field slow roll

From action to Hamiltonian:
Result:
For 3" order: H3; = — L3

For 2"d order or 4t order, with derivative coupling: may be different
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Single field slow roll

The in-in-calculated 3pt:
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Local Non-Gaussianity

The dominate part of minimal non-G: local non-Gaussianity

Minimal non-G: fy;, ~ 0(n) ~ 0(0.01) " Juo s —
Planck (2015): fy;, = 0.8 +£ 5.0 : “I /
Future: Afy;~0.5 at LSS. ik |

In principle & distant future: 10~% for 21cm, CMB distortion
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Beyond the minimal non-G

Examples of generalizations:

- Generalized Lagrangian (K, DBI, Galileons, ... -> EFT)
- Generalized initial conditions (non-BD)

- Generalized slow roll conditions (ultra-slow-roll)

- Adding additional light fields

- Adding additional heavy fields
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Effective Field Theory

Generalizing the Lagrangian:

rule of game:

ghost free: plus sign in front of (54))2

no kinetic instability: c¢2 > 0 (or slow roll suppressed instability)
no tachyonic instability: m? > 0 (or slow roll suppressed instability)

Example of generalized Lagrangian:

L =P(X,¢), where X = —%g“"aﬂqbavqb

A more general form:
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Multi-field inflation
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Multi-field: Curvaton
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Multi-field: Curvaton

Non-Gaussianity of the curvaton scenario:

In general, non-G can be large because

- Curvature perturbation from subdominant component
(larger fluctuations are more easily non-linear)

- No slow roll constraints at decay of curvaton (no € suppression)
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Multi-field: Curvaton

Putting in some numbers: Assuming only mass term for curvaton

_ 3 _5 _s5_¢@r -
=, a4 =375 (typically >0(1))
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Multi-field: Curvaton

Putting in some numbers: Assuming only mass term for curvaton

3p, 5 5 6 :
p fu=——2- ?r (typically >O(1))

B 3pg+4pr’

Super-horizon = local non-Gaussianity

(quite general for multi-field inflation)
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Multi-field: Modulated reheating
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Multi-field: Multi-brid inflation
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Multi-field: Multi-stream inflation
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Quasi-Single Field Inflation (QSFI)

Single field vs multi-field: how to define them?

@
.: 0 ®® ’.. .‘
@ ® ® A
M<«H : multi-field M>>H : single field (?) M-iso
In general, M < y/nH (inflaton mass) In general, M > H

Can integrate out — single field EFT



Quasi-Single Field Inflation (QSFI)

@ 3

.: o® ®° e Ga® - Feo .‘

. o %% o 37

M<«H : multi-field M~H : quasi-single field M>>H : single field (?) M-iso

i

Gap between single field and multi-field:

BG: like single field; Pert: like multi-field



A toy model of QSFI

(more in Lecture 4)




Quasi-Single Field Inflation (QSFl)

A toy model and rough features of QSFI
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Quasi-Single Field Inflation (QSFI)

A toy model and rough features of QSFI



Quasi-Single Field Inflation (QSFI)

rpunsi-single Geld (mo= 30/2) qunsi-single field (m = L414H)

gunsi-single field (m = H) qunsi-single field (m = H/2)




Soft limits of non-G

Soft limit of external momenta: Maldacena’s consistency relation

horizon volume

3pt with one soft external momentum = scale dependence of 2pt

(assuming single field single mode: change of field = change of background)
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Soft limits of non-G

Soft limit of external momenta: Maldacena’s consistency relation

To make it explicit:

This is indeed satisfied by single field slow roll inflation.

What about curvaton?
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Soft limits of non-G

Soft limit of external momenta: Maldacena’s consistency relation

Examples when it breaks down:
- Multi-field inflation
- Ultra-slow-roll (kinetic term drive inflation for a few e-folds)

- Initial correlation in the UV (?)
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Soft limits of non-G

Soft limit of internal momenta: Suyama-Yamaguchi’s relation

At an initial time (sub-Hubble):

For general time:
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Soft limits of non-G

Soft limit of internal momenta: Suyama-Yamaguchi’s relation

For single field:

In general:

One can also use 6 N-formalism (when it is applicable) to derive

this relation from Cauchy Schwarz inequality.
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Non-G and Non-Non-G from Non-BD

What if the fluctuations do not start from a vacuum state?

Shape:

folded shape

10 |
30 |
20 |
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Non-G and Non-Non-G from Non-BD

Hongliang Jiang, YW 1507.05193; Hongliang Jiang, YW, Siyi Zhou 1512.07538 folded! shape

Why is there a “folded divergence”?

Non-vacuum — unstable — decay via interaction

Unitarity:

Ceer ~ exp[ —T fr, (kD)™ ],

where n depends on dimensionality of interaction

e.g.n = 5 for {3 interaction

i 05 1.0
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Non-G and Non-Non-G from Non-BD

Small non-G is not always “bad”:

At least it enables us to probe a few more e-folds of inflation.
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The Precision Era of non-G

(The following is my personal view point, may be biased)
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The Precision Era of non-G

Non-G is becoming not-so-popular since 2013
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Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity

Planck Collaboration
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Abstract

The Planck nominal mission cosmic microwave background (CMB) maps vield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispe
estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum ampli
quoting as our final result fi = = 2.7 £ 5.8, f,"™ = -42 % 75, and fi, ™" = -25 % 39 (68% CL statistical). Non-Gausslanity |s detected in the data; using skew-C; stz
we find a nonzero bispectrum from residual point sources, and the integrated-Sachs-Wolfe-lensing bispectrum at a level expected in the ACDM scenario. The results are
on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation technigues, pass an ext
suite of tests, and are confirmed by skew-C,, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of individual shape amplitudes, we present r
indepandent, threa-dimensional reconstructions of the Planck CMB bispectrum and thus derive constraints on early-Universe scenarios that generate primordial NG, inc
general single-field models of inflation, excited initial states (non-Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of
dependent feature and resonance models. These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, ¢, 2 0.02
CL), in an effective field theory parametrization, and the curvaton decay fraction rp 2 0.15 (95% CL). The Planck data significantly limit the viable parameter space
ekpyrotic/cyclic scenarios. The amplitude of the four-point function in the local model Ty < 2800 (95% CL). Taken together, these constraints represent the highest pre

tests to date of physical mechanisms for the origin of cosmic structure.

fNL|ﬂC-'='I| =27 +5.8, fNLequii = -42 + 75, and FN,_*‘-"'“" = -25 £ 39 (68% CL statistical)



Planck 2015 results
XVII. Constraints on primordial non-Gaussianity

Planck Collaboration
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Abstract

The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaus:
(NG). Using three classes of optimal bispectrum estimators - separable template-fitting (KSW), binned, and modal - we obtain consistent values for the primordial
equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone £, = 2.5 £ 5.7, Fo0il, = -16 + 70, , and Fothey, = -34 + 22
CL, statistical). Combining temperature and polarization data we cbtain £, = 0.8 £ 5.0, F0il, = -4 + 43, and s, = -26 + 21 (68% CL, statistical). The resul
based on comprehensive cross-validation of these aestimators on Gaussian and non-Gaussian simulations, are stable across compeonent separation technigues, ps
extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systemat
the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch
noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the |
CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initia
modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent featur
resonance models, accounting for the "look elsewhere” effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, t
obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be g™y, = (-
7.7 } X 10%68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency wi
premises of the ACDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.

flocaly = 0.8 + 5.0, £Vl = -4 + 43, and Forthoy = -26 + 21 (68% CL, statistical)



The Precision Era of non-G

4 N WMAP N N N /7 o N\
COBE 1yr (2003) Planck LSS Afy~1073
(1990s) Afn;~100 (2013) Afyi~ 05 _ -

Afyy~2000 7yr (2010) Afy ~5 NL CMB distortion:
Afnr~20 Afyy~ 1073
N AN AN AN AL %
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The Precision Era of non-G

In ~ 5-10 years Afy;~0.5 (e.g. SPHEREX)
(And Afy;~1073 in the very distant future.)

What is the implication if |fy, | < 17?
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The Precision Era of non-G

In ~ 5-10 years Afy;~0.5 (e.g. SPHEREX)
(And Afy;~1073 in the very distant future.)

What is the implication if |fy, | < 17?

- Local: Curvaton will be very unlikely.

- Equilateral: c,~1, up to small corrections.

What is the motivation for future study?
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The Precision Era of non-G

History of particle physics experiments:

- Early stage: studying external particle

a particle scattering

1 from cosmic rays

deep inelastic scattering

- Nowadays: study internal particle

- Higgs- BSM - ...
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The Precision Era of non-G

Pre-Planck Post-Planck
CMB LSS
fur > 0(1) fur <0(1)
Curvaton, DB, ... Massive states
External particles Internal particles

Which inflation model What particle physics

In-in formalism + EdS, 04,, nEFT, ...
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Summary of This Lecture

General methods: Features:
in-in (see also dN) - Maldacena’s consistency relation
Many kinds of non-G: - Suyama-Yamaguchi relation
- Minimal
- EFT A precision era of non-G ahead!
- Multi-F
- SH Thank you ©
- Non-BD



