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ABSTRACT. Let U, be the universal norm distribution and M a fixed power
of prime p, by using the double complex method employed by Anderson, we
study the universal Kolyvagin recursion occurred in the canonical basis in the
cohomology group H°(G,U,/MU,). We furthermore show that the universal
Kolyvagin recursion implies the Kolyvagin recursion in the theory of Euler
systems. One certainly hopes this could lead a new way to find new Euler
systems.

1. INTRODUCTION

Let F be a finite real abelian extension of Q. Let M be an odd positive integer.
For every squarefree positive integer r the prime factors of which are congruent
to 1 modulo M and split completely in F, the corresponding Kolyvagin class k, €
F* /F*M gatisfies a remarkable and crucial recursion which for each prime number
¢ dividing r determines the order of vanishing of k, at each place of F above £ in
terms of k,/,. In the note [2], Anderson and Ouyang gave the recursion a new
and universal interpretation with the help of the double complex method. Namely,
the recursion satisfied by Kolyvagin classes is shown to be the specialization of a
universal recursion independent of IF satisfied by the universal Kolyvagin classes in
the group cohomology of the universal ordinary distribution.

In the note [2], the question of whether such kind of Kolyvagin recursion holds
or not for the universal Euler systems is raised. The goal of this paper to answer
this question.

Let X be a totally ordered set(in application, elements in X are often prime ideals
in a number field K). Let Z be the set of formal products of elements in X. Let O
be the integer ring of a number field or a local field with characteristic 0 and 7 be an
O-algebra which is a finite free O-module. For every element z € Z, let z(x) = 2
be the x-part of z for z € X and z | z. We associate z with a group G, = Hm‘z Gyn
and a 7[G,]-module U, a universal model satisfying certain distribution relations.
This module U, is called the universal norm distribution of level z, a generalization
of the universal ordinary distribution of Kubert [3] and the universal Fuler system
of Rubin [8]. A special case of the universal norm distribution was first introduced
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in Ouyang [5]. The more general case was defined and studied in Ouyang [6].
Suppose M is a nonzero element in O dividing the order of all G n, then the
double complex method(see for example Anderson [1] and Ouyang [4]) produces
a canonical basis for the cohomology group H*(G,,U,/MU,) as a free T/MT-
module. In particular, the canonical basis of H°(G,,U,/MU,) can be given as
{¢y 1 y | z,y squarefree}. Moreover, one can consider HO(Gz/In,uz/wn/MuZ/wn) as
a subgroup of H%(G.,U./MU.) with T /MT-basis {c, : y | =,y squarefree}.

In this paper, we first find a natural and well defined map A, from H(G., U, /MU,)
to HO(GZ/ITL,L{Z/,JTL/MUZ/”). We then show that A, maps cgy to ¢, and ¢, to 0
for xy a squarefree factor of z by the double complex method. Acting A,, conse-
quently, we thus obtain a sequence of elements in H°(G,,U,/MU,). We thus say
that the family consisting of classes {c,} satisfies the universal Kolyvagin recur-
sion. In addition, we show that the family of the original Kolyvagin classes(i.e., the
cocycles which map to D,.§, as in Rubin [7]) also satisfies the universal Kolyvagin
recursion.

Now given a number field K and a p-adic representation T of G with coeffi-
cients in O, the universal norm distribution I/, in this situation becomes the univer-
sal Euler system, for which Rubin introduced and studied extensively in Chapter
4 of [8], resulting the proof of the celebrated Theorem 4.5.4 there. If let £ be a
G k-homomorphism from U, to H'(F(z),T) for F(z) a certain extension of K. Let
Wy = M~YT/T, then ¢ induces a map from H°(G,,U,/MU,) to H'(F,Wy).
Theorem 4.5.4 then states that the family of the Kolyvagin classes satisfies an im-
portant recursive relation, which is essential to the effectiveness of Euler system. We
call this recursion the Kolyvagin recursion. We show that the universal Kolyvagin
recursion implies the Kolyvagin recursion in Theorem 4.7.

The author sincerely thanks Professor Greg W. Anderson for his continuous
support and for his many ideas that lead to this paper. He also deeply thanks
Professor Kumar Murty for his support. Part of this research was done while the
author was supported by the Ganita lab of University of Toronto.

2. REVIEW ABOUT THE UNIVERSAL NORM DISTRIBUTION
We first give a brief review of the results in Ouyang [6].

2.1. The universal norm distribution. Let X be a given totally ordered set.
Let Y be the set of all squarefree formal products of elements in X, Let Z be the
set of all (finite or infinite) formal product of elements in X. Elements in X will
be denoted by z,2’ and be called primes, elements in Y will be denoted by v, 1/’
etc and elements in Z will be denoted by z, 2/, w and z. Moreover, y, ¢y’ and w will
usually assumed to be finite (i.e., finite product of x € X) and z will assume to be
infinite.

For every z € Z, the support of z is the unique element z € Y such that if = | z
then z | z. For every z € Z, a stalk of z is a factor 2’ | z satisfying ged(2/,2/2') =1
and is denoted by 2’ |5 z. Fix z, for each y | Z, let z(y) be corresponding stalk of z
whose support is y. Let v,(z) be the integer n such that ™ = z(z).

For every z € Z, G, is an abelian group which is the direct product of G, for
all « | z. Furthermore, for every 2’ | z, G,/ is a subgroup of G, and hence also a
quotient of G,. For any 2z’ | z and g € G, Let g, denote the restriction of g to
G, . For each pair x € X and z € Z, the Frobenius element Fr, is a given element
in GG, whose restriction to G is the identity.
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Let O be an integral domain and let ® be its fractional field. Let 7 be a fixed
(O-algebra which is torsion free and finitely generated as an O-module. For each
x € X, a polynomial

p(z;t) € T[t]
is chosen corresponding to x.
For every finite z € Z, B, is the free T-module T[G,] = (B,)r generated by

B, ={[g z] : g € G.}.
For every z € Z, finite or not, let

A.= |J Ba

7 .
z /ﬁnltc
z' sz

and let
A, =(A)r = @ B. = {[g2]:7 |s 27 finite, g € G.)7.
2 sz

For every pair 2’ |5 z, the group G, acts on A,/ by

n_n

g- [gllz//] = [gz” gz ]7 2" ﬁnitevZ” |s z

!/

and by this way A, becomes a 7 [G,]-module.
Let A.(z) be the 7[G.]-homomorphism given by

)\Z(:c) : [Z’] N {g(%Fr;l)[z/] _ Nz(x)[Z<LL‘)Z/], if.%‘)[z/,

Let D, be the submodule of A, generated by the images of A, (;)(A./.(x)) for all
x | z. The universal norm distribution U, is then defined to be the quotient T[G.,]-
module A, /D,.

From Ouyang [6], for any 2’ |; z € Z, the map

uz’ - uz

if x| 2.

induced by the inclusion A,, C A, is an injective G,-homomorphism of free 7 -
modules with free cokernel and hence the induced map

H(G,U. /MU.) — H°(G,U,/MU,)

is also injective. Thus we henceforth identify U,, (resp. HY(G,U, /MU,)) with a
subgroup of U (resp. H°(G,U,/MU,)). Note that we have

u.= |J u,, HGU/MU)= |]) HGU./MU).

z /ﬁnite P /ﬁnite
Z' sz sz

2.2. Anderson’s resolution L.. For every z € Z, L, is the free 7-module gen-
erated by

{la,y] : [a] € ALjzqyy, v | 2}
We equip £, with a grading by declaring that

degla,y] = — degy = —(number of primes z | y).
For any g € G, and [¢'2'] € A..(,), We equip L. with a G-action by the rule
g[g/zlv y] = [gz’g/zla y]v
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then £, becomes a graded 7 [G,]-module. £, is bounded above and is bounded if
and only if z is finite. We equip £, with a G.-equivariant differential d of degree 1
by the rule

dla,y] =Y w(@,y)(ple; Fr; ) a,y/2] = Nalaz(z), y/a])
x|y
where w is as defined as
-1 #{a:/|y:.7;'<.7;}7 if Y;
() — 4 ¢ ) |
0, if x 1y.
Then the complex (£2,d) is acyclic for degree n # 0 and H°(L£2,d) = U, induced
by
[a]’ ify=1;
u:fa,y] —
0, ify # 1.

We call the complex (L£2,d) (or simply L£2) Anderson’s resolution of the universal
norm system ..

2.3. The double complex K?°. Assume that G.(,) is acyclic. Let 0., be a
generator of G(,). Let K2® be the free graded 7-module with basis

{[aay,w] ) | Z,a € Az/z(y)aw | Z}
and with the double grading given by
degla, y, w] = (- degy, degw).

where degw = 3_,, vz (w). We equip K2* with a T[G.]-module structure by the
rule

gla, y, w] = [ga,y,w],V g € G.
For every x | z, we equip K2'® with G,-equivariant differentials d, of bidegree (1,0)
by the rule

dy [CL, Y, w] = w(m, y)(_l)ZEIQD vat (1) (p(:L‘; Fr;l)[a, y/x, w] - NZ(z) [az(w), y/x7 w]) )
and with G,-equivariant differentials d,, of bidegree (0,1) by the rule
51 [a’ Y, w] = (_1)Zz’§z Ve (Y) (_1)2:1;/<'J: V! (w)az(m) [CL, Y, wx]

where a(, is equal to 1 — 0y if v, (w) even and N, if vy(w) odd. Any two
distinct differentials in the family {d,} U {0, } anticommute. If let

d=> d, 6= 0,

then d is a differential of bidegree (1,0) and ¢ is of bidegree (0,1) and d and ¢ are
anticommute. (K.;d,d) is a double complex of G,-modules. Let K¢ be the single
total complex of this double complex.

Let K¢ be the quotient of free 7-module generated by

{la,w],a € A,,w | Z}
modulo relations generated by
p(z; FrYa, w] — Noyla z(z),w], a € A, )22y, W2, ]2
With the grading given by the rule
degla, w] = degw
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and the differential ¢ given by the rule

5[047 U)] = Z(—l)zz/<z vx/waz(x) [wx]v

xrEz

K? is a complex of G,-modules whose cohomology is nothing but the group H*(G,, U, ).
The homomorphism

la,w], ify=1

u: K — K, [a,y,w] — )
0, ify#1

is a quasi-isomorphism. Thus it induces isomorphisms between H*(K$,d + §) and
H*(G,,U,)(resp. H*(K$/MK?) and H*(G,,U,/MU,) for 0 # M € O). In partic-
ular, for any 0-cocycle ¢ in K¢ /MK?, the map u sends its bidegree (0, 0)-component
la,1,1] to Y [a,1] € K2/MK? and then to Y [a] € U./MU., the resulting ele-
ment is fixed by G, and hence is a cocycle in H*(G., U, /U.).

For every 2’ |5 z, let K,/ be the submodule of K, generated by

{la,y,w] :y | 2',a € Bu gy, w | 2'}
and let K, (z') be the submodule generated by
{la,y,w] sy | 2';a € By (), w | 2}

Then K,/ and K, (z') are compatible with differentials d, and 6,. The (d + §)-
cohomology of K,/ (resp. K, /MK,/)isjust H*(G,,U, )(resp. H* (G, U, /MU,"))
and the (d + §)-cohomology of K, (z')(resp. K. (2')/MK,(z")) is H*(G,,U.)(resp.
H*(G,, U, /MU.)).

2.4. The canonical basis for H(G.,U./MU,). Suppose now that M is a com-
mon divisor of |G (y)| and p(x;1) for every = | z. Let S, be the 7-submodule of
K. generated by

{[aayaw]:GEBz/z(y)a Yy | Z, w | Z,CL¢B1 1fy|w}

Then S./MS, is a submodule of K,/MK, which is also d— and é— stable and
thus is a subcomplex of K, /MK, with respect to the multi-complex structure of
K./MK.. Let Q./MQ, be the quotient of K, /MK, by S,/MS,. Then Q./MQ.
is a free 7 /MT-module generated by

{Ly,wl:y|w]z}

with all induced differentials d = 6 = 0. Write the quotient map from K,/MK,
to Q./MQ, as ppr. The homomorphism pys is a quasi-isomorphism as claimed in
Ouyang [6]. Every element [1,y,y] for y finite and dividing 2z in Q,/M Q. thus in-
duces a 0-cocycle in K, /MK and henceforth induces a cocycle in H(G,,U, /MU,).
Write this cocycle ¢, then

{¢y : y finite,y | 2z}
forms a basis for H°(G,,U,/MU,). We call it the canonical basis.
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3. THE UNIVERSAL KOLYVAGIN RECURSIONS

3.1. The Kolyvagin conditions. In this section, we fix an infinite z € Z. we
write U, (L., G, and K, etc.) asU(L, G and K etc.). For any z | z, let r,.(¢) € O[t]
and

Vz(z) = p((E, Fr:n_l) - TCE(Fr:v_l)|GZ(T)|
Assume the following Kolyvagin conditions hold:

e There exists M € O such that M | |G,| and M | p(z;1) for every = | z. We
fix M here after.
e The group G, is cyclic for every z | z.
e The homomorphism 7,y : Uy)z(2) — Uz)-(x) has a trivial kernel for every
x| z.
Following the first two assumptions, we can and hence will apply the results in § 2.
If we let n, = Norm(z) and let

p(z; Fr, ) — p(a;n, Fr, ')
|Gz(z)| 7

then v,y = p(o;n, Fr;'). When p(z;t) is coming from certain characteristic
polynomial in a p-adic representation, then v, can be shown to satisfy the last
assumption. See Lemma 4.6 in § 4 for more details.

rz(Fr_l) =

x

3.2. The submodule I, of U. Let x | z be given. We define
I,cUu

to be the 7[G]-submodule generated by all elements of U represented by the ex-
pressions of the form

[22(x)] — g[zz(x)] or 7,(Fr;Y)[z] — glza(x)](g € Gy(a), 2 finite z | z,2 1 2).
When the dependence on z is needed to emphasize, we write I, as I, ,. Note that
(O2(z)y — DU C I,

the quotient U//I, can be viewed as a G//G(;)-module.

Proposition 3.1. The sequence

0 — Uy ja(a) Lo, Uz a(zy — U/ — 0

is exact where the map Uy /(o) — U/ I, is that induced by the inclusion of Uy 5z C
Uu.

Proof. We consider the complex homomorphism

Vz(x) * E;/z(aﬁ) - £;/z(gc)
The mapping cone of 7,(,) is just the complex

Cone® (Ya(z)) = (L:Z/Jrzl(z)v Z/Z(r))

with the differential given by
d(a,b) = (—da, V(g (a) + db), for (a,b) € Cone™ (Vy(z))-
From homological algebra, we know there exists the following exact sequence
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Let
Sz L — L(z/z(x))

be the unique homomorphism such that

szla,y] = w($,y)[a,y/x} ifoe|y
o otherwise

for all symbols [a, y] in the canonical basis of £. The homomorphism s,, is of degree
1 and satisfies the relation

Spd = —ds,

as can be verified by a straightforward calculation. Now consider the sequence
where £ is the 7[G]-submodule of £ generated by all elements of the form

[z2(2),y] — [922(2),y] or ro(Br;")[zy] — [922(2), y)(2(y)22(2) | 2, g € Gypay).

and the map L,/,) — £/L" is that induced by the inclusion £/, C L. It is
easy to verify that X’ is short exact. The two complexes ¥ and X’ are actually
isomorphic: just let the two side maps be the identities and let the middle map
from L£*/L’ to Cone® be given by

[a, ya] = (W@, 29)[a, 4],0),  la,y] = (0,[a,9]),V y | 2/2(2).

Since L' is a graded d- and G-stable subgroup of £* and (0,0, — 1)L C L', it
follows that ¥’ can be viewed as a short exact sequence of complexes of G/G,-
modules. Because H*(L} /z(m),d) is concentrated in degree 0, the long exact se-

quence of G/G(yy-modules deduced from ¥’ by taking d-cohomology has at most
four nonzero terms and after making the evident identifications takes the form

V()

= 0= H_l(/:,'/ﬁ’,d) — Uy jp(z) — Upjp(e) — ULz =0 — ...
where the map Uy, /,(,) — U/I, is that induced by the inclusion U, /) C U. By
the assumption of the Kolyvagin conditions, we have
HNL/Ld) = er (Uyjaiay 225 Uy jaiay) =0,
whence the result. (]

Theorem 3.2. For every prime number x dividing z there erists a unique homo-
morphism

Ayt HY(G,U/MU) — HY (G, Uy () /MUy ()
such that

1- z(x xb
# = Vﬁ mod I, < A, (a mod MU) = bmod MU,y

for all a € U representing a class in H°(G,U/MU) and b € Uy 7z TepTESENLing a
class in HO(G,UZ/Z(@/MUZ/Z(I)). Moreover one has

AxHO(GvuZ/MuZ) C HO(Gvuz/z(x)/Muz/z(x))

for all finite z |s z and divisible by x.
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Proof. Put
A = {a€U|arepresents a class in H*(G,U/MU)} ,
B = {b€Uyua) | 12(b) € MUy pay }
¢ = {(ab) € Xy |5t = 250 mod 1, }

Fix a finite z |s z and divisible by z. To prove the proposition it is enough to prove
the following three claims:

(1) N (MU x B) = MU x MUy /(-
(2) (0 =1)C C MU X MUy /y(y for all o € G.
(3) For all a € ANU, there exists b € B NU, /4 (,) such that (a,b) € C.

We turn to the proof of the first claim. Only the containment C requires proof;
the containment D is trivial. Suppose we are given (a,b) € CN (MU x B). Then

%7(1;) € I, MUy /75y and hence by Proposition 3.1 there exists ¢ € Uy /,() such that
¥z (b) = M~,(c). It follows that b = Mc. Thus the first claim is proved. The second
claim follows immediately from the first.

We turn finally to the proof of the third claim. Let

ﬁz(z) A — Az/z(m)
be the unique homomorphism such that
By [2] = r2(Brz [ /2 ()]
for all | 2’ |5 z. For each prime number z dividing z, recall that
)‘z(x) : Az/z(z) - Az
is the unique homomorphism such that
Aoy [2'] = Pl Frg ) [2'] = Ny [2'2(2)]

for all x { 2/. Note that 3, commutes with A\, for 2’ # z and that the
composite homomorphism 3, ;)Az(,) induces the endomorphism ,(,) of A, /5(a)-
Choose a lifting a € A, of a. By hypothesis there exists an identity

(02z) — 1)a= Mb + Z Aaybz (b €A, by €A, ),
x|z
and hence also an identity

z

m/lz x)

Then the element b € U, /,(,) represented by b, has the desired property, namely
that (a,b) € C. Thus the third claim is proved and with it the result. O

3.3. The universal Kolyvagin recursion. We say that a family of classes
{c, € H'(G,U/MU)}, 5

indexed by finite y | z satisfies the universal Kolyvagin recursion if the following
conditions hold for all finite y | Z and primes « | z:

® ¢ C HO(GZ(y),Uz(y)/MZ/{Z(y)) = HO(G,uz(y)/Muz(y)) C HO(G,U/MU).
o v|y= Ascy=cy/s
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3.4. The diagonal shift operator A,. For each x dividing z, we define the
corresponding diagonal shift operator A, on K of bidegree (1, —1) by the rule

A | [a,y/x,w/x], ifz|yandz|w,
xr a7 ’w = .
Y 0, otherwise.

One has
Azdx’ = da:’A:m Az(sz’ = 61’Az

for all primes z’ | z distinct from z. One has
Apdy =dgAy =0, (04, — Ayoy) K C MK.
For every finite z dividing z one has
ALK, C {Kz/z(x), if x| z,'
{0}, otherwise.
The action of A, therefore passes to
H°(K./MK.,d+¢) = H(G.,U,/MU,)
and in the limit to
HY(K/MK,d+ ) = H°(G,U/MU).

Proposition 3.3. For each z | z, the endomorphism of H°(G,U/MU) induced by
the diagonal shift operation A, coincides with A, defined in Theorem 3.2.

Proof. Fix a finite z |, z divisible by x. Fix a class
ce HY(G,,U./MU,).

It suffices to show that A, and the endomorphism of H°(G,U/MU) induced by
A, applied to ¢ give the same result. Let ¢ be a 0-chain in K, reducing modulo
MK, to a 0-cycle representing c. Write

0=(d+d)c+ Mb
where b is a 1-chain of K,. For any finite y | z and finite w such that @ | z, let
(a —a® [yawD : Az/z(y) - Kz
be the unique homomorphism such that
[a] ® [y, w] := [a,y, w]
for all a € A, /(). Write

c= Z Cy,w @ [y7 ’LU], ALEC = Z Cyz,wz & [ya U}] (cy,w € -Az/z(y))
and
b= Zby,w & [yaw] (by,w € Az/z(y))

where all the sums are extended over pairs (y,w) consisting of finite y | z and w
with @ | z. Let Bp) : Az — AL zx) be as in the proof of Proposition 3.2. By
hypothesis one has an identity

0= Z Az(m’)cx’,m + )\z(x)cm,z - Z Az(r’)cx’,m + (]- - o'z(ac))cl,l + Mbl,ac
2’|z |z
z' <z ' >z
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and hence also an identity

0= Z )\z(m/)ﬂz(z)cz’,z + Vz(z)Cx,x — Z )‘z(z/)ﬁz(z)cz’,z + Mﬁz(m)bl,aw
ZE T

Let a € U, be the element represented by c1 1 and let b € U, ,(,) be the element
represented by ¢, .. One the one hand, the class of H*(G,,U,/MU.) represented
by the 0-cocycle ¢ mod M of the complex (K,./MK,,d+ ) is a mod MU, and the
class of HO(GZ/Z(I),UZ/Z(I)/MUZ/Z(I)) represented by the 0-cocycle A,c mod M of
the complex (K /5(2) /MK /5(2), d + 0) is b mod MU, /,(,y. But on the other hand,
one has

(1 - Uz(w))a _ pYz(ar)b

M M

mod I

and hence
Az (a mod MU) = b mod MUy jy ()

by Theorem 3.2. Therefore the results of applying A, and the endomorphism of
H°(G,U/MU) induced by A, to the class a mod MU indeed coincide. O

Corollary 3.4. The canonical basis {¢, : y finite,y | z} satisfies the universal
Kolyvagin recursion.

Proof. Clear. (]

Corollary 3.5. Any system of classes {b,} satisfying the universal Kolyvagin
recursion and the normalization by = ¢; is a T /MT -basis of H°(G,U/MU).

Proof. Fix a finite y | z, let z = z(y). Let
y=a1 Ty
be the prime factorization of y. One then has

Aa:l - Aa:nby = b]. = El = ACEI .. Aa:"éy

and hence
B o Agy Dy, 0 _
b, — ¢, € ker <H (G., U, /MU,) " H (GZ,L{Z/ML{Z)) =P 1/MT -2,
v'ly
y'#y
whence the result. O

3.5. The original Kolyvagin classes. For any z | z, we let

|Ga(ayl—1
k
Dary = D ko5
k=0

Then one has
(1 = 04(2)) Da(z) = Na(z) — |Ga(a) |-
For any finite z |, 2z, let
Dy =[] Daw)-

z|y
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In particular, Dy = 1. Let ¢;, = Dy[z(y)] € U. One sees that for z | y,
(1 = 04(2))¢y =(Na@@) = |Ga(@)|) Dy /a[2(y)]
=p(2; Fry ) Dy 1o [2(y /)] = |Gy | Dy 12 [2()]
=Ya(2)Cy e + |Ga(a)| Dy (ra(Fry ) [a(y/2)] — [2(y)]) -

The above identity tells us two things. First, by induction, we see that (1 —
Ou(2))Cy C MUy, for every x | y, thus the image ¢, of ¢ in Uy /MUy, is
fixed by G,(,) and hence is a 0-cocycle. Secondly, we see that

(1 - O—z(m))c; _ ryz(gﬂ)c;/:c
M M

(mod 1),

thus
Ayl =y
Hence {¢, : y finite, y | z} satisfies the universal Kolyvagin recursion. In particular,

one sees that ¢ = . By Corollary 3.5, we thus have
Theorem 3.6. The set of classes

{¢, = Dylz(y)] mod MU :y finite,y | z}
constitutes a T /MT -basis of H*(G,U/MU).

Remark 3.7. 1. The classes ¢, are the original classes used in the study of Euler
system. The above Theorem 3.6 is a generalization of Theorem B in Ouyang [4].
The proof here is following the proof of Theorem B given at the end of Anderson-
Ouyang [2].

2. Apparently the definitions of D, D, and c; depend on the choice of z. We
shall use Dy (,), Dy(,) and c’z(y ) when emphasis of the dependence is needed.

4. THE KOLYVAGIN RECURSION IN EULER SYSTEMS

In this section, we apply the results in the previous section to show that a
family satisfying the universal Kolyvagin recursion maps to a family satisfying the
Kolyvagin recursion in an Euler system. We shall follow heavily Chapter 4 of
Rubin’s book [8], which is actually the main motivation for this paper. Many
results there will be introduced here without proof. We first give a brief review of
the definition of the universal Euler system according to Rubin.

4.1. The universal Euler system and the Euler system. Let K be a fixed
number field. Let p be a fixed rational prime number. Let ® be a finite extension
of Q, and let O be the ring of integer of ®. Let 1" be a p-adic representation of G
with coefficients in O. Assume that T is unramified outside a finite set of primes
of K. Let W = (T ®p ®)/T. Fix a nonzero M € O and let W), be the M-torsion
inW. Let Wy, =1 nd?fi Whs. The exact sequence

0—>WM—>WM—>WM/WM—>O
thus induce a canonical (surjective) map
5L . (WM/WM)GL — Hl(GL,WM)

for every finite extension L of K.
Fix an ideal 91 of K divisible by p and by all primes where T is ramified. Let
X be the set of all primes = of K which is prime to 9t and K(z) # K(1), where
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K(z) is the ray class field of K modulo x and K(1) is the Hilbert class field of
K. Then Y is the set of squarefree products of primes in X and Z is the set of
formal products of primes in X. Let K(z™) be the ray class field of K modulo
a™. Class field theory tells us that G,» = Gal(K(2")/K (1)) is a cyclic group and
K(z1*) N K(z3?) = K(1) for 1 # z2. Let o,» be a generator of Gyn. For every
finite z = 27" - - x)* € Z, let K(z) be the composite

K(z) = K(z") - K(a*).

Fix a Zg—extension K /K which no finite prime splits completely. We write K Cy
F C K to indicate F'/K a finite subextension of Ko /K. For K Cy F C K, we
let F(z) = FK(z). Let G, = Gal(F(z)/F (1)) = Gal(K(z)/K (1)) since in K /K
as a Zg—extension is unramified outside primes dividing p and z is prime to p by
assumption. We see that for any 2’ | 2, G. = G.» x G /..

Let Fr, denote a Frobenius of z in Gk, and let

p(x;t) = det(1 — Fr ' t|T) € O[t].

Let 7 = 7T(F) = O[Gal(F(1)/K)]. With the above X, Y, Z, O, ® and p(z;t),
the corresponding universal norm distribution Up ., (related to F) is called the
universal Euler system of level (F,z). Since for all x € X, x is unramified in the
extensions F'/K and K(1)/K, the Frobenius action of z in U , is independent of
the choice of Fr,.

In application, we don’t need the whole set X above but only a certain infinite
subset X s of X consisting of elements x satisfying the following conditions:

o M| |G| (hence M | |Gyn));
o M| p(x;1);
e z splits completely in F(1)/K.

Hereafter, the pair (F, z) will always mean that z is finite and every x | z is inside
Xpar- An Euler system is essentially a G g-homomorphism

& UUF»Z =limUp,. — h_n)lHl(F(z),T).
F,z F.z F,z
The following Proposition is crucial to the definition of Kolyvagin classes:
Proposition 4.1. Suppose £ is an Euler system. Then there exists a family of
O[Gk]-module maps {dr} such that the following diagrams are commutative:

Z/{F,z d—F> (WM/WM)GF(Z) uF’,z L’ (WM/WM)GF/(Z)

El 5F<z>l lNF'u)/F(z) lNF%z)/F(z)

HY(F(2),T) —— HY(F(2),Wan)  Up. —Es (Wi /Way)Cre

and dp is unique up to Homojq, | (Ur,2, War).
Proof. See Rubin [8], Proposition 4.4.8, page 87. O

From Proposition 4.1, for any element ¢ € H*(G,,Ur ./MUF ), let ¢ be a lifting
of cinUp,.. Then dp(Np(1),r)éis an element in (W /War)9* and 6pdp(Npy/r)C
is a well defined element in H'(F, W), independent of the choice of ¢&. We denote
by k the map ¢ — 5FdF(NF(1)/F)E. Let dr be a lifting of dg in W), then one can
see immediately x(c)(y) € Wi is exactly (y — 1)5de(NF(1)/F6).
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4.2. The Kolyvagin recursion. Fix a number field F' of K inside K. Fix a
infinite z € Z with @ € Xp s for x | z. For every x | z, one see that

p(z;t) —p(x;1) = Qo () (t — 1),
for some polynomial Q. (t) € O[t], thus p(z;t) = Q.(t)(t — 1) (mod M), and Q.(t)
is uniquely determined by the congruence relation since ¢ — 1 is not a zero divisor
in O/MOI[t]. Fix Q(t).
We say that a family of classes
{r, € H'(F, W) : y finite,y | z}

satisfies the Kolyvagin recursion if for every finite y | z and = | y, the following
formula

Qm(Fr;I),%y/x(FrI) = Ky(Oz(2)) € Wn
holds. We see that Theorem 4.5.4 in Rubin [8] essentially showed that the family
{k(Dy[z(y)])} satisfies the Kolyvagin recursion.

4.3. The universal Kolyvagin recursion implies the Kolyvagin recursion.
We first gather a few lemmas from Rubin [8]:

Lemma 4.2. Let x € Xy, then p(x; Fr, ') annihilates Wy .
Proof. See Rubin [8], Lemma 4.1.2(iv), page 77. O

Lemma 4.3. Let dApi([z]) € Wy be a lifting of dp([z]) € War/War. Then for any
x|z, w a prime in K above x, g, g’ elements in the decomposition group D of w,
and v € Gk, then R R

99'vdr([2]) = g'gvdr([2]).

Proof. See Rubin [8], Lemma 4.7.1, page 98. O

Lemma 4.4. Let dp be a lifting of dp in Wy, then for every v € Gi and z |5 z
and z | z,

N,y vdr([2]) = pla; g )ydr((2/2(2)).

Proof. See Rubin [8], Lemma 4.7.3, page 99. O
Lemma 4.5. Letn, be the number of elements in O /x. Letr,(t) = %’W
Then

§Ua,z) € H (F(2)w, War)
for every prime w in F(z) above x.
Proof. See Rubin [8], Corollary 4.8.1, page 102. O

With the choice of 7,(¢) in Lemma 4.5, one then has v, = p(x;n, Fr; ') and

Lemma 4.6. The map Vuz) @ Upjaa) — Uzjz(a) 18 injective, thus the Kolyvagin
conditions are satisfied.

Proof. We only need to show that for any finite z |5 z, Vz(2) : Us/z(2) — Uzja(z) is
an injection. In this case, Fr,; Y induces a linear transformation from U, Ja(x) Qo P to
itself, whose eigenvalues A has (logarithmic) discrete value 0 at every places above
x. Since p(z;t) € O[t], then except the constant term 1, other terms in p(x; n, Fr, )
have discrete value no less than the discrete value of n,, which is bigger than 0.
Thus any eigenvalue of 7,(,) can’t be zero and the linear transformation v, ;) is
injective.



14 YI OUYANG

Finally we have

Theorem 4.7 (Kolyvagin recursion). Let 1, be given as Lemma 4.5. Let {c, :
y €Y, y |z} be a family of classes in H(G,,U,/MU,) satisfying the universal
Kolyvagin recursion related to v,(,y. Then the family {k(cy) : y €Y, y | z} satisfies
the Kolyvagin recursion, i.e.,

Qu(Fr5 )(cya) (Fra) = £i(cy)(0u(a)) € Wt

Proof. Let d be a lifting of dg in Wj;. By the definition of the connecting homo-
morphism g (), one has

#(cysa)(Fry) = (Fry —1)Npay pd(cy.) € W,
H(Cy)(az(m)) = (Uz(w) - 1)NF(1)/FCZ(Cy) € Wi

Then by Lemmas 4.2— 4.6, with the universal Kolyvagin recursion satisfied by c,
and ¢/, one has

Qu(Fr; M)r(cy /o) (Fra) — r(cy) (0(a))
= Qu(Fry ) Fry b r(ey/e) (Fre) — () (0u(a))
= Qu(Fr; " )(1 — Fr, " )Np(y/rd(cy ) = (0a(e) — D) Npay rd(cy)
= —P(2;Fr; " )Npay rd(cy/a) + Ya@ Nray rd(cy )

= *|Gz(x)| : 7"a:(Fra?1)J\/.F(l)/Fd(Cy/ar:)
= 0,

which finishes the proof. ([

Remark 4.8. The proofs of the above Lemmas don’t require the use of the original
Kolyvagin classes. Hence we indeed succeed to generalize Theorem 4.5.4 in [8]. We
sincerely hope that our more abstract construction could lead to pursue new Euler
systems.

Remark 4.9. In the special case T = Z,(1), we see first that p(z;¢) = 1 —1 for every
prime z. The elements k(c) € H'(F,Wy;) for ¢ € H°(G,U,/MU,) are elements
inside F*/F*M_ Anderson and Ouyang have studied this case thoroughly in the
note [2].
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