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Abstract—With two Z-linear independence endomorphisms
Φ and Ψ satisfying Φ2 + rΦ+ s = 0 and Ψ2 − tΨΨ+ nΨ = 0,
we construct general 4-GLV lattice reduction algorithms with
Z[Ψ] principal maximal orders of imaginary quadratic fields
Q(
√−d). The algorithms can be used to calculate short bases

for 4-GLV decompositions on elliptic curves (or Jacobians of
genus 2 curves). Our algorithms have a theoretic upper bound
of output Cn1/4, where

C =

{
4+2

√
d+1

3−d
(
√

1 + |r|+ |s|), if Z[Ψ] = Z[
√−d],

4
√
d

4
√

d−(d+1)
(
√

1 + |r|+ |s|), if Z[Ψ] = Z[ 1+
√−d
2

].

Especially, our algorithms cover the case Z[Ψ] = Z[
√−1] of

Yi et al. (SAC 2017) and the case Z[Ψ] = Z[ 1+
√−3
2

] of Wang
et al. (AMC 2021).

Keywords-Elliptic curves; Endomorphisms; 4-GLV lattice
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I. INTRODUCTION

Scalar multiplication is the fundamental operation in

elliptic curve cryptography. It is important to accelerate

this operation and numerous methods have been extensively

discussed in the literature; for a good survey, see [1]. Longa

and Sica [2] combined GLV [3] and GLS [4] method to con-

struct a 4-GLV decomposition of scalar multiplication and

constructed an efficient algorithm—the twofold Cornacchia-

type algorithm. The basic idea can be explained as follows.

Let p > 3 be a prime and E an elliptic curve defined over

Fp. Let E′/Fp2 be a quadratic twist of E(Fp2) and G ⊂
E′(Fp2) be a cyclic subgroup of large prime order n. The

two endomorphisms Φ and Ψ satisfy Φ2(P )+rΦ(P )+sP =
OE′ and Ψ2(P ) + P = OE′ respectively. They are defined

over Fp2 on E′ with the assumpation that Φ and Ψ are Z-

linearly independent. Let λΦ and λΨ be the eigenvalues of

Φ and Ψ on G, respectively. Longa and Sica [2] showed how

to get a 4-GLV decomposition for E′(Fp2). For any scalar

k ∈ [1, n− 1], we obtain that

[k]P = [k1]P + [k2]Φ(P ) + [k3]Ψ(P ) + [k4]ΦΨ(P ), (1)

Corresponding Author: Honggang Hu

with maxi(|ki|) < 2Cn1/4. To compute decomposition

coefficients k1, k2, k3, k4, one can construct a map F :

F : Z4 → Z/nZ,

(x1, x2, x3, x4) �→ x1 + x2λΦ + x3λΨ + x4λΦλΨ mod n.
(2)

It is easy to know that

kerF ={(x1, x2, x3, x4) ∈ Z4|x1 + x2λΦ

+ x3λΨ + x4λΦλΨ ≡ 0 mod n} (3)

is a full sublattice of Z4. The set of decompositions of any

k in Z/nZ is then the lattice coset F−1(k) = (k, 0, 0, 0) +
kerF. To find a short decomposition of k, we can subtract a

nearby vector in kerF from (k, 0, 0, 0). If {v1,v2,v3,v4} is

a basis for kerF , then we let (α1, α2, α3, α4) be the (unique)

solution in Q4 to the linear system (k, 0, 0, 0) =
∑4

i=1 αivi

and set

(k1, k2, k3, k4) = (k, 0, 0, 0)−
4∑

i=1

�αi�vi,

then (k1, k2, k3, k4) is a 4-dimensional decomposition of

k. Since (k1, k2, k3, k4) =
∑4

i=1 (αi − �αi�)vi and |x −
�x�| ≤ 1/2 for any x in Q, we have ‖(k1, k2, k3, k4)‖∞ ≤
2maxi ‖vi‖∞ .

It is clear that finding short decompositions depends

on finding a short basis for kerF , as a result the LLL

algorithm [9] is used. Longa and Sica [2] constructed an

easy-to-implement algorithm–the twofold Cornacchia-type

algorithm, which is an elaborate iterated Cornacchia algo-

rithm that can compute short bases for kerF . The algorithm

consists of two sub-algorithms, the first one in the ring of in-

tegers Z and the second one in the Gaussian integer ring Z[i].
The twofold algorithm is efficient, but more importantly,

it gives a better and uniform upper bound maxi ‖vi‖∞ ≤
Cn1/4 with C = 51.5

√
1 + |r|+ |s|. Recently, Yi et al.

[6] obtained an improved twofold Cornacchia-type algorithm

and showed that it possesses a better theoretic bound of out-

put Cn1/4 with C = (2+
√
2)
√
1 + |r|+ |s|. In particular,

their proof is much simpler than Longa and Sica’s.
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Wang et al. [8] constructed a new twofold Cornacchia-

type algorithm, one in Z and the other one in Z[ω], where

ω = 1+
√−3
2 . It can be used to compute some 4-GLV

decompositions on curves with two Z-linear independenly

endomorphisms Φ and Ψ satisfying Φ2 + rΦ + s = 0 and

Ψ2+Ψ+1 = 0. The new algorithm gives a new and unified

method to compute all 4-GLV decompositions on j-invariant

0 elliptic curves over Fp2 , which is different from the Hu

et al.’s algorithm [5]. It can also be used to compute the

4-GLV decomposition on the Jacobian of the hyperelliptic

curve defined as C/Fp : y2 = x6 + ax3 + b.

Our contribution. We construct general 4-GLV lattice

reduction algorithms on general cases that Z[Ψ] are principal

maximal orders of imaginary quadratic fields Q(
√−d), un-

der the assumpution Φ and Ψ are Z-linear independence. We

also give the proof that the upper bound of output is C ·n1/4

in our algorithms, where C = 4+2
√
d+1

3−d (
√
1 + |r|+ |s|)

for Z[Ψ] = Z[
√−d] and C = 4

√
d

4
√
d−(d+1)

(
√
1 + |r|+ |s|)

for Z[Ψ] = Z[1+
√−d
2 ]. Our algorithm contain the case

Z[Ψ] = Z[i] of Yi et al. [6] which the refinement of Longa

and Sica [2] and the case Z[Ψ] = Z[1+
√−3
2 ] of Wang et al.

[8].

The article is organized as follows. II gives the notations

and the general 4-GLV decompositions. In III we give

general 4-GLV lattice reduction algorithms. IV gives the

proof of the upper bound of our algorithms and the value of

C. Finally, V makes a conclusion.

II. GENERAL 4-GLV DECOMPOSITIONS

A. Notation

Let A/Fq be an elliptic curve or a hyperelliptic curve

defined over the finite field Fq with infinity point denoted

by O. A/Fq has two endomorphisms Φ and Ψ satisfying

Φ2+ rΦ+ s = 0 and Ψ2− tΨΨ+nΨ = 0 respectively with

r, s, tΨ, nΨ ∈ Z. Suppose that Δ = t2Ψ − 4nΨ = −dk2 < 0
be the discriminant of Ψ with d non-square positive integer.

Let K := Q(Ψ) = Q(
√
Δ) = Q(

√−d). Let G ⊂ A(Fq) be

a cyclic subgroup of order n and P be a point in the group

G. λΦ and λΨ are the eigenvalues of Φ and Ψ on G, which

satisfy λ2
Φ + rλΦ + s ≡ 0 mod n and λ2

Ψ − tΨλΨ + nΨ ≡
0 mod n respectively. The rectangle norm of (b1, · · · , bt) is

denoted by ‖ (b1, . . . , bt) ‖∞ = maxi |bi|, for i = 1, · · · , t,
t ∈ N+. Let L := Q(Φ,Ψ) be a biquadratic field and OL

be the maximal order of L. In this paper, we assume that

Φ and Ψ are Z-linear independence. This assumption is

often achievable on elliptic curves or hyperelliptic curves,

see some examples in [2], [8].

B. Analysis

With respect to {1,Φ,Ψ,ΦΨ}, we can obtain a 4-GLV

decomposition as the eq. (1) and construct a map F as the

eq. (2). Consider the sequence of group homomorphisms:

Z4 f−→∼= Z[Φ,Ψ]
g−−−−−−−−−→

mod n∩Z[Φ,Ψ
Z/nZ

Under the assumpution Q(Φ) and Q(Ψ) are disjoint, let

n is a specific prime lying above n in the biquadratic

field Q(Φ,Ψ). We have Z[Φ,Ψ] ⊆ OL. Since the degrees

of Φ and Ψ are much smaller than n, the prime n is

unramified in K, and the existence of λ and μ above

means that n splits in Q(Φ) and Q(Ψ), namely that n
splits completely in K. There exists therefore a prime ideal

n of oK dividing noK , such that its norm is n. We can

also suppose that n′ = n ∩ Z[Φ,Ψ] and n′′ = n ∩ Z[Ψ].
The inclusions Z ↪→ Z[Ψ] ↪→ Z[Φ,Ψ] ↪→ OL induce

isomorphisms Z/nZ ∼= Z[Ψ]/n′′ ∼= Z[Φ,Ψ]/n′ ∼= OL/n.

In particular we can suppose Φ ≡ λΦ mod n′ and Ψ ≡ λΨ

mod n′. Moreover, since the reduction map g is surjective,

the composition of the two homomorphisms f and g gives

(for the appropriate n) the 4-dimensional GLV map F :

F : Z4 →Z/nZ ∼= Z[Φ,Ψ]/n′,
(x1, x2, x3, x4) �→ x1 + x2λΦ + x3λΨ + x4λΦλΨ mod n,

(4)

which says that the index of n′ inside Z[Φ,Ψ] is n. Since the

first map f is an isomorphism, we get that kerF = f−1(n′)
and kerF has index

[
Z4 : kerF

]
= n inside Z4. The key

of finding a short basis of kerF is to find a short Z-basis of

n′. In the following, we give general 4-GLV lattice reduction

algorithms to compute a short basis of kerF .

III. GENERAL 4-GLV LATTICE REDUCTION

ALGORITHMS

A. The First Part in Z

We identify Z[Φ,Ψ] with the free Z[Ψ]-module of rank

2 with basis {e1, e2} = {1,Φ}. To find a short Z-basis of

n′, we first need to find a generator ν = a + bΨ of n′′

in the order Z[Ψ]. This can be achieved by using the first

Cornacchia’s algorithm in Z, see the Algorithm 1.

Algorithm 1: The first part in Z
Input: n, 1 < λΨ < n.

Output: ν = a+ bΨ dividing n.

1. initialize
r0 ← n, r1 ← λΨ, r2 ← n,

t0 ← 0, t1 ← 1, t2 ← 0,

q ← 0.

2. main loop
while r22 ≥ n do

q ← �r0/r1�,
r2 ← r0 − qr1, r0 ← r1, r1 ← r2,

t2 ← t0 − qt1, t0 ← t1, t1 ← t2.
return: ν = r1 −Ψt1, a = r1, b = −t1

Now, we prove that the Algorithm 1 is feasible, i.e., there

exists an element ν = a + bΨ ∈ Z[Ψ] with |a|, |b| < √
n
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such that the norm

NZ[Ψ]/Z(ν) = bnn, ν(P ) = O (5)

for some positive integer bn, which is relatively small to n.

Recall that Algorithm 1 makes use of the extended Eu-

clidean algorithm applied to n, λΨ to produce a sequence of

relations

sin+ tiλΨ = ri, for i = 0, 1, 2, . . . (6)

where |si| < |si+1| for i ≥ 1, |ti| < |ti+1| and ri > ri+1 ≥
0 for i ≥ 0. Also, we have

|sj+1rj |+ |sjrj+1| = λΨ and |tj+1rj |+ |tjrj+1| = n, (7)

for all i ≥ 0. The Algorithm 1 defines the index m as the

largest integer for which rm >
√
n. Then the equation (7)

with i = m gives that |tm+1| <
√
n, so that the vector

(rm+1,−tm+1) has rectangle norm bounded by
√
n. Now,

the existence of such ν is guaranteed from the following.

Lemma 3.1 ([10]): There exists an element ν ∈ Z[Ψ]
satisfying (5) for some positive integer bn ≤ 3nΨ. Moreover,

bn = 1 when Z[Ψ] is a principal maximal order and n splits

in Q(Ψ)/Q.

Proof: Let v1 = (rm+1,−tm+1) be a short vector con-

structed in Algorithm 1 such that rm+1− tm+1λΨ ≡ 0 mod
n by equation (6), it is clear that (rm+1 − tm+1Ψ)P = O.

Put a := rm+1, b := −tm+1 and ν = a + bΨ, let

n′ = NZ[Ψ]/Z(a + bΨ) ∈ Z. Then we have NZ[Ψ]/Z(ν) =
(a+bΨ̄)(a+bΨ) = n′, so n′P = (a+bΨ̄)(a+bΨ)P = O. It

implies that n′ ≡ 0 mod n and n′ = bnn for some integer

bn. Since a, b ≤ √n in Algorithm 1 and |tΨ| < 2
√
nΨ by

Ψ is in general not a rational integer, we have

bnn = a2 + abtΨ + b2nΨ ≤ a2 + |abtΨ|+ b2nΨ

≤ nΨ

(
a2 + |ab|+ b2

) ≤ 3nΨn.

The first assertion is proven.

When Z[Ψ] is a principal maximal order and n splits in

Q(Ψ)/Q, it is obvious that NZ[Ψ]/Z(a+bΨ) = n, i.e. bn = 1.

In this paper, we consider the cases of principle maximal

orders Z[Ψ] to construct a short basis of determinant n of

kerF . By Q(Ψ) = Q(
√−d) and Z[Ψ] is the maximal order

of Q(Ψ), then Z[Ψ] = Z[
√−d] for d ≡ 1, 2 mod 4 and

Z[Ψ] = Z[(1 +
√−d)/2] for d ≡ 3 mod 4. Moreover, if

Z[Ψ] is a principle maximal order, then d = 1, 2, 3, 7, 11 or

19 et al..

B. The Second Part in Z[Ψ]

We have seen how to construct ν ∈ Z[Ψ] with ν(P ) =
O in III-A. By identifying (x1, x2, x3, x4) ∈ Z4 with

(z1, z2) = (x1 +Ψx3, x2 +Ψx4) ∈ Z[Ψ]2, we can rewrite

the 4-GLV reduction map F in (4) as (using the same letter

F by abuse of notation)

F : Z[Ψ]2 → Z[Ψ]/ν ∼= Z/nZ

(z1, z2) �→ z1 + λΦz2(modν).
(8)

From the output ν with NZ[Ψ]/Z(ν) = n in the Algorithm

1 and λΦ, we can apply the extended Euclidean algorithm

with integer divisions occurring in Z[Ψ], see the Algorithm

2.

Suppose we have used the Algorithm 2 to find a short

Z[Ψ]-basis {υ1, υ2} of n′ with maxi(|υi|) ≤ Cn1/4 for

some constant C > 0. Thus we get a short Z-basis

{υ1, υ1Ψ, υ2, υ2Ψ} of n′. Moreover, write υ1 = (a1+b1Ψ)+
(c1 + d1Ψ)Φ and υ2 = (a2 + b2Ψ) + (c2 + d2Ψ)Φ, then

n′ = (a1 + b1Ψ+ (c1 + d1Ψ)Φ)Z[Ψ] (9)

+ (a2 + b2Ψ+ (c2 + d2Ψ)Φ)Z[Ψ]. (10)

By kerF = f−1(n′), we get a short basis {υ̃1, υ̃2, υ̃3, υ̃4}
of kerF , which are the rows of the following matrix with

Ψ satistying the quadratic equation Ψ2 − tΨΨ+ nΨ = 0.⎛⎜⎜⎝
a1 c1 b1 d1

−nΨb1 −nΨd1 a1 + tΨb1 c1 − nΨd1
a2 c2 b2 d2

−nΨb2 −nΨd2 a2 + tΨb2 c2 − nΨd2

⎞⎟⎟⎠ (11)

Algorithm 2: The second part in Z[Ψ]
Input: ν prime dividing n rational prime,

1 < λΦ < n, such that λ2
Φ + rλΦ + s ≡ 0 mod n.

Output: Two vectors in Z[Ψ]2: υ1, υ2.

1. initialize:
r0 ← λΦ, r1 ← ν, r2 ← n,

s0 ← 1, s1 ← 0, s2 ← 0, q ← 0.

2. main loop:
while |r1| ≥ Cn1/4 do

q ← �r0/r1�,
r2 ← r0 − qr1, r0 ← r1, r1 ← r2,

s2 ← s0 − qs1, s0 ← s1, s1 ← s2.

3. compute:
q ← �r0/r1�, r2 ← r0 − qr1, s2 ← s0 − qs1.

4. return: υ1 = (r1,−s1),
if max {|r0|, |s0|} ≤ max {|r2|, |s2|}

υ2 = (r0,−s0)
else υ2 = (r2,−s2).

We can also give the direct form algorithm similar to the

Algorithm 3 in [8], and the output of the algorithm is a short

basis of kerF as the rows in matrix (11).

IV. THE VALUE OF C

For the algorithm in Z[Ψ], we also have three such

sequences {rj} , {sj} , {qj} for j ≥ 0. In the j-th step

with rj = qj+1rj+1 + rj+2, positive quotient qj+1 and

nonnegative remainder rj+2 are not available in Z[Ψ]. We

will choose qj+1 as the closest integer to rj/rj+1 denoted

by �rj/rj+1�. Let us note that ri > ri+1 ≥ 0 for i ≥ 0
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holds in modulus (in particular, the algorithm terminates).

However, a crucial role is played by the following equation

sj+1rj − sjrj+1 = (−1)j+1ν, (12)

which can derive a bound on |sj+1rj | and |sjrj+1|.
Theorem 4.1: The two vectors υ1, υ2 output by Algo-

rithm 2 are Z[Ψ]-linearly independent. They belong to n′

and satisfy that if Z[Ψ] = Z[
√−d]⎧⎪⎪⎪⎨⎪⎪⎪⎩

‖υ1‖∞ ≤
√

4 + 2
√
d+ 1

3− d
n

1
4

‖υ2‖∞ ≤ 4 + 2
√
d+ 1

3− d
(
√

1 + |r|+ |s|)n 1
4

,

and if Z[Ψ] = Z[1+
√−d
2 ]⎧⎪⎪⎪⎨⎪⎪⎪⎩

‖υ1‖∞ ≤
√

4
√
d

4
√
d− (d+ 1)

n
1
4

‖υ2‖∞ ≤ 4
√
d

4
√
d− (d+ 1)

(
√
1 + |r|+ |s|)n 1

4

.

Before proving Theorem 4.1, we need the following lem-

mas. In the Algorithm 2, qj+1 ∈ Z[Ψ] is the closest integer to

rj/rj+1. Here, we define a fundamental regin of the lattice

Z[Ψ]. We single out a fundamental parallelogram but not

containing the origin as a vertex (since qj+1 �= 0). First,

we quote the conclusion in [7, Lemma 2] to give a property

that the closest lattice point to a point in the fundamental

parallelogram of the lattice Z[Ψ], see the following.

Lemma 4.2 ([7]): Let ABC be any triangle in R2 with

vertices A,B and C. For any two points P, P ′, let PP ′

denote their distance. Let O be any point inside the closure

of ABC maximising

f(P ) = min{PA,PB, PC},
so that R

def
= f(O) = maxP∈ABC f(P ). In other terms, O

is the farthest point from any vertex. Then

1. if ABC is acutangle, O is the centre of the circumscribed

circle and R = r is its radius,

2. if B̂AC (the angle abutting to A ) has measure greater

than π/2 radians, so that [BC] is the largest side of the

triangle, supposing that [AC] is the smallest side, then O is

obtained as the intersection of the axis of [AB] with [BC]

(so that OA = OB) and R = AB/(2 cos ĈBA).
From the Lemma 4.2, it shows that any point lying inside

a fundamental parallelogram will be at a distance < R from

one of the vertices. The R is optimal with the value:

R =

⎧⎪⎨⎪⎩
√
1 + d

2
, if Z[Ψ] = Z[

√−d],√
d+

√
d−1

4
, if Z[Ψ] = Z[1+

√−d
2 ].

(13)

By Lemma 4.2, we can choose from the set of all vertices

of the fundamental parallelogram which one is the adequate.

Let qj+1 corresponds to the vertice of the fundamental

parallelogram, which is the one closest to the point rj/rj+1

lies in the fundamental parallelogram. Since qj �= 0, it means

that we must be careful to avoid all four diamonds which

have the origin as a vertex. But this follows from the fact

that at all steps j ≥ 0 we always have |rj/rj+1| ≥ 1/R.

Lemma 4.3: If | sj
sj+1

| < 1, then we have

|sj+1rj | ≤ 1

1−R
|ν|, |sjrj+1| ≤ 2−R

1−R
|ν|.

Proof: First we have sj+1rj − sjrj+1 = (−1)j+1ν. If

the condition | sj
sj+1

| < 1 holds, and noticing that |rj/rj+1| ≥
1/R, then

∣∣∣ sj
sj+1

· rj+1

rj

∣∣∣ < R. We can get∣∣∣∣1− sjrj+1

sj+1rj

∣∣∣∣ ≥ 1−
∣∣∣∣sjrj+1

sj+1rj

∣∣∣∣ ≥ 1−R.

With sj+1rj − sjrj+1 = (−1)j+1ν, we have

|ν| = |sj+1rj − sjrj+1| > (1−R)|sj+1rj |,
which implies |sj+1rj | ≤ 1

1−R |ν|. By |sjrj+1| = |sj+1rj +

(−1)jν|, then |sjrj+1| ≤ 2−R
1−R |ν|.

Lemma 4.4 ([2], [8]): For any nonzero (υ1, υ2) ∈ n′ ⊂
Z[Ψ]2, we have

max(|υ1|, |υ2|) ≥
√|ν|√

1 + |r|+ |s| .

In particular, for any j ≥ 0, we have

max (|rj | , |sj |) ≥
√|ν|√

1 + |r|+ |s|
Proof: (Proof of Theorem 4.1). According to the eq.

(6) and (7), it is easily to get that the vectors υ1, υ2 are

Z[Ψ]-linearly independent and belong to n′.
We assume that Algorithm 2 stops at the m-th step (m ≥

1). Then υ1 = (rm+1,−sm+1) and |rm| ≥
√

1
1−Rn

1
4 and

|rm+1| <
√

1
1−Rn

1
4 . Considering the two cases

∣∣∣ sm
sm+1

∣∣∣ < 1

and |sm| ≥ |sm+1|, we can get

‖υ1‖∞ ≤
√

1

1−R
n

1
4 , ‖υ2‖∞ ≤ 1

1−R

√
1 + |r|+ |s|n 1

4 .

These discussions are similar to the proof in [8], [6, Theorem

2], just pay attention to the difference in coefficients of n1/4.

Here we just give the disscussion for the case
∣∣∣ sm
sm+1

∣∣∣ < 1,

the other case |sm| ≥ |sm+1| is similar. Using Lemma 4.3

we get |sm+1| ≤
√

1
1−R

√|ν|, with |rm+1| <
√

1
1−R

√|ν|
we can easily deduce

‖υ1‖∞ ≤
√

1

1−R
n

1
4 .

433



If |rm+1| <

√
|ν|√

1+|r|+|s| , by Lemma 4.4 we get a lower

bound |sm+1| ≥
√
|ν|√

1+|r|+|s| which implies |rm| ≤
1

1−R

√
1 + |r|+ |s|√|ν| using again Lemma 4.3. To-

gether with the restricted condition |sm| < |sm+1| ≤√
1

1−R

√|ν| < 1
1−R

√
1 + |r|+ |s|√|ν| we can obtain

‖(rm,−sm)‖∞ ≤ 1

1−R

√
1 + |r|+ |s|n 1

4 .

If |rm+1| ≥
√
|ν|√

1+|r|+|s| , when |sm+1| ≥ |sm+2| we can get

|sm+2| ≤
√

1
1−R

√|ν|, |rm+2| ≤ |rm+1| <
√

1
1−R

√|ν|.
When |sm+1| < |sm+2|, by the Lemma 4.3 we can deduce

|sm+2| ≤ 1
1−R

√
1 + |r|+ |s|√|ν|. Hence in both cases we

have

‖(rm+2,−sm+2)‖∞ ≤ 1

1−R

√
1 + |r|+ |s|n 1

4 .

By the definition of υ2, it is easily to get

‖υ2‖∞ ≤ 1

1−R

√
1 + |r|+ |s|n 1

4 .

For the two cases of Z[Ψ] = Z[
√−d] or Z[(1+

√−d)/2]
and the corresponding R in eq. (14), we can easily get the

upper bound of the vectors υ1, υ2.

From the Theorem 4.1, the value of C in the Algorithm

2 is that

C =

{
4+2

√
d+1

3−d (
√
1 + |r|+ |s|), if Z[Ψ] = Z[

√−d],
4
√
d

4
√
d−(d+1)

(
√
1 + |r|+ |s|), if Z[Ψ] = Z[1+

√−d
2 ].

(14)

Morever, for general 4-GLV decompositions, we can obtain

the conclusion.

Theorem 4.5: For general 4-GLV decmpositions with the

two Z-linearly independent endomorphisma Φ and Ψ, under

the considition that Z[Ψ] is the principle maximal order, our

general 4-GLV lattice algorithms will result in a decomposi-

tion of any scalar k ∈ [1, n) into integers k1, k2, k3, k4 such

that

[k]P = [k1]P + [k2]Φ(P ) + [k3]Ψ(P ) + [k4]ΦΨ(P ),

with ki ∈ Z bounded by 2Cn1/4.

Remark 1: If d = 1 and Z[Ψ] = Z[
√−1], then C =

(2 +
√
2)
√
1 + |r|+ |s|, which is the case of Yi et al.

[6]. If d = 3 and Z[Ψ] = Z[(1 +
√−3)/2], then C =

(3+
√
3)

2

√
1 + |r|+ |s|, which is the case of Wang et al.[8].

V. CONCLUSION

We have constructed general 4-dimensional GLV lattice

reduction algorithms under the assumpation that Φ and

Ψ are Z-linearly independence and Z[Ψ] is the principle

maximal order of Q(
√−d). The general 4-dimensional GLV

lattice reduction algorithms are twofold Cornacchia-type

algorithms, the first part in Z and the second part in the

domain Z[Ψ]. Our algorithms cover the previous results in

[6], [8].
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