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Abstract—With two Z-linear independence endomorphisms
® and VU satisfying P24 rd+s=0and V2 —ty¥ +ny = 0,
we construct general 4-GLYV lattice reduction algorithms with
Z|¥] principal maximal orders of imaginary quadratic fields
Q(+v/—d). The algorithms can be used to calculate short bases
for 4-GLV decompositions on elliptic curves (or Jacobians of
genus 2 curves). Our algorithms have a theoretic upper bound
of output Cn'/*, where

oo | B WIERTERD, i 2] = Z1V=d),
VA (VT TsD), i Z[¥] = 22,

Especially, our algorithms cover the case Z[V] = Z[/—1] of
Yi et al. (SAC 2017) and the case Z[¥] = Z[2TY=3] of Wang
et al. (AMC 2021).
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I. INTRODUCTION

Scalar multiplication is the fundamental operation in
elliptic curve cryptography. It is important to accelerate
this operation and numerous methods have been extensively
discussed in the literature; for a good survey, see [1]. Longa
and Sica [2] combined GLV [3] and GLS [4] method to con-
struct a 4-GLV decomposition of scalar multiplication and
constructed an efficient algorithm—the twofold Cornacchia-
type algorithm. The basic idea can be explained as follows.

Let p > 3 be a prime and E an elliptic curve defined over
F,. Let E'/F,2 be a quadratic twist of E(F,2) and G C
E'(Fp2) be a cyclic subgroup of large prime order n. The
two endomorphisms ® and ¥ satisfy ®2(P)+r®(P)+sP =
Og and U2(P) + P = O respectively. They are defined
over > on E’ with the assumpation that ® and ¥ are Z-
linearly independent. Let A¢ and Ay be the eigenvalues of
® and ¥ on G, respectively. Longa and Sica [2] showed how
to get a 4-GLV decomposition for E’(F,2). For any scalar
k € [1,n — 1], we obtain that

(K] P = [k1| P + [k2]®(P) + [ks]¥(P) + [k4] QW (P), (1)
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with max;(|k;|) < 2C0n'/%. To compute decomposition
coefficients k1, ko, k3, k4, One can construct a map F:

F:7* - Z/nZ,
(r1,29,x3,24) — T1 + oo + T3Aw + T4 e Ay mod n.
2)
It is easy to know that
ker F' ={(x1, z2,23,24) € Zﬂxl + 22 3)

+ 23Xy + T4 e Ay = 0 mod n}

is a full sublattice of Z*. The set of decompositions of any
k in Z/nZ is then the lattice coset F~(k) = (k,0,0,0) +
ker F. To find a short decomposition of k, we can subtract a
nearby vector in ker F' from (k,0,0,0). If {vy,vo,v3, vy} is
a basis for ker F, then we let (a1, ag, a3, ) be the (unique)
solution in Q* to the linear system (k,0,0,0) = Zle ;v
and set
4
(kl, k)g, kg, k4) = (k), O7 0, 0) - Z \_Oél-‘ Vi,

i=1
then (ki, ko, ks, ky) is a 4-dimensional decomposition of
k. Since (ki ko, ks, ks) = Yo, (i — [oy]) vi and |& —
[#]] < 1/2 for any x in Q, we have ||(k1, k2, k3, ka)l o, <
2max; || vi ., -

It is clear that finding short decompositions depends
on finding a short basis for ker F', as a result the LLL
algorithm [9] is used. Longa and Sica [2] constructed an
easy-to-implement algorithm—the twofold Cornacchia-type
algorithm, which is an elaborate iterated Cornacchia algo-
rithm that can compute short bases for ker F'. The algorithm
consists of two sub-algorithms, the first one in the ring of in-
tegers Z and the second one in the Gaussian integer ring Z[i].
The twofold algorithm is efficient, but more importantly,
it gives a better and uniform upper bound max; ||v;||,, <
Cn!/* with C = 51.5\/1+ |r| + |s|. Recently, Yi et al.
[6] obtained an improved twofold Cornacchia-type algorithm
and showed that it possesses a better theoretic bound of out-
put Cn'/* with C' = (2 +v/2)\/1 + |r| + |s|. In particular,

their proof is much simpler than Longa and Sica’s.



Wang et al. [8] constructed a new twofold Cornacchia-
type algorithm, one in Z and the other one in Z[w], where
w L‘Q/TS It can be used to compute some 4-GLV
decompositions on curves with two Z-linear independenly
endomorphisms ® and V¥ satisfying ®2 4+ r® 4+ s = 0 and
U2 4 W41 = 0. The new algorithm gives a new and unified
method to compute all 4-GLV decompositions on j-invariant
0 elliptic curves over F,2, which is different from the Hu
et al.’s algorithm [5]. It can also be used to compute the
4-GLV decomposition on the Jacobian of the hyperelliptic
curve defined as C/F), : y* = 2% + az® + b.

Our contribution. We construct general 4-GLV lattice
reduction algorithms on general cases that Z[V] are principal
maximal orders of imaginary quadratic fields Q(v/—d), un-
der the assumpution ¢ and ¥ are Z-linear independence. We
also give the proof that the upper bound of output is C'-n'/4
in our algorithms, where C' = %( 14 |r|+1s])

for Z[¥] = Z[v/—d] and C = 4@477%( T+ [r[+s])

for Z[¥] = Z[@]. Our algorithm contain the case
Z[V] = Z[7] of Yi et al. [6] which the refinement of Longa
and Sica [2] and the case Z[¥] = Z[@] of Wang et al.
[8].

The article is organized as follows. II gives the notations
and the general 4-GLV decompositions. In III we give
general 4-GLV lattice reduction algorithms. IV gives the
proof of the upper bound of our algorithms and the value of
C. Finally, V makes a conclusion.

II. GENERAL 4-GLV DECOMPOSITIONS

A. Notation

Let A/F, be an elliptic curve or a hyperelliptic curve
defined over the finite field F, with infinity point denoted
by O. A/F, has two endomorphisms ® and U satisfying
®2 4 r®+5 =0 and U2 —ty U 4 ng = 0 respectively with
7,8, ty,ny € Z. Suppose that A = t2, — 4dny = —dk* < 0
be the discriminant of ¥ with d non-square positive integer.
Let K := Q(¥) = Q(vA) = Q(v/—d). Let G C A(F,) be
a cyclic subgroup of order n and P be a point in the group
G. A\p and Ay are the eigenvalues of ® and ¥ on G, which
satisfy /\3I> +rAe + s = 0 mod n and /\2,1, —tydy +ng =
0 mod n respectively. The rectangle norm of (by,--- ,b;) is
denoted by || (b1,...,bt) ||oo = max; |b;], for i = 1,--- ¢,
t € Ny. Let L := Q(®,¥) be a biquadratic field and Oy,
be the maximal order of L. In this paper, we assume that
® and U are Z-linear independence. This assumption is
often achievable on elliptic curves or hyperelliptic curves,
see some examples in [2], [8].

B. Analysis

With respect to {1, P, ¥, dW¥}, we can obtain a 4-GLV
decomposition as the eq. (1) and construct a map F' as the
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eq. (2). Consider the sequence of group homomorphisms:

7t L 7o, ) —2
= mod nNZ[®,¥

Z/nZ

Under the assumpution Q(®) and Q(WV) are disjoint, let
n is a specific prime lying above n in the biquadratic
field Q(®, ¥). We have Z[®, U] C Op. Since the degrees
of ® and ¥ are much smaller than n, the prime n is
unramified in K, and the existence of A and p above
means that n splits in Q(®) and Q(¥), namely that n
splits completely in K. There exists therefore a prime ideal
n of ox dividing nog, such that its norm is n. We can
also suppose that n’ = n N Z[®, V] and n” = n N Z[Y].
The inclusions Z < Z[V] — Z[®, V] — Op induce
isomorphisms Z/nZ = Z[¥]/n" = Z[®,V]/n' = Op/n.
In particular we can suppose ® = A\g mod n’ and ¥ = \g
mod n’. Moreover, since the reduction map g is surjective,
the composition of the two homomorphisms f and g gives
(for the appropriate n) the 4-dimensional GLV map F:

F:7* SZ/nZ = Z[®, U] /v,
(1, %2, T3, 24) ¥ T1 + T2Ao + T3Aw + T4 e Aw mod n,

“

which says that the index of n’ inside Z[®, ¥] is n. Since the

first map f is an isomorphism, we get that ker F' = f~!(n’)

and ker F' has index [Z4 tker I ] = n inside Z*. The key

of finding a short basis of ker F' is to find a short Z-basis of

n’. In the following, we give general 4-GLV lattice reduction

algorithms to compute a short basis of ker F.

III. GENERAL 4-GLV LATTICE REDUCTION
ALGORITHMS

A. The First Part in 7

We identify Z[®, U] with the free Z[¥]-module of rank
2 with basis {e1,ea} = {1,®}. To find a short Z-basis of
n’, we first need to find a generator v = a + b¥ of n”
in the order Z[¥]. This can be achieved by using the first
Cornacchia’s algorithm in Z, see the Algorithm 1.

Algorithm 1: The first part in Z
Input: n, 1 < Ay < n.
Output: v = a + bV dividing n.
1. initialize
o M, T1 4 Ay, T2 N,
to 0, t1 + ].,tg +— 0,
q+ 0.
2. main loop
while r2 > n do
q < |ro/ri],
Tg <= To —Qqri1,To < T1,71 < T2,
to < tg — qt1,tg < t1,11 < 1o.
return: v =11 — Vi, a=1r1, b= —1t;

Now, we prove that the Algorithm 1 is feasible, i.e., there
exists an element v = a + bV € Z[¥] with |al, |b] < /n



such that the norm

y(P)=0 )

for some positive integer b,,, which is relatively small to n.

Recall that Algorithm 1 makes use of the extended Eu-
clidean algorithm applied to n, Ay to produce a sequence of
relations

Ny z(v) = ban,

fori =0,1,2,... (©6)

where |s;| < [siy1| for i > 1, |t;] < |ti+1] and r; > ripq >
0 for 7 > 0. Also, we have

s;n + ti>\\p =T,

Isjr17mj| +1s5mj41] = Aw and [t 17|+ [trja] = n, (7)

for all ¢ > 0. The Algorithm 1 defines the index m as the
largest integer for which r,, > /n. Then the equation (7)
with i = m gives that |¢,,41] < /n, so that the vector
(Pm—+1, —tm+1) has rectangle norm bounded by +/n. Now,
the existence of such v is guaranteed from the following.

Lemma 3.1 ([10]): There exists an element v € Z[V]
satisfying (5) for some positive integer b,, < 3ny. Moreover,
by, = 1 when Z[¥] is a principal maximal order and n splits
in Q(¥)/Q.

Proof: Let v1 = (Tm+1, —tm+1) be a short vector con-
structed in Algorithm 1 such that 7,11 —t;,+1 ¢ = 0 mod
n by equation (6), it is clear that (r,,11 — t, 1 V)P = O.
Put a := 7,41, = —tp41 and v a + bW, let
n = _]\72[\1,]/2(@ + b\I/) € Z. Then we_have NZ[\IJ]/Z(V) =
(a+bd¥)(a+b¥) =n',son'P = (a+b¥)(a+b¥)P = O. It
implies that n’ =0 mod n and n’ = b,n for some integer
by,. Since a,b < 4/n in Algorithm 1 and |ty| < 2\/ny by
U is in general not a rational integer, we have

bon = a® + abty + b*>ny < a® + labty| + b*ny
< ny (a® + |ab| + b*) < 3ngn.

The first assertion is proven.
When Z[¥] is a principal maximal order and n splits in
Q(¥)/Q, itis obvious that Nzjy)/z(a+b¥) = n,ie. b, = 1.
|
In this paper, we consider the cases of principle maximal
orders Z[¥] to construct a short basis of determinant n of
ker F. By Q(¥) = Q(v/—d) and Z[¥] is the maximal order
of Q(¥), then Z[¥] = Z[/—d] for d = 1,2 mod 4 and
Z|¥] = Z[(1 + v/—d)/2] for d = 3 mod 4. Moreover, if
Z[¥] is a principle maximal order, then d = 1,2,3,7,11 or
19 et al..

B. The Second Part in 7|V]

We have seen how to construct v € Z[V¥] with v(P) =
O in HI-A. By identifying (z1,22,23,24) € Z* with
(21,22) = (w1 + Va3, 29 + Uzy4) € Z[P)?, we can rewrite
the 4-GLV reduction map F' in (4) as (using the same letter
F' by abuse of notation)
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F:7Z[V]? = Z[¥] /v = Z/n
(21,22) = 21 + Apz2(modv).

®)

From the output v with Nzjy),z(v) = n in the Algorithm
1 and A\, we can apply the extended Euclidean algorithm
with integer divisions occurring in Z[¥], see the Algorithm
2.

Suppose we have used the Algorithm 2 to find a short
Z[¥]-basis {v1,v2} of n’ with max;(Jv;|) < Cn'/* for
some constant C' > 0. Thus we get a short Z-basis
{v1, V1%, V9, 12U} of n’. Moreover, write v1 = (a1+b;V)+
(c1 + d10)® and vo = (ag + ba¥) + (c2 + d2¥)P, then

€))
10)

W= (a1 + b ¥+ (Cl =+ dl\If)(I))Z[\I/]
—+ (ag =+ bg‘l’ —+ (62 —+ dgq/)q))Z[\If}
By ker FF = f~1(n’), we get a short basis {0y, U2, U3, 04}

of ker F, which are the rows of the following matrix with
U satistying the quadratic equation W2 — ¢4 U 4 ng = 0.

a1 C1 b1 dq

—ngby —ngd; a; +tgby ¢ —ngd; an
as Ca b2 dy

—ngby —nwdy az +teby o —nuds

Algorithm 2: The second part in Z[V]
Input: v prime dividing n rational prime,
1 < Mg < n, such that )\?p—i—r}@—f—SEOmodn.
Output: Two vectors in Z[¥]%: vy, vo.
1. initialize:
Ty & Ap, T1 < VU, 'y <N,
Sop 1,8+ 0,85 0,qg«0.
2. main loop:
while |r1| > Cn'/* do
q < |ro/r1],
o <— To—Qqri, To < T1,T1 < T2,
S9 <— 8¢9 — qS1, So < S1,81 < So2.
3. compute:
q < |ro/r1], r2 < ro — qri, S2 < So — qs1.
4. return: v; = (r1,—51),
if max {|ro|, |so|} < max{|ra|, |s2|}
Vg = (TOa 780)
else Vg = (T’Q, —82).

We can also give the direct form algorithm similar to the
Algorithm 3 in [8], and the output of the algorithm is a short
basis of ker F' as the rows in matrix (11).

IV. THE VALUE OF C

For the algorithm in Z[¥], we also have three such
sequences {r;},{s;},{q;} for j > 0. In the j-th step
with r; = gj417j41 + 7j42, positive quotient ¢;11 and
nonnegative remainder 7,49 are not available in Z[¥]. We
will choose gj41 as the closest integer to r;/r;41 denoted
by |7;/7j41]. Let us note that r; > ;41 > 0 for i > 0



holds in modulus (in particular, the algorithm terminates).
However, a crucial role is played by the following equation

Iy, (12)

sj+175 = ST+ = (=1)
which can derive a bound on |s;+17;| and |s;7;41].
Theorem 4.1: The two vectors vy,vy output by Algo-
rithm 2 are Z[¥]-linearly independent. They belong to n’
and satisfy that if Z[¥] = Z[v—d]

01| < 4+2Vd+1ni
Hiee = 3-d 7
44 2v/d+1
[v2]loo < ﬁ(\/ L+ [r[+ [s])ni

and if Z[¥] = Z[1HY=]

[1]loo < ﬂni
W=\ i - (d+1)
4v/d )
Voo L ———m—— 1+ |r|+|s|)nt
[[va]] 4¢3*M+1“v 7| +1s])

Before proving Theorem 4.1, we need the following lem-
mas. In the Algorithm 2, ¢; 41 € Z[¥] is the closest integer to
7j/rj+1. Here, we define a fundamental regin of the lattice
Z[¥]. We single out a fundamental parallelogram but not
containing the origin as a vertex (since g1 # 0). First,
we quote the conclusion in [7, Lemma 2] to give a property
that the closest lattice point to a point in the fundamental
parallelogram of the lattice Z[V], see the following.

Lemma 4.2 ([7]): Let ABC be any triangle in R? with
vertices A, B and C. For any two points P, P’, let PP’
denote their distance. Let O be any point inside the closure
of ABC maximising

f(P)=min{PA, PB, PC},

so that B & f(O) = maxp 456 f(P). In other terms, O
is the farthest point from any vertex. Then
1. if ABC'is acutangle, O is the centre of the circumscribed
circle ﬂld\ R = r is its radius,
2. if BAC (the angle abutting to A ) has measure greater
than 7/2 radians, so that [BC] is the largest side of the
triangle, supposing that [AC] is the smallest side, then O is
obtained as the intersection of the axis of [AB] with [BC]
(so that OA = OB) and R = AB/(2 cos@).

From the Lemma 4.2, it shows that any point lying inside
a fundamental parallelogram will be at a distance < R from
one of the vertices. The R is optimal with the value:

" ”;% if Z[V] = Z[v/—d), 03
ﬁﬁ%ii if Z[W] = Z[1+/=).

By Lemma 4.2, we can choose from the set of all vertices
of the fundamental parallelogram which one is the adequate.
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Let gj41 corresponds to the vertice of the fundamental

parallelogram, which is the one closest to the point /141

lies in the fundamental parallelogram. Since g; # 0, it means

that we must be careful to avoid all four diamonds which

have the origin as a vertex. But this follows from the fact

that at all steps j > 0 we always have |r;/r; 41| > 1/R.
Lemma 4.3: If |-22-| < 1, then we have

Sj+1

2—-R

vl lsjrjel < -

vl

1
|sj+175] < 1-&”

Proof: First we have s;17; — sjrji1 = (=17 v If
the condition | >~ | < 1 holds, and noticing that |r; /rj41] >

Sj+1
1/R, then Sjil JTJ_ < R. We can get
P_%UH21_SﬂH121_R
Sj_»,_l?"j Sj+17”j
With ;417 — 87541 = (—1)7T1v, we have
| = |sj41rj — sjrjsal > (1= R)[sjpar;l,
which 1mphes |S]'+1Tj‘ S ﬁ|u| By |8j7‘]'+1| = |8j+17“j +

(—1)7v], then [s;7j41| < =R vl. u
Lemma 4.4 ([2], [8]): For any nonzero (vy,vs2) € n' C
Z]¥]2, we have

Vi
I+ 8]

In particular, for any j > 0, we have

max(|v1], [va]) =

v

max (|r;], |s;]) > ——L
n L+ [r[ + 5]

Proof: (Proof of Theorem 4.1). According to the eq.

(6) and (7), it is easily to get that the vectors vy, vo are
Z[Y]-linearly independent and belong to n'.

We assume that Algorithm 2 stops at the m-th step (m >

1). Then v1 = (Tyy1, —Smy1) and |rp,| > ,/I%Rn% and

1 . . 5
[Pmt1| < ,/ﬁnﬁ. Considering the two cases s;%‘ <1

and [S,| > [Sm+1], We can get

Lond Juslloe € ——/TH il 4 Jslnd
n o < —— r .
T—gr" N2 1-R sin

These discussions are similar to the proof in [8], [6, Theorem
2], just pay attention to the difference in coefficients of n'/4.

‘<L
Sm41
Lemma 4.3

[v1]loo <

Sm

Here we just give the disscussion for the case

the other case |$;,| > [Sm+1| is similar. Using

we get [smy1| < \/1oR

lv], with |rpe1] < ,/ﬁ V]
we can easily deduce

1
forlloo < /=t



[v|

sl by Lemma 4.4 we get a lower
lv| <

1%}3 1+ |r|+|s|v/|v| using again Lemma 4.3. To-

gether with the restricted condition |[s,,| < |sp41| <

\/g /] < 251+ [r] +]s[\/[v] we can obtain
T+ [r] + [s|n?.

If ‘Tm+1| <

bound |Sp41] which implies |7,

my~ °Om OOS
s =m0 < 7

- R
If > Vi

Irmenl 2 e
|Sma] < \/ﬁ\/|’/|7 [Tmt2] < [rmaal < wﬁv\’/\-

When |$,41] < |Sm+2], by the Lemma 4.3 we can deduce

|sma2| < 725 /1 + ||+ [s]y/]v]. Hence in both cases we

have
1 1
1(rms2, =sm+2)lloo < =7 V1 Ir| + |s|nt.
By the definition of vo, it is easily to get

\ T .
s|n

vallee < 1

when [S;,41] > |Sma2| We can get

For the two cases of Z[¥] = Z[v/—d] or Z[(1++/—d)/2]
and the corresponding R in eq. (14), we can easily get the
upper bound of the vectors vy, vs. |

From the Theorem 4.1, the value of C' in the Algorithm

2 is that
C =
{M;gm(1+M+MLﬁﬂM—ﬂHfﬂ
(14)
Morever, for general 4-GLV decompositions, we can obtain
the conclusion.

Theorem 4.5: For general 4-GLV decmpositions with the
two Z-linearly independent endomorphisma ¢ and ¥, under
the considition that Z[V] is the principle maximal order, our
general 4-GLV lattice algorithms will result in a decomposi-
tion of any scalar k € [1,n) into integers ki, ka, ks, k4 such
that

(1P = [k1]P + [ko]®(P) + [k3] ¥ (P) + [k4]DW(P),

with k; € Z bounded by 2Cn'/%.

Remark 1: If d = 1 and Z[¥] = Z[/—1], then C =
(2 + v/2)\/1+ |r| + |s|, which is the case of Yi et al.
[6]. If d = 3 and Z[V] = Z[(1 + v/—3)/2], then C =
Lﬁ\/l + |r| + |s|, which is the case of Wang et al.[8].

V. CONCLUSION

LI+ Js)), if Z[Y] = Z[V—d],

We have constructed general 4-dimensional GLV lattice
reduction algorithms under the assumpation that & and
U are Z-linearly independence and Z[V] is the principle
maximal order of Q(v/—d). The general 4-dimensional GLV
lattice reduction algorithms are twofold Cornacchia-type
algorithms, the first part in Z and the second part in the
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domain Z[¥]. Our algorithms cover the previous results in

(6], [8].
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