
Topics in Algebraic Geometry

Professor Luc Illusie
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Chapter 1

Homological Algebra

1 Additive and abelian categories, complexes

Definition 1.1. An additive category is a category A having the following
properties :

(i) For any objects L, M of A, the set of morphisms Hom(L,M) is en-
dowed with the structure of an abelian group, and for any objects L, M , N ,
the composition

Hom(L,M)× Hom(M,N)→ Hom(L,N)

is Z-bilinear.
(ii) There exists an object which is both initial and final, which is called

the zero object and denoted by 0 : for any object L, Hom(L, 0) = Hom(0, L) =
{0}.

(iii) For any objects L, M of A, the sum L⊕M and the product L×M
exist.

It is easily checked that, in presence of (i) and (ii), (iii) implies that the
map L⊕M → L×M with components (Id, 0) and (0, Id) is an isomorphism.
indeed, we have the following diagram:

L

��

(Id,0)

&&LLLLLLLLLLL

L⊕M ∼ // L×M

M

OO

(0,Id)

88rrrrrrrrrrr

1
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If A is an additive category, so is the dual category A0.

Definition 1.2. A functor F : A → B between additive categories is called
additive if F (0) = 0 and for any objects L, M of A, the natural morphism
F (L) ⊕ F (M) → F (L ⊕M) is an isomorphism. Equivalently, F is additive
if for any objects L, M of A, the map F : Hom(L,M)→ Hom(F (L), F (M))
is Z-linear.

The category Ab of abelian groups is in an obvious way an additive cat-
egory, and if A is an additive category, for any object L of A, the functor
Hom(L,−) (resp. Hom(−, L)) from A (resp. A0) to Ab is additive.

Definition 1.3. An abelian category is an additive category A satisfying the
following axioms :

(AB 1) Any morphism u : L → M in A has a kernel Ker(u) (i.e. the
equalizer of u and the 0 morphism) and a cokernel Coker(u) (i.e. the co-
equalizer of u and the 0 morphism). That is, one always has commutative
diagrams

Keru // L
u //M

K
∃!

bb OO

0

>>||||||||

L

0   A
AA

AA
AA

A
u //M

��

// Cokeru

∃!zz
K

(AB 2) For any morphism u : L→M , the canonical morphism CoIm(u)→
Im(u) is an isomorphism, where CoIm(u), the coimage of u is the cokernel
of the morphism Ker(u)→ L, and Im(u), the image of u, is the kernel of the
morphism M → Coker(u).

In presence of (AB 1), (AB 2) is equivalent to saying that a morphism
which is both a monomorphism and an epimorphism is an isomorphism.

The dual category of an abelian category is abelian.
A typical example of an abelian category is the category of modules over

a ring, or, more generally, of sheaves of modules over a sheaf of rings on a
topological space. By a theorem of Mitchell [M, 7.1], generalizing a theo-
rem of Freyd, any “small” abelian category A can be embedded as a full
subcategory of a small category of modules over a ring, by a (fully faithful)
functor preserving kernels and cokernels (“small” is a set-theoretic condition,
meaning that the set of objects of A and for any two objects L, M , the set
of morphisms Hom(L,M) belong to some “universe” (see [SGA4, I] for the
definition of universes).
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In an abelian category, push-outs and pull-backs exist and are defined as
in the category of modules over a ring.

1.4. Exact sequence. In an abelian category A, a sequence L
u→M

v→ N
such that v ◦u = 0 is called exact if the canonical morphism Ker(v)→ Im(u)
is an isomorphism (or equivalently, Ker(v) = Im(u) as a subobject of M).
More generally, a sequence (· · · → Li−1 → Li → Li+1 → · · · ) (i ∈ Z) is
called exact if any two consecutive morphisms Li−1 → Li → Li+1 form an
exact sequence. A short exact sequence is an exact sequence of the form 0→
L

u→ M
v→ N → 0 where the exactness means that u is a monomorphism,

v is an epimorphism, and Ker(v) = Im(u). The following standard result is
extremely useful:

Proposition 1.5 (snake lemma). Consider a commutative diagram in A

L′ //

u′

��

L //

u

��

L′′ //

u′′

��

0

0 //M ′ //M //M ′′

,

in which the rows are exact. Then there exists a unique morphism

δ : Keru′′ → Cokeru′

making the following square commutative :

L×L′′ Keru′′ //

��

Keru′′

δ
��

M ′ // Cokeru′

,

in which the horizontal maps are the natural projections and the left vertical
maps is induced by u. Moreover, the sequence

Keru′ // Keru // Keru′′
δ // Cokeru′ // Cokeru // Cokeru′ ,

in which the maps other than δ are the natural ones, is exact.

Proof. The uniqueness of δ is clear and its existence is easy. By duality (i.e.
passing to the dual category), it is enough to check exactness at Keru, which
is immediate, and at Keru′′, which is nontrivial. In the case of a category of
modules over a ring, one can pick up elements and make a diagram chasing
(cf. [B, I]). In the general case, the verification is more delicate. One can
bypass it by using Mitchell’s embedding theorem quoted above.



4 CHAPTER 1. HOMOLOGICAL ALGEBRA

A trivial (but useful) corollary of the snake lemma is the so-called five
lemma.

Corollary 1.6 (five lemma). Consider a commutative diagram

L1 //

u1

��

L2 //

u2

��

L3 //

u3

��

L4 //

u4

��

L5

u5

��
M1 //M2 //M3 //M4 //M5

,

in which the rows are exact. Then, if u1, u2, u4, u5 are isomorphisms, so is
u3.

1.7. Complex:definition and naive truncation. Let A be an additive
category. A complex of A, denoted L•, or just L, is a family of objects Li

of A, i ∈ Z, and morphisms di : Li → Li+1 (sometimes just denoted d) such
that di+1di = 0. One writes

L = (· · · → Li → Li+1 → · · · ).

One says that di is the differential of L, and that Li is the component of
degree i of L. A morphism u : L → M of complexes of A is a family of
morphisms ui : Li →M i such that the squares

Li
d //

ui

��

Li+1

ui+1

��
M i d //M i+1

commute. Complexes of A form an additive category C(A).
A complex L is said to be bounded above (resp. bounded below, resp.

bounded) if Li = 0 for i sufficiently large (resp. sufficiently small, resp.
outside a bounded interval of Z). If [a, b] is a bounded interval of Z, L is said
to be concentrated in degrees in [a, b] if Li = 0 for i /∈ [a, b]. When a = b = n,
we simply say concentrated in degree n. By associating to an object E of
A the complex concentrated in degree zero and having E as component of
degree zero, one identifies A with the full subcategory of C(A) consisting of
complexes concentrated in degree zero.

For L in C(A) and n ∈ Z, one defines the complex L[n] by L[n]i = Li+n,
the differential of L[n] being given by (−1)nd, where d is the differential of
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L. If u : L→M is a morphism of complexes, u[n] : L[n]→M [n] is given by
u[n]i = un+i (no signs involved). The functor L 7→ L[n] is called a translation
(or shift) functor. The complex concentrated in degree n and having E as n-
th component is E[−n] (where E is identified with the corresponding complex
concentrated in degree zero).

One denotes by L≥n (or σ≥nL) the subcomplex of L such that σ≥nL
i = Li

for i ≥ n and zero otherwise :

σ≥nL = (0→ Ln → Ln+1 → · · · ).

Similarly, one denotes by L≤n (or σ≤nL) the quotient of L such that σ≤nL
i =

Li for i ≤ n and zero otherwise :

σ≤nL = (· · · → Ln−1 → Ln → 0).

The functors σ≥n and σ≤n are called naive truncations.

1.8. Cohomology of a complex. Let A be an abelian category and let L
be a complex of A. For i ∈ Z, one defines

ZiL = Kerdi : Li → Li+1, BiL = Im di−1 : Li−1 → Li,

H iL = ZiL/BiL.

One says that ZiL (resp. BiL, resp. H iL) is the cycle object (resp. boundary
object, resp. cohomology object) of L in degree i. One says that L is acyclic
in degree i if H iL = 0, and more generally, if [a, b] is an interval of Z, that
L is acyclic in the interval [a, b] (resp. acyclic) if L is acyclic in degree i for
all i in [a, b] (resp. for all i). For a fixed i, Zi, Bi, H i are additive functors
from C(A) to A.

Here comes the most important notion in homological algebra.

Definition 1.9. A morphism of complexes u : L → M is called a quasi-
isomorphism if H i(u) : H iL→ H iM is an isomorphism for every i ∈ Z.

First notice that if 0 → L is a quasi-isomorphism, then L is acyclic. If
E is an object of A, a left resolution of E is a quasi-isomorphism L → E,
where L is a complex concentrated in degree ≤ 0. It is the same as giving
such a complex L, a morphism ε : L0 → E such that the sequence

· · · // Li // · · · d // L0 ε // E // 0
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is exact. Similarly, a right resolution of E is a quasi-isomorphism E → M ,
where M is a complex concentrated in degree ≥ 0. It is the same as giving
such a complex M , a morphism ε : E →M such that the sequence

0 // E
ε //M0 d // · · · //M i // · · ·

is exact.

1.10. Canonical truncation. Let A be an abelian category and L ∈ C(A).
For n ∈ Z, let

τ≤nL = (· · · d // Ln−1 d // ZnL // 0)

be the subcomplex of L such that (τ≤nL)i = Li for i < n, Zn for i = n and
0 otherwise. Let

τ≥nL = (0 // Ln/BnL
d // Ln+1 d // · · · )

be the quotient of L such that (τ≥nL)i = Li for i > n, Ln/BnL for i = n and
0 otherwise. Finally, if [a, b] is an interval of Z, we set τ[a,b]L = τ≥aτ≤bL =
τ≤bτ≥aL, i.e.

τ[a,b]L = ( 0 // La/BaL
d // La+1 d // · · · // Lb−1 d // ZbL // 0 ).

For a = b = n, τ[a,b]L =Hn(L)[−n]. One has a natural morphism ε : τ≤n → L
(resp. π : τ≥n → L); H i(ε) (resp. H i(π) ) is an isomorphism for i ≤ n(resp.
i ≥ n) and H iτ≤nL = 0 (resp. H iτ≥nL = 0) for i > n (resp. i < n).

If u : L → M is a quasi-isomorphism, then τ≥nu : τ≥nL → τ≥nM and
τ≤nu : τ≤nL→ τ≤nM are quasi-isomorphisms. But in general, naive trunca-
tions σ≤n and σ≥n do not preserve quasi-isomorphisms.

Proposition 1.11. Let A be an abelian category and

0 // L′
u // L

v // L′′ // 0

be a short exact sequence of complexes in A. Then there exists a “long exact
sequence of cohomology”

· · · → H iL′
Hi(u)−→ H iL

Hi(v)−→ H iL′′
δ→ H i+1L′

Hi+1(u)−→ H i+1L→ · · · (1.11.1)
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Proof. By the snake lemma applied to the diagram

0 // L′i−1 //

��

Li−1 //

��

L′′i−1 //

��

0

0 // L′i // Li // L′′i // 0,

we have the sequence τ[i,i+1]L
′ // τ[i,i+1]L // τ[i,i+1]L

′′ which has the

form

L′i/BiL′ //

��

Li/BiL //

��

L′i/BiL′ //

��

0

0 // Zi+1L′ // Zi+1L // Zi+1L′′

where the rows are exact. By the snake lemma again, we get the exact
sequence (1.11.1).

Corollary 1.12. Let

0 // L′ //

u′

��

L //

u

��

L′′ //

u′′

��

0

0 //M ′ //M //M ′′ // 0

be a morphism of short exact sequences in C(A) . Then if two of the mor-
phisms u, u′ , u′′ are quasi-isomorphisms, so is the third one.

Proof. We only prove the case where u′ and u are quasi-isomorphisms. The
other two cases are analogous. Applying Proposition 1.11, we get the com-
mutative diagram

· · · // H iL′ //

Hi(u′)
��

H iL //

Hi(u)
��

H iL′′ //

Hi(u′′)
��

H i+1L′ //

Hi+1(u′)
��

H i+1L //

Hi+1(u)
��

· · ·

· · · // H iM ′ // H iM // H iM ′′ // H i+1M ′ // H i+1M // · · ·

with exact rows. It follows from the five lemma(Lemma 1.6) that H i(u′′) is
an isomorphism for all i, i.e., u′′ is a quasi-isomorphism.
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2 Bicomplexes and cones

2.1. Bicomplexes. Let A be an additive category. A naive bicomplex K of
A, is a family of objects Ki,j in A indexed by Z× Z, together with families
of morphisms d1 = {di,j1 : Ki,j → Ki+1,j} and d2 = {di,j2 : Ki,j → Ki,j+1} in
A such that

d2
1 = 0, d2

2 = 0, d1 ◦ d2 = d2 ◦ d1.

For convenience, the morphism di,j1 : Ki,j → Ki+1,j (resp. di,j2 : Ki,j →
Ki,j+1) is usually denoted by d1 : Ki,j → Ki+1,j (resp. d2 : Ki,j → Ki,j+1).

A bicomplex L of A is a family of objects Li,j in A indexed by Z × Z,
together with a family of morphisms d′ = {d′ : Li,j → Li+1,j} and d′′ = {d′′ :
Li,j → Li,j+1} in A such that

d′2 = 0, d′′2 = 0, d′ ◦ d′′ + d′′ ◦ d′ = 0.

Starting with a naive bicomplex K = (Ki,j, d1, d2), we obtain a bicom-
plex L =(Li,j, d′, d′′) by putting

Li,j = Ki,j, d′ = d1, d
′′i,j = (−1)idi,j2 .

Remark. Similarly, if we define a bicomplex L′ by setting L′i,j = Ki,j,
d′′i,j = di,j2 and d′i,j = (−1)jdi,j1 , then there exists an isomorphism L′ → L of
bicomplexes defined by (−1)ij Id in degree (i, j).

Let M = (M i,j, d′, d′′) and N = (N i,j, d′, d′′) be bicomplexes in A, a
morphism f : M → N is a family of morphisms (f i,j : M i,j → N i,j) such
that fd′ = d′f and fd′′ = d′′f . Then we get an additive category C2(A).

Let L = (Li,j, d′, d′′) be a bicomplex, and letm, n be integers. We define a
new bicomplex L[m,n] = (L[m,n]i,j, ∂′, ∂′′) by putting L[m,n]i,j = Lm+i,n+j,
∂′i,j = (−1)m+nd′m+i,n+j and ∂′′i,j = (−1)m+nd′′m+i,n+j.

Let M be a bicomplex. For i ∈ Z, the complex M i,. = (· · · → M i,j d′′→
M i,j+1 → · · · ) is called the i-th column of M . Similarly for j ∈ Z, the

complex M•,j = (· · · →M i,j d′→M i+1,j → · · · ) is called the j-th row of M .

Definition 2.2. A bicomplex K is called biregular if for all n ∈ Z, the set
{Ki,j|i+ j = n,Ki,j 6= 0} is a finite set.

Example 2.2.1. A complex K concentrated in a quadrant of the first (resp.
the third) type (i.e there exist some a, b ∈ Z such that Ki,j = 0 if i < a
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(resp. i > a) or j < b (resp. j > b)) is biregular. but in general, a bicomplex
concentrated in a quadrant of the second (resp. the fourth) type (i.e. there
exist some a, b ∈ Z such that Ki,j = 0 if i > a (resp. i < a) or j < b (resp.
j > b) ), is not biregular.

Example 2.2.2. A bicomplex K concentrated in a horizontal strip of finite
width (i.e. there exists some interval [a, b] of Z such that Ki,j = 0 if j /∈ [a, b]
) is biregular. A bicomplex concentrated in a vertical strip of finite width is
also biregular.

Let K be a biregular bicomplex, we define sK ∈ C(A) as follows

(sK)n =
⊕
i+j=n

Ki,j, d = d′ + d′′ : (sK)n → (sK)n+1.

The complex sK is called the simple complex associated to K. Let f =
(f i,j) : K → L be a morphism of bicomplexes, we define sf : sK → sL by
(sf)n =

⊕
i+j=n f

i,j. The functor s : C2(A)reg → C(A) is called the asso-

ciated simple complex functor where C2(A)reg denotes the full subcategory
of C2(A) consisting of biregular bicomplexes. For any a, b ∈ Z, we have
s(K[a, b]) = (sK)[a+ b].

Proposition 2.3. If A is an abelian category, then the functor s : C2(Areg)→
C(A) is exact.

Proof. Indeed, a finite direct sum of exact sequences is exact.

2.4. Cone of a morphism. Let u : L → M be a morphism of complexes
of an additive category A. Then we obtain a naive bicomplex concentrated
in columns of degree −1 and 0 with L and M filling in them respectively. It
can be converted to a bicomplex K concentrated in the columns of the same
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degree, i.e.

K =



...
...

0 // L1
u //

OO

M1 //

OO

0

0 // L0
u //

−dL

OO

M0 //

dM

OO

0

0 // L−1
u //

−dL

OO

M−1 //

dM

OO

0

...

OO

...

OO


where d′′ = −dL. The complex C(u) = sK is called the cone of u. By
definition, we have

C(u)n = Ln+1
⊕

Mn

and the differential is given by

d = dC(u) : C(u)n → C(u)n+1, d(x, y) = −dLx+ (ux+ dMy),

i.e.

d =

(
−dL 0
u dM

)
Suppose from now on that A is abelian. By naive truncation, we have an
exact sequence

0 //M // K // L[1, 0] // 0

of bicomplexes where L and M are considered as the cones of the morphism
0→ L and 0→M respectively. By Proposition 2.3, we get an exact sequence

0 // sM // sK // sL[1, 0] // 0 ,

that is, 0 //M // C(u) // L[1] // 0 .

Proposition 2.5. The boundary morphism of the above complex δ = Hn+1(u) :
Hn(L[1])→ Hn+1(M).
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Proof. We can check this fact directly from definitions.

Corollary 2.6. A morphism u : L → M of complexes in A is a quasi-
isomorphism if and only if the cone of u is acyclic.

Proof. By the above proposition, we have the exact sequence of cohomology

· · · //H i(M) //H i(C(u)) //H i+1(L)
Hi+1(u)//H i+1(M) // · · · .

Then C(u) is acyclic if and only if H i(C(u)) = 0, that is, the morphism

H i(L)
Hi(u)//H i(M) is an isomorphism for each i ∈ Z. Thus the result follows.

Proposition 2.7. Let

0 //L
u //M

v //

i !!D
DD

DD
DD

D N //0

C(u)

ϕ

OO (2.7.1)

be a commutative diagram of complexes in A where the row is exact, the
morphism i : M → C(u) is the natural embedding, and ϕ = (0, v) : C(u)n →
Nn. Then the following square

H i(C(u))
Hi(−pr)//

Hi(ϕ)
��

H i+1(L)

H i(N)
δ // H i+1(L)

(2.7.2)

is commutative, where pr : C(u)→ L[1] is the natural projection, and δ is the
boundary morphism of the long exact sequence of the upper row in (2.7.1).

Proof. Using Mitchell’s embedding theorem, we may assume A is a full sub-
category of a small category of modules over a ring. The advantage is that
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we could pick up elements. Consider the diagram

H i(C(u))

Hi(ϕ)

��
H iL //

��

H iM //

��

H iN

��

yy

Li/BiL
ũ //

d̄L

��

M i/BiM
ṽ //

dM

��

N i/BiN //

dN

��

0

0 // Zi+1L
u //

��

Zi+1M
v //

��

Zi+1N

��
H i+1L // H i+1M // H i+1N

where the dotted arrow is the boundary map δ. Let ( ab ) ∈ Zi(C(u)) where
a ∈ Li+1, b ∈ M i. Then H i(ϕ)([( ab )]) = [v(b)] where the brackets denote

cohomology class. Thus we can choose b̃ ∈ M i/BiM such that ṽ(b̃) = ṽ(b).
Then dM(b̃) = dM(b) ∈ M i+1. There exists l ∈ Zi+1 such that u(l) = dM(b).

Then (δH i(ϕ))[( ab )] = [l]. On the other hand, dC(u) =

(
−dL[1] 0
u dM

)
. Since

dC(u) ( ab ) = 0, we obtain u(a) = −dM(b). Thus a = −l. It follows that
H i(−pr) [( ab )] = [−a] = [l] = (δH i(ϕ))[( ab )]. Finally the diagram (2.7.2)
commutes.

Corollary 2.8. ϕ is a quasi-isomorphism.

Proof. By Propositions 2.5 and 2.7, we get the following commutative dia-
gram

· · · // H iL
Hi(u)// H iM // H i(C(u))

Hi(−pr)//

Hi(ϕ)

��

H i+1L
Hi(u)// H i+1M // · · ·

· · · // H iL
Hi(u)// H iM

Hi(v) // H iN
δ // H i+1L

Hi(u)// H i+1M // · · ·

with exact rows. Then the result follows from the five lemma(Lemma 1.6).
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Remark. By duality, there exists a natural morphism ψ : L → C(v)[−1]
such that the diagram

H i(C(v)) H i(N)
Hi(−i2)oo

H i+1(L)

Hi(ψ)

OO

H i(N)
δoo

is commutative, where i2 : N → C(v) is the inclusion. The morphism ψ :
L→ C(v)[−1] is also a quasi-isomorphism.

Proposition 2.9. Let u : L → M be a morphism of biregular bicomplexes.
If u induces a quasi-isomorphism ui,• : Li,• → M i,• on each column (resp.
u induces a quasi-isomorphism u•,j : L•,j → M•,j for each row), then su :
sL→ sM is a quasi-isomorphism.

Proof. We have to show Hn(su) : Hn(sL)→ Hn(sM) is an isomorphism for
all n. For a fixed n, as L and M are biregular, only finite many components
of L and M contribute to Hn(sL) and Hn(sM). Thus we may assume that
Li,j and M i,j are 0 except for finitely many (i, j) ∈ Z × Z. In particular,
there is some interval [a, b] of Z such that Li,• = M i,• = 0 for any i /∈ [a, b],
so u has the following shape

0 //La,• //

��

La+1,• //

��

· · · //Lb,• //

��

0

0 //Ma,• //Ma+1,• // · · · //M b,• //0

We prove the result by induction on b− a. If b− a = 0, since

sL = La,•[−a], sM = Ma,•[−a]

the conclusion follows. Now assume that the result holds for b− a < n. For
b − a = n, using the naive truncations, we get the following commutative
diagram of bicomplexes with exact rows

0 //L≥a+1,• //

��

L //

��

La,•[−a, 0] //

��

0

0 //M≥a+1,• //M //Ma,•[−a, 0] //0
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(a sign is involved in the identification of L/L≥a+1,• (resp. M/M≥a+1,•)
with La,•[−a, 0] (resp. Ma,•[−a, 0]) ). Applying the functor s, we get a
commutative diagram of complexes with exact rows.

0 //sL≥a+1,• //

��

sL //

��

La,•[−a] //

��

0

0 //sM≥a+1,• //sM //Ma,•[−a] //0

By the induction hypothesis, the left and right vertical arrows are quasi-
isomorphisms, so is s(u) by Corollary 1.12.

Let L be a bicomplex. For any i, j ∈ Z, we denote ′H i,j = Ker d′i,j

Im d′i−1,j and
′′H i,j = Ker d′′i,j

Im d′′i,j−1 . The complex

′H i(L) = ( · · · // ′H i,j−1 // ′H i,j // ′H i,j+1 // · · · )

is called the i-th column of cohomology and the complex

′′Hj(L) = ( · · · // ′′H i−1,j // ′′H i,j // ′′H i+1,j // · · · )

is called the j-th row of cohomology.

Proposition 2.10. Let u : L→M be a morphism of biregular bicomplexes.
If u induces a quasi-isomorphism on each row (resp. each column) of coho-
mology, then su : sL→ sM is a quasi-isomorphism.

Proof. We only prove the assertion in the case of row. The proof is similar
to that of Proposition 2.9. The difference is that we should use canonical
truncations instead of naive ones. Using notations as above, we assume the
result holds for b− a < n. For b− a = n, by truncations we get the following
commutative diagram of bicomplexes with exact rows

0 // La //

��

L //

��

τ≥a+1,•L //

��

0

0 //Ma
//M // τ≥a+1,•M // 0

where La (resp. Ma ) is the bicomplex
(

0 // La,•
αL // Ba+1,•L // 0

)
(resp.

(
0 //Ma,• αM // Ba+1,•M // 0

)
) with La,• (resp. Ma,• ) in the
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column of degree a and Ba+1,•L (resp. Ba+1,•M ) in the column of degree
a+ 1 and αL (resp. αM) is induced by d′L (resp. d′M). Applying the functor
s, we get the following diagram

0 // s(La) //

��

s(L) //

��

s(τ≥a+1,•L) //

��

0

0 // s(Ma) // s(M) // s(τ≥a+1,•M) // 0

.

The right vertical morphism is quasi-isomorphism by the induction hypoth-
esis. Since C(αL) = sLa[a+ 1] (resp. C(αM) = sMa[a+ 1] ), it is enough to
verify the natural morphism Ca(u) : C(αL)→ C(αM) is quasi-isomorphism.
Consider the commutative diagram

′Ha(L) //

��

C(αL)[−1]

Ca(u)
��

′Ha(M) // C(αM)[−1] ,

by Propositions 2.5 and 2.7, the two horizontal morphisms are quasi-isomorphisms.
It follows that Ca(u) is also a quasi-isomorphism since ′H(u) is a quasi-
isomorphism. Then su is a quasi-isomorphism.

3 Homotopy category of complexes, triangu-

lated categories

Definition 3.1. Let A be an additive category and u, v : L → M be mor-
phisms of complexes in A, we say that u, v are homotopic if there exists
h = {hi : Li →M i−1, i ∈ Z} such that v−u = dh+hd. We then write u ∼ v
and say that h is a homotopy from u to v.

Proposition 3.2. The relation ∼ is an equivalence relation compatible with
the group structure (i.e {v ∈ Hom(L,M) : v ∼ 0} is a subgroup of Hom(L,M)
). Moreover, ∼ is compatible with the morphism of complexes, i.e. if u : K →
L, v1, v2 : L→M , w : M → N and v1 ∼ v2, then v1u ∼ v2u and wv1 ∼ wv2.

Proof. This is immediate.
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Definition 3.3. Let A be an additive category. The homotopy category of
complexes, denoted by K(A), is defined as follows:

Ob(K(A)) = Ob(C(A)),

HomK (A)(L,M ) = HomC (A)(L,M )/{w ∈ HomC (A)(L,M ) : w ∼ 0}
and the composition in K(A) is naturally induced from the composition in
C(A).

The category K(A) is an additive category, and the natural functor from
C(A) to K(A) is additive.

Remark. (a). A morphism u : L→M in C(A) becomes invertible in K(A)
if there exists v : M → L in C(A) such that uv ∼ idM , vu ∼ idL. Such a u
is called a homotopy equivalence.

(b). If A is abelian, then u ∼ v implies that H i(u) = H i(v) for any i ∈ Z.
In particular, if u is a homotopy equivalence, then u is a quasi-isomorphism,
but in general the converse is not true. Indeed, consider the diagram of
K(Mod(Z))

L

f

��

0 // 2Z //

f0

��

0 //

��

0

M 0 // Z // Z/2Z // 0

where L is concentrated in degree 0 and f 0 is the natural inclusion. Then f
is a quasi-isomorphism, but not a homotopy equivalence since there does not
exist Z-linear map g0 : Z→ 2Z such that g0 ◦ f 0 = Id2Z.

(c). We say that L ∈ C(A) is homotopic to zero or homotopically trivial
if L ∼ 0 in K(A). In other words, there exists h : Li → Li−1 such that
IdL = d ◦ h + h ◦ d. It is equivalent to saying that L breaks into splitting
short exact sequences:

0 // Zi // Li // Zi+1 // 0 .

That is, Li = Zi
⊕

Zi+1.
(d). Even if A is abelian, K(A) is not abelian in general. For example,

consider the morphism of K(Mod(Z)) defined by the natural projection

L

f

��

· · · // 0 //

��

Z //

��

0 //

��

· · ·

M · · · // 0 // Z/2Z // 0 // · · ·
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where L, M are concentrated in degree 0. Then f has no kernel in K(A).

Indeed, if such a kernel exist, it should be K = (0 // 2Z // 0) concen-
trated in degree 0 with the natural inclusion i : K → L. Then in the diagram

N

h

��

· · · // 0 //

��

Z //

id

��

Z/2Z //

��

· · ·

L · · · // 0 // Z // 0 // · · ·

,

we get fh ∼ 0 in C(A), i.e. fh = 0 in K(A). But there does not exist
any morphism s : N → K such that s ∼ h. Thus K is not the kernel of
f . Then K(A) is not abelian. More general, if A is an additive category,
a morphism u : L → M in A ⊂ K(A) has a kernel in K(A) if and only
if it has a kernel Z in A and Z is a direct summand of L. Indeed, if u
has a kernel in K(A), it should have a kernel in A and the kernel in A
is also a kernel in K(A). Assume Z together with v : Z → L is such a

kernel. Consider the distinguished triangle C(v) α // Z[1]
v[1] // L[1] , we

have v[1]α = 0. Since v[1] is a monomorphism, we have α = 0, i.e. there
exists a morphism f : L→ Z in A such that fv = IdZ in A. It follows that
Z is a direct summand of L and the converse is immediate.

3.4. Translation functor and triangle. Let D be an additive category.
A translation functor on D is an additive automorphism T : D → D. For
example, if A is an additive category, then in D = K(A), the functor L 7→
TL = L[1] gives a translation functor. For n ∈ Z and L in D, we set

T nL =


T nL n > 0

(T−1)−nL n < 0

L n = 0.

Usually we denote T nL by L[n]. For L, N in D we define the group of
morphisms of degree n from L to M by

Homn
D(L,M) = HomD(L,M [n]) = HomD(L[−n],M).

A triangle in D is a sequence of morphisms

L
u //M

v //N
w //L[1]
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where w ∈ Hom1(N,L). Sometimes we can write it as a diagram as follows

N

L
u //

+1
??��������
M,

v

OO

or denote it by L
u //M

v //N // .

Let ∆ = L
u→ M

v→ N
w→ L[1] and ∆′ = L′

u′→ M ′ v′→ N ′ w′→ L′[1] be
triangles. A morphism from ∆ to ∆′ is a triple (f, g, h) making the following
diagram

L
u //

f
��

M
v //

g

��

N
w //

h
��

L[1]

f [1]
��

L′
u′ //M ′ v′ //N ′ w′ //L′[1]

commute. The triangles in D form a category.

Definition 3.5. A triangulated category is an additive category D endowed
with a translation functor L → L[1] and a set T of triangles of D called
distinguished (or exact) triangles, satisfying the following properties (TR1)-
(TR5)

(TR1) If T ∈ T , and T ′ ∼ T , then T ′ ∈ T . Moreover for any X ∈ D,

then ( X
IdX // X

0 // 0
0 // X[1] ) ∈ T .

(TR2) For any morphism X
u // Y in D. There exists a triangle

X
u // Y // Z // X[1]

in T .
(TR3) (Rotation) (X u //Y

v //Z
w //X[1]) ∈ T if and only if

( Y
v // Z

w // X[1]
−u[1] // Y [1] ) ∈ T

(TR4) Given two distinguished triangles

X
u // Y

v // Z
w // X[1]

X ′ u′ // Y ′ v′ // Z ′ w′ // X ′[1]
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and a commutative diagram

X
u //

f
��

Y

g

��
X ′ u′ // Y ′

there exists a morphism h : Z → Z ′ such that the triple (f, g, h) is a mor-
phism of triangles, i.e. the following diagram

X u //

f

��

Y v //

g

��

Z w //

h
��

X[1]

f [1]

��
X ′ u′ //Y ′ v′ //Z ′ w′ //X ′[1]

commutes.
(TR5)(Octahedron) Given

X u //Y //Z ′ //

Y
v //Z //X ′ //

X
vu //Z //Y ′ //

in T , there exist morphisms Z ′ f // Y ′ and Y ′ g // X ′ such that

Z ′ f // Y ′ g // X ′ j[1]i // Z ′[1]

is distinguished, and in the diagram

Y ′

g

!!B
BB

BB
BB

B

����
��
��
��
��
��
��
�

Z ′

+1
��

f
>>}}}}}}}}

X ′
j[1]i

oo

+1
i

��








X

  B
BB

BB
BB

B
vu // Z

OO

XX111111111111111

Y

v

==||||||||

j

XX111111111111111

(IdX , v, f) is a morphism XY Z ′ → XZY ′ and (u, IdZ , g) is a morphism
XZY ′ → Y ZX ′.
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Theorem 3.6. Let A be an additive category, and L → L[1] be the trans-
lation functor on K(A). Let T be the family of distinguished triangles of
K(A), defined by T ∈ T if and only if T is isomorphic to a triangle of the
form

L
u //M //C(u)

−pr //L[1] ,

where C(u) is the cone of u, i (resp. pr) the canonical monomorphism (resp.
epimorphism). Then (K(A), E 7→ E[1], T ) is a triangulated category.

Sketch of the proof. (See [K-S] or [V] for details):
(TR1):First we have a commutative diagram

L
IdL //L

""F
FF

FFF
FFF

//0 //L[1]

C(IdL)

::vvvvvvvvv

OO

For (TR1), it suffices to check that C = C(IdL) is homotopically trivial. i.e.
there exists h : Ci → Ci−1 such that Id = hd+ dh. Write Ci−1 = Li−1

⊕
Li

and Ci = Li
⊕

Li+1, one can set

hi =

(
0 1
0 0

)
: Ci = Li+1

⊕
Li → Ci−1 = Li

⊕
Li−1.

(TR4): Since the diagram

L u //

f

��

M

g

��
L′ u′ //M ′

commutes in K(A), we have a homotopy s : gu ∼ u′f . Define

hi =

(
ui+1 0
si+1 vi

)
: Li+1

⊕
M i → L′i+1

⊕
M ′i,

one shows easily that the triple (f, g, h) gives a morphism of distinguished
triangles

L
u //

f
��

M //

g

��

C(u) //

h
��

L[1]

f [1]
��

L′
u′ //M ′ //C(u′) //L′[1].

(TR5): See [K-S].
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Proposition 3.7. Let D be a triangulated category and

X
u // Y

v // Z
w // X[1]

be a distinguished triangle. Then for any L in D, the following sequences are
exact:

(1) Hom(L,X)→ Hom(L, Y )→ Hom(L,Z),
(2) Hom(Z,L)→ Hom(Y, L)→ Hom(X,L).

Proof. First note that in a distinguished triangle X
u→ Y

v→ Z
w→ X[1],

the composition of any two consecutive morphisms is zero. Indeed by (TR3)
(rotation) it is enough to check that vu = 0. By (TR1),

X
Id // X

v // 0 // X[1]

is a distinguished triangle. By (TR4), we can complete the left square of the
diagram into a morphism of triangles

X
Id //X //

u

��

0 //

��

X[1]

X
u //Y

v //Z //X[1]

Then we get vu = 0. Next we check (1). By the above observation, we have
Imu ⊂ Kerv. Let v ∈ Hom(L, Y ) such that vf = 0. By (TR3) and (TR4)
we can find f̃ : L→ X making the triple (f̃ , f, 0) a morphism of triangles.

L
Id //

f̃

��

L
0 //

f

��

0 //

0

��

L[1]

f̃ [1]
��

X
u // Y

v // Z // X[1]

Thus we get uf̃ = 0. This completes the proof of (1). The proof of (2) is
similar, or one can use the fact that D◦ is also a triangulated category.

Remark. By (TR4), the sequences in (1), (2) give long exact sequences:
(1’) · · ·Homn(L,X)→ Homn(L, Y )→ Homn(L,Z)→ Homn+1(L,X) · · · ,
(2’) · · ·Homn(Z,L)→ Homn(Y, L)→ Homn(X,L)→ Homn+1(Z,L) · · · .
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Corollary 3.8. Let

X //

f
��

Y //

g

��

Z

h
��

//

X ′ // Y ′ // Z ′ //

be a morphism of distinguished triangles. Then if two of the morphisms
f, g, h are isomorphisms, so is the third one. In particular, the third vertex
of a distinguished triangle built on f : X → Y is unique up to isomorphism.
Such a vertex is sometimes called a cone of f.

Proof. Applying the functor Hom(L,−) to the diagram, we get a morphism
between two long exact sequences. The result follows from five lemma (1.6).

Remark. The isomorphism above may be not unique. Note that for any
X, Y , the triangle

X

 1
0


//X

⊕
Y

(0,1) //Y 0 //

is distinguished. Then in the diagram,

X // X ⊕ Y //

f

��

Y
0 // X[1]

X // X ⊕ Y // Y
0 // X[1]

any

f =

(
IdX ∗
0 IdY

)
: X

⊕
Y → X

⊕
Y

gives a morphism of distinguished triangles.

Definition 3.9. Let D be a triangulated category. A functor F : D → D is
called triangulated (or exact) if:

(1) F is additive;
(2) There is a functorial isomorphism F (X[1]) ∼ (FX)[1];
(3) F sends distinguished triangles into distinguished triangles.

Let F : A → B be an additive functor between additive categories. Then
F induces F : C(A)→ C(B) and a triangulated functor F : K(A)→ K(B).
This follows from the fact that Cone(F (u)) = F (Cone(u)).
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Proposition 3.10. Let u : L→M be a morphism in a triangulated category
D and

L
u //M // N //

be a distinguished triangle. Then u is an isomorphism if and only if N ∼ 0
in D. In particular, any morphism u : L → M in C(A) is a homotopy
equivalence if and only if the cone of u is homotopically trivial.

Proof. By TR(1), we have a morphism of distinguished triangles,

L u //M //N //L[1]

L

IdL

L

u

OO

//0

OO

//L[1]

Then the conclusion follows from Corollary 3.8.

Proposition 3.11. Let L
u→ M

v→ N
w→ L[1] be a distinguished triangle in

K(A), then we have a long exact sequence

· · · //H iL
Hi(u)//H iM

Hi(v) //H iN
Hi(w)//H i+1L // · · · .

Proof. Without loss of generality, we may assume the distinguished triangle
is given by the cone N = C(u) of a morphism u : L → M in C(A), so that
the corresponding w is just −pr. From the short exact sequence below

0 //M
v //N

−pr //L[1] //0

we get that the sequence H iM
Hi(v) //H iN

Hi(w)//H i+1L is exact. By the axiom
TR(3) of triangulated categories, we can rotate the distinguished triangle to
obtain a new one, and hence, extend the exact sequence above to get the
desired long exact sequence.

4 Derived categories

Proposition 4.1. Let C be a category and S ⊂ Ar(C) be a subset of arrows.
There exists a category C(S−1) and a functor Q : C → C(S−1) such that

(1) For any s ∈ S, Q(s) is invertible;
(2) For any functor F : C → D such that F (s) is invertible for any s ∈ S,

there exists a unique functor F̃ : C(S−1)→ D such that F̃Q = F . Moreover,
(C(S−1), Q) is unique up to a unique isomorphism.



24 CHAPTER 1. HOMOLOGICAL ALGEBRA

Proof. The uniqueness is clear. Let us prove the existence. Let

Ob(C(S−1)) = Ob(C).

For X, Y in C, let H(X, Y ) = {X →←→ · · · →←→ Y } be the set of finite
diagrams, where “ ← ” is an element in S. Let “ ∼ ” be the equivalence
relation on H(X,Y ) generated by the diagrams of the following type:

(1) X → · · · f→ g→ · · · ← · · ·Y ∼ X → · · · gf→ · · · ← · · ·Y ;

(2) X → · · · s← t← · · · → · · ·Y ∼ X → · · · st← · · · → · · ·Y ;

(3) X → · · · s← s→ · · · → · · ·Y ∼ X → · · · Id→ · · · → · · ·Y for any s ∈ S;

(4) X → · · · s← f→ · · · → · · ·Y ∼ X → · · · g→ t← · · · → · · ·Y
if

f //

s

��
t
��g //

is commutative. Set HomC(S−1) = H(X, Y )/∼. Define the composition of
morphisms in C(S−1) in the natural way and denote by Q the the natural
functor C → C(S−1). Now it’s easy to check that (C(S−1), Q) solves the
universal problem.

4.2. As in the case of rings of fractions, we would like to write an element

f ∈ HomC(S−1)(X,Y )

as a fraction f = gs−1 or t−1h, but it’s not always possible. We will consider
conditions on S which make it possible.

Definition 4.3. Let C be a category and S ⊂ Ar(C). We say that S is a
multiplicative system if:

(M1) For any s : X → Y , t : Y → Z in S, then ts is in S. Moreover
IdL ∈ S for any L in C.

(M2) Any diagram

X //

s

��

Y

X ′
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with s ∈ S can be completed into a commutative diagram

X
u //

s

��

Y

t
��

X ′ u′ // Y ′

with t ∈ S. Ditto with all the arrows reversed.

(M3) For any morphism X
u //
v // Y

t // Y ′ with t ∈ S such that tu = tv,
there exists some s : X ′ → X in S such that us = vs. Ditto with all arrows
reversed.

Example 4.3.1. Let A be an abelian category and S be the set of quasi-
isomorphisms in K(A). Then S is a multiplicative system. (1) is trivial. Let

X ′ X
soo u // Y be a diagram with s ∈ S. Using (TR2) and (TR4)we

can construct the following commutative diagram:

Z
f //

IdZ

X
s //

u

��

X ′

v

��
Z

uf // Y
t // Y ′

.

By hypothesis, s is a quasi-isomorphism, hence Z is acyclic (3.11), conversely
the fact that Z is acyclic implies that t is a quasi-isomorphism (3.11), thus
(2) follows. Given morphisms

X
f //Y s //Z

such that sf = 0 and s ∈ S, then by TR(2), Y → Z can be extended to a
distinguished triangle

Y s //Z //M //

Since sf = 0, by (3.7’), there exists f ′ : X → M [−1] such that the diagram
below commutes

M [−1] //Y

X.

f ′

OO
f

<<xxxxxxxxx

Choose a distinguished triangle

X ′ t //X
f ′ //M [−1] w // ,



26 CHAPTER 1. HOMOLOGICAL ALGEBRA

then ft = 0, in fact ft = t′f ′t = 0. Moreover s is a quasi-isomorphism
implies that M is acyclic, it follows that t is also a quasi-isomorphism.

Definition 4.4. A category I is called filtering if
(1) For any i, j ∈ I, there exists k ∈ I and morphisms i→ k, j → k.
(2) For any i, j ∈ I and morphisms u, v : i → j, there exists k ∈ I and

morphism w : j → k such that wu = wv.

Remark. Let F : I → Sets be a functor, then

lim−→
i∈I

F (i) =
⊔
i∈I

F (i)/ ∼

where for any x ∈ F (i) and y ∈ F (j), we say x ∼ y if and only if there exists
some k ∈ I and morphisms i

u→ k and j
v→ k such that F (u)(x) = F (v)(y).

In particular if F : I → Ab ⊂ Sets, then

lim−→
i∈I

F (i) =
⊕
i∈I

F (i)/H,

where H is the subgroup of
⊕

i∈I F (i) generated by F (u)x − F (v)y, for all

i
u→ j, j

v→ k ∈ Ar(I), x ∈ F (i), y ∈ F (j).

Proposition 4.5. If S ∈ Ar(C) is a multiplicative system, denote by IY the
category {s : Y → Y ′ ∈ S}, and IX = {s : X ′ → X ∈ S}. Then
(a) For any X, Y ∈ C, (IX)◦ and IY are both filtering.
(b) For any X ∈ C, we have

HomC(S−1)(X, Y ) = lim−→
X′ s→X∈(IX)◦

Hom(X ′, Y )

= lim−→
Y

t→Y ′∈IY

Hom(X, Y ′)

= lim−→
X′ s→X∈(IX)◦,Y

t→Y ′∈IY

HomK(A)(X
′, Y ′)

Proof. (a) For any Y
i′→ Y ′, Y

i′′→ Y ′′ ∈ IY , by the axiom(M2) of multi-
plicative systems, we can complete these two morphisms to a commutative
diagram

Y i′ //

i′′

��

Y ′

k′

��
Y ′′ k′′ //Y ′′′.
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Let j = k′i′ : Y → Y ′′′, then the diagram commutes means that we have

morphisms i′
k′→ j, i′′

k′′→ j in IY . On the other hand, let i : Y → Y ′, j :
Y → Y ′′ be in IY , and u, v : Y ′ → Y ′′, give morphisms between i→ j, then
ui = vi = j, then by (M3) there exists w : Y ′′ → Y ′′′ ∈ S such that wu = wv.
Let k = wj : Y → Y ′′′, by (M1) k ∈ S, and w give a morphism j → k such
that wu = wv : i→ k hence IY is filtering by definition. The proof (IX)◦ is
filtering is similar, thus (a) follows.

For (b), consider a category D as follows: the class of objects in D is the
same as that in A, and for any X, Y in D, define

HomD(X, Y ) = lim−→
X′ s→X∈(IX)◦

HomC(X
′, Y ).

By definition, a morphism in HomD(X, Y ) can be represented by a triple
(X ′, t, f), where

X ′ ∈ C, s ∈ HomC(X
′, X), f ∈ HomC(X

′, Y )

and two triples (X ′, s′, f ′), (X ′′, s′′, f ′′) are equivalent if and only if there
exists a commutative diagram

X

X ′

s′
>>||||||||

f ′   B
BB

BB
BB

B X ′′′oo //

u

OO

X ′′

s′′
aaCCCCCCCC

f ′′}}{{
{{

{{
{{

Y

with u ∈ (IX)◦. The composition of (X ′, s′, f ′) ∈ HomD(X, Y ) and (Y ′, t, g) ∈
HomD(Y, Z) is defined as follows. Use the axioms of multiplicative system,
we can find a commutative diagram:

X ′′

t′

~~}}
}}

}}
}} h

  A
AA

AA
AA

A

X ′

s

����
��

��
�

f   A
AA

AA
AA

A Y ′

t
~~}}

}}
}}

}} g

��>
>>

>>
>>

>

X Y Z
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with t′ ∈ S, and we set

(Y ′, t, g) ◦ (X ′, s, f) = (X ′′, st′, gh)

One checks that the definition of composition doesn’t depend on the choice
of the representative. Moreover we have that D is an additive category
and the natural functor Q′ : C → D is additive. We claim that (D, Q′)
solves the same universal problem as (C(S−1, Q). Indeed, for any morphism
s : X → Y ∈ S, Q′(s) = (X, IdX , s) is invertible in D. Moreover, for any
functor F : C → A with property that F (s) is invertible for any s ∈ S,
then we can define F ′ : D → A by F ′(u) = F (f)F (s)−1 for a morphism
u = (X ′, s, f) ∈ HomD(X ′, Y ). One can check easily that F ′ is well-defined,
and F = F ′Q′. By the construction of D, it’s also clear that such a F ′ is
unique, hence (D, Q′) solves the same universal problem as (C(S−1), Q), in
particular, we have a natural isomorphism

HomC(S−1)(X, Y )
∼−→ lim−→

X′ s→X∈(IX)◦

Hom(X ′, Y ).

The proof of the other statements in (b) is similar. This completes the proof
of (b)

Remark. In the situation of 4.5, we say that S permits a calculation of
fractions on both sides: we can write a morphism f : X → Y in C(S−1) as
a “fraction” f = t−1g or f = hs−1.

Definition 4.6. D(A) = K(A)(qis−1). Where qis denotes the set of quasi-
isomorphism of K(A).

Remark. We have D(A) = C(A)(qis−1), where qis denotes the set of quasi-
isomorphism of C(A). Indeed, let Q be the composition of the two functors

C(A)
Q1 // K(A)

Q2 // D(A)

claim that (D(A), Q) solves the same universal problem as C(A)(qis−1). In
fact we can show that K(A) = C(A)(S−1) (exercise), then the conclusion
follows easily.

Remark. Though we have D(A) = C(A)(qis−1), it is not convenient to use
this as a definition. The reason is that qis, the set of quasi-isomorphisms in
C(A) is not a multiplicative system, so we cannot “calculate” a morphism
in D(A) by “fraction” in C(A).
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4.7. Let A be an abelian category, then we have the following natural
functors:

C(A) //K(A)
Q //D(A) .

Let S = {f ∈ HomK(A)(X, Y )| f is a quasi-isomorphism }, we know in 4.3.1
that S is a multiplicative system. Therefore morphisms in D(A) can be
defined as follows (4.5):

HomD(A)(X, Y ) = lim−→
Y

t→Y ′∈S

HomK(A)(X, Y
′)

= lim−→
X′ s→X∈S

HomK(A)(X
′, Y )

= lim−→
X′ s→X∈S,Y t→Y ′∈S

HomK(A)(X
′, Y ′)

The composition is the same as that given in the proof of 4.5. And the
definition of morphisms inD(A) also shows thatD(A) is an additive category
and Q is an additive functor. Moreover, the translation functor

X 7→ X[1]

on K(A) gives a translation functor

X 7→ X[1]

on D(A). Define a distinguished triangle in D(A) to the image by Q of a
distinguished triangle X → Y → Y → Z → X[1] in K(A).

Proposition 4.8. With the set of distinguished triangles defined above, D(A)
is a triangulated category. Moreover Q is triangulated (3.9). This trian-
gulated category structure is called the canonical triangulated structure on
D(A).

4.9. ForX, Y ∈ D(A), n ∈ Z, we usually write Extn(X, Y ) for Homn
D(A)(X, Y )

(3.4).
For i ∈ Z, the functor

H i : K(A)→ A
X 7→ H i(X)

maps quasi-isomorphisms into isomorphisms, hence by the universal property
of the derived categories, factors through D(A), so we get a functor from
D(A) to A,which is still denoted by H i : D(A) → A. Note that H i(X) =
H0(X[i]).
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Proposition 4.10. Let L u //M
v //N

w // be a distinguished triangle in
D(A). Then

(a) For any object K in D(A), the sequences

· · · → Extn(K,L)→ Extn(K,M)→ Extn(K,N)→ Extn+1(K,L)→ · · ·

and

· · · → Extn(N,K)→ Extn(M,K)→ Extn(L,K)→ Extn+1(N,K)→ · · ·

are exact.
(b) The sequence

· · · //H iL
Hi(u)//H iM

Hi(v) //H iN
Hi(w)//H i+1L // · · ·

is exact.

Proof. Part(a) is a particular case of 3.7’. For part(b), we may assume that
the distinguished triangle is given by the cone N = C(u) of a morphism
u : L→M in C(A), then the result follows from 3.11.

Corollary 4.11. A morphism u : L→M in D(A) is an isomorphism if and
only if H i(u) is an isomorphism for any i ∈ Z.

Proof. Only the sufficient part of this corollary is not trivial. Let N be a
cone of u. From(3.11), we see that H iN = 0 for any i ∈ Z, which implies
that N = 0, we have a morphism of distinguished triangles in D(A)

L
u //

Id

M //N //

L L

u

OO

//0

0

OO

//

.

Both Id and 0 are isomorphism in D(A), so u is also an isomorphism (3.8).

We say that the sequence of functors {H i}i∈Z is a conservative system.

Proposition 4.12. The functor R : A → D(A) defined by the composition
of A → C(A) → K(A) → D(A) is fully faithful, and its essential image
is the full subcategory D[0,0](A) of D(A) consisting of complex L such that
H iL = 0 for any i 6= 0.
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Proof. It’s easy to see R factors through D[0,0](A), through a functor (we use
the same notation here) R : A→ D[0,0](A). To show that R is an equivalence
of categories, we consider the functor

S : D[0,0](A)→ A

L 7→ H0L

We show that S is a quasi-inverse of R. Obviously, SR = IdA, so it remains
to show RS ∼ eq IdD(A).

Let L be any object in D[0,0](A), we have a natural quasi-isomorphism
s : L → τ>0L (1.8), which implies τ>0L ∈ D[0,0](A). Moreover, we have
another quasi-isomorphism t : R(H0L) = τ60(τ>0L) → τ>0L (1.8). So we
obtain a natural isomorphism between RS(L) and L represented by the triple
(τ>0L, s, t).

From now on, we use the same notation L to indicate an object of A or
D(A).

Remark. 4.13. (a) The truncation functor τ>n(τ6n, τ[a,b]) transforms quasi-
isomorphisms into quasi-isomorphisms, hence induce functor from D(A) to
D(A).

(b) If u : L → M is a morphism in D(A) such that H i(u) = 0 for all
i ∈ Z, in general, u is not zero. For example, consider the exact sequence

0 //Z 2 //Z //Z/2Z //0,

it defines(see below) an element 0 6= e ∈ Ext1
Z(Z/2Z,Z), but e : Z/2Z→ Z[1]

induce 0 on H i for all i.
(c) Let u ∈ HomD(A)(K,K) and assume

K ∈ D[a,b](A)

i.e H i(K) = 0, ∀i /∈ [a, b], where [a, b] is an interval of Z. If H i(u) = 0 for
any i ∈ Z, then ub−a+1 = 0. Indeed we can prove it by induction on b− a.

If b − a = 0, by (4.13), we may assume K is a complex concentrated in
one degree, then u = 0 in this case (4.12).

Now let b− a = k > 0, we have a distinguished triangle in D[a,b](A)

τ6aK
f //K

g //τ>a+1K //
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We have τ6aK ∈ D[a,a](A) and τ>a+1K ∈ D[a+1,b](A). Consider the following
morphisms of distinguished triangles

τ6aK
f //

��

K
g //

ub−a

��

t

||

τ>a+1
//

(τ>a+1u)
b−a=0

��
τ6aK

f //

��

K
g //

u

��

τ>a+1
//

��
τ6aK

f //K
g //τ>a+1

// .

By the induction hypothesis, (τ>a+1u)
b−a = 0, so we get gub−a = 0, hence

ub−a can factor through τ6aK, that is there exists t : K → τ6aK such that
ub−a = ft. Therefore ub−a+1 = uft = 0 by the b− a = 0 case.

4.14. For any L,M ∈ A, let Ext(L,M) be the group of extensions of
L by M . As a set, Ext(L,M) is the set of short exact sequences of the
form 0 → M → E → L → 0 modulo the following equivalence relation. A
short exact sequence 0 → M → E → L → 0 is said to be equivalent to
0→M → E ′ → L→ 0 if and only if we have a commutative diagram

E

��=
==

==
==

=

��

0 //M

??��������

��?
??

??
??

L //0

E ′

@@��������

(E → E ′ is therefore an isomorphism). Recall that Ext(L,M) is an abelian
group, the addition of two extensions is defined as follows: given two exten-
sions E1,E2 of L by M

E1 : 0→M → E1 → L→ 0

E2 : 0→M → E2 → L→ 0

take the direct sum of these two short exact sequences

0→M
⊕

M → E1

⊕
E2 → L

⊕
L→ 0.
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Pulling it back by the diagonal morphism L→ L
⊕

L, we get a commutative
diagram with exact rows

0 //M
⊕

M

��

//E1 ×L E2
//

��

L //

��

0

0 //M
⊕

M //E1

⊕
E2

//L
⊕

L //0.

Then, pushing-out the top row by the sum map M
⊕

M → M , we get a
commutative diagram with exact rows

0 //M
⊕

M

��

//E1 ×L E2
//

��

L //

��

0

0 //M //(E1 ×L E2)
⊕

M
⊕
M M //L

⊕
L //0.

Then we define the sum of E1,E2, which is denoted by E1 + E2, as the bot-
tom row of the above diagram. One checks that with the addition described
above, Ext(L,M) is an abelian group, with 0 being the class of the trivial
extension 0→M →M

⊕
L→ L→ 0.

Proposition 4.15. We have a natural isomorphism

Ext(L,M) ∼ // Ext1(L,M)

Proof. Let

E : 0 //M u //E v //L //0

be an extension of L by M , consider the complex C(u) and define the mor-
phisms of complexes

M [1] · · · //0 //M //0 //0 // · · ·

C(u)

p=p(1,0)

OO

s=s(0,v)

��

· · · //0 //

OO

��

M

1

OO

u //

��

E

OO

��

v //0 //

��

OO

· · ·

L · · · //0 //0 //L //0 // · · ·

The fact that E is exact implies that s is a quasi-isomorphism, hence an
isomorphism in D(A). Hence we get a morphism

ϕ(E) = p ◦ s−1 : L→M [1] ∈ Ext1(L,M)
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by definition. It can be shown easily that ϕ(E) = ϕ(E′) if E and E′ present
the same extension class of M by L. So we get a well-defined map

ϕ : Ext(L,M)→ Ext1(L,M)

E 7→ ϕ(E)

Now we claim that ϕ is a morphism of abelian groups. In fact, first ϕ is
functorial with respect to L and M . That is for any f : L → L′, we have a
commutative diagram

Ext(L,M)
ϕ // Ext1(L,M)

Ext(L′,M)

Ext(f,M)

OO

ϕ // Ext1(L′,M),

Ext1(f,M)

OO

similarly, for g : M →M ′, a commutative diagram as follows

Ext(L,M)
ϕ //

Ext(L,g)

��

Ext1(L,M)

Ext1(L,g)
��

Ext(L,M ′)
ϕ // Ext1(L,M ′).

Moreover, the following diagram commutes

Ext(L,M)× Ext(L,M)
ϕ //

⊕
��

Ext1(L,M)× Ext1(L,M)⊕
��

Ext(L
⊕

L,M
⊕

M)
ϕ // Ext1(L

⊕
L,M

⊕
M).

Hence, combining the commutative diagrams above together, we get

Ext(L,M)× Ext(L,M)
ϕ //

⊕
��

Ext1(L,M)× Ext1(L,M)⊕
��

Ext(L
⊕

L,M
⊕

M)
ϕ //

Ext(L
⊕
L,δ)

��

Ext1(L
⊕

L,M
⊕

M)

Ext1(L
⊕
L,δ)

��
Ext(L

⊕
L,M)

ϕ //

Ext(∆,M)

��

Ext1(L
⊕

L,M)

Ext1(∆,M)
��

Ext(L,M)
ϕ // Ext1(L,M),
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where δ : M
⊕

M →M and ∆ : L→ L
⊕

L are the sum map and the diag-
onal map respectively. From this, we see that ϕ is a group homomorphism.

Next, we construct an inverse

ψ : Ext1(L,M)→ Ext(L,M)

of ϕ. Let u ∈ Ext1(L,M) be represented by the diagram (L
s← L′

f→
M [1]) ∈ Ext1(L,M), where L′ is a object in D(A), s : L′ → L is a quasi-
isomorphism in K(A) and f ∈ HomK(A)(L

′,M [1]). Using the truncation
τ[−1,0] = τ60 ◦ τ>−1, we may assume that L′ is a complex concentrated in
degree -1 and 0. Since

L′

s

��

· · · //0 //

��

L′−1 d−1
//

��

L′0

s0

��

//0 //

��

· · ·

L · · · //0 //0 //L //0 // · · ·

is a quasi-isomorphism, the following sequence is exact

0 //L′−1 d−1
//L′0

s0 //L //0.

Pushing-out by f−1, we obtain a commutative diagram with exact rows

0 //L′−1 d−1
//

f−1

��

L′0
s0 //

��

L //0

0 //M //E
t0 //L //0,

and define ψ(s, f) as the class of the bottom exact sequence. It’s easy to
check that ψ is well-defined and is inverse to ϕ, so

ϕ : Ext(L,M)→ Ext1(L,M)

is an isomorphism.

4.16. Triangle associated to a short exact sequence Let 0 → L
u→

M
v→ N → 0 be a short exact sequence of A. We know (2.4) that we have a

commutative diagram

L u //M v //

i=(0,1)

��

N

C(u)
s=(0,v)

=={{{{{{{{
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with s a quasi-isomorphism, then

L //M //N
w //L[1]

is a distinguished triangle, where w = −pr ◦ s−1. Note that with this sign
convention, we have H i(w) = δ, where δ is the boundary of the long exact
sequence of cohomology of 0→ L→M → N → 0 (1.9).

Here are some special cases. Let a 6 b be two integers, we have a short
exact sequence

0→ τ6aL→ τ6bL→ τ6bL/τ6aL→ 0.

As in D(A) we have an isomorphism τ6bL/τ6aL ∼ τ[a,b]L,then we get a
distinguished triangle

τ6aL→ τ6bL→ τ[a,b]L→

In particular, if b = a+ 1, then we have a distinguished triangle

τ6b−1L→ τ6bL→ HbL[−b]→

since τ[b−1,b] ∼ HbL[−b] in D(A).

4.17. Some subcategories of D(A)
Let ∗ denote any one of the following symbols: +,-.b. We define full

subcategories of D(A) as follows:

D+(A) = {L ∈ D(A)|H iL = 0, i << 0}

D−(A) = {L ∈ D(A)|H iL = 0, i >> 0}

Db(A) = {L ∈ D(A)|H iL = 0, i << 0 or i >> 0}

We have a natural functorK∗(A)→ D∗(A), which maps quasi-isomorphisms
to isomorphisms, hence we get a functor

S : K∗(A)(qis−1)→ D∗(A),

where qis is the set of quasi-isomorphisms in K∗(A).

Proposition 4.18. The functor S defined above is an equivalence of cate-
gories.
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For the proof of this proposition, we need some preparation.

Definition 4.19. Let I be a filtering category, J ⊂ I is called cofinal if J is
a full subcategory and for any i ∈ I, there exists a morphism i → j, where
j ∈ J .

Note that if J ⊂ I is cofinal, then J is again filtering.

Lemma 4.20. If I is a filtering category, F : I → Sets be a functor, then
the natural morphism

lim−→
j∈J

F (j) ∼ lim−→
i∈I

F (i)

is an isomorphism.

Proof. Since J ⊂ I is a subcategory, we have a natural morphism

ϕ : lim−→
j∈J

F (j)→ lim−→
i∈I

F (i)

what’s more, since J is cofinal, for any (i, x) ∈ lim−→
i∈I

F (i) we can find some

morphism a : i→ j with j ∈ J , then we can define

ψ : lim−→
i∈I

F (i)→ lim−→
j∈J

F (j)

(i, x) 7→ (j, F (a)x)

It can be checked easily that ψ is well-defined and

ϕψ = Id, ψϕ = Id .

Proof of 4.18. We will prove this proposition in the case of ∗ = +. Let L,M
be objects in K+(A). For any morphism (M ′, t, f) ∈ HomD(A)(L,M), where

M
t→M ′ is a quasi-isomorphism in K+(A) and f ∈ HomK+(A)(L,M

′), there
exits some integer n such that H iM ′ ∼ H iM = 0 for any i < n. So the
natural morphism

t′ : M ′ → τ>nM
′

is a quasi-isomorphism in K+(A), so

(M ′, t, f) = (M ′′, t′t, t′f) ∈ HomK+(A)(L,M),
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hence by 4.20 S is fully faithful. Moreover, we can define a quasi-inverse R
of S as follows:

R : D+(A)→ K+(A)(qis−1)

L 7→ τ>nL

where n is some integer such that H iL = 0, for i < n. Now it can be shown
easily that R ◦ S = id, S ◦R ∼ eqid.

4.21. Structure of D+(A)
Recall that in an abelian category A, an object L ∈ A is called projective

(resp. injective) if HomA(L,−) (resp. HomA(−, L)) is an exact functor(i.e
takes short exact sequences to short exact sequences). For example, in the
category of R-modules, where R is a ring, an R-module is projective if and
only if it is a direct summand of a free R-module.

Definition 4.22. An abelian cateogry A is said to have enough injectives if
for any object L ∈ A, there exists a monomorphism L→ L′ with L injective.

Theorem 4.23. Let (X,OX) be a ringed space. Then the category Mod(OX)
of OX-modules has enough injectives.

Lemma 4.24. Let R be a ring, M a left R-module. Then M is injective if
and only if for any left ideal I ⊂ R,Hom(R,M)→ Hom(I,M) is surjective.
In particular, if R is a principal ideal domain, then M is injective if and only
if M is divisible.

Proof. The condition is of course necessary. Conversely, let M be a left R-
module having the property that any morphism I → M can be extended
to a morphism R → M , where I is a left ideal, we need to show that M is
injective. Given any monomorphism L→ N and a morphism ψ : L→M , by
Zorn’s lemma, there exists a maximal submodule N ′ of N such that one can
extend ψ to it, we claim that N = N ′. If not, choose an element x ∈ N −N ′

and let I = {r ∈ R|rx ∈ N ′}, it’s easy to see that I is a left ideal of R, and
we have a morphism

ψ′ : I → Rx
⋂

N ′ →M.

By hypothesis, we can extend this morphism to R, which is still denoted by
ψ′. Now we see that we can extend the morphism N ′ →M to

N ′ +Rx(⊂ N)→M : n′ + rx 7→ ψ(n′) + ψ′(r)x,

which contradicts the choice of N ′.
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Lemma 4.25. Let R be a ring. The the category Mod(R) of left R-modules
has enough injectives.

Proof. First, we claim that, in the category of Z-modules, we have enough
injectives. Using the lemma above, as Q/Z is divisible, Q/Z is injective. Let
L be any left Z-module, take any element x ∈ L, there exists a morphism
Zx→ Q/Z such that the image of x is nonzero in Q/Z. As Q/Z is injective,
this morphism can be extended to a morphism fx : L → Q/Z such that
fx(x) 6= 0. On the other hand, we have a natural morphism of abelian
groups

h : L→
∏

f :L→Q/Z

Q/Z

y 7→ (f(y))f .

As fx(x) 6= 0, this morphism is injective, so any Z-module can be embedded
into an injective Z-module, in other words, Mod(Z) has enough injectives.

Now, let R be a ring, L be a left R-module, HomZ(R,L) is an R-module,
and we have a canonical injection L → HomZ(R,L). Choose an embedding
of L into an injective Z-module L′, we get an embedding L→ HomZ(R,L′).
On the other hand, by adjunction isomorphism

HomZ(N,L′) ∼ // HomR(N,HomZ(R,L′))

where N is an R-module, therefore HomZ(R,L′) is an injective R-module,
which completes the proof.

proof of theorem 4.23. Let F be a sheaf of left OX-module. For each point
x ∈ X, the stalk Fx is an OX,x-module, so there is an injection Fx → Ix,
where Ix is an injective OX,x-module. For each point x ∈ X, let ix : {x} → X
denote the inclusion, and let G =

∏
x∈X ix,∗(Ix), where ix,∗ is the direct image

functor. Let F ↪→ G be the composition of the following two morphisms

F ↪→
∏
x∈X

ix,∗(Fx) ↪→
∏
x∈X

ix,∗(Ix) = G,

where the first morphism is given by s 7→ (sx)x∈X . Moreover, let H be an
OX-module, we have

HomOX
(H,G) =

∏
x∈X

HomOX
(H, ix,∗(Ix)) =

∏
x∈X

HomOX,x
(Hx, Ix).

hence G is an injective OX module. This completes the proof.
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Now, the main purpose of this section is to prove the following theorem.

Theorem 4.26. Let A be an abelian category with enough injectives. Then
the natural functor

K+(I)→ D+(A)

is an equivalence of categories, where I is the full subcategory of A consists
of injectives in A.

In fact, we will deduce 4.26 from the following theorem:

Theorem 4.27. Let A′ ⊂ A be a full additive category of A, such that for
any object L ∈ A, there exists a monomorphism L→ L′ with L′ ∈ A′. Then

(1) For any L ∈ D+(A), there exists a quasi-isomorphism L → L′ with
L′ ∈ K+(A′).

(2) The functor K+(A′)(qis−1) → D+(A), where qis denotes the set of
quasi-isomorphisms of K+(A), is an equivalence of triangulated categories.

Let us show that 4.27 implies 4.26. Take A′ = I, then from 4.27, we
know that

K+(I)(qis−1)→ D+(A)

is an equivalence of categories. It remains to show that the functor

K+(I)→ K+(J )(qis−1)

is an equivalence of triangulated categories, which follows from the following
lemma.

Lemma 4.28. If t : M →M ′ is a quasi-isomorphism in K+(I), then t is a
homotopy equivalence.

Proof. By (3.8), we just have to show that C(t) is homotopical trivial. Note
that C(t) is acyclic, so are reduced to showing that if M ∈ K+(I) is acyclic,
thenM is homotopically trivial. But it is easy to see thatM breaks into short
exact sequences such that all the components are in I, hence the short exact
sequences split. From this, we can construct the homotopy we need.

Proof of 4.27. It’s easy to see that if the conclusion of (1) holds, for M ∈
K+(A) the category of quasi-isomorphisms {M → M ′, where M ′ ∈ K+(A′)
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is cofinal in the category of all quasi-isomorphisms {M → M ′′, where M ′′ ∈
K+(A), and therefore a similar argument as the one in (e.g. 4.13) shows that

K(A′)(qis−1)→ D+(A)

is an equivalence of categories. So we only need to prove (1).
Let L be any object in D+(A), we need to construct a quasi-isomorphism

L → L′ with L′ ∈ K+(A′). Since there exists some integer a such that
L → τ>aL is a quasi-isomorphism, we can assume that L ∈ K+(A). By
shifting the degree, we may assume that L ∈ K>0(A). Now we shall construct
inductively a complex L′n ∈ K [0,n](A′) and a morphism un : L → L′n such
that: (a) for each i, uin is a monomorphism; (b) it induces isomorphisms on
Hj(K) → Hj(L′n) for i < n and a monomorphism Ln/Bn ↪→ L′n/B

′n. For
n < 0, we can take L′n = 0. Now assume we have constructed L′n and a
morphism u′n : L → L′n with the properties (a) and (b). Then consider the
cocartesian diagram

L′n/B′n //L′n/B′n ⊕
Ln/Bn Ln+1(= L̃n+1)

Ln/Bn //

OO

Ln+1

OO

By assumption, there exists a monomorphism L̃n+1 → L′n+1 with L′n+1 ∈ A′,
then we have the following commutative diagram

· · · //L′n //L′n/B′n //L̃n+1 //L′n+1

· · · //Ln //

OO

Ln/Bn //

OO

Ln+1

OO ;;xxxxxxxxx

with Ln+1 → L′n+1 a monomorphism. Now

HnL = Ker(Ln/Bn → Ln+1), HnL′n+1 = Ker(L′n/B′n → L̃n+1)

and
Ln+1/Bn+1 // Coker(L′n → L̃n+1) //L′n+1/B′n+1

is a composition of two monomorphism, hence is also a monomorphism. Ap-
plying the lemma below, we see that

HnL
∼eq //HnL′n+1

That is just what we need.
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Lemma 4.29. Let
A

ϕ //A
⊕

S B

S

α

OO

ψ //B

β

OO

be a cocartesian diagram, assume ψ is a monomorphism, then we have an
isomorphism

Kerα
∼eq //Kerβ

Proof. By the property of a cocartesian diagram, we know that ϕ is also a
monomorphism, moreover we have a commutative diagram with exact rows

0 //S
ψ //

α

��

B //

β
��

Cokerψ //

∼eq
��

0

0 //A
ϕ //A

⊕
sB

// Cokerϕ //0

By the snake lemma (1.4), ψ induces an isomorphism

Kerα
∼eq //Kerβ.

5 Derived functors

5.1. Let A and B be abelian categories. An additive functor F : A → B is
called left exact (resp. right exact) if for any exact sequence :

0→ L′ → L→ L′′ → 0,

the sequence
0→ F (L′)→ F (L)→ F (L′′)

(resp. F (L′)→ F (L)→ F (L′′)→ 0) is exact. F is called exact if it is both
left and right exact.

Example 5.1.1. If A is an abelian category and P is an object of A, the
functor Hom(P,−) from A to the category Ab of abelian groups is left exact,
and it is exact if and only if P is projective. Similarly if Q is an object of
A, the functor Hom(−, Q) from A◦

to Ab is left exact and it is exact if and
only if Q is injective.
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Example 5.1.2. Let R be a ring, and L a right R−module. Then the functor
L⊗R − from left R−module to Ab is right exact, and it is exact if and only
if L is flat.

Consider the extension of F to C(A). This is an additive functor F from
C(A) to C(B), defined by

L = (· · · → Li
d→ Li+1 → · · · ) 7→ FL = (· · · → FLi

F (d)→ FLi+1 → · · · )

(u : L→M) 7→ (F (u) = (F (ui)) : FL→ FM)

This functor F induces F : C∗(A)→ C∗(B), where ∗ = +,−, b.
Then we have the following diagram

A
F

��

� � // C+(A)

F
��

// K+(A)

F
��

Q // D+(A)

F̄
��

B � � // C+(B) // K+(B)
Q // D+(B)

,

in which F : K(A) → K(B) is triangulated, and there does not exist, in
general, a triangulated functor F̄ making the right square commutative. In
fact, such an F̄ exists if and only if F (u) is a quasi-isomorphism, where u
is a quasi-isomorphism, or, equivalently, for all acyclic L ∈ K+(A), F (L) is
acyclic or F : A → B is exact.

5.2. A right derived functor RF of F is a triangulated functor

RF : D+(A)→ D+(B)

together with a morphism of functors ε : QF → RF ◦Q having the following
universal property:

For any triangulated functor G : D+(A) → D+(B) and morphism of
functors η : QF → G ◦Q, there exists a unique morphism α : RF → G such
that η = α ◦ ε.

If (RF, ε) exists, it is unique up to a unique isomorphism.

Theorem 5.3 (existence of RF ). Let F : A → B be an additive functor.
Assume that there exists a full additive subcategory A′ of A, such that

(i). For all E ∈ A, there exists E ′ ∈ A, and a monomorphism E ↪→ E ′.
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(ii). If 0 → E ′ → E → E ′′ → 0 is an exact sequence, and E ′, E ∈ A′,
then E ′′ ∈ A′, and 0→ FE ′ → FE → FE ′′ → 0 is exact.
Then RF : D+(A) → D+(B) exists and for L ∈ D+(A), we have an iso-
morphism RF (L)

∼← F (L′), where L → L′ is a quasi-isomorphism with
L′ ∈ K+(A′).

Lemma 5.4. Let A′ be a subcategory of A satisfying the condition in 5.3.
Suppose L ∈ K+(A′), and L is acyclic, then FL is acyclic.

Proof. Suppose L is acyclic, then we have an exact sequence

0 // La // La+1 // · · · // Li // Li+1 // · · ·

And for each Li, we have a short exact sequence

0 // Zi // Li // Zi+1 // 0

It follows from (ii), by induction on i, that for all i, Zi ∈ A′ and the sequence

0 // FZi // FLi // FZi+1 // 0

is exact. Splicing short exact sequences, we get that FL is acyclic.

Lemma 5.5. Suppose L, L′ ∈ K+(A′), s : L→ L′ is a quasi-isomorphism,
then Fs is also a quasi-isomorphism.

Proof. Consider the distinguished triangle

M

~~~~
~~

~~
~~

L
s // L′

``AAAAAAAA

where M is the cone of s. Then M ∈ K+(A′). Because s is a quasi-
isomorphism, M is acyclic. By 5.4, F (M) is acyclic. So Fs is a quasi-
isomorphism.

Let us prove the theorem. Consider the diagram:

K+(A′) //

F
��

K+(A′)(Quis−1)
ψ //

F
��

D+(A)

RFww
K+(B)

Q // D+(B)
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where Quis is the set of quasi-isomorphisms in K+(A′). As F maps quasi-
isomorphisms of K+(A′) into quasi-isomorphisms, there exists a functor F :
K+(A′)(Quis−1)→ D+(B) making the square commutative.

Recall that ψ is an equivalence (4.18). Let ϕ : D+(A)→ K+(A′)(Quis−1)
be a quasi-inverse to ψ. Define

RF = F ◦ ϕ : D+(A)→ D+(B)

i.e. RF (L) = F (ϕL). Now let us define a functorial morphism: ε : Q(FL)→
RF (QL), for L ∈ D+(A).

For L ∈ K+(A), we have a functorial isomorphism a(L) : L → ϕL with
ϕL ∈ K+(A′). By (4.18), we can write

a(L) = t−1s : L
s //M ′ ϕLtoo

where s, t are both quasi-isomorphisms and M ′ ∈ K+(A′). Then we have a
diagram

FL
Fs //

ε(L)

22FM ′ FϕL = RFLFtoo

where Ft is a quasi-isomorphism because both M ′ and φL are in K+(A′).
We define

ε(L) = (Ft)−1 ◦ Fs ∈ HomD+(B)(FL,RFL).

One easily checks that ε(L) doesn’t depend on the choices and gives a map
of functors ε : QF → RFQ.

Let us verify the universal property. Let G : D+(A) → D+(B) be a
triangulated functor and η : FQ → QG be a morphism. The following
diagram shows that η uniquely factors as η = α ◦ ε.

FL
ε //

η

��

RFL

α
{{

F (ϕL)

η(ϕL)

��
G(L) ' // G(ϕL)

Finally, let L
u→ L′ be a quasi-isomorphism with L′ ∈ K+(A′). Then the



46 CHAPTER 1. HOMOLOGICAL ALGEBRA

following commutative diagram

FL //

��

RFL

RF (u)'
��

FL′

F (ε(L′)) $$I
IIIIIIII RFL′

F (ϕL′)

defines a canonical isomorphism RF (u)−1◦F (ε(L′)) : FL′
∼→ RFL in D+(B).

Note that, for a ∈ Z, RF (D>a(A)) ⊂ D>a(B). This is because for
L ∈ D>a(A), there exists a quasi-isomorphism L → L′ with L′ ∈ K>a(A′),
such that RFL ' FL′ = (0→ FL′a → · · · )

For i ∈ Z, and L ∈ D+(A), we define RiFL = H iRFL. The functor

RiF : D+(A)→ B

is a “cohomological functor”, meaning that if L′ → L → L′′ → is a distin-
guished triangle in D+(A), then we can get a long exact sequence

· · · → RiFL′ → RiFL→ RiFL′′ → Ri+1FL′ → · · ·

coming from the distinguished triangle RFL′ → RFL→ RFL′′ →.
In particular, if L ∈ D>0(A), then RiFL = 0, i < 0. Moreover, for

L ∈ A, the natural map (given by ε : FL→ RFL)

FL
ε // R0FL H0RFL

is an isomorphism if and only if F is left exact.

Corollary 5.6. If A has enough injectives, then RF : D+(A) → D+(B)
exists, and for any L ∈ D+(A), if L → L′ is a quasi-isomorphism with
L′ ∈ K+(A) and L′i injective for all i, then FL′

∼→ RFL.

Indeed we can take for A′ the full subcategory of A consisting of injectives
(4.27).

Definition 5.7. Let F : A → B be a left exact additive functor (in other
words, FL

∼→ R0FL). An object L of A is called F -acyclic, if RnFL = 0 for
any n > 0.
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For example, objects of A′ are F−acyclic.

Proposition 5.8. Under the assumption of 5.3, the subcategory AF = {L ∈
A, L is F−acyclic} of A satisfies the properties (i), (ii) of 5.3.

Proof. (i). We have A′ ⊂ AF , so the condition (i) is immediate.
(ii). Let E ′ → E → E ′′ → 0 be an exact sequence in A, and E ′, E ∈ AF ,

then RFE ′ → RFE → RFE ′′ → is a distinguished triangle, hence we get a
long exact sequence

· · · → RiFE ′ → RiFE → RiFE ′′ → Ri+1FE → · · · .

Because E ′, E are both F−acyclic, RnFE = RnFE ′ = 0 for all n > 0. With
the long exact sequence, we get RnFE ′′ = 0 for all n > 0, so E ′′ is also
F−acyclic, hence E ′′ ∈ AF .

From the long exact sequence, we also have an exact sequence 0 →
R0FE ′ → R0FE → R0FE ′′ → 0, then the sequence 0 → FE ′ → FE →
FE ′′ → 0 is exact by definition.

Corollary 5.9. Suppose L → L′ is a quasi-isomorphism with L′ ∈ K+(A)
and for any i, L′i is F−acyclic, then we have a canonical isomorphism FL′ →
RFL.

Definition 5.10. Let F : A → B be an additive functor between two abelian
categories. A left derived functor of F is a functor

LF : D−(A)→ D−(B)

together with ε : LFQ → QF having the following universal property: For
any triangulated functor G : D−(A) → D−(B) together with a morphism
η : GQ → QF , there exists a unique morphism α : G → LF , such that
η = ε ◦ α:

K−(A)
Q //

F
��

D−(A)

LF
��

G
��

K−(B)
Q // D−(B)

Theorem 5.3’ Let F : A → B be an additive functor, and A′ a additive
subcategory of A, such that
(i). For all E ∈ A, there exists an epimorphism E ′ � E with E ′ ∈ A
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(ii). For any exact sequence 0→ E ′ → E → E ′′ → 0 with E, E ′′ ∈ A′, then
E ′ ∈ A′, and 0→ FE ′ → FE → FE ′′ → 0 is exact.
Then (LF : D−(A) → D−(B), ε) exists and for L ∈ D+(A), we have
LFL

∼→ FL′, where L′ → L is a quasi-isomorphism with L′ ∈ K−(A′).

The proof is similar to that of 5.3.

Example 5.10.1. : Let (X,OX) be a ringed space, A = Mod(OX). The
category A′ of flat OX−modules satisfies the conditions (i) and (ii) of 5.3’ for
any functor of the form P ⊗OX

− : Mod(X)→ Mod(Y ) with P ∈ Mod(X).

Definition 5.11. Let F : A → B be an additive functor between abelian
categories, and A′ be a full additive subcategory of A. We say A′ is right
adapted to F if A′ satisfies the following condition (i)-(iii):

(i) For any E ∈ A, there exists an object E ′ and a monomorphism E → E ′

with E ′ ∈ A′.
(ii) For any exact sequence

0→ E ′ → E → E ′′ → 0

with E ′, E ∈ A′, then E ′′ ∈ A′.
(iii) For any exact sequence

0→ E ′ → E → E ′′ → 0

with E ′, E, E ′′ ∈ A′, then the sequence

0→ FE ′ → FE → FE ′′ → 0

is exact.

Recall that if such a category A′ exists, then RF : D+(A) → D+(B)
exists and for any L ∈ D+(A), we have RF (L) ' F (L′) where L′ ∈ K+(A′)
and L→ L′ is a quasi-isomorphism. For example, if A has enough injectives,
then the category of injectives in A is right adapted to any F : A → B.

Definition 5.11’ Let F : A → B be an additive functor between abelian
categories, A′ a full additive subcategory of A. We say A′ is left adapted to
F if

(i) For any E ∈ A, there exists an object E ′, such that E ′ → E is an
epimorphism.
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(ii) For any exact sequence

0→ E ′ → E → E ′′ → 0

with E,E ′′ ∈ A′, then E ′ ∈ A′.
(iii) For any exact sequence

0→ E ′ → E → E ′′ → 0

with E ′, E, E ′′ ∈ A′, then the sequence

0→ FE ′ → FE → FE ′′ → 0

is exact.
If A′ ⊂ A is left adapted to F , then LF : D−(A)→ D−(B) exists and for

any L ∈ D−(A), we have LF (L) ' F (L′) where L′ ∈ K−(A′) and L′ → L is
a quasi-isomorphism.

For example, if A has enough projectives, then the category of projectives
is left adapted to any F : A → B.

Let F : A → B, G : B → C be two additive functors between abelian
categories. We will now discuss when we can “state” R(GF ) = RG ◦ RF
and L(GF ) = LG ◦ LF .

Theorem 5.12. Let A F // B G // C be additive functors between abelian
categories. Assume there exist A′ ⊂ A right adapted to F , B′ ⊂ B right
adapted to G, and F (A′) ⊂ B′. Then A′ is right adapted to GF , RF , RG,
R(GF ) exist, and there is a canonical isomorphism

RG ◦RF ' R(G ◦ F ).

Proof. For any exact sequence

0→ E ′ → E → E ′′ → 0

with E ′, E, E ′′ ∈ A′, because A′ is right adapted to F , then the sequence

0→ FE ′ → FE → FE ′′ → 0

is exact. Since F (A′) ⊂ B′, the sequence

0→ GFE ′ → GFE → GFE ′′ → 0
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is also exact. It follows that A′ is right adapted to GF . For any L ∈
D+(A), there exists L′ ∈ K+(A′) with L → L′ a quasi-isomorphism. The
isomorphism stated in the theorem is given by the following composition

RG ◦RF (L) RG(FL′)∼oo

G(FL′)

'

OO

R(GF )(L) GF (L′)∼oo

.

Example 5.12.1. Suppose A has enough injectives, B has enough injectives,
G is left exact, and F transforms injective objects toG−acyclic objects. Then
we can take B′ = BG, where BG is the subcategory consisting of G−acyclic
objects, so we get R(GF ) ' RG ◦RF .

Theorem 5.12’ Let A F // B G // C be additive functors where A, B,
C are abelian categories. Assume we have a full additive subcategory A′ (resp.
B′) of A (resp. B), which is left adapted to F (resp. G) and F (A′) ⊂ B′.
Then A′ is left adapted to GF , LF,LG,L(GF ) exist, and there is a canonical
isomorphism

L(GF ) ' LG ◦ LF.

The proof is similar to that of 5.12.

6 The functors RΓ, Rf∗, Lf
∗,⊗L

Let (X,OX) be a ringed space and suppose OX is commutative. Let A =
Mod(X) = Mod(OX) be the category of sheaves of OX−modules. Then
A is abelian and has enough injectives (4.23). Let Ab be the category of
abelian groups. Then the functor Γ(X,−) : Mod → Ab ; E 7→ Γ(X,E) =
E(X) is additive and left exact, but it is not exact in general. The right
derived functor RΓ(X,−) : D+(X) → D+(Ab) exists (Where D∗(X) =
D∗(Mod(X)), ∗ = +,−, b or empty).
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For each L ∈ D+(X), n ∈ Z, Hn(X,L) = HnRΓ(X,L) is called the n-
th cohomology group of X with values in L. For all E ∈ Mod(X), Γ(X,E)

∼→
H0(X,E). We haveRΓ(X,L) = Γ(X,L′), where L→ L′ is a quasi-isomorphism
with L′ ∈ K+(X) and L′i is injective for all i. It is easy to see that
L ∈ D>a(X) implies RΓ(X,L) ∈ D>a(Ab).

Definition 6.1. F ∈ Mod(X) is called flasque if for all U ↪→ X open,
F (X)→ F (U) is surjective.

Remark. If F is flasque, then F |U is flasque, for all open subset U of X.

Proposition 6.2. (1). Suppose 0→ F ′ → F → F ′′ → 0 is an exact sequence
of Mod(X) and F ′ is flasque, then 0→ Γ(X,F ′)→ Γ(X,F )→ Γ(X,F ′′)→
0 is exact.

(2). Under the same assumption as in (1), then if F ′, F are flasque, F ′′

is flasque.
(3). If F is injective, then F is flasque.

Corollary 6.3. The subcategory of flasque sheaves is right adapted to Γ(X,−).
In particular, for L ∈ D+(X), RΓ(X,L) ' Γ(X,L′), where L → L′ is a
quasi-isomorphism with L′ ∈ K+(X) and L′i is flasque for all i.

As Mod(X) has enough injectives, 6.3 immediately follows from 6.2.

Proof of 6.2(1) and (2). (1). Let s′′ ∈ Γ(X,F ′′), we want to find s ∈ Γ(X,F )
such that the image of s in Γ(X,F ′′) is s′′. Order the set

{(U, t) | U ↪→ X open, Γ(U, F ) 3 t 7→ s′′|U ∈ Γ(U, F ′′)}

by (U, t) < (U1, t1) if U ⊂ U1 and t1 extends t. This is an inductive ordered
set. So, by Zorn’s lemma, there exists a maximal (U, s), U ↪→ X, s ∈ Γ(U, F )
and s 7→ s′′|U .

Assume there exists x /∈ U , then there exists an open neighborhood V
of x and t ∈ Γ(V, F ), t 7→ s′′|V . Hence z := s|U∩V − t|U∩V ∈ Γ(U ∩ V, F ′).
Since F ′ is flasque, we can find z1 ∈ Γ(V, F ′) such that z1|U∩V = z. Then s
and t+ z1 agree on U ∩V , hence s extends to a section s̄ of F on U ∪V such
that s̄ 7→ s′′|U ∪ V . This contradicts the maximality of (U, s), and finishes
the proof.
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(2). Since 0 → F ′ → F → F ′′ → 0 is exact and F, F ′ are flasque, by (1)
we have the following commutative diagram whose rows are exact and the
two left vertical maps are surjective.

0 // F ′(X) //

��

F (X) //

��

F ′′(X) //

ϕ

��

0

0 // F ′(U) // F (U) // F ′′(U) // 0

.

So ϕ is surjective, hence F ′′ is flasque.

Preliminary to the proof of (3):

Suppose that U
� � j // X is open and Y := X − U � � i // X is the com-

plementary closed subset. Then, for each F ∈ Mod(U), we can consider the
sheaf j!F ∈ Mod(X), which is associated to the presheaf:

V 7→ { Γ(V, F ) if V ⊂ U
0 if V * U

where V is an open subset of X. This sheaf is called the extension of F by
zero. It is easy to see that if x ∈ U , (j!F )x = Fx, and if x /∈ U , (j!F )x = 0.
In fact, j!F |U = F . For each E ∈ Mod(X), it follows from the definition that

Hom(F, j∗E) = Hom(F,E|U) = Hom(j!F,E),

hence j! is left adjoint to j∗. For E ∈ Mod(X), we have a basic exact
sequence:

0→ j!j
∗E → E → i∗i

∗E → 0;

i.e.
0→ j!(E|U)→ E → i∗(E|Y )→ 0.

Now, let’s come back to the proof of 6.2.(3).
Assume F is injective on X, let j : U ↪→ X be an open subset of X.

A section s ∈ F (U) = Hom(OU , j∗F ) defines a map s : j!OU → F . Then
by the injectivity of F , there exists s̄ ∈ F (X) extending s, i.e. making the
following diagram commutative:

j!OU s //
� _

��

F

OX
s̄

== .
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6.4. Godement’s flasque resolution
For x ∈ X, let ix : {x} → X denote the inclusion, let F ∈ Mod(X). Then

the canonical map F →
∏
x∈X

ix∗i
∗
xF = C0(F ) (s 7→ (sx)x∈X) is injective and

C0(F ) is flasque. Therefore we get a flasque resolution of F :

0→ F → C0(F )→ C1(F )→ C2(F )→ · · ·

where Cn+1(F ) = C0(Coker : Cn−1(F ) → Cn(F )). This resolution is called
Godement’s canonical flasque resolution. Then,

RΓ(X,F ) ' Γ(X, C(F )) = (Γ(X, C0(F ))→ · · · → Γ(X, Cn(F ))→ · · · )

More generally, for F ∈ K+(X), by the above flasque resolution we have
a morphism of bi-complexes F → C(F ), where C(F )ij = Cj(F i). This mor-
phism induces a quasi-isomorphism on each column, hence a quasi-isomorphism
F → sC(F ) := F ′ and F ′n is flasque for all n. Hence we get an isomorphism
RΓ(X,F ) ' Γ(X, sC(F )).

(2) Rf∗
Let (X,OX) and (Y,OY ) be two ringed spaces and f : X → Y a mor-

phism of ringed spaces. Recall that the direct image functor, defined by
f∗ : Mod(X) → Mod(Y ) (f∗F )(V ) = F (f−1V ) with V ⊂ Y , is additive and
left exact. By definition, f∗ transforms flasque sheaves into flasque sheaves,
hence injective sheaves into flasque sheaves by 6.2. If Y consists of a single
point, and OY = Z, then f∗ = Γ(X,−).

The right derived functor Rf∗ : D+(X) → D+(Y ) exists. For F ∈
D+(X), Rf∗F = f∗F

′ for F → F ′ a quasi-isomorphism with F ′ ∈ K+(X)
and F ′i injective for all i. Flasque sheaves are acyclic for f∗ (hence for F ∈
D+(X), Rf∗F ' f∗F

′ for F → F ′ a quasi-isomorphism with F ′ ∈ K+(X)
and F ′i flasque for all i. )

By definition, Γ(Y, f∗F ) = Γ(X,F ), in other words, the functor Γ(X,−)
is the composition:

Γ(X,−) = Γ(Y,−) ◦ f∗ : Mod(X)
f∗ //

Γ(X,−)

44Mod(Y )
Γ(Y,−)// Ab

Then from 5.12, we deduce RΓ(Y,Rf∗L) ' RΓ(X,L) for L ∈ D+(X).
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Similarly, if X
f // Y

g // Z are morphisms of ringed spaces, then we
have

R(gf)∗ = Rg∗ ◦Rf∗ : D+(X)→ D+(Z).

Indeed the subcategory consisting of flasque sheaves on X is adapted to f∗
for any f : X → Y and f∗ transforms flasque sheaves into flasque sheaves.

(3) ⊗L (and Torq(−,−))
Let A be a commutative ring, then the functor

Mod(A)×Mod(A)→ Mod(A)

(E,F ) 7→ E ⊗A F
is bi-additive and right exact in each argument.

If E,F ∈ C(A), we get a naive bi-complex (Ep ⊗ F q, d⊗ Id, Id⊗ d) and
the associated bi-complex (E⊗F )•,• with the diffirentials defined as follows:

d′(x⊗ y) = dx⊗ y

d′′(x⊗ y) = (−1)px⊗ dy
where x⊗ y ∈ Ep ⊗ F q

The simple associated complex s(E ⊗ F )•,• is denoted E ⊗ F . We have

(E ⊗ F )n =
⊕
p+q=n

Ep ⊗ F q

d = d′ + d′′

The bi-additive functor

C(A)× C(A)→ C(A)
(E,F ) 7→ E ⊗ F

where A = Mod(A), extends to a bi-triangulated functor

K(A)×K(A)→ K(A)
(E,F ) 7→ E ⊗ F

For fixed E, let us consider the functor

K(A)→ K(A)
F 7→ E ⊗ F

We will define a left derived functor of it. For this we need some generaliza-
tion of the definitions given in (5.2).
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Definition 6.5. Let F : K+(A) → K+(B) be a triangulated functor. A
right derived functor of F is a pair

(RF : D+(A)→ D+(B), ε : F → RF ),

where RF is triangulated, satisfying the following universal property: For
any triangulated functor G : D+(A) → D+(B) and morphism of functors
η : QF → G ◦ Q, there exists a unique morphism α : RF → G such that
η = α ◦ ε.

K+(A)
Q //

F
��

D+(A)

RF
��

G
��

K+(B)
Q // D+(B)

Definition 6.5’ Let F : K−(A) → K−(B) be a triangulated functor. A
left derived functor of F is a pair

(LF : D−(A)→ D−(B), ε : LF → F )

where LF is triangulated satisfying the following universal property: For
any triangulated functor G : D−(A) → D−(B) and morphism of functors
η : G ◦ Q → QF , there exists a unique morphism α : G → LF such that
η = ε ◦ α.

K−(A)
Q //

F
��

D−(A)

LF
��

G
��

K−(B)
Q // D−(B)

Recall Mod(A) has enough projectives.

Lemma 6.6. Let A = Mod(A), E ∈ C(A), and F ∈ C−(A). Assume F i is
projective for all i. Then if E or F is acyclic, then E ⊗ F is acyclic.

Proof. (a). Assume F is acyclic, then F is homotopically trivial. So E ⊗ F
is acyclic.

(b). Assume E is acyclic, E ∈ K−(A). Then (E ⊗ F )•,• is biregular. For
each q, we have E• ⊗ F q is acyclic, so E ⊗ F is acyclic.

(c). General case. E = lim
−→

τ6nE, thenHq(lim
−→

τ6nE⊗F ) = lim
−→

Hq(τ6nE⊗
F ) = 0.
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Proposition 6.7. Let E ∈ K(A), then the functor K−(A) → K(A) given
by F 7→ E ⊗ F has a left derived functor

D−(A)→ D(A)
F 7→ E ⊗LA F

,

calculated by E ⊗LA F = E ⊗A F ′ where F ′ ∈ K−(A) with F ′i projective and
F ′ → F a quasi-isomorphism. Moreover, the functor K(A) → D(A) given
by E 7→ E ⊗L F factors (uniquely) through D(A) and gives a triangulated
functor

D(A)×D−(A)→ D(A)
(E,F ) 7→ E ⊗LA F

sending D−(A)×D−(A) to D−(A).

Remark 6.8. Let P be the full subcategory of A consisting of projective
A-modules. For E,F ∈ D−(A), we have isomorphisms in D(A)

E ⊗LA F ' E ⊗ F ′ ' E ′ ⊗ F ' E ′ ⊗ F ′,

where E ′, F ′ ∈ K−(P), E ′ → E and F ′ → F quasi-isomorphisms. (Actually,
E ⊗L F ' E ′ ⊗L F ' E ′ ⊗ F ′, and by an analog of Lemma 6.7, E ′ ⊗ F ′ '
E ′ ⊗ F .)

Proposition 6.9. (1). There is a canonical isomorphism

E ⊗L (F ⊗L G) ' (E ⊗L F )⊗L G

for E ∈ D(A), F,G ∈ D−(A).
(2). There is a canonical isomorphism

E ⊗L F ' F ⊗L E

for E,F ∈ D−(A).

Proof. (1) Replace F,G by F ′, G′ ∈ K−(P) such that there are quasi-isomorphisms
F ′ → F and G′ → G. Apply then the isomorphism of complexes E ⊗ (F ′ ⊗
G′)→ (E ⊗ F ′)⊗G′ given by a⊗ (b⊗ c) 7→ (a⊗ b)⊗ c.

(2) Take quasi-isomorphisms E ′ → E and F ′ → F with E ′, F ′ ∈ K−(P).
Then E ⊗L F ' E ′ ⊗ F ′, F ⊗L E ' F ′ ⊗ E ′. Apply the isomorphism of
complexes E ′ ⊗ F ′ → F ′ ⊗ E ′ given by x ⊗ y 7→ (−1)pqy ⊗ x for x ∈ E ′p,
y ∈ F ′q.
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The isomorphism in (2) is called the Koszul isomorphism. The sign con-
vention is adopted to get a morphism of complexes, and is called the Koszul
rule.

Definition 6.10. For E ∈ D(A), F ∈ D−(A), n ∈ Z, define Torn(E,F ) =
TorAn (E,F ) = H−n(E ⊗LA F ).

In particular, for E,F ∈ A, TorA0 (E,F ) = E ⊗A F (by right exactness of
E ⊗A •).

Definition 6.11. An A-module E is called flat if the functor

A → A
F 7→ E ⊗A F

is exact.

The exact sequences of cohomology shows that the following conditions
are equivalent:

(i) E is flat;

(ii) For all F ∈ A, TorA1 (E,F ) = 0;

(iii) For all F ∈ A and q > 0, TorAq (E,F ) = 0.

Proposition 6.12. Let A′ ⊂ A be the full subcategory of flat A-modules.
Then A′ is left adapted to the functors

A → A
F 7→ E ⊗ F

for all E ∈ A, i.e.,

(i) For all F ∈ A, there exists an epimorphism F ′ → F with F ′ ∈ A′.

(ii) If F ′ ∈ A, F, F ′′ ∈ A′ and

0→ F ′ → F → F ′′ → 0

exact, then F ′ ∈ A′.
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(iii) If the above sequence is exact with F ′, F, F ′′ ∈ A′, then

0→ E ⊗ F ′ → E ⊗ F → E ⊗ F ′′ → 0

is exact.

Proof. (i) follows from the fact that projective modules are flat.
For (ii) and (iii), use long exact sequences and Koszul isomorphisms (6.9

(2)).

Corollary 6.13. For E ∈ D(A), F ∈ D−(A), E ⊗L F ' E ⊗ F ′ where
F ′ → F is a quasi-isomorphism, F ′ ∈ K−(A) and F ′i flat for all i.

Proof. Choose a quasi-isomorphism P → F ′ with P ∈ K−(A) and P i pro-
jective for all i. Complete it into a distinguished triangle in K(A). The
corollary then follows from Lemma 6.7 with “projective” replaced by “flat”,
which we will prove later as Lemma 6.17 in more generality.

As in 6.8, for E,F ∈ D−(A), E ′ → E and F ′ → F quasi-isomorphisms,
E ′, F ′ ∈ K−(A), E ′i, F ′i flat for all i, we have

E ⊗L F ' E ⊗ F ′ ' E ′ ⊗ F ' E ′ ⊗ F ′.

Note that for a commutative ring A with a multiplicative system S, S−1A
is a flat A-module, but not a projective A-module in general (e.g., when A is
a principal ideal domain which is not a field and S−1A is its fractional field).

6.14. Let (X,OX) be a (commutative) ringed space. Write

Mod(X) = Mod(OX),

C(X) = C(Mod(X)),

K(X) = K(Mod(X)),

D(X) = D(Mod(X)).

For E,F ∈ Mod(X), define E ⊗F = E ⊗OX
F to be the sheaf associated

to the presheaf
U 7→ E(U)⊗O(U) F (U).

For x ∈ X, (E ⊗OX
F )x = Ex ⊗OX,x

Fx. E is called a flat OX-module if the
functor

Mod(X) → Mod(X)

F 7→ E ⊗OX
F
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is exact.
For E,F ∈ C(X), define the double complex (E ⊗ F )•• as in 6.5 and

E ⊗ F = s(E ⊗ F )••, that is, (E ⊗ F )n =
⊕

p+q=n
Ep ⊗ F q and d(a ⊗ b) =

da⊗ b+ (−1)pa⊗ db for a ∈ Ep, b ∈ F q. The functor

C(X)× C(X) → C(X)

(E,F ) 7→ E ⊗ F

defines a bi-triangulated functor K(X)×K(X)→ K(X).

Proposition 6.15. For E ∈ K(X), the functor

K−(X) → K(X)

F 7→ E ⊗ F

has a left derived functor

D−(X) → D(X)

F 7→ E ⊗L F,

calculated as E ⊗L F = E ⊗ F ′ for F ′ → F a quasi-isomorphism with F ′ ∈
K−(X) and F ′i flat for all i. Moreover, for F ∈ D−(X) fixed,

K(X) → D(X)

E 7→ E ⊗L F

induces a triangulated functor D(X) → D(X). So we get a bi-triangulated
functor

D(X)×D−(X) → D(X)

(E,F ) 7→ E ⊗L F

sending D−(X)×D−(X) to D−(X).

Proof. Imitate the proof in the case of modules over a ring, making use of
6.16(i) and 6.17 below.

Lemma 6.16. Let A′ ⊂ Mod(X) be the full subcategory of flat modules.
Then A′ is left adapted to the functors

Mod(X) → Mod(X)

F 7→ E ⊗ F

for all E ∈ Mod(X), i.e.,
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(i) For all F ∈ Mod(X), there exists an epimorphism F ′ → F with F ′ ∈
A′.

(ii) If F ′ ∈ Mod(X), F, F ′′ ∈ A′ and

0→ F ′ → F → F ′′ → 0

exact, then F ′ ∈ A′.

(iii) If the above sequence is exact with F ′, F, F ′′ ∈ A′, then

0→ E ⊗ F ′ → E ⊗ F → E ⊗ F ′′ → 0

is exact.

Proof. For (i), define

E ′ =
⊕
U,s

jU !OU
∑

U,s s̃−−−−→ E,

where the sums are taken for all open U ⊂ X and s ∈ Γ(U,E), jU : U ↪→ X
is the embedding, and s̃ is defined by the canonical isomorphism

Hom(OU , jU ∗E)
∼−→ Hom(jU !OU , E)

s 7→ s̃.

This is obviously an epimorphism, and E ′ is flat because jU !OU flat. (These
facts are easily seen by taking stalks.)

For (ii) and (iii), we only need to use the corresponding results for modules
over rings (6.12) and the fact that an OX-module M is flat if and only if Mx

flat over OX,x for all x ∈ X.

Remark. In general, there are not enough projectives in Mod(X). In fact,
if X is a locally noetherian Jacobson scheme with no isolated points, then
every projective OX-module is zero. In addition, if X is a projective scheme
over a field which does not have any isolated point, then every projective
object in the category of quasi-coherent OX-modules is zero. See [Ga].

Lemma 6.17. Let E ∈ K(X), F ∈ K−(X) with F i flat for all i. If E or F
is acyclic, then E ⊗ F is, too.
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Proof. If E is acyclic, proceed as in 6.7. If F is acyclic, we show that E ⊗F
is acyclic. First, assume E ∈ K−(X). Now F is bounded above, acyclic
and flat in each component, we can show by induction that it breaks into
flat short exact sequences. Hence, by (ii) and (iii) of 6.16, Ep ⊗ F breaks
into short exact sequences, and thus is acyclic, for all‘ p. Therefore, E ⊗
F = s(E ⊗ F )•• is acyclic. For the general case, use E = lim−→ τ≤nE and
E ⊗ F = lim−→((τ≤nE)⊗ F ).

Proposition 6.18. (1). There is a canonical isomorphism

E ⊗L (F ⊗L G) ' (E ⊗L F )⊗L G

for E ∈ D(X), F,G ∈ D−(X).
(2). There is a canonical (Koszul) isomorphism

E ⊗L F ' F ⊗L E

for E,F ∈ D−(X).

The proof is similar to that of 6.9, projective modudes being replaced by
flat ones.

6.19. The functor Lf ∗. Let f : X → Y be a morphism of ringed spaces.
The morphism OY → f∗OX induces a morphism f−1OY → OX , by which
we can regard OX as an f−1OY module. Define f ∗E = OX ⊗f−1OY

f−1E.
f ∗ : Mod(Y ) → Mod(X) is a right exact additive functor left adjoint to
f∗ : Mod(X)→ Mod(Y ). f ∗ extends to C(Y )→ C(X) and, in turn, defines
a triangulated functor K(Y )→ K(X).

Proposition 6.20. The functor f ∗ : Mod(Y ) → Mod(X) has a left derived
functor Lf ∗ : D−(Y ) → D−(X) calculated as Lf ∗(E) = f ∗E ′ for E ′ → E a
quasi-isomorphism with E ′ ∈ K−(Y ) and E ′i flat for all i.

Proof. It suffices to show that the full subcategory of Mod(Y ) consisting
of flat OY -modules is left adapted to f ∗ (5.10), that is, to check (i), (ii)
and (iii) in the definition. (i) and (ii) have already been proved in 6.16,
while (iii) follows from the following two facts easily seen by taking stalks:
f−1 : Mod(Y ) → Mod(f−1(OY )) is exact; if M is a flat OY -module, then
f−1(M) is a flat f−1(OY )-module.

Define Lif ∗ = H iLf ∗, Lif
∗ = L−if ∗.
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Proposition 6.21. Let f : X → Y , g : Y → Z be morphisms of ringed
spaces. Then

Lf ∗Lg∗ ' L(gf)∗; (6.21.1)

Lg∗(E ⊗L F ) ' Lg∗E ⊗L Lg∗F (6.21.2)

for E,F ∈ D−(Z);

HomD(X)(Lf
∗E,F ) ' HomD(Y )(E,Rf∗F ) (6.21.3)

for E ∈ D−(Y ), F ∈ D+(X).

The last isomorphism is called the trivial duality.

Proof. The isomorphisms (6.21.1) and (6.21.2) follow from the fact that
g∗(M) is a flat OY -module for a flat OZ-module M . The proof of (6.21.3)
will be given in 7.6.

7 RHom, RHom, Exti, Ext i

7.1. The functor RHom. Let A and B be additive categories, F : A◦ → B
an additive functor. For L ∈ C(A):

· · · // L−i−1
d−i−1

L // L−i // · · ·

we define F (L) ∈ C(B) to be the complex

· · · F (L)i+1oo F (L)i
di

F (L)oo · · ·oo

where F (L)i = F (L−i) and diF (L) = (−1)i+1F (d−i−1
L ). For a morphism u :

L → M , we define F (u) : F (M) → F (L) by F (u)i = F (u−i). Thus we get
a functor C(A)◦ → C(B), which defines a triangulated functor K(A)◦ →
K(B). We still use F to denote them.

Example 7.1.1. The additive functor

A◦ ×A → Ab

(L,M) 7→ Hom(L,M)
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is left exact in both arguments. For L,M ∈ C(A), define a bicomplex of
abelian groups Hom(L,M)•• as follows: let the component of bidegree (p, q)
be Hom(L,M)p,q = Hom(L−q,Mp), the differentials d′p,q = Hom(L−q, dpL),

d′′p,q = (−1)p(−1)q+1 Hom(d−q−1
L ,Mp) :

Hom(L−q,Mp)→ Hom(L−q−1,Mp).

Take Hom•(L,M) = s(Hom(L,M)••) ∈ C(Ab), where s is defined by

Homn(L,M) =
∏

p+q=n

Hom(L,M)p,q =
∏

p+q=n

Hom(L−q,Mp)

=
∏

p−q=n

Hom(Lq,Mp).

For f ∈ Homn(L,M), we have f = (f q)q∈Z, f q : Lq → M q+n, df = dM ◦ f +
(−1)n+1f ◦ dL.

Note that Hom(L,M)•• is biregular if L or M is bounded or

L ∈ K−(A), M ∈ K+(A).

The functor

C(A)◦ × C(A) → C(Ab)

(L,M) 7→ Hom•(L,M)

defines a bi-triangulated functor K(A)◦ ×K(A)→ K(Ab).

Proposition 7.2. Let A be an abelian category with enough injectives. For
L ∈ K(A), the functor

K+(A) → K(Ab)

M 7→ Hom•(L,M)

has a right derived functor

D+(A) → D(Ab)

M 7→ RHom(L,M),

calculated as RHom(L,M) = Hom•(L,M ′) for M →M ′ a quasi-isomorphism
with M ′ ∈ K+(A), M ′i injective for all i. Moreover, for M ∈ D+(A) fixed,

K(A)◦ → D(Ab)

L 7→ RHom(L,M)
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induces a triangulated functor D(A) → D(Ab). So we get a bi-triangulated
functor

RHom : D(A)◦ ×D+(A) → D(Ab)

(L,M) 7→ RHom(L,M)

sending D−(A)◦ ×D+(A) to D+(A).

Proof. Proceed as in 6.8, applying the following lemma.

Lemma 7.3. Let A be as in 7.2, E ∈ C(A), F ∈ C+(A). Assume F i

injective for all i. Then if E or F is acyclic, then so is Hom•(E,F ).

Proof. Use H i Hom•(E,F )
∼−→ HomD(A)(E,F [i]), which follows from Lem-

mas 7.4 and 7.5 below. (When F is acyclic or E ∈ K−(A), there is an
alternate proof similar to the proof of 6.7.)

Lemma 7.4. Let A be an additive category, E,F ∈ C(A). Then

Z0 Hom•(E,F ) = HomC(A)(E,F ),

B0 Hom•(E,F ) = {f ∈ HomC(A)(E,F ); f ' 0},
H0 Hom•(E,F ) = HomK(A)(E,F ).

Proof. For f ∈ Hom0(E,F ), (df)i = df i − f id. Thus f ∈ Z0 Hom•(E,F ) if
and only if f ∈ HomC(A)(E,F ). For h ∈ Hom−1(E,F ), (dh)i = dhi + hid.
Thus f ∈ B0 Hom•(E,F ) if and only if f ' 0.

Lemma 7.5. Let A be an abelian category with enough injectives, E ∈ K(A),
F ∈ K+(A) such that F i injective for all i. Then we have an isomorphism

HomK(A)(E,F )
∼−→ HomD(A)(E,F ).

Proof. By definition,

HomD(A)(E,F ) = lim−→
s:F→F ′

HomK(A)(E,F
′),

where s runs through quasi-isomorphisms in K(A). By cofinality, we can
restrict to quasi-isomorphisms such that F ′ ∈ K+(A) and F ′i injective for
all i. Note that in this case, s is actually an isomorphism in K+(A) (4.28).
We then get

HomK(A)(E,F )
∼−→ HomD(A)(E,F ).
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7.6. We now give the proof of (6.21.3). We may assume E ∈ K−(Y ),
F ∈ K+(X), Ei flat and F i injective, for all i. In this case, (6.21.3) becomes

HomD(X)(f
∗E,F ) ' HomD(Y )(E, f∗F ).

By definition,

HomD(Y )(E, f∗F ) = lim−→
s:E′→E

HomK(Y )(E, f∗F ),

where s runs through quasi-isomorphisms in K(Y ). By cofinality, we can
restrict to quasi-isomorphisms such that E ′ ∈ K−(Y ) and E ′i flat for all i.
By 7.4 and 7.5,

HomK(Y )(E
′, f∗F ) = H0 Hom•(E ′, f∗F ) ' H0 Hom•(f ∗E ′, F )

' HomD(X)(f
∗E ′, F ).

Thus we get isomorphisms HomK(Y )(E
′, f∗F ) → HomD(X)(f

∗E,F ) which
commute with transition maps induced by morphisms between different s,
and hence an isomorphism

HomD(Y )(E, f∗F )→ HomD(X)(f
∗E,F ).

7.7. Calculation of Exti. Let A be an abelian category with enough
injectives. Recall that in 4.9, for E,F ∈ D(A), we defined Extn(E,F ) as
HomD(A)(E,F [n]).

Proposition 7.8. With A as in 7.7, E ∈ D(A), F ∈ D+(A), we have

Extn(E,F ) ' HnRHom(E,F ).

Proof. Up to shifting, we may assume that n = 0. We have

H0RHom(E,F ) ' H0 Hom•(E,F ′),

for F → F ′ a quasi-isomorphism with F ′i injective for all i. The proposition
then follows from Lemmas 7.4 and 7.5.

Remark 7.9. If A has enough projectives, then

RHom(E,F ) ' Hom•(E ′, F ) ' Hom•(E ′, F ′)

for E ∈ D−(A), F ∈ D+(A), E ′ → E and F → F ′ quasi-isomorphisms,
E ′ ∈ K−(A), F ′ ∈ K+(A), E ′i projective and F ′i injective for all i (by an
analog of (the special cases of) Lemma 7.3).
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7.10. The functor RHom. Let (X,OX) be a (commutative) ringed space.
For E,F ∈ Mod(X),

HomOX
(E,F ) : U 7→ HomOU

(E|U, F |U)

is a sheaf of OX-modules. Similar to 7.1.1, the functor HomOX
: Mod(X)◦×

Mod(X)→ Mod(X) induces a functor

Hom• : C(X)◦ × C(X)→ C(X)

(Hom•(E,F )n =
∏

p−q=nHom(Eq, F p), df = dF ◦ f + (−1)n+1f ◦ dE for
f ∈ Hom•(E,F )n), which defines a bi-triangulated functorK(X)◦×K(X)→
K(X). We have a bi-triangulated functor

RHom : D(X)◦ ×D+(X)→ D(X)

calculated asRHom(E,F ) = Hom•(E,F ′) for F → F ′ a quasi-isomorphism,
F ′ ∈ K+(X), F ′i injective for all i. (Applying

Γ(U,Hom(E,F )) = Hom(E|U, F |U)

and 7.3, we get a variant of 7.3 with Hom• instead of Hom•.)
We have

RΓ(X,RHom(E,F )) ' RHom(E,F ) (7.10.1)

for E ∈ D−(X), F ∈ D+(X); and

RHom(E ⊗L F,G) ' RHom(E,RHom(F,G)) (7.10.2)

for E,F ∈ D−(X), G ∈ D+(X). Moreover, we have a canonical isomorphism

Rf∗RHom(Lf ∗E,F ) ' RHom(E,Rf∗F ) (7.10.3)

for E ∈ D−(Y ), F ∈ D+(X), f : X → Y a morphism of ringed spaces. This
isomorphism implies (6.21.3) (but actually the proof of (7.10.3) uses (6.21.3),
see 7.12.)

7.11. The functor Ext i. for E ∈ D(X), F ∈ D+(X), for all integers i,
define Ext i(E,F ) = H i(RHom(E,F )). We shall see later that these sheaves
are related to the global Exti

a(U 7→ Exti(E|U, F |U))
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by a spectral sequence

Ep,q
2 = Hp(X, Ext q(E,F ))⇒ Extp+q(E,F ).

7.12. Appendix: Proof of (7.10.3). Let f : X → Y , E ∈ D−(Y ),
F ∈ D+(X) as in (7.10.3). We may assume E ∈ K−(Y ), F ∈ K+(X) and
Ei flat, F i injective for all i. Then (7.10.3) becomes

f∗Hom•(f ∗E,F ) ' RHom(E, f∗F )

by 7.13 below. We claim that the composition of morphisms in D(Y )

f∗Hom•(f ∗E,F )→ Hom•(E, f∗F )→ RHom(E, f∗F )

provides such an isomorphism, where the second map is the canonical map
while the first map is the isomorphism induced by the canonical isomorphisms
in C(Ab)

Γ(V, f∗Hom•(f ∗E,F )) = Hom•((f ∗E)|f−1(V ), F |f−1(V ))

= Hom•(f ∗(E|V ), F |f−1(V ))
∼−→ Hom•(E|V, f∗(F |f−1(V )))

= Hom•(E|V, (f∗F )|V ) = Γ(V,Hom•(E, f∗F ))

for V ⊂ Y open. Take a quasi-isomorphism f∗F → G with G ∈ C+(Y ) and
Gi injective for all i. The claim is then equivalent to that the composition of
morphisms in C(Y )

f∗Hom•(f ∗E,F )
∼−→ Hom•(E, f∗F )→ Hom•(E,G)

is a quasi-isomorphism. For this, it suffices to show for every open V ⊂ Y ,
the induced map of complexes of sections on Y

Hom•(f ∗(E|V ), F |f−1(V ))→ Hom•(E|V,G|V )

is a quasi-isomorphism, that is, for all n,

Hn Hom•(f ∗(E|V ), F |f−1(V ))→ Hn Hom•(E|V,G|V )

is an isomorphism. Since F |f−1(V ) and G|V are injective modules, the last
map corresponds to the canonical map

HomD(X)(f
∗(E|V ), F |f−1(V )[n])→ HomD(Y )(E|V, f∗(F |f−1(V ))[n])

by 7.4 and 7.5, which is an isomorphism by (6.21.3).
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Lemma 7.13. Let E ∈ Mod(X) be flat, F ∈ Mod(X) be injective. Then
HomOX

(E,F ) is injective.

Proof. For all M ∈ Mod(X), we have, by the definition of M ⊗ E, isomor-
phisms

Hom(M ⊗ E,F )
∼−→ Hom(M,Hom(E,F )),

which are functorial. Hence Hom(•,Hom(E,F )) ' Hom(• ⊗ E,F ) is an
exact functor, and the result follows.

8 Čech Cohomology

8.1. Let U = (Ui)i∈I be an open covering of a topological space X, i.e.
Ui ⊂ X open for all i ∈ I and X = ∪i∈IUi, and let F be a presheaf of abelian
groups on X. Define the Čech complex Č(U , F ) as follows. Let

Čn(U , F ) =
∏

(i0,··· ,in)∈In+1

F (Ui0···in), Ui0···in =
n⋂
j=0

Uij .

An element a ∈ Čn(U , F ) is called an n-cochain of U with values in F , and
is written as

(i0, · · · , in) 7→ a(i0, · · · , in) ∈ F (Ui0···in)

(or (ai0···in)). Define the differential d : Čn(U , F )→ Čn+1(U , F ) by

(da)(i0, · · · , in+1) =
n+1∑
j=0

(−1)ja(i0, · · · , îj, · · · , in+1)|Ui0···in+1 . (8.1.1)

Then d ◦ d = 0 and we get a cochain complex of abelian groups

Č(U , F ) = (Č0(U , F )→ Č1(U , F )→ · · · ).

Define the ith Čech cohomology group of U with values in F to be Ȟ i(U , F ) =
H iČ(U , F ).

8.2. Sheafification For V ⊂ X open, U∩V = (Ui∩V )i∈I is an open covering
of V . Then V 7→ Č(U ∩ V, F |V ) defines a complex of presheaves, and the
associated complex of sheaves is denoted by Č(U , F ). (If F is a sheaf, then
V 7→ Čn(U∩V, F ) defines a sheaf itself, and thus Čn(U , F )(V ) = Cn(U∩V, F ),
for all n.) The natural morphism ε : F (V ) → Č(U ∩ V, F ) of complexes
of abelian groups induces a morphism ε : F → Č(U , F ) of complexes of
presheaves.
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Theorem 8.3. Let F be a sheaf on X. Then ε : F → Č(U , F ) is a quasi-
isomorphism.

Proof. It is enough to check that Fx → Č(U , F )x is a quasi-isomorphism for
all x ∈ X, and, in turn, enough to check that for all x ∈ X, there exists
an open neighborhood V of x such that F (V ) → Č(U , F )(V ) is a quasi-
isomorphism. To show the latter, we take V ⊂ Ui for some i ∈ I, and apply
the following lemma with X,U , F replaced respectively by V,U ∩V, F |V .

Lemma 8.4. Suppose there exists i ∈ I such that Ui = X. Then the map
ε : F (X)→ Č(U , F ) is a homotopy equivalence.

Proof. The morphism of complexes α : Č(U , F )→ F (X) defined by

α0 : Č0(U , F ) → F (X)

a 7→ a(i)

satisfies αε = IdF (X). To conclude the proof, we use the “canonical homotopy
operator” k defined by

kn : Čn(U , F ) → Čn−1(U , F )

a 7→ kna,

where
(kna)(i0, · · · , in−1) = a(i, i0, · · · , in−1)

(this is well defined since Uii0···in−1 = Ui0···in−1). It remains to check

IdČ(U ,F )−εα = kd+ dk. (8.4.1)

In degree 0, (8.4.1) holds since

(k1d0a)(i0) = (d0a)(i, i0) = a(i0)− a(i)|Ui0 = (IdČ0(U ,F ) a)(i0)− (ε0α0a)(i0)

for all a ∈ Č0(U , F ). In degree n > 0, (8.4.1) holds since

(kn+1dna)(i0, · · · , in) = (dna)(i, i0, · · · , in)

= a(i0, · · · , in) +
n∑
j=0

(−1)j+1a(i, i0, · · · , îj, · · · , in)|Ui0···in

= (IdČn(U ,F ) a)(i0, · · · , in)− (dn−1kna)(i0, · · · , in)

for all a ∈ Čn(U , F ).
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Definition 8.5. An n-cochain a ∈ Čn(U , F ) is called alternate if

(i) a(i0, · · · , in) = 0 if there exists j < k such that ij = ik;

(ii) a(iσ(0), · · · , iσ(n)) = ε(σ)a(i0, · · · , in), for all σ ∈ Aut({0, · · · , n}) =
Sn+1 (ε(σ) denotes the signature of σ) if all ij are distinct.

Let Čalt,n(U , F ) be the subgroup of alternate n-cochains in Čn(U , F ).

Lemma 8.6. We have

dČalt,n(U , F ) ⊂ Čalt,n+1(U , F ).

Proof. Take a ∈ Čalt,n(U , F ). Then, trivially, da satisfies (i) of 8.5. To show
da satisfies (ii) of 8.5, it suffices to do so in the case when σ ∈ Aut({0, · · · , n+
1}) is of the form σ = (j, j + 1). Then,

(da)(i0, · · · , ij+1, ij, · · · , in+1)

=

j−1∑
k=0

(−1)ka(i0, · · · , îk, · · · , ij+1, ij, · · · , in+1)

+ (−1)ja(i0, · · · , îj+1, ij, · · · , in+1) + (−1)j+1a(i0, · · · , ij+1, îj, · · · , in+1)

+
n+1∑
k=j+2

(−1)ka(i0, · · · , ij+1, ij, · · · , îk, · · · , in+1)

=

j−1∑
k=0

(−1)k+1a(i0, · · · , îk, · · · , ij, ij+1, · · · , in+1)

+ (−1)ja(i0, · · · , ij, îj+1, · · · , in+1) + (−1)j+1a(i0, · · · , îj, ij+1, · · · , in+1)

+
n+1∑
k=j+2

(−1)k+1a(i0, · · · , ij, ij+1, · · · , îk, · · · , in+1)

=− (da)(i0, · · · , ij, ij+1, · · · , in+1),

as desired.

Thus we get a complex Čalt(U , F ) ⊂ Č(U , F ), which is called the alter-
nate Čech complex. We have a commutative diagram of canonical homomor-
phisms:

Čalt,0(U , F ) // Čalt,1(U , F ) //

��

· · ·
F (X)

33ggggg

++WWWWWWW

Č0(U , F ) // Č1(U , F ) // · · ·
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If F is a sheaf, we sheafify it as in 8.2 and get a commutative diagram:

Čalt(U , F )

��F

ε 44hhhhh

ε
**VVVVVVV

Č(U , F )

(8.6.1)

Theorem 8.7. The morphism ε : F → Čalt(U , F ) is a quasi-isomorphism.

Proof. Use the same homotopy operator as in the proof of 8.3.

Remark 8.8. (1). The alternate complex is more economical. Suppose < is
a total order on I. Then the restriction maps

Čalt,n(U , F ) →
∏

{i0<···<in}

F (Ui0···in)

a 7→ (a(i0, · · · , in))

defines an isomorphism of Čalt,n(U , F ) to the complex Č(U , <;F ) defined by
Č(U , <;F )n =

∏
{i0<···<in} F (Ui0···in), with differential given by (8.1.1). Using

this identification, we have, for example:

(i) For U = {X},
Čalt(U , F ) = ( Čalt,0(U , F ) // 0

F (X)

).

(ii) For U = {U, V },

Čalt(U , F ) = ( Čalt,0(U , F ) // Čalt,1(U , F ) // 0

F (U)⊕ F (V ) F (U ∩ V )

).

(iii) For U = {U0, · · · , Un},

Čalt(U , F ) =

(
n⊕
i=0

F (Ui)→
⊕
i<j

F (Ui ∩ Uj)→ · · · → F (U0 ∩ · · · ∩ Un)→ 0).
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(2). The morphisms ε in (8.6.1) are quasi-isomorphisms, so the vertical
map of the triangle is a quasi-isomorphism, too. In fact, one can show that
Čalt(U , F ) → Č(U , F ) is a quasi-isomorphism. (Exercise, see Godement’s
book [G] or Serre’s paper [S].)

8.9. SupposeX has a ringed space structure and F is a sheaf of OX-modules.
Then Č(U , F ) and Čalt(U , F ) are OX-modules in a natural way.

In what follows we shall work only with Čalt(U , F ) (and often drop the
superscript “alt”).

Corollary 8.10. Let (X,OX) be a ringed space and let U be an open cov-
ering of X. For a sheaf F of OX-modules, there is a natural morphism
γ : Č(U , F )→ RΓ(X,F ) in D(Ab) defined by the commutative diagram:

Č(U , F ) = Γ(X, Č(U , F )) //

γ
**UUUUUUUU

RΓ(X, Č(U , F ))

RΓ(X,F )

' RΓ(X,ε)

OO

This induces homomorphisms Ȟn(U , F )→ Hn(X,F ) for all n.

8.11. Let F ∈ C+(X). We define a bicomplex Č(U , F )•• of abelian groups
as follows: let Č(U , F )pq = Čq(U , F p) and let d′pq : Čq(U , F p)→ Čq(U , F p+1)
be induced by F p → F p+1,

d′′pq = (−1)pdq
Č(U ,F p)

: Čq(U , F p)→ Čq+1(U , F p).

Let Č(U , F )• = s(Č(U , F )••) ∈ C(Ab). We can do the same for Č and get
Č(U , F )• ∈ C(X). The canonical morphism ε : F → Č(U , F )• is still a
quasi-isomorphism.

Theorem 8.12 (Leray). Let X,U , F be as in 8.10, U = (Ui)i∈I . Suppose
that for every nonempty finite subset J of I and every q > 0, Hq(UJ , F ) = 0,
where UJ is the intersection of the Uj’s for j ∈ J . Then the map γ in 8.10
is an isomorphism.

The proof is easy using 8.11, see Ex. 26.
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Exercises

1. Show that in an additive category A, for any two objects A, B of A, there
is a natural isomorphism A⊕B ∼−→ A×B.

2. Let A be a commutative ring and A be the category of pairs (E,E ′)
of an A-module E and a submodule E ′. Show that A is additive, but not
abelian (hint : give an example of a morphism which is both an epimorphism
and a monomorphism, but is not an isomorphism).

3. Show that in an abelian category A amalgamated sums (push-outs)
and fibered products (pull-backs) exist. Show that the push-out of a monomor-
phism is a monomorphism, and the pull-back of an epimorphism is an epi-
morphism. Show that if (u′, u, u′′) is a map of short exact sequences, then
the first square is cocartesian (resp. the last square is cartesian) if and only
if u′′ (resp. u′) is an isomorphism.

4. Let 0→ L′ → L→ L′′ → 0 be a short exact sequence of complexes of
an abelian category A and let M be the cone of u. Let ϕ : M → L′′ be the
natural map, and δ : H iL′′ → H i+1L′ be the coboundary map. Check that :

δH i(ϕ) = −H i(pr1),

where pr1 : M → L[1] is the first projection.

5. Let (L, d1, d2) be a näıve bicomplex (d1d2 = d2d1) of an abelian cat-
egory A. Let L1 be the bicomplex with d′ = d1 and d′′ = (−1)id2 on Li,·

and let L2 be the bicomplex with d′′ = d2 and d′ = (−1)id1 on L·,i. Define
a canonical isomorphism between L1 and L2. (Hint : see Cartan-Eilenberg,
and SGA 4 XVII for generalizations).

6. Let u : K → L be a map of bicomplexes of an abelian category
A. Assume K and L are biregular. Let ′Hn (resp. ′′Hn) denote the n-th
column (resp. row) of cohomology. Show that if ′Hn(u) (resp. ′′Hn(u)) is
a quasi-isomorphism for all n, then su : sK → sL is a quasi-isomorphism.
(Hint : first reduce to the case where K and L are concentrated in bounded
vertical (resp. horizontal) strips, then make a dévissage using the canonical
truncations.) Show by an example that the conclusion becomes false if one
drops the assumption of biregularity.

7. Let P be an additive full subcategory of an abelian category A such
that all short exact sequences of P split (e. g. A the category of modules
over a commutative ring A and P the category of projective modules over
A). Let u : K → L be a quasi-isomorphism of complexes of A such that the
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components of K and L belong to P . Show that if K and L are bounded
above (resp. bounded below), then u is a homotopy equivalence.

8. Let A be an additive category. Let f : K → L be a map of K(A).
Show that there exists a factorization f = gf ′ in C(A) with g an isomorphism
in K(A) and f ′ injective and split in each degree. Show that there exists
a factorization f = f ′′g in C(A) with g an isomorphism in K(A) and f ′′

surjective and split in each degree.

9. Let A be an additive category. Show that K(A) is deduced from
C(A) by inverting homotopy equivalences (hint : use the cyclinder object
K = Cyl(L) defined by Ki = Li⊕Li⊕Li+1 with differential dK given by the

matrix dK =

d 0 Id
0 d Id
0 0 −d

 and the homotopy equivalence s : K → L given

by s(x, y, z) = −y + x).

10. Check axiom (TR3) (rotation) in K(A) (A an additive category).

Let 0 → L → M → N → 0 be a semi-split exact sequence of C(A),
which means that for each i, M i = Li⊕N i and the sequence is given by the

natural injection and projection. Let dM =

(
dL h
0 dN

)
be the differential.

Show that the triangle L→M → N → L[1], where the last map is given by
h, is distinguished.

11. (a) Let

X
f //

u

��

Y

v

��
X ′ f ′ // Y ′

be a commutative square in C(A) (A an additive category) and w : Z =
C(f) → Z ′ = C(f ′) the map induced on the cones. Show that if f and f ′

are homotopy equivalences, then so is w.

(b) Show that if f : L → M is a morphism of C(A), the cone of f is
homotopically trivial if and only if f is a homotopy equivalence.

(Hint : use the structure of triangulated category of K(A).)

12. Let A be an abelian category. Let D≤0(A) (resp. D≥0(A)) be the full
subcategory of D(A) consisting of complexes K such that H i(K) = 0 for i >
0 (resp. i < 0). Let D≤n(A) = D≤0(A)[−n] (resp. D≥n(A) = D≥0(A)[−n].
Show the following properties :

(1) D≤0(A) ∩D≥0(A) = A.
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(2) For any L ∈ D(A) there exists a distinguished triangle L′ → L →
L′′ → with L′ ∈ D≤−1(A) and L′′ ∈ D≥0(A).

(3) Show that, for any K ∈ D≤−1(A) and L ∈ D≥0(A), Hom(K,L) = 0.
13. Let A be an abelian category. For K, L in A define two natural iso-

morphisms from HomD(A)(K,L[1]) to the usual group Ext1(K,L) and com-
pare them. More generally, discuss the Yoneda description of Hom(K,L[n])
in terms of classes of exact sequences E = (0 → L → E0 → · · · → En−1 →
K → 0).

14. Let D be a triangulated category. A cross in D is a diagram

(1) A′

��
A

a
>>}}}}}}}
// B //

��

C //

c~~}}
}}

}}
}

C ′

��

of D), where the triangles are commutative and the row and the column
are distinguished triangles. Such a cross can be considered as an incomplete
octahedron

(2) A′

��

//M

��

//

A

a
>>}}}}}}}
// B //

��

C //

c~~||
||

||
||

C ′

��

(cf. [BBD, 1.1.7.1]). Show that in general it is not possible to extend a cross
(1) to an octahedron (2) (hint : consider cones on a and c).

15. Let A be an abelian category. Let D[0,1](A) be the full subcategory
of D(A) consisting of complexes K such that H i(K) = 0 for i /∈ [0, 1].
Construct an equivalence of categories from D[0,1](A) to the category C of
triples (A,B, a) where A, B are objects of A and a ∈ Ext2(A,B).
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16. Let A be an abelian category, [a, b] an interval of Z and L a complex
of A. Define quasi-isomorphisms

τ≤bL/τ≤a−1L→ τ[a,b]L→ Ker(τ≥aL→ τ≥b+1L).

17. Let A be an abelian category and u : E → F a morphism of A. Give
a necessary and sufficient condition for u to have a kernel (resp. cokernel) in
the category K(A).

18. Consider a 9-diagram in C(A) (A an abelian category), i. e. a
short exact sequence of short exact sequences of complexes. Show that the
horizontal and vertical boundary operators of the corresponding long exact
sequences of cohomology anti-commute.

19. (Verdier) In a triangulated category, show that any commutative
square can be completed into a 9-diagram (“distinguished triangle of dis-
tinguished triangles”), and that the corresponding degree 1 arrows anti-
commute. (hint : use the octahedron axiom, see [BBD]). Show that a 9-
diagram in C(A) gives rise to a 9-diagram in D(A) and recover the result of
exercise 3.

20. Let A and B be abelian categories, A having enough injectives, and
let F : A → B be an additive functor. We say that F is of (right) finite
cohomological dimension if there exists an integer d such that RqF (E) = 0
for all E ∈ A and all q > d (the smallest such d is then called the (right)
cohomological dimension of F . Show that if F is of finite cohomological
dimension, then RF : D+(A)→ D+(B) can be extended to a (triangulated)
functor RF : D(A) → D(B), which is the right derived functor of F :
K(A)→ K(B), and sends D∗(A) to D∗(B) for ∗ = − or b, cf. [RD, I 4.6, p.
42]. Examine generalizations and variants : (a) instead of assuming that A
has enough injectives, assume the existence of an additive subcategory A′ of
A right adapted to F ; (b) left derived functors.

The rings of the ringed spaces considered below are assumed to be com-
mutative.

21. Let X be a ringed space. Let E be a bounded above complex of OX-
modules which are locally free of finite type, and let F ∈ C+(X). Show that
the canonical mapHom·(E,F )→ RHom(E,F ) is an isomorphism. Let Ě :=
Hom·(E,OX). Deduce a canonical isomorphism Ě ⊗L F ∼−→ RHom(E,F ).

22. Let f : X → Y be a morphism of ringed spaces. Construct the
following canonical isomorphisms :

(1) Lf ∗(E ⊗L F ) ' Lf ∗E ⊗L Lf ∗F
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(E,F ∈ D−(Y )),

(2) RHom(E ⊗L F,G) ' RHom(E,RHom(F,G))

(E,F ∈ D−(Y ), G ∈ D+(Y ),

(3) Rf∗RHom(Lf ∗E,F ) ' RHom(E,Rf∗F )

(E ∈ D−(Y ), F ∈ D+(X)). Deduce from (3) isomorphisms

RHom(Lf ∗E,F ) ' RHom(E,Rf∗F ),

Hom(Lf ∗E,F ) ' Hom(E,Rf∗F ).

((2) is called the Cartan isomorphism, (3) the trivial duality isomorphism.)
23. Let X be a ringed space. Let [a, b] be an interval of Z. A complex E ∈

D−(X) is said to be of tor-amplitude in [a, b] if E is isomorphic, in D(X), to
a complex concentrated in degrees in [a, b] and having flat components. Show
that this condition is equivalent to the following : for every F ∈ Mod(X),
Hq(E ⊗L F ) = 0 for q /∈ [a, b].

We say that E ∈ D−(X) is of finite tor-amplitude (or finite tor-dimension)
if there is an interval [a, b] such that E is of tor-amplitude in [a, b]. Show
that if E ′ → E → E ′′ → is a distinguished triangle of D−(X) and if two of
its vertices are of finite tor-amplitude, so is the third one.

24. Let X be a ringed space, and L ∈ D+(X). Denote by L0 the under-
lying complex of abelian sheaves. Show that the natural map RΓ(X,L0)→
RΓ(X,L) is an isomorphism in D+(Ab).

25. (Verdier) Let F be an OX-module on a ringed space X. Show that
the following conditions are equivalent :

(i) F is flasque ;
(ii) for any space U étale over X (i. e. equipped with a continuous map to

X which is a local homeomorphism), any open cover U of U and any q > 0,
Ȟq(U , F ) = 0.

(Hints : for (i) ⇒ (ii), show first that the restriction of F to U is flasque
; for (ii) ⇒ (i), glue two copies of X along the given open subset.)

26. Let F be an OX-module on a ringed spaced X and let U = (Ui)i∈I
be an open cover of X. We assume that for every nonempty finite subset J
of I and every q > 0, Hq(UJ , F ) = 0, where UJ is the intersection of the Uj’s
for j ∈ J . Show that the canonical map

Ȟq(U , F )→ Hq(X,F )
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is an isomorphism (Leray’s theorem).
27. Let X = Spec(A) be an affine scheme and let 0→ E → F → G→ 0

be an exact sequence of OX-modules. Show that if E and G are quasi-
coherent, so is F (hint : define a canonical homomorphism Γ(X,L)̃→ L for
L an OX-module, which is an isomorphism if and only if L is quasi-coherent,
and use Serre’s theorem).

28. Let d be a nonnegative integer. A space X is said to be of cohomo-
logical dimension ≤ d if Hq(X,F ) = 0 for all abelian sheaves F on X and all
q > d (in other words, the functor Γ(X,−) is of (right) cohomological dimen-
sion ≤ d on the category of abelian sheaves). Prove the following theorem of
Grothendieck : Let X be a noetherian space of finite dimension d. Then X
is of cohomological dimension ≤ d. Proceed in the following steps :

(1) Let X be a noetherian space, (Fλ)λ∈L a filtering inductive system of
abelian sheaves on X, and F its inductive limit. Show that, for any open
subset U of X, the natural map

colimFλ(U)→ F (U)

is an isomorphism. Deduce that any filtering inductive limit of flasque sheaves
is flasque, and that for any filtering inductive system (Fλ) as above, and any
q ∈ Z, the natural map

colimHq(X,Fλ)→ Hq(X,F )

is an isomorphism.
(2) Let X be a noetherian space and F be a Z-submodule of the constant

sheaf ZX (whose sections over an open subset U are the locally constant
functions from U to Z). Let u : F → ZX be the inclusion. For x ∈ X, let
n(x) be the nonnegative integer such that Im(ux) = n(x)Z. Let U = {x ∈
X,n(x) 6= 0}, and for n ≥ 1, Un = {x ∈ X, 1 ≤ n(x) ≤ n}. Show that the
Un’s form an increasing sequence of open subsets of X and that there exists
an n such that U = Un. Deduce that there exists a finite filtration of F of
the form

0 = L0 ⊂ · · · ⊂ Ln = F,

where, for i > 0, Li/Li−1 is the extension by zero of the constant sheaf Z on
a locally closed subset of X.

(3) Let i : Y → X be a closed subset of a space X. Show that, for any
abelian sheaf F on Y , Hq(X, i∗F ) ' Hq(Y, F ).
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(4) Prove the theorem by induction on d.
(a) By induction on the number of irreductible components, show that

to prove the theorem, one may assume that X is irreducible. In particular,
show that the theorem holds for d = 0.

(b) If a = (si) is a finite set of sections of F (on open subsets Ui of X), let
Fa be the subsheaf of F generated by these sections, i. e. by definition, the
image of the corresponding map ⊕(ji)!ZUi

→ F (where ji : Ui → X is the
inclusion). Show that F is the inductive limit of the Fa, a running through
the (filtering ordered) set A of such finite sets. Using (1), show that it is
enough to prove the theorem for the Fa’s, then for the Fa’s where a consists
of a single element, and finally for the (abelian) subsheaves of the constant
sheaf ZX .

(c) Using (2), show that it is enough to prove the theorem for sheaves
which are constant on some locally closed subset of X and extended by zero.
Conclude, using the irreducibility of X and the induction hypothesis.

29. Prove the following converse theorem of Serre for affine schemes : Let
X be a quasi-compact and separated scheme. Assume that for every quasi-
coherent sheaf F on X and every q > 0, Hq(X,F ) = 0. Then X is affine.
Proceed in the following steps.

(1) Show that X is affine if and only if there exists a finite set (fi)1≤i≤r,
fi ∈ A = Γ(X,OX), such that Xfi

is affine for all i and
∑
fiA = A. (Hint

: for the “if” part, show first that, for f ∈ A, Γ(X,O)f
∼−→ Γ(Xf ,O), and

consider the canonical map X → SpecA given by the identity of A.)
(2) Let X be a quasi-compact, Kolmogoroff space (i. e. such that for any

two distinct points x, y, there exists an open subset containing one of the
two points and not the other one). Show that any nonempty closed subset
of X contains a closed point.

(3) Using the vanishing assumption, prove that for every closed point x
of X there exists s ∈ A = Γ(X,O) such that s(x) = 1.

(4) Using (2), deduce that there exists a finite number of global sections
fi (1 ≤ i ≤ r) of OX such that Xfi

is affine and the union of the Xfi
’s is X.

Using the vanishing assumption again, show that the fi’s generate A, and
conclude.

30. Let f : X → Y be a morphism of schemes, with X noetherian of
finite Krull dimension.

(1) Using Grothendieck’s theorem, show that f∗ : Mod(X)→ Mod(Y ) is
of (right) finite cohomological dimension.

(2) Extend the natural map E ⊗ f∗F → f∗(f
∗E ⊗ F ) (E ∈ Mod(Y ),



80 CHAPTER 1. HOMOLOGICAL ALGEBRA

F ∈ Mod(X)) to a natural map

ϕ : E ⊗L Rf∗F → Rf∗(Lf
∗E ⊗L F )

for E ∈ D−(Y ), F ∈ D(X).
(3) Show that, if Hi(E) is quasi-coherent for all i and F is in D−(X),

then ϕ is an isomorphism (projection formula).



Chapter 2

Cohomology of Affine and
Projective Morphisms

1 Serre’s Theorem on Affine Schemes

Theorem 1.1 (Serre). Let X be an affine scheme and let F be a quasi-
coherent sheaf on X. Then Hq(X,F ) = 0, for all q > 0.

Lemma 1.2. Let U = (Ui)i∈I , I = {0, · · · , N}, be a finite open covering of
X = SpecA by principal open sets Ui = Xfi

, fi ∈ A. Then Ȟq(U , F ) = 0 for
all q > 0, Ȟ0(U , F ) = F (X).

Proof. Let F = M̃ where M ∈ Mod(A). Then

Č(U , F ) =

(
N⊕
i=0

F (Ui)→
⊕
i<j

F (Ui ∩ Uj)→ · · · → F (U0 ∩ · · · ∩ UN)→ 0).

Note that F (X) = M , F (Ui0···iq) = Mfi0
···fiq

We want to show that the
sequence

0→M →
N⊕
i=0

Mfi
→

⊕
i<j

Mfifj
→ · · · →Mf0···fN

→ 0

is exact. This follows from the following sublemma and I.8.4.

81
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Sublemma 1.2.1. Let A, fi be the same as in the lemma, L ∈ C(A). Then
L is acyclic if and only if for all i ∈ I, Lfi

is acyclic.

Proof. For g ∈ A, Ag is a flat A-module, thus Hq(L)g = Hq(Lg). In partic-
ular, Hq(Lfi

) = Hq(L)fi
. The “only if” part then becomes obvious, and for

the “if” part, we only need to note that for E ∈ Mod(A), Efi
= 0 for all i

implies E = 0 (because Efi
= Γ(Xfi

, Ẽ)).

The following lemma which can be seen as a variant of the classical Car-
tan’s lemma ([G], II.5.9.2), was communicated to L. Illusie by A. Ogus.

Lemma 1.3. Let (X,OX) be a ringed space, B be a basis of open sets of
X such that for all V ∈ B, V is quasi-compact, ∅ ∈ B, and if U, V ∈ B,
U ∩ V ∈ B. Let C be the full subcategory of Mod(X) consisting of all the
modules F such that for every U ∈ B and every finite open covering U of U
by elements of B, Ȟq(U , F ) = 0 for all q > 0. Then C is right adapted to the
functors Γ(U,−) for all U ∈ B (I.5.10). In particular, if F ∈ C and U ∈ B,
then the map Γ(U, F )→ RΓ(U, F ) is an isomorphism, i.e., Hq(U, F ) = 0 for
all q > 0.

Proof of Theorem 1.1 using the lemmas. Let X = SpecA,

B = {Xf , f ∈ A}.

Since Xfg = Xf ∩ Xg, B satisfies the conditions of 1.3. Let U ∈ B and
U = {U0, · · · , UN} be a finite open covering of U with Ui ∈ B, i = 1, · · · , N .
Then U = Xf for some f ∈ A, and, for all i, we can take gi ∈ A such that
Ui = Xfgi

. We then have Ȟq(U , F |U) = 0 for all q > 0. (Replace X by
Xf and apply Lemma 1.2) Thus we can apply the conclusion of 1.3. Take
U = X1, we get Hq(X,F ) = 0, for all q > 0.

Proof of Lemma 1.3. Obviously, C is an additive subcategory, so we only
need to check the following conditions:

(i) For all E ∈ Mod(X), there exists a monomorphism E → F with F ∈ C.

(ii) If F ′, F ∈ C, F ′′ ∈ Mod(X) and

0→ F ′ → F → F ′′ → 0

is exact, then F ′′ ∈ C.
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(iii) If the above sequence is exact with F ′, F, F ′′ ∈ C, then

0→ Γ(U, F ′)→ Γ(U, F )→ Γ(U, F ′′)→ 0

is exact for all U ∈ B.

For (i), it suffices to show that F is flasque implies F ∈ C, that is,
for every U ∈ B and every finite open covering U of U by elements of B,
Ȟq(U , F ) = 0 for all q > 0. We may assume X ∈ B, U = X. It then
suffices to note that the quasi-isomorphism F → Č(U , F ) induces a quasi-
isomorphism Γ(X,F )→ Γ(X, Č(U , F )) = Č(U , F ), since both F and

Čn(U , F ) = (V 7→
∏

i0<···<in

F (V ∩ Ui0···in)) =
∏

ji0···in∗ji0···in
∗F

are flasque.
For (ii) and (iii), we need the following sublemma.

Sublemma 1.3.1. Suppose

0→ F ′ → F → F ′′ → 0

is exact with F ′ ∈ C. Then for all U ∈ B,

0→ Γ(U, F ′)→ Γ(U, F )→ Γ(U, F ′′)→ 0

is exact.

Proof. We may assume X ∈ B, U = X. We only need to show that
Γ(X,F ) → Γ(X,F ′′) is an epimorphism. Take s ∈ Γ(X,F ′′). There ex-
ists a finite open covering U = (Ui)i∈I with Ui ∈ B, and si ∈ Γ(Ui, F )
such that si 7→ s|Ui. Let tij = sj|Uij − si|Uij, then tij ∈ Γ(Uij, F

′). Since
tjk − tik + tij = 0, (tij) ∈ Ž1(U , F ′). By assumption, Ȟ1(U , F ′) = 0, and so
tij ∈ B̌1(U , F ′). Hence there exists (ti) ∈ C0(U , F ′) with ti ∈ Γ(Ui, F

′) such
that tij = tj|Uij − ti|Uij. Now put σi = si − ti. Then the σi’s glue and give
σ ∈ Γ(X,F ) satisfying σ 7→ s.

We continue the proof of 1.3.
Proof of (ii). Take U as in the definition of C. Consider the following

commutative diagram of complexes

0 // F ′(U) //

��

F (U) //

��

F ′′(U)

��

// 0

0 // Č(U , F ′) // Č(U , F ) // Č(U , F ′′) // 0
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The first row is exact by the sublemma. For all n,

0→ Čn(U , F ′)→ Čn(U , F )→ Čn(U , F ′′)→ 0

is nothing but

0→
∏

F ′(Ui0···in)→
∏

F (Ui0···in)→
∏

F ′′(Ui0···in)→ 0,

which is exact by the sublemma since Ui0···in ∈ B and F ′ ∈ C. Thus
the second row of the above diagram is also exact. Finally, note that for
M ∈ Mod(U), M(U) → Č(U ,M) is a quasi-isomorphism if and only if for
all q > 0, Ȟq(U ,M) = 0. Now F ′, F ∈ C, the first two columns of the dia-
gram are quasi-isomorphisms, and hence so is the third column. Therefore,
Ȟq(U , F ′′) = 0, for all q > 0.

(iii) has already been proved by the sublemma.

Corollary 1.4. Let f : X → Y be an affine morphism of schemes, F ∈
Qcoh(X). Then for all q > 0,

(1)
Rqf∗F = 0;

(2) We have a canonical isomorphism

Hq(X,F )
∼−→ Hq(Y, f∗F ).

Proof. (1) The sheaf Rqf∗F is the sheaf associated to the presheaf

V 7→ Hq(f−1(V ), F )

on Y . For V ⊂ Y affine, f−1(V ) affine, and thus by Theorem 1.1,

Hq(f−1V, F ) = 0

for all q > 0.
(2) By (1), the canonical morphism f∗F → Rf∗F is an isomorphism in

D(Y ). Applying RΓ(Y,−) and using I.6.5, we get canonical isomorphisms

RΓ(Y, f∗F )
∼−→ RΓ(Y,Rf∗F ) ' RΓ(X,F ).

Passing to cohomology, we get the desired result.
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Corollary 1.5. Let X be a separated scheme, U = (Ui) be a finite open cov-
ering by affine schemes, F ∈ Qcoh(X). Then the canonical homomorphism
Ȟq(U , F )→ Hq(X,F ) is an isomorphism.

Recall that a morphism of schemes f : X → Y is called separated if the
diagonal map ∆ : X → X ×Y X is a closed immersion. A scheme X is
called separated if the canonical morphism X → Spec Z is separated. The
intersection of two affine open subschemes of a separated scheme is still affine.

Proof. The conclusion is immediate from Leray’s theorem (I.8.12) and 1.1.

Corollary 1.6. Let f : X → Y be a separated, quasi-compact morphism of
schemes, F ∈ Qcoh(X). Then Rqf∗F ∈ Qcoh(Y ), for all q > 0.

Proof. We may assume Y affine, then we can find a finite affine open covering
U = (Ui)

N
i=1 of X, since f is quasi-compact. We have

Rqf∗F = a(V 7→ Hq(f−1(V ), F )).

For any affine open V ⊂ Y , f−1(V ) is separated, since f is seperated. By
Corollary 1.5, we haveHq(f−1(V ), F ) = Ȟq(f−1(V )∩U , F ) because f−1(V )∩
Ui0···iN is affine for N ≥ 1. It is then clear that Rqf∗F = Hq(f∗Č(U , F )). By
definition,

Č(U , F )(W ) =

(⊕F (W ∩ Ui)→ ⊕F (W ∩ Uij)→ · · · → F (W ∩ Ui0···iN )→ 0)

for W ⊂ X open. Hence f∗Č(U , F ) is a complex of quasi-coherent sheaves
on Y . Therefore, Rqf∗F is quasi-coherent.

2 Koszul complex and regular sequences

Let A be a commutative ring and E be an A-module. Then, for any A-
morphism u : E → A, we can define

K.(u) ∈ C≤0(A)

as follows( here C(A) denotes the category of complexes of A-modules):

Kn(u) = K.(u)−n = ∧nE, n ≥ 0;
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d : Kn(u)→ Kn−1(u), d = the right interior product by u;

d(x1 ∧ · · · ∧ xn) =
n∑
i=1

(−1)i−1u(xi)x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn.

It is easy to see d2 = 0, d = u : ∧1E = E → A and d(a ∧ b) = da ∧ b +
(−1)pa ∧ db , for a ∈ ∧pE, b ∈ ∧qE .

Let E = E1 ⊕ E2, u = u1 + u2 : E → A; ui : Ei → A, then K.(u,E) =
K.(u1) ⊗ K.(u2), ∧nE =

⊕
p+q=n

∧pE1 ⊗ ∧qE2, d = d1 ⊗ 1 ⊕ (−1)∗1 ⊗ d2. In

particular, when E = Ar,Hom(Ar, A) = Ar, for any f = (f1, · · · , fr) ∈
Ar, K.(f) =

r⊗
i=1

K.(fi). For example, for g ∈ A, K.(g) = (0→ A→ A→ 0).

Let (ei) be the canonical basis of Ar, then d(ei1 ∧· · ·∧ ein) =
n∑
j=1

(−1)jfijei1 ∧

· · ·∧ êij ∧· · ·∧ein . Let u : E → A and M be an A-module, define K.(u,M) =
K.(u)⊗AM, d(x⊗m) = dx⊗m. Let I = u(E), then H0K.(u,M) = M/IM .

Definition 2.1. Let M be an A-module and f = (f1, · · · , fr) ∈ Ar, f is
called M-regular if for all i > 0

fi : M/(
∑
j<i

fjM)→M/(
∑
j<i

fjM)

is injective. When M = A, we just say f is regular.

Example 2.1.1. Let k be a commutative ring and A = k[t1, · · · , tm] be a
polynomial ring, then for any r ≤ m, (t1, · · · , tr) is regular, sinceA/(t1, · · · , ti−1)
= k[ti, · · · , tm].

Theorem 2.2 (Serre). Let M be an A-module and f = (f1, · · · , fr) ∈ Ar.
Consider the conditions:

(1). K.(f,M)→M/(f1, · · · , fr)M is a quasi-isomorphism (i.e. HqK.(f,M) =
0, q < 0);

(2). f is M-regular.
Then we have (2)⇒(1). And if A is noetherian, M is of finite type

and fi ∈ rad(A) (means the Jacobson radical), for all i, then (1)⇒(2) and
(1)⇔(2)⇔(3), where (3) is H−1K.(f,M) = 0.

Lemma 2.3. Let L ∈ C(A) and x ∈ A, K.(x) = (0→ K.(x)−1(= A)
x // K.(x)0(= A) →

0). Then K.(x)⊗ L ' C( L
x // L ) = Cone(x).
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Proof. Ci = Li+1⊕Li ' K.(x)−1⊗Li+1⊕K.(x)0⊗Li and a maps to 1⊗a, b
maps to 1⊗b, for a ∈ Li+1 and b ∈ Li. Then dK.(x)⊗L(1⊗a) = x⊗a−1⊗dLa
and dK.(x)⊗L(1⊗ b) = 1⊗ dLb, hence dK.(x)⊗L(1⊗ a⊕ 1⊗ b) = dCi(a⊕ b). So,

K.(x)⊗ L ' C( L
x // L ).

Then we have a distinguished triangle L → L → K.(x) ⊗ L → L[1], so
we can get a long exact sequence:

· · · Hq(L) x // Hq(L) → Hq(K.(x)⊗ L)→ Hq+1(L)→ · · · .

From it we get the following short exact sequence:

0→ Coker(x : Hq(L)→ Hq(L))→ Hq(K.(x)⊗ L)
→ Ker(x : Hq+1(L)→ Hq+1(L))→ 0; (∗)

and this can be rewritten:

0→ H0K.(x,Hq(L))→ Hq(K.(x)⊗ L)→ H−1K.(x,Hq+1(L))→ 0.(∗)

Proof of 1.2.:
The implication of (1) =⇒ (3) is trivial. We prove (2)⇒(1) by induction on
r.

For r = 1, K.(f,M) = (0 → M
f //M → 0) and the statement is

trivial.
Assume now r ≥ 2 and the statement proven for m ≤ r − 1. Let

L = K.(f1, · · · , fr−1,M) = K.(f1, · · · , fr−1)⊗M,

then K.(fr)⊗ L ' K.(f1, · · · , fr,M). Hence we have the exact sequence:

0→ H0K.(fr, H
q(L))→ HqK.(f1, · · · , fr,M)→ H−1K.(fr, H

q+1(L))→ 0.

We want to show HqK.(f1, · · · , fr,M) = 0, for all q < 0. When q ≤
−2, it follows from the above exact sequence and the inductive assump-
tion. When q = −1, it is also true, since Ker(fr : M/(f1, · · · , fr−1)M →
M/(f1, · · · , fr−1)M) = 0 for f is M -regular.

We also prove (3) =⇒ (2) by induction on r.
The case r = 1 is trivial. When r ≥ 2, again let L = K.(f1, · · · , fr−1,M).

First, we show (f1, · · · , fr−1) is M -regular. By (∗), We have an inclusion:

Hq(L)/frH
q(L) � � // HqK.(f1, · · · , fr,M)
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When q = −1, HqK.(f1, · · · , fr,M) = 0, hence H−1(L) = frH
−1(L). Since

A is noetherian and M is of finite type, hence H−1(L) is finitely generated
over A. So, because fr ∈ rad(A), H−1(L) = 0. By induction, (f1, · · · , fr−1)
is M -regular. And by condition (3)

Ker(fr : M/(f1, · · · , fr)M →M/(f1, · · · , fr)M) = 0,

so (f1, · · · , fr) is M -regular.

Example 2.3.1. Let A = k[t1, · · · , tr], then t = (t1, · · · , tr) is regular.
HqK.(t) = 0, for all q < 0 and H0K.(t) = A/(t1, · · · , tr)A = k. This
can also be seen by using K.(t) = K.(k[t1], t1)⊗k · · · ⊗k K.(k[tr], tr).

Remark. (1). If A is nonnoetherian, let M = A, fi ∈ rad(A), (i = 1, 2).
Then, it may happen that (f1, f2) is regular but (f2, f1) not.(See EGA IV 16
9.6.(ii) for an example.

(2). Let A be a noetherian ring, fi /∈ rad(A)(i = 1, 2). Then it may also
happen that (f1, f2) is regular but (f2, f1) not. For example, assume B, C
be fields and A = B×C. Let 0 6= b ∈ B be and f1 = (1, b), f2 = (1, 0), then
(f1, f2) is A-regular but (f2, f1) not.

For any A-morphism E
u // A one can form the associated Koszul com-

plex K.(u) ∈ C≤0(A). Similarly, for any A-morphism A
v // F , we can also

define a complex K .(v) ∈ C≥0(A) called the Koszul complex, too, as follows:

Kn(v) = ∧nF ; d : Kn(v)→ Kn+1, d(x) = v ∧ x.

Here we identity the morphism v with v(1) ∈ F . It is easy to check d2 = 0
and d is the exterior product by v. For F = F1 ⊕ F2, v = (v1, v2), K

.(v) =
K .(v1)⊗K .(v2). Let f = (f1, · · · , fr) ∈ Ar, then we have two Koszul complex
K.(f) and K .(f).

K.(f) : 0→ A→ Ar(= ∧r−1Ar)→ · · · → (∧1A =) Ar
f // A

−→ 0, f(a1, · · · , ar) =
r∑
i

ai ;

K .(f) : 0→ A
f // Ar (= ∧1Ar)→ · · · → (∧r−1A =)Ar → A
−→ 0, f(a) = (f1a, · · · , fra) .

K .(f) can be viewed as the naive dual of K.(f). In fact, we have a
canonical isomorphism

K .(f)[r] ' K.(f)
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defined as follows:
For any I = {i1 < · · · < ip} ⊂ {1, · · · , r}, let eI = ei1 ∧ · · · ∧ eip , then

eI 7→ ε(J, I)eJ , here J = (j1 < · · · < jr−p) and J ∪ I = 1, · · · , n, ε(J, I) =
sign(j1, · · · , jr−p, i1, · · · , ip).
Corollary 2.4. Assume (f1, · · · , fr) ∈ Ar is regular and B = A/(f1, · · · , fr)A.

Then ExtqA(B,A) =

{
0 q 6= r
B q = r

and the class of the exact sequence 0 →

A → Ar → · · · → Ar → A → B → 0 given by K.(f) → B forms a basis of
ExtrA(B,A).

Proof. Since K.(f)→ B is a quasi-isomorphism,

RHomA(B,A) = HomA(K.(f), A) = K .(f) ' K.(f)[−r],

hence

ExtqA(B,A) =

{
Hq−rK.(f) = 0 q 6= r
H0K.(f) = B q = r

.

Extr(B,A) has a natural B−module structure and we only need to prove
that the class of K.(f) → B forms a basis of it. Since H0(K.(f)) = B, we
have

Extr(B,A) = HomD(A)(B,A[r]) = HomD(A)(K.(f), A[r]).

Because the components of K.(f) are projective, hence

HomD(A)(K.(f), A[r]) = HomK(A)(K.(f), A[r])

and

HomK(A)(K.(f), A[r]) = Coker(Hom(K.(f)−r+1, A)→ Hom(K.(f)−r, N))

= HrHom·(K.(f), A). (∗)
The self-duality of the Koszul complex identifies the cokernel in (∗) to the
cokernel of d : K.(f)−1 → K.(f)0, the class of the identity map of K.(f)−r

corresponding to the class of 1 ∈ K.(f)0 in the cokernel B. So, the class
K.(f)→ B forms a basis of it.

Now, we generalize the above discussion to ringed spaces. Let (X,OX)
be a ringed space and E ∈ Mod(X), then for any morphism u : E → OX
define the Koszul complex K.(u) by

( · · · // ∧nE d // ∧n−1E // · · · // E
u // OX // 0 ),

where d is the right interior product by u.
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Definition 2.5. Assume Y
� � i // X is the closed immersion defined by the

ideal sheaf I ⊂ OX . Let r ∈ N, we say that i is regular of codimension r
if for all x ∈ Y , there exists an open neighborhood U of x, U ⊂ X and an
OU -module E locally free of rank r and an OU -linear map u : E → OU ,
such that K.(u) is acyclic in negative degrees and I|U = u(E) ⊂ OU . In
other words, there exists locally a sequence (f1, · · · , fr) ∈ OUr such that
I|U = (f1, · · · , fr) and K.(f) → OU/IOU is a resolution. If X is locally
noetherian, then it is also equivalent to saying that for every x ∈ Y , there
exists an open neighborhood U of x such that I is defined by a sequence
f1, · · · , fr of sections of OX such that (f1)x, · · · , (fr)x ∈ MX,x is a regular
sequence.

For example, Let A � B = A/I and Y = SpecB � � i // X = SpecA ,
then if I = (f1, · · · , fr) and (f1, · · · , fr) is regular, then Y is regular of codi-
mension r.

When r = 1 and Y
� � i // X is locally defined by f = 0 where f ∈ OX is

non-zero divisor, then we say Y is an effective Cartier divisor on X.

Corollary 2.6. Assume Y
� � i // X is a regular immersion of codimension

r, then Ext qOX
(OY ,OX) is 0 for q 6= r, and ExtrOX

(OY ,OX) is a line bundle
on Y .

Proof. This follows directly from the calculation of

ExtqΓ(U, OX)(Γ(U,OY ),Γ(U,OX)),

for U = Spec(A), U ∩ Y = SpecB, B = A/(f1, · · · , fr)A with (f1, · · · , fr)
regular and Γ(U,OY ) = Γ(U ∩ Y,OY ).

Remark. One can show that NY/X = I/I2 (called the canormal sheaf of

i ) is an OY -module locally free of rank r (locally, f1, · · · , fr ∈ I/I2 form
a basis) and there exists a canonical isomorphism (called fundamental local
isomorphism):

RHomOX
(OY ,OX) ' ωY/X [−r], ωY/X = (∧rNY/X)∨,

where (−)∨ means Hom(−,OY ).
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3 Cohomology of Pr with values in OPr(n)

Let A be a commutative ring and r ≥ 0 an integer. Set S = SpecA,

P = PrS = ProjB where B = A[t0, · · · , tr]. Then P =
r⋃
i=0

Ui, Ui
� � open // P ,

Ui = SpecA[ t0
ti
, · · · , tr

ti−1
, tr
ti+1

, · · · , tr
ti

] ' Ar
S. OP (1) denoted briefly by O(1)

is an invertible sheaf (line bundle). We have canonical sections e0, · · · , er ∈

Γ(P,O(1)) defining an epimorphism OP r+1
(ei) // O(1) , and Ui = {x ∈

P | ei gives a basis of O(1) at x}, we have ei

ej
|Ui∩Uj

= ti
tj
∈ Γ(Ui ∩ Uj,O∗).

For any n ∈ (Z), define

O(n) =


O(1)⊗n n > 0

0 n = 0

(O(1)∨)
⊗−n

n < 0

This line bundle O(n) is the quasi-coherent module associated to the graded
B-module B(n) (where the grading of B(n) is defined by B(n)m = Bm+n.)
For any f ∈ Bd, set B(f) = (Bf )0 , then Γ(SpecB(f),O(n)) = (Bf )n = { a

fm :

deg a−md = n}.
As Γ(P, F ) is a module over Γ(S,OS) = A for any F ∈ Mod(P ), we have

a functor Γ(P,−) : Mod(P ) → Mod(A) . Then we get the derived functor
RΓ(P,−) : D+(P )→ D+(A) and Hq(P, F ) ∈ Mod(A).

Theorem 3.1. (1). The canonical homomorphism (of graded A-algebras):
B →

⊕
n∈Z

Γ(P,O(n)) such that ti 7→ ei ∈ Γ(P,O(1)) is an isomorphism, here

the structure of graded A-algebra of
⊕
n∈Z

Γ(P,O(n)) is defined by associating

to s ∈ Γ(P,O(p)), t ∈ Γ(P,O(q)) the s⊗ t.
(2).Hq(P,O(n)) = 0 for all n when 0 < q < r or q > r.
(3). When n ≤ −r − 1, Hr(P,O(n)) =

⊕
A tα

t0···tr , where tα = t0
α0 · · · trαr

with αi ≤ 0 and
∑
αi − r − 1 = n; otherwise Hr(P,O(n)) = 0.

Corollary 3.2. H0(P,O(n)) and Hr(P,O(−n − r − 1)) are free over A of
rank

(
n+r
r

)
. In particular, Hr(P,O(−r − 1)) = A, H0(P,O(1)) = Ar+1 =

B1. (ei 7→ ti)

Proof. DefineHq(P,O(∗)) =
⊕
n∈Z

Hq(P,O(n)). By Serre’s theorem,Hq(P,O(n)) '
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H̆(U ,O(n)), where U = (Ui)0≤i≤r. Then Ui0···ip =
p⋂
i=1

Uij = Spec(Bti0 ···tip )0,

Hq(P,O(∗)) =
⊕
n∈Z

Hq(P,O(n)) = HqC̆(U ,O(∗))

here C̆(U ,O(∗)) =
⊕
n∈ Z

C̆(U ,O(n)) and

C̆p(U ,O(n)) =
⊕

i0<···<ip

Γ(Ui0···ip , (O)(n)) =
⊕

i0<···<ip

(Bti0 ···tip )n.

Hence C̆(U ,O(∗)) =
⊕

i0<···<ip

⊕
n∈Z

(Bti0 ···tip )n.

Č(U ,O(∗)) : 0→
⊕
i

Bti →
⊕
i<j

Btitj → · · ·Bt0···tr → 0.

We also have Č(U ,O(∗)) =
⋃
n≥0

Č−n, where

Č−n = (0→
⊕
i

ti
−nB →

⊕
i<j

(titj)
−nB → · · · (t0 · · · tr)−nB → 0)

and Č−n ⊂ Č−(n+1) ⊂ · · · . Let

L−n = ( B
d //

⊕
ti
−nB

d // · · · d // (t0 · · · tr)−nB ),

then we have L−n ' K−n = K .(t0
n, · · · , trn) by the isomorphism

ϕn : Lp+1
−n =

⊕
(ti0 · · · tip)−nB −→ ∧p+1Br+1

sending the summand (ti0 · · · tip)−nB to Bei0 ∧ · · · ∧ eip by b 7→ (ti0 · · · tip)nb.
Moreover, Čp(U ,O(∗)) d // Čp(U ,O(∗)) makes the following diagram com-

mutative:

(ti0 · · · tip)−nB
ϕn

��

d // Čp+1

ϕn

��
KP+1 // Kp+2
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where d sends
ai0···ip

(ti0 ···tip )−n to
p∑
j=0

(−1)j
ai0···îj ···ip

(ti0 ···t̂ij ···tip )−n which is send by ϕn to

p∑
j=0

(−1)jtij
nai0···îj ···ip . We know that:

Hq(K .
−n) =

{
0 q 6= r + 1

Hr+1(K .
−n) q = r + 1

To calculate Hr+1, we note that

K .
−n = K .(t0

n, A[t0])⊗A · · · ⊗A K .(tr
n, A[tr]),

where K .(ti
n, A[ti]) = ( A[ti]

ti
n
// A[ti] ). Now,

H1(K .(ti
n, A[ti])) = A[ti]/ti

nA[ti] =
n−1⊕
α=0

ti
αA.

As K .(ti
n) → A[ti]/ti

nA[ti][−1] is a quasi-isomorphism and the components
of the complex are free of finite type over A, hence the tensor product

K .(t0
n, · · · , trn, B)→

r⊗
i=0

(A[ti]/ti
nA[ti][−1])

is also a quasi-isomorphism. So,

HrK .(t0
n, · · · , trn, B) =

r⊗
i=0

A[ti]/ti
nA[ti] =

⊕
0≤αi<n

t0
α0 · · · trαrA.

So we get H0Č−n = B, and as the augmented complex 0 → B → Č−n
where B in degree 0 is isomorphic to L−n, we get HqČ−n = 0 for 0 <
q < r and HrČ−n =

⊕
0<αi≤n

t−αA. These isomorphisms are compatible with

gradings on both sides:
Hr(P,O(n)) has a basis consists of the elements t−α

t0···tr for −
∑
αi

αi−r−1 =

n, and
Bn = A[t0, · · · , tr]n ' H0(P,O(n)), n ≥ 0,

B1 = Ar = H0(P,O(1)),

ti ∈ B, corresponding to ei ∈ H0(P,O(1)).

The class of the Čech cocycle U0···r 7→ 1
t0···tr forms a basis of Hr(P,O(−r−

1)).
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4 Finiteness and vanishing theorems for pro-

jective morphisms

Let X be a locally noetherian scheme, F ∈ Mod(X). Recall that F is called
coherent if F is quasi-coherent and of finite type, or equivalently, for any
affine open subset U = SpecA of X, F |U = M̃ with M a finitely generated
A−module. We have Coh(X) ⊂ Qcoh(X) ⊂ Mod(X). Let A be a noetherian
ring, S = SpecA, P = Prs = ProjB, where B = A[t0, · · · , tr].

Proposition 4.1. Let F ∈ Coh(P ). Then there exists n0 > 0, such that for
all n > n0, there exists an epimorphism OP (−n)m → F → 0.

Let (X,OX) be a ringed space. E ∈ Mod(X), si ∈ Γ(X,E), (i ∈ I). we

say the family {si}i∈I generates E if O(I)
X → E, ei → si is an epimorphism,

or we say that equivalently, for any x ∈ X, (si)x ∈ Ex generate Ex as an
OX,x−module.

E is generated by its global sections if the family of all sections s ∈ Γ(X,E)
generates E.

Remark. If X is quasi-compact, and E is of finite type, then E is generated
by its global sections if and only if E is generated by a finite number of global
sections.

So the proposition is equivalent to saying that there exists n0, such that
for all n > n0, F (n) is generated by its global sections.

Example 4.1.1. Let R be a ring, E ∈ Qcoh(X), X = SpecR. Then E is
generated by its global sections. In fact, E = M̃ for some M ∈ Mod(R), so
an epimorphism R(I) →M gives an epimorphism OIX → M̃ .

Lemma 4.2. Suppose X is a noetherian scheme, L is a line bundle on X,
f ∈ Γ(X,L), Xf = {x ∈ X, f(x) 6= 0}, where f(x) is the image of f
in k

⊗
OX,x

L, which is an open subset of X. Let E ∈ Coh(X). For any

s ∈ Γ(Xf , E), there exists n > 0 such that s⊗f⊗n ∈ Γ(Xf , E⊗L⊗n) extends
to a section of E ⊗ L⊗n over X. If t ∈ Γ(Xf , E ⊗ L⊗n) ,such that t|Xf = 0,
then there exists m > 0 such that t⊗ fm = 0 ∈ Γ(X,E ⊗ L⊗m+n).

Proof. Consider the inductive system

· · · → Γ(X,E ⊗ L⊗n) ⊗f→ Γ(X,E ⊗ L⊗n+1)→ · · ·
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we define

Γ(X,E)f = lim−→
n

Γ(Xf , E ⊗ L⊗n)

Γ(Xf , E ⊗ L⊗n) → Γ(Xf , E)
t 7→ t|Xf

⊗ f⊗−n ∈ Γ(Xf , E)

Thus we get a morphism ϕ : Γ(X,E)f → Γ(Xf , E). So the lemma is equiva-
lent to saying ϕ is an isomorphism.

(a). Suppose X = SpecA with A noetherian, L = OX , E = M̃ for
some finitely generated M ∈ Mod(A). For f ∈ A, we have Xf = SpecAf .
Γ(X,E) = M , so Γ(X,E)f = lim−→

f

M ' Mf . Γ(Xf , E) = Mf . So ϕ is an

isomorphism.

(b). Suppose X is separated, X =
n⋃
i=0

Ui with Ui = SpecAi. L|Ui = OUi
.

Ui ∩ Uj = SpecAij. Then we have the following commutative diagram:

0 // Γ(X,E)f //

ϕ

��

∏
i

Γ(Ui, E)f //

��

∏
i,j

Γ(Ui,j, E)f

��

0 // Γ(Xf , E) //
∏
i

Γ(Uif, E) //
∏
i,j

Γ(Uijf , E)

with the two right vertical maps are isomorphisms. By five lemma, we have
ϕ is an isomorphism.

For the general case, cover Ui ∩ Uj by affine schemes Uijk, and use the
similar argument.

Proof of 3.1.: For F ∈ Coh(P ), we want to find n0 such that for all
n > n0 and all i ∈ [0, r], F (n)|Ui is generated by its sections. (Ui = Pti =
SpecB(ti), where ti ∈ Γ(P,OP (1))). For F |Ui

, there exists hij ∈ Γ(Ui, F |Ui
)

generating F |Ui
with j ∈ Ji finite. The lemma implies that there exists

mij > 0, such that hij⊗ t
mij

i extends to a section of F (n0) over P . By taking
a common multiple of all mij’s,we may assume they are equal to n0, so, for
n > n0, hij ⊗ tni extends to P to gij (as section of F (n)). These gij generate
F (n)|Ui

for all i, hence F (n).
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Let S = SpecA, we say X is projective over S if there exists a closed
immersion i making the following diagram commutative

X
� � i //

��

PrS

~~}}
}}

}}
}}

S

Suppose X/S is projective. A line bundle L on X is called very ample if
there exists a close immersion i : X ↪→ PrS = P such that L ' i∗OP (1). L is
called ample if there exists n > 1 such that L⊗n is very ample.

Theorem 4.3. Suppose X/S is projective, L is an ample bundle on X, and
F ∈ Coh(X). Then there exists n0 > 0 such that for all n > n0, F (n) is
generated by its global sections, where F (n) = F ⊗ L⊗n.

Proof. (1). Suppose L is very ample. L = i∗OP (1). i∗F ∈ Coh(P ). Then
the proposition implies that there exists n0 such that for all n > n0, there
exists an epimorphism OP (−n)m → i∗F → 0, then we have OX(−n)m →
i∗i∗F → 0.
(2). General case. There exists m > 1 such that L′ = L⊗m is very ample.
By (1), we can find n0 > 0 such that for all n > n0 and all 0 6 r < m,
(F⊗L⊗r)L′⊗m is generated by its global sections. We claim that for n > mn0,
F ⊗ L⊗n is generated by global sections. We can write n = md + r where
0 6 r < m, then F ⊗ L⊗n = F ⊗ L⊗r ⊗ L′⊗d with d > n0.

Theorem 4.4 (finiteness theorem). Suppose X/S is projective Then
(1). There exists d > 0 such that for all q > d,and all F ∈ Qcoh(X).
Hq(X,F ) = 0.
(2). For F ∈ Coh(X), then Hq(X,F )is finitely generated over A for all q.

Proof. (1). Let U = (Ui)06i6d be an open affine cover of X. Because X/S is
separated, Ui0 ∩ · · · ∩ Uip is also affine, so H̆q(U , F ) = Hq(X,F ) = 0 for all
q > d.
(2). First we reduce to the caseX = P by using the isomorphismHq(X,F ) =
Hq(P, i∗F ). Then we use descending induction on q.

If q >> 0, the result is obvious. Suppose the finiteness is known in degree
> q + 1 for any F . Consider the following exact sequence

0→ G→ OP (−n)m → F → 0
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where G ∈ Coh(P ) and n > 0. Then we have

Hq(P,O(−n)m)→ Hq(P, F )→ Hq+1(P,G)

with [Hq(P,O(−n)m) finitely generated over A by 2.1. By induction, we
have that Hq+1(P,G) is finitely generated over A, hence Hq(X,F )is finite
generated over A for all q.

Theorem 4.5. Suppose X/S is projective, L is an ample bundle on X, and
F ∈ Coh(X). Then there exists n0 such that for all n > n0 and all q > 0,
Hq(X,F (n)) = 0 where F (n) = F ⊗ L⊗n.

Theorem 4.6 ((Vanishing)). Let S = SpecA, with A noetherian, let X be
a projective scheme over S and let L be an ample line bundle on X. Then
for all F ∈ Coh(X), there exists an integer n0, such that Hq(X,F(n)) = 0
for all q > 0 and n ≥ n0, where F(n) = F ⊗ L⊗n.

Proof. The proof is very similar to that of the finiteness theorem.
(a) Suppose L is very ample. L = i∗OP (1), where i : X ↪→ PrS = P is a

closed immersion. Since

i∗F ⊗OP (n) ∼= i∗(F ⊗ i∗OP (n)) = i∗F(n),

so Hq(X,F(n)) = Hq(P, (i∗F)(n)). Since i∗F ∈ Coh(P ), we may assume
X = P .

We use descending induction on q ≥ 1. We know that there exists an
integer N ≥ 0 such that for all E ∈ Qcoh(X) and q > N , Hq(X, E) = 0. So
the theorem holds for q � 0. Suppose the theorem holds in degree ≥ q + 1
for all F ∈ Coh(X). By Proposition 4.1, there exists an exact sequence

0→ G → OP (−m)d → F → 0

for some integers m ≥ 0, d ≥ 0. Then we get an exact sequence

Hq(P,O(−m+ n)d)→ Hq(P,F(n))→ Hq+1(P,G(n))→ .

We know that the first term is zero for n ≥ m, and by induction the third
term is zero for n large enough, then the result follows.

(b) General case : By (a), we can choose m such that L⊗m = L′ is
very ample, and choose n0 such that Hq(X,F ⊗ L⊗i ⊗ L′⊗n) = 0 for all
0 ≤ i < m, n ≥ n0 by (a). Then for all n ≥ mn0, we can rewrite F(n) in the
form F⊗L⊗i⊗L⊗md, for suitable d ≥ n0, i ≤ m, hence Hq(X,F(n)) = 0.
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Recall that X
f→ Y is called proper if f is of finite type, separated (i.e.

X ↪→ X ×Y X is a closed immersion), and universally closed. We have the
following basic facts :

(1) PrS → S is proper ;
(2) Any closed immersion is proper ;

(3) For X
f→ Y

g→ Z, if f and g are proper, then gf is proper ;
(4) If f is projective, f is proper.

Theorem 4.7 (Characterization of ampleness). Let S = SpecA, with
A noetherian, Let X/S be proper and L be a line bundle on X, then the
following three conditions are equivalent :

(1) For all F ∈ Coh(X), there exists n0 ≥ 0, such that for all n ≥ n0,
F(n) = F ⊗ L⊗n is generated by global sections ;

(2) There exists m ≥ 0, and a closed immersion i : X ↪→ PrS = P , such
that L⊗m = i∗OP (1) ;

(3) For all F ∈ Coh(X), there exists n0 such that for all n ≥ n0,
H1(X, F ⊗ L⊗n) = 0.

Remark. The implication (2) ⇒ (1) and (2) ⇒ (3) have been proved. So
we only prove (3)⇒ (1) and (1)⇒ (2).

Proof of (3)⇒ (1). (We reproduce the proof in [H], Chap III, Proposition
5.3) Let x ∈ X be a closed point, and let J{x} be the ideal sheaf of the closed
subscheme {x} = Spec k(x) of X. Then there is an exact sequence

0→ J{x} → OX → k(x)→ 0,

where k(x) = ix∗OX,x with ix : {x} → X being the closed immersion. Ten-
soring with F , we get an exact sequence

0→ J{x}F → F → F ⊗ k(x)→ 0,

where J{x}F is the image of J{x} ⊗ F → F . Since L is a line bundle, it is
flat, and we deduce an exact sequence

0→ J{x}F ⊗ L⊗n → F ⊗ L⊗n → F ⊗ L⊗n ⊗ k(x)→ 0.

By the hypothesis, there exists an n0 such that for all n ≥ n0, H
1(X, J{x}F⊗

L⊗n) = 0, so
Γ(X,F ⊗ L⊗n)→ Γ(X,F ⊗ L⊗n ⊗ k(x))
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is surjective for all n ≥ n0. Use Nakayama’s lemma on the local ring OX,x, we
deduce that the stalk of F ⊗ L⊗n at x is generated by global sections. Since
it is a coherent sheaf, we conclude that there exists s1, · · · , sk ∈ Γ(X,F(n)),
depending on n, generating F ⊗ L⊗n in an open neighborhood U of x. In
particular, there exists n1 ≥ 0 and a neighborhood V of x such that O(n1) =
OX ⊗ L⊗n1 is generated by global sections in V .

For each 0 ≤ r < n1, the above result gives a neighborhood Ur of x such
that F ⊗ L⊗n0+r is generated by global sections. Now let

Ux = V ∩ U0 ∩ · · · ∩ Un1−1.

Since any sheaf of the form F ⊗ L⊗n can be written as a tensor product

(F ⊗ L⊗(n0+r))⊗ (L⊗n1)m

for suitable 0 ≤ r < n1 and m ≥ 0, so over Ux, all of the sheaves F ⊗ L⊗n
for n ≥ n0 are generated by global sections.

Using the fact that X is noetherian, hence any open subset is quasi-
compact (and therefore contains a closed point), we cover X by a finite
number of the open sets Ux, we find N such that F ⊗ L⊗n is generated by
global sections over X, for all n ≥ N .

Proof of (1) ⇒ (2) : (See [H], Chap II, Theorem 7.6) Given any x ∈ X,
let U be an open affine neighborhood of x such that L|U is free on U . Let Y
be the closed set X − U , and let JY be its sheaf of ideals with the reduced
induced scheme structure. Then JY is a coherent sheaf on X, so for some
n > 0, JY ⊗L⊗n is generated by global sections. Since JY ⊗L⊗n⊗k(x) ' k(x),
there is a section s ∈ Γ(X, JY ⊗L⊗n) such that sx /∈ mx(JY ⊗L⊗n)x. Let Xs

be the open subset of X consisting of y ∈ X such that s(y) 6= 0 (s viewed
as a section of L⊗n), then Xs ⊂ U . Now U is affine, and L|U is trivial, so s
induces an element f ∈ Γ(U,OU), and then Xs = Uf is also affine.

Thus we have shown that for any point x ∈ X, there is an n > 0 and a
section s ∈ Γ(X,L⊗n) such that x ∈ Xs, and Xs is affine. Since X is quasi-
compact, we can cover X by a finite number of such open affine subschemes,
corresponding to sections si ∈ Γ(X,L⊗ni), and we may assume that all ni are
equal to one n. Finally, since L⊗n still satisfies condition (1), we may assume
n = 1, i.e., there exist global sections s1, · · · , sk ∈ Γ(X,L) such that each
Xi = Xsi

is affine, and the Xi cover X. Moreover, if we let Bi = Γ(Xi,OXi
),

then each Bi is a finitely generated A-algebra. So let {bij|j = 1, · · · , ki} be
a set of generators for Bi as an A-algebra. For each i, j, there is an integer
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nij such that s
nij

i bij extends to a global section cij ∈ Γ(X,L⊗n). We can take
one n large enough to work for all i, j.

Now we define a morphism

ϕ : X // PN−1
A = ProjA[{xi}1≤i≤n; {xij}1≤j≤ri ]

such that ϕ∗OP (1) = L⊗n and ϕ∗xi = sni , ϕ
∗xij = cij. We show that f is

a closed immersion. For each i = 1, · · · , k, let Ui ⊂ PNA be the open subset
xi 6= 0. Then ϕ−1(Ui) = Xi, and the corresponding map of affine rings

A[{yi}; {yij}]→ Bi

is surjective, because yij 7→ cij/s
n
i = bij, and we choose the bij so as to

generate Bi as an A-algebra. Thus Xi is mapped onto a closed subscheme of
Ui. It follows that ϕ gives an isomorphism of X with a closed subscheme of
∪ki=1Ui ⊆ PNA , so ϕ is an immersion, hence a closed immersion, because ϕ is
proper, X being proper over S.

Remark. Now we can give a more general definition of ampleness : let X
be a noetherian scheme, L a line bundle on X. L is called ample if for all
F ∈ Coh(X), there exists n0 such that F(n) = F ⊗ L⊗n is generated by
global sections for each n ≥ n0.

It follows from theorem 4.7 that L is ample if and only if there exists a
basis of the topology of X of the form {Xs|s ∈ Γ(X,L⊗n)} with X0 affine.

At the end of this section, we prove a generalization of the finiteness
theorem.

Assume X is locally noetherian, ∗ = +,−, b, let

D∗(X)coh = {E ∈ D∗(X)|H iE ∈ Coh(X), for all i}.

Theorem 4.8. Suppose S is locally noetherian, f : X → S is proper, then
Rf∗ : D+(X)→ D+(S) sends D+(X)coh to D+(S)coh .

Remark. Theorem 4.8 is equivalent to the following proposition :

Proposition 4.9. Let S = SpecA be affine, noetherian, and f be proper, F ∈
Coh(X), then for all q, Hq(X,F) is a finitely generated A-module.
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Proof of the remark : Since

Rqf∗F = Hq(X,F )̃ ∈ Coh(S) (∗)

for any q, thenHq(X,F) is finitely generated. Conversely, for E ∈ D+(X)coh ,
we want to prove Rif∗E ∈ Coh(S). This is a local question on S, so we may
assume S = SpecA, A is noetherian. By (∗) and the finiteness theorem, we
get that Rf∗E ∈ D+(S)coh for any E ∈ Coh(X). We want to prove that
Rf∗E ∈ D+(S)coh for any E ∈ D+(X)coh . First we prove this is true for
E ∈ Db(X)coh . Let E ∈ D[a,b](X)coh , we use induction on b − a. We have a
distinguished triangle

τ≤b−1E → E → (HbE)[−b]→,

then we obtain

Rf∗(τ≤b−1E)→ Rf∗E → (Rf∗(H
bE))[−b]→,

so by induction, Rf∗E ∈ Db(S)coh .
Now we let E ∈ D+(X)coh . We have the distinguished triangle

τ≤nE → E → τ≥n+1E →,

since Rnf∗E = Rnf∗(τ≤nE), the conclusion follows.

From this remark and the finiteness theorem, we know that theorem 4.8
holds when f is projective. And from the proof we know that to prove
theorem 4.8, we only need prove it for all F ∈ D[0,0](X)coh ' Coh(X).

Lemma 4.10 (Chow). Let S be a noetherian scheme and let f : X → S
be a proper morphism, then there exists a projective morphism g : X ′ → X
such that fg is projective, and there exists an open dense subset U of X such
that g induces an isomorphism from g−1(U) to U , i.e.,

g−1(U) � � //

o
��

X ′

g

��
fg

��

U
� � // X

f
��
S.
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We don’t prove this lemma, for the proof, one can see [EGA], II, 5.6.1.
We only prove that Chow’s lemma implies theorem 4.8.

Proof. First we may assume S is noetherian and by the remark we let F ∈
Coh(X). We use noetherian induction on all closed subsets T ⊆ X satisfying
Supp(F) ⊂ T . We have to show that : if Rf∗F ∈ D+(S)coh for all F ∈
Coh(X) satisfying Supp(F) $ T , then Rf∗F ∈ D+(S)coh for all F with
SuppF ⊆ T .

We may assume T = X. Consider the composition of morphisms F →
g∗g

∗F → Rg∗(g
∗F), let G be the cone of this morphism, we get a distin-

guished triangle
F → Rg∗(g

∗F)→ G → .

Since g is projective and g∗(F) ∈ Coh(X ′), by the remark, we get Rg∗(g
∗F) ∈

D+(X)coh , and hence G ∈ D+(X)coh . Over U , we have F|U
∼−→ Rg∗g

∗F|U ,
so G|U = 0, that is H iG|U = 0, Supp(H iG) ⊂ X − U $ X, by noetherian
induction assumption, we get Rf∗G ∈ D+(S)coh . We have the distinguished
triangle

Rf∗F → Rf∗Rg∗(g
∗F) = H → Rf∗G →,

since Rf∗Rg∗ = R(fg)∗, and fg is projective, we have H ∈ D+(S)coh , so
Rf∗F ∈ D+(S)coh .

Corollary 4.11. If f : X → S is proper and affine, f is finite.

Recall that f : X → S is affine if Y can be covered by affine open
subschemes Si = SpecAi(i ∈ I) such that each f−1(Si) = SpecBi is affine.
f is called finite if f is affine and each Bi is finitely generated as Ai-module.

Proof. We may assume S = SpecA, X = SpecB, and have to show B is
finitely generated as A-module. Let F = OX = OSpecB in theorem 4.8, by
the remark, B = H0(X,OX) is a finitely generated A-module.

5 Hilbert Polynomial

Let A be an artinian ring, B a graded A-algebra, i.e. B =
∞⊕
i=0

Bi, with B0 =

A. Suppose B is finitely generated by B1 over A (that is, B = A[t1, · · · , tn]/I
for some homogenous ideal I), let M =

⊕
n∈Z

Mn be a finitely generated graded
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B-module(thus we have Mn = 0 for n� 0, and Mn is finitely generated over
A for all n and then has finite length), then the function n 7→ lgAMn is a
polynomial in n for n� 0 (See [A-M], Prop 11.4), i.e. there exists P ∈ Q[t]
and n0, such that for all n ≥ n0, lgA(Mn) = P (n)(this function is called
Hilbert polynomial of M). We will give a cohomological interpretation of P
in 5.10. It will rely on the following theorem.

Let S = SpecA, X/S projective, and F ∈ Coh(X). By the finiteness
theorem, Hq(X,F) is finitely generated A-module for each q, hence has finite
length, and there exists a d ≥ 0 such that Hq(X,F) = 0 for q > d. So we

can define χ(X,F) =
∞∑
i=1

(−1)ilgAH
i(X,F).

Theorem 5.1 (Hilbert-Serre). Let X, S and F are as above, and L be a
very ample line bundle on X, then

(1) there exists PF ∈ Q[t], such that χ(X,F ⊗ L⊗n) = PF(n) for all n ;
(2) degPF = dim Supp(F), where Supp(F) = {x ∈ X|Fx 6= 0} ⊂ X.

To prove this, we need the following result.

Theorem 5.2 (Hilbert syzygies theorem). Suppose k is a field, R =
k[t1, · · · , tn], M is a finitely generated graded R-module. Then there exists a
resolution of M of the form

0→ L−n → L−n+1 → · · · → L0 →M → 0

with each Li being free finitely generated as a graded R-module.

Recall that a graded R-module L is free finitely generated if and only if
L admits a basis over R consisting of homogenous elements x1, · · · , xm. This

is also equivalent to saying that L '
m⊕
i=1

R(−di), where di = deg(xi).

Lemma 5.3 (graded Nakayama’s lemma). Suppose R, k are as in 5.2,
and M is a graded R-module such that Mn = 0 for n� 0, then M ⊗R k = 0
implies M = 0.

Proof. Replacing M by M(d) we may assume Mn = 0 for all n < 0. Let
R+ =

⊕
n>0Rn = Ker(R → k), then M = R+M . Suppose M 6= 0, choose

x ∈ Md, x 6= 0 such that d is minimal. Write x =
∑
aixi, where ai, xi are

homogenous and ai ∈ R+, deg xi ≥ d. But this implies deg x ≥ d+ 1, hence
a contradiction.
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Lemma 5.4. Let M be a finitely generated R-module, the two conditions are
equivalent :

(1) M is free finitely generated ;

(2) TorR1 (k,M) = 0.

Proof. The implication (1)⇒ (2) is obvious. To prove (2)⇒ (1), we choose
a homogeneous basis of M ⊗R k as graded k-mod, lift it to M , we get

0→ Z → L→M → 0

such that L⊗R k 'M ⊗R k. From the long exact sequence

· · · → TorR1 (k,M)→ Z ⊗R k → L⊗R k
∼−→M ⊗R k → 0,

TorR1 (k,M) = 0 implies Z ⊗R k ↪→ L ⊗R k is injective, then Z ⊗R k = 0,
hence Z = 0 by graded Nakayama’s lemma.

Lemma 5.5 (Koszul). The Koszul complex of (t1, · · · , tn) is a resolution
of k, i.e., K.(t1, · · · , tn) is quasi-isomorphic to k, where

K.(t1, · · · , tn) = (0→
n
∧Rn → · · · →

1
∧Rn → R→ 0).

Proof. In deed, (t1, · · · , tn) is a regular sequence, then use Theorem 2.2.

Proof of Theorem 5.2. Since R is noetherian, we have a resolution of M

0→ L−n → L−n+1 → · · · → L0 →M → 0

with each term being a finitely generated graded R-module, and Li free for
all i ≥ −n+ 1. Since

TorR1 (R,L−n) = TorRn+1(k,M)
= H−n−1(K.(x1, · · · , xn)⊗RM)
= 0,

L−n is also free.

Now we begin to prove theorem 5.1.
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Proof of Theorem 5.1. (1) Write A =
∏

1≤i≤mAi, where each Ai is artinian
local, then S =

∐
Si, with Si = SpecAi, X =

∐
Xi, each Xi/Si is projective.

Let Li = L|Xi
, Fi = F|Xi

, then each Li ia very ample, and χ(X,F(n)) =
m∑
i=1

χ(Xi,Fi ⊗ L⊗ni ). So we may assume A is local artinian. Let k = A/m,

mN = 0. Consider the m-adic filtration of F , 0 ⊂ mi+1F ⊂ · · · ⊂ mF ⊂ F .
From the exact sequence

0→ mi+1F(n)→ miF(n)→ grimF(n)→ 0,

we get χ(X,F(n)) =
N−1∑
i=0

χ(X, grimF(n)), so it is enough to show the theorem

for grimF , so we may assume mF = 0. We have a cartesian diagram :

X ′ i //

f ′

��

X

f
��

Spec k � � // SpecA = S.

Then X ′ → X is a closed immersion, therefore F ′ = i∗F is coherent as
an OX′-module. Since X/S is projective, X ′/Spec k is projective. If we let
L′ = i∗L, then L′ is very ample over Spec k and F(n) = i∗F ′(n), where
F ′(n) = F ′ ⊗OX′ L

′⊗n. Since χ(X,F(n)) = χ(X ′,F ′), we may assume A is
a field. Finally for a suitable r, X ↪→ P = PrA = ProjA[t0, · · · , tr] is a closed
subscheme, so by a similar argument, we may assume X = P .

Now A = k, B = k[t0, · · · , tr], and X = P . We need the following lemma.

Lemma 5.6. Let B = k[t0, · · · , tr], P = ProjB, F ∈ Coh(P ). Then there

exists a finitely generated graded B-module M such that M̃ = F .

Proof. Choose a presentation of F (by Prop 4.1)

OP (n1)
m1 d→ OP (n0)

m0 → F → 0,

let
L0 =

⊕
n∈Z

Γ(P,OP (n0)
m0(n))

L1 =
⊕
n∈Z

Γ(P,OP (n1)
m1(n))
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be the graded B-modules associated to L1 and L2 respectively. Each Li is a
free finitely generated graded module for i = 1, 2, and L̃i = OP (ni)

mi . We
have a canonical morphism u : L1 → L0. Define M = Cokeru, we have the
following commutative diagram

L̃1
//

'
��

L̃0
//

'
��

M̃
//

��

0

OP (n1)
m1 // OP (n0)

m0 // F // 0,

so we have an isomorphism M̃ → F .

By this lemma, F = M̃ for some finitely generated graded B-module M .
Let

0→ L−r−1 → · · · → L0 →M → 0

be a resolution by free finitely generated B-module, apply the exact functor
′ ∼′, we get

0→ L̃−r−1 → · · · → L̃0 → F → 0,

where each L̃i is a finite sum of OP (−d)′s, as Li is a finite sum of B(−d)′s.
We know that χ(X,F(n)) =

∑−r−1
i=0 (−1)iχ(X, L̃i(n)), so we may assume F =

OP (n), and part (1) of theorem 5.1 follows from the following lemma.

Lemma 5.7. Let
(
x+r
r

)
= (x+r)···(x+1)

r!
∈ Q[x], then χ(P,OP (n)) =

(
n+r
r

)
.

Proof. We have proved that Hq(P,OP (n)) = 0 for all n when q 6= 0, r, then
χ(OP (n)) = dimkH

0(P,OP (n)) + (−1)r dimkH
r(P,OP (n)), also we have

H0(P,OP (n)) =

{
Rn n ≥ 0
0 n < 0

,

and

Hr(P,OP (n)) =

{ ⊕
A tα

t0···tr n ≤ −r − 1

0 n > −r − 1
,

where tα = t0
α0 · · · trαr with αi ≤ 0 and

∑
αi− r− 1 = n. Since r ≥ 1, there

are three cases :

(1) case n ≥ 0, we have Hr(P,OP (n)) = 0, and dimkH
0(P,OP (n)) =

dimk Bn =
(
n+r
r

)
;
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(2) case n ≤ −r − 1, then H0(P,OP (n)) = 0, and dimkH
r(P,OP (n)) =

dimkH
0(P,OP (−n− r − 1)) =

(−n−1
r

)
= (−1)r

(
n+r
r

)
;

(3) case −r− 1 < n < 0, then the two terms are all zero, note that in this
case 0 ≤ n+ r < r,

(
n+r
r

)
= 0 by definition.

therefore the lemma holds.

We will now prove (2) of theorem 5.1, we first need recall some facts.

(1) Suppose A is noetherian, M is a finitely generated A-module, one
defines Ass(M) as the set of p ∈ SpecA such that p is the annihilator Ann(x)
of some x ∈ M . We know p ∈ Ass(M) ⇔ pAp ∈ Ass(Mp). Now let X
be a noetherian scheme, F ∈ Coh(X), for x ∈ X, we define Ass(F) as
the set of points x ∈ X such that mx ∈ Ass(Fx) ⊂ SpecOX,x. As in the
affine case, Ass(F) is finite, and contains the maximal points of Supp(F).
If s ∈ Γ(X,OX), such that s(x) 6= 0 for all x ∈ Ass(F), then F s→ F is
injective.

(2) If A is a noetherian ring and M is a finitely generated A-module, let
S = Spec(A/Ann(M)). Then

dimM = dim SuppM = dimS
= supx∈S dimMx.

For F ∈ Coh(X), we define the dimension of F , dimF , as the dimension of
the suppose of F , SuppF . This is a closed subset of X0. We have dimF =

sup
x∈Supp(F)

dimFx.

Lemma 5.8. Let Z ⊂ X be finite with X as in 5.1. Then there exists n ≥ 0
and f ∈ Γ(X,O(n)) such that f(x) 6= 0 for all x ∈ Z.

Proof. As X is a closed subscheme of PrA, we may assume X = PrA = ProjB,
B = A[t0, · · · , tr]. Each x ∈ Z corresponds to some homogenous prime ideal
px ∈ ProjB. Since for each x ∈ Z, B+ =

⊕
n>0Bn is not contained in px, we

can find a homogenous element f ∈ Bn such that f /∈ px for all x ∈ Z ([B]
III.§1.4, Prop 8), then f ∈ Γ(P,OP (n)) and f(x) 6= 0 for all x.

Proof of theorem 5.2 (2). Use induction on d = dim SuppF . Putting some
scheme structure on SuppF , e.g., the reduced scheme structure, we may
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assume X = SuppF . When d = 0, that is X is zero dimensional, X is affine
and Γ(X,OX) is an artinian ring. Then for n ≥ 1, F(n) = F , so

χ(X,F(n)) = lgH0(X,F(n)) = lgH0(X,F),

then χ(X,F(n)) is a constant, i.e., degPF = 0. Now assume (2) holds
for all F satisfying degPF ≤ d − 1. By the lemma above, there exists
f ∈ Γ(X,O(m)) such that f(x) 6= 0 for all x ∈ Ass(F), so we get an exact
sequence

0→ F f→ F(m)→ G → 0 (∗).
Then we get the following exact sequence by taking stalks

0→ Fx
fx→ Fx(m)→ Gx → 0.

Because of the choice of f , we have Supp(G) = {x ∈ X|f(x) = 0}. Assume
d ≥ 1, then SuppG 6= ∅, moreover, we have the following lemma

Lemma 5.9. Let A, X, L be as above, then for any f ∈ Γ(X,L⊗n), the set
V (f) of x ∈ X such that f(x) = 0 meets every irreducible closed subset of X
of positive dimension.

Proof. Let Y be an irreducible closed subset of X not meeting V (f), then
Y ⊂ Xf where Xf is open and affine over S. Thus Y/S is proper and affine,
hence finite, which implies dimY = 0.

By dimension theory of noetherian local rings (See [A-M], Prop 11.3), we
know dimGx = dimFx − 1 for all x ∈ V (f). Then

dimG = sup
f(x)=0
x closed

dimGx = sup
f(x)=0
x closed

dimFx − 1

(∗∗)
= sup

x closed
dimFx − 1 = dimF − 1.

Here for the equality (∗∗), we can choose such a irreducible closed subset
T of X that dimT = 1 and codim(T,X) = dimX − 1, then for any closed
point x ∈ T , dimFx = dimF , by lemma 5.9, V (f) ∩ T 6= ∅, hence contains
a closed point.

From the exact sequence (∗), we have

χ(G(n)) = χ(F(m+ n))− χ(F(n)) = PF(m+ n)− PG(n).

By induction, degPG = dim SuppG = d− 1, so degPF = d.
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Corollary 5.10. Let B be a graded A-algebra finitely generated by B1 over
B0 = A, M be a finitely generated graded B-module, then lgAMn = χ(P,F(n))

for n� 0, where P = ProjB, F = M̃ ; moreover degPF(n) = dimM − 1.

Proof. We may assume B is the polynomial algebra k[t0, · · · , tn]. Let

L−1 → L0 →M → 0

be a presentation of M . Applying the functor ′ ∼′, we get

L̃−1 → L̃0 → F → 0

and
L̃−1(n)→ L̃0(n)→ F(n)→ 0.

For n� 0, we get the following exact sequence

Γ(P, L̃−1(n))→ Γ(P, L̃0(n))→ Γ(P,F(n))→ 0

For any gradedB-module E, we define a canonical morphism En → Γ(P, Ẽ(n))
given by f 7→ f/1 ∈ Γ(P(t), Ẽ(n)), where t ∈ B1. We have the following com-
mutative diagram :

L−1
n

//

o
��

L0
n

//

o
��

Mn
//

u

��

0

Γ(P, L̃−1(n)) // Γ(P, L̃0(n)) // Γ(P,F(n)) // 0,

in which the two left vertical maps are isomorphisms. So u is an isomorphism
for n� 0. On the other hand, we know that Hq(P,F(n)) = 0 for q > 0 and
n� 0, so χ(P,F(n)) = lgAH

0(P,F(n)) = lgAMn for n� 0.

Remarks on the Riemann-Roch problem:
Let X be a proper schemes over a field k, and F ∈ Coh(X). We want to

calculate

χ(X,F) =
∑
i≥0

(−1)i dimkH
i(X,F) ∈ Z

In fact, this calculation, combined with vanishing theorem yields information
on H0(X,F), which have geometric consequences.
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(a) The case of curves
Suppose k is an algebraic closed field. X/k is a projective and smooth

curve (i.e. For any x ∈ X closed, the local rings OX,x are discrete valuation
rings.).

Let F = OX , then χ(X,OX) = dimkH
0(X,OX)− dimkH

1(X,OX). We
have dimkH

0(X,OX) = 1 (becauseH0(X,OX) is a finite k-algebra contained
in K = k(η), where η is the generic point of X), on the other hand, g =
dimkH

1(X,OX) is the genus of X.
For k = C, the set of rational points X(C) is a Riemann surface. We con-

clude that H1(X,OX) is dual to H0(X,Ω1
X) (duality theorem()), g = b1/2,

b1 = rankH1(X(C),Z) = rank π1(X(C)). Suppose F = OX/J , where J is a
non zero ideal of OX . Then J is a line bundle, and the subscheme (a divisor)
D defined by J is finite over k. We have O(D) = J ⊗−1.Then Riemann’s half
of the Riemann Roch theorem says that χ(X,O(D)) = degD+1− g (this is
an exercise, use induction on degD = dimkH

0(X,OD) =
∑
x∈D

dimk(x)OD,x;

for x ∈ D, use the exact sequence 0 // OD1 // OD // k(x) // 0 ).

Roch’s half of the Riemann Roch theorem is that H1(X,OX) is dual to
H0(X,Ω1

X).
(b) The case of surfaces
For k algebraic closed, X/k regular, proper, and irreducible of dimension

2, M.Noether gave the formula that χ(X,OX) =
c21+c2

12
, where c21 and c2 are

certain integers (Chern numbers) defined by intersection theory. On the other
hand, for a divisor D on X, χ(X,O(D))− χ(X,O) is a certain intersection
invariant (see e.g. [H]).

(c) The further development
In 1956, Hirzebruch gave a general formula for any proper smooth scheme

X/k, and any vector bundle F on X, (?) χ(X,F) = deg(ch(F) · Todd TX),
where TX is the tangent bundle of X and ch and Todd are certain intersection
invariants involving Chern classes.

In 1957, Grothendieck gave a far reaching generalization of this formula
for certain morphisms X // Y . Let us also mention that in 1963, Atiyah
and Singer gave a formula for the index of an elliptic operator for smooth
manifolds over C, generalizing the Hirzebruch formula.



Chapter 3

Differential calculus, smooth
and étale morphisms

1 Kähler differentials and derivations

Definition 1.1. Let A be a commutative ring, B be an A-algebra, M ∈
Mod(B). A map D :B → M is called an A-derivation of B with values in
M (or from B to M), if it satisfies the following two conditions:

1) D is A-linear;
2) for any x,y ∈ B, D(xy) = xD(y) + yD(x).

We denote by DerA(B,M) the set of A-derivations from B to M . For any
D ∈ DerA(B,M), b ∈ B, the map bD : x ∈ B 7→ bD(x) is an A-derivation,
thus DerA(B,M) is a B-module.

Definition 1.2. Let B ⊗A B → B be a morphism defined as x ⊗ y 7→ xy.
Denote by I the kernel of this map, and put Ω1

B/A = I/I2. We call Ω1
B/A

the Kähler differential module of B/A. Note that Ω1
B/A is a B ⊗A B-module

killed by I, so it is a B-module.

Define B → B ⊗A B: b 7→ b ⊗ 1 (resp.b 7→ 1 ⊗ b), so we have a left
(resp.right) B-algebra structure on B ⊗A B. It is easy to see that these
two B-algebra structures induce the same B-algebra structure on Ω1

B/A. Put

P 1
B/A = B ⊗A B/I2 (principal parts or 1-jets of B/A). We have an exact

sequence: 0 → Ω1
B/A → P 1

B/A → B → 0, which splits by the morphism

j1, j2, where j1(b) = b ⊗ 1 mod I2 and j2(b) = 1 ⊗ b mod I2, so we have
P 1
B/A = B ⊕ Ω1

B/A.

111
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Definition 1.3. Let A be a commutative ring, B be an A-algebra. Define a
map dB/A: B → Ω1

B/A by b 7→ 1⊗ b− b⊗ 1 mod I2 = j2(b)− j1(b).

Proposition 1.4. Let A be a commutative ring, B be an A-algebra. Then
Ω1
B/A = B · dB/A(B)

This follows from the following lemma:

Lemma 1.5. For any bi ∈ B, xi ∈ B (1 ≤ i ≤ n), we have
∑
bi ⊗ xi =∑

(bi⊗1)(1⊗xi−xi⊗1)+
∑
bixi⊗1 =

∑
(1⊗xi)(bi⊗1−1⊗bi)+

∑
1⊗bixi

In particular, I is generated over B (for the left (resp. right) structure) by
the elements of the form 1⊗ x− x⊗ 1.

Theorem 1.6. (1) We have dB/A: B → Ω1
B/A ∈ DerA(B,Ω1

B/A)

(2) For any M ∈ Mod(B),

Hom(Ω1
B/A,M) // DerA(B,M), u 7→ udB/A (∗)

is an isomorphism.

Proof. (1) follows directly from the following formula

1⊗ xy − xy ⊗ 1 = (1⊗ x)(1⊗ y − y ⊗ 1) + (1⊗ y)(1⊗ x− x⊗ 1).

(2) The injectivity of (∗) follows from 1.4. For the surjectivity, we need
a lemma.

Lemma 1.7. If M is a B-module, the B-algebra DB(M) = B ⊕M , where
(b1 ⊕m1)(b2 ⊕m2) = (b1b2) ⊕ (b2m1 + b1m2), we have an exact sequence of
B-modules:

0 //M // B ⊕M p // B // 0

where p, given by p(b⊕m) = b, is a ring homomorphism. Then DerA(B,M)
is identified to the set H of homomorphisms of A-algebras f : B → DB(M)
such that p ◦ f = Id, by associating to D the homomorphism fD : x 7→
x+D(x).

Proof. The inverse map is given by f 7→ Df , Df (x) = f(x)− x.
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Let us prove the surjectivity in (2). Let D ∈ DerA(B,M). By the above
lemma, D corresponds to a homomorphism of A-algebras from B to DB(M).
We have a commutative diagram with exact rows:

0 // I //

��

B ⊗A B //

��

B //

��

0

0 //M // DB(M) // B // 0

where the middle vertical arrow is defined by: x⊗ y 7→ xfD(y). And the left
vertical arrow induces a map u : I/I2 →M (because it maps I2 to zero). So
we have a map u : Ω1

B/A →M , udB/A(b) = u(1⊗b−b⊗1) = fD(b)−b = D(b).
This completes the proof.

Definition 1.8. Let R be a commutative ring, E be an R-module. Recall
that the symmetric algebra is the graded R-algebra SR(E) =

⊕
n>0 S

n
R(E) =

(
⊕

n>0(⊗nE))/T , where T is the two sided ideal generated by elements of the
form x⊗ y− y⊗ x for some x, y ∈ E. In particular, S0

R(E) = R,S1
R(E) = E.

SR(E) is sometimes denoted by SymR(E). This algebra satisfies the universal
property HomR−alg(SR(E), C) = HomR(E,C), where C is an R-algebra, and
the correspondence is defined by: f 7→ f |E = S1

R(E).

Proposition 1.9. Let A be a commutative ring, E be an A-module and
B = SA(E). Then Ω1

B/A ' B ⊗A E.

Proof. We have a sequence of canonical isomorphisms:

HomB(Ω1
B/A,M) = {D ∈ DerA(B,M)}

= {f ∈ HomA−alg(B,DB(M)); f(x) = x+D(x)}
= {u ∈ HomA−mod(E,B ⊕M);u(x) = x+D(x)}
= HomA(E,M)

= HomB(B ⊗ E,M)

So we have B ⊗ E ' Ω1
B/A, and the correspondence is: b⊗ x 7→ bdB/Ax.

Corollary 1.10. Let B = A[{xi}i∈I ] = SA(A(I)), where {xi}i∈I is a basis of
A(I). Then Ω1

B/A is a free B-module with basis {dB/Axi}i∈I .
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For f ∈ B = A[{xi}], we have df =
∑

i∈I
∂f
∂xi
dxi, where ∂

∂xi
: f 7→ ∂f

∂xi
∈

DerA(B,B) = Hom(Ω1
B/A, B). We have a natural pairing

Ω1
B/A × Hom(Ω1

B/A, B)→ B, (w,D) 7→< w,D >= D(w).

It is obvious that < dxi,
∂
∂xj

>= δij. Also we have d(xni ) = nxn−1
i dxi,

∂2

∂xi∂xj
=

∂2

∂xi∂xj
.

Definition 1.11. A thickening of order 1 is a closed immersion T0
i
↪→ T

with the ideal sheaf I such that I2 = 0. More generally, a thickening of order
n is a closed immersion defined by an ideal I such that In+1 = 0.

Let U = Spec(A) be an affine open subscheme of T , then U ∩ T0 =
Spec(A0) is also affine, and we have an exact sequence:

0→ J → A→ A0 → 0.

Here J is an ideal of A such that J 2 = 0 and J̃ = I|U . Note that T0 ↪→ T
is a homeomorphism on the underlying topological spaces and we have an
exact sequence:

0→ I → OT → OT0 → 0.

Since I2 = 0, I is an OT0-module, and I is quasi-coherent on T0.
Let i : X ↪→ Z be an immersion of schemes. Then i can be factorized as a

closed immersion followed by an open immersion as in the following diagram.

X
� � i //� o

j

  @
@@

@@
@@

Z

U
/ �

open
??~~~~~~~

Let I ∈ Qcoh(U) be the ideal sheaf of the closed immersion and Z1 be the

scheme defined by (|X|,OU/I2). Then we have a factorization X
j
↪→ Z1 ↪→

U
open
↪→ Z. In the affine case, this corresponds to the following diagram:

0 // I // A //

��

B // 0

A1

>>}}}}}}}

,
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where B = A/I, A1 = A/I2. Z1 is called the first infinitesimal neighborhood
of X in Z. It is a thickening of order 1. We have an exact sequence:

0→ I/I2 → OZ1 → OX → 0

The quasi-coherent OX-module Nj = NX/I = I/I2 ∈ Qcoh(X) is called the
conormal sheaf of j.

Definition 1.12. Let f : X → Y be a morphism of schemes. Let ∆ : X →
X ×Y X be the diagonal map, this is an immersion. We put

Ω1
X/Y = N∆ = NX/X×Y X

This is a quasi-coherent sheaf on X. If we have the following diagram:

U = Spec B � � //

��

X

f

��
V = Spec A � � // Y

where U(resp.V ) is open in X(resp.V ), then we get a commutative square.

Spec (B ⊗A B) � � // X ×Y X

Spec B � � //

OO

X

OO

where the left vertical arrow is defined by B ⊗A B → B, b⊗ c 7→ bc. Denote
by I the kernel of this map:

0→ I → B ⊗A B → B → 0

Then we have

Ω1
X/Y | U = Ĩ/I2 = Ω̃1

B/A

Let M ∈ Mod(X), a Y -derivation of OX with values in M (or from OX
to M) is a map D : OX →M , satisfying the following conditions:

(1) D is f−1(OY )-linear;
(2) for any a, b ∈ OX(U), where U is an open set contained in X, we have

D(ab) = aD(b) + bD(a).
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Let dX/Y : OX → Ω1
X/Y defined by dX/Y = j∗2 − j∗1 , where j∗1b = b ⊗

1 mod I2, j∗2b = 1⊗ b mod I2.

Theorem 1.13. (1) dX/Y ∈ DerY (OX ,Ω1
X/Y );

(2) For any M ∈ Mod(X), Hom(Ω1
X/Y ,M)→ DerY (OX ,M) u 7→ u◦dX/Y

is an isomorphism.

Proof. For M ∈ Qcoh(X), the bijectivity of (2) follows from 1.6 and the
above discussion in 1.12. For the general case, see EGA IV 16.5.3.

Let

X ′ g //

f ′

��

X

f

��
Y ′ h // Y

(∗)

be a commutative diagram. We deduce commutative diagrams.

X ′ ×Y ′ X ′ g×g // X ×Y X

X ′ g //

∆′

OO

X

∆

OO Z ′
1

// Z1

X ′ //

i′

OO

X

i

OO

From the last one, we get a canonical homomorphism: g∗Ω1
X/Y → Ω1

X′/Y ′

and by adjunction, this corresponds to a homomorphism: Ω1
X/Y → g∗Ω

1
X′/Y ′

where dX/Y (b) 7→ dx′/Y ′(g∗b), for b a local section of OX , with image g∗b as a
section of g∗OX′ . In the affine case, these maps is induced by the following
one:

B′ ⊗B Ω1
B/A → Ω1

B′/A′

b′ ⊗ dB/A 7→ b′dg(b)

This homomorphism satisfies an obvious transitivity property for a compo-
sition of commutative squares.

Proposition 1.14. If (∗) is cartesian, the canonical map g∗Ω1
X/Y → Ω1

X′/Y ′

is an isomorphism.
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Proof. This is a local question, hence we may assume that all the schemes
involved are affine. Then we get a commutative diagram of rings

B′ B
goo

A′

OO

Aoo

OO

with A′ ⊗A B ' B′. The sequence

0→ I → B ⊗A B → B → 0

splits as a sequence of A-module. Hence by applying ⊗AA′, we get an exact
sequence

0→ A′ ⊗A I → B′ ⊗A′ B′ → B′ → 0

Therefore we have A′ ⊗A I ' I ′ and a surjection A′ ⊗A I2 � I ′2. Consider
the diagram with the exact rows

A′ ⊗ I2 //

��

A′ ⊗ I //

��

A′ ⊗ I2/I2 //

��

0

0 // I ′2 // I ′ // I ′/I ′2 // 0

The left vertical arrow is surjective and the middle one is bijective, so using
the snake lemma we have B′ ⊗B Ω1

B/A = A′ ⊗A I2/I2 ' I ′/I ′2 = Ω1
B′/A′

Proposition 1.15. Let f : X → Y, g : Y → S be two morphisms of schemes,

then we have an exact sequence f ∗Ω1
Y/S

// Ω1
X/S

// Ω1
X/Y

// 0 .

Proof. This is again a local question, hence we may assume S = SpecA, Y =
SpecB, Z = SpecC are all affine. Then in this case, we need to show the
following sequence is exact:

C ⊗B Ω1
B/A

// Ω1
C/A

// Ω1
C/B

// 0 .

So we only need to show the sequence below is exact for any C-module M :

0 // Hom(Ω1
C/B,M) // Hom(Ω1

C/A,M) // Hom(C ⊗B Ω1
B/A,M) .

This is equivalent to show that this sequence

0 // DerB(C,M) // DerA(C,M) // DerA(B,M)

is exact, which is followed from a direct calculation.
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Corollary 1.16. Let

X ′ g //

f ′

��

X

��
Y ′ h // Y

be a commutative square. If it is cartesian, then we have a canonical isomor-
phism

f ′∗Ω1
Y ′/Y ⊕ g∗Ω1

X/Y w Ω1
X′/Y .

Proof. First we have an exact sequence as follows:

g∗Ω1
X/Y

// Ω1
X′/Y

// Ω1
X′/X

// 0 .

Using the canonical isomorphism g∗Ω1
X/Y ' Ω1

X′/Y ′ , we get a commutative
diagram

g∗Ω1
X/Y

//

w
��

Ω1
X′/Y

//

zzuuuuuuuuu
Ω1
X′/X

// 0

Ω1
X′/Y ′

.

This implies that Ω1
X′/Y = g∗Ω1

X/Y⊕Ω1
X′/X , hence Ω1

X′/Y ' g∗Ω1
X/Y⊕f ′∗Ω1

Y ′/Y

as we have Ω1
X′/X ' f ′∗Ω1

Y ′/Y .

Corollary 1.17. Let A→ B be a ring extension, S ⊂ B be a multiplicative
system, then S−1Ω1

B/A ' Ω1
S−1B/A.

Proof. This is because any A-derivation D : B → M can be extends to an
A-derivation D′ : S−1B → S−1M by defining D′(b/s) = s−2(sDb− bDs), for
b ∈ B, s ∈ S.

Corollary 1.18. Let f : X → Y be a morphism of schemes, x ∈ X, y = f(x)
be two points, then we have a canonical isomorphism (Ω1

X/Y )x ' Ω1
OX,x/OY,y

.

Proof. This is a local question, hence we may assume Y = SpecA, X =
SpecB are affine. So we get the following isomorphisms(

Ω1
B/A

)
x
'

(
Ω1
B/A

)
⊗B Bx ' Ω1

Bx/A

On the other hand, we have an exact sequence

Bx ⊗Ay Ω1
Ay/A

// Ω1
Bx/Ay

// Ω1
Bx/A

// 0 .
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Since Ω1
Ay/A

= 0, so we have Ω1
Bx/Ay

' Ω1
Bx/A

which follows that Ω1
Bx/Ay

'(
Ω1
B/A

)
x
.

Proposition 1.19. Let

X
� � i //

f
��

Z

Y

g

>>~~~~~~~

be a commutative diagram with i a closed immersion defined by an ideal I.
Let NX/Z = I/I2 be conormal sheaf of i. Then dZ/Y : OZ → Ω1

Z/Y induces

an OX-linear map: NX/Z → i∗Ω1
Z/Y = Ω1

Z/Y /IΩ
1
Z/Y and the sequence

NX/Z // i∗Ω1
Z/Y

// Ω1
X/Y

// 0

is exact. Moreover if i1 : X → Z1, the first infinitesimal neighborhood of i,
admits a restriction, then the sequence

0 // NX/Z // i∗Ω1
Z/Y

// Ω1
X/Y

// 0

is exact and split.

Proof. For the first statement, we only need to show that the induce map
d : I → i∗Ω1

Z/Y maps I2 to 0. This is a local question, so we may assume that

Y = SpecA, X = SpecB, Z = SpecC are all affine, and B = C/J for an
ideal J of C. Then we have to show the map J → Ω1

C/A/JΩ1
C/A induced by

dC/A maps J2 to 0. Indeed, for any a, b ∈ J , dC/A(ab) = adC/Ab + bdC/Aa ∈
JΩ1

C/A, so dC/A(J2) ⊂ JΩ1
C/A, so dC/A induces a map d : J/J2 → Ω1

C/A/JΩ1
C/A

and d is C-bilinear (hence B-bilinear), because for any a ∈ C, b ∈ J , we have
d(ab) = ad(b) + bd(a) = ad(b).

Now in order to show the exactness of the sequence in the proposition, we
may also focus on the affine case. So again, we assume that Y = SpecA, X =
SpecB, Z = SpecC are all affine, and B = C/J for an ideal J of C. Then
the sequence corresponds to a sequence of B-modules

J/J2 // B ⊗ Ω1
C/A

// Ω1
B/A

// 0 (∗) .

We only need to show that for any M ∈ Mod(B),

0 // HomB(Ω1
B/A,M) // HomB(B ⊗C Ω1

C/A,M) // HomB(I ⊗C B,M)
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is exact. Using the universal property, this follows from the exactness of

0 // DerA(B,M) // HomA(C,M) // DerC(I,M) ,

which can be checked directly.
For the last statement, assume we have a commutative diagram

X
� � i1 //

��

Z1
r

jj
� � I2 //

~~}}
}}

}}
}}

Z

wwnnnnnnnnnnnnnnn

Y

,

where i1 : X ↪→ Z1 is the first infinitesimal neighborhood of the closed
immersion i : X ↪→ Z with I its ideal sheaf and r : Z1 → X is a retraction of
i1. By the conclusion we proved just now we have a commutative diagram
with exact rows

I/I2 //

'
��

i∗Ω1
Z/Y

//

��

Ω1
X/Y

//

'
��

0

I/I2 // i∗1Ω
1
Z1/Yll // Ω1

X/Y
// 0

.

Now we claim that the retraction r gives a split morphism of the bottom
exact sequence. In fact, the retraction r : Z1 → X gives a map OZ1 → I/I2

induced by Id−r∗i∗1. One can check that this is a Y -derivation, hence give
a OZ1-morphism Ω1

Z1/Y
→ I/I2. By adjunction, we get i∗1Ω

1
Z1/Y

→ I/I2

which splits the bottom exact sequence. It is easy to see that the bottom
exact sequence splits implies that the top row also splits, this finishes the
proof.

Corollary 1.20. Let X be a Y -scheme locally of finite type (resp. locally
of finite presentation), then Ω1

X/Y is of finite type (resp.finte presentation).

Moreover, if Y is locally noetherian, then Ω1
X/Y ∈ Coh(X).

Proof. We may assume that Y = SpecA, X = SpecB are affine, and B is an
A algebra of finite type, hence we have a commutative diagram with exact
row as follows:

0 // I // A[t1, · · · , tn] // B // 0

A

OO 99rrrrrrrrrrrr

.
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So we have a exact sequence

I/I2 // B ⊗A[t1,··· ,tn] Ω
1
A[t1,··· ,tn]/A

// Ω1
B/A

// 0 .

We have seen before that Ω1
A[t1,··· ,tn]/A ' A[t1, · · · , tn]n, so we have an epimor-

phism Bn → Ω1
B/A, this implies that Ω1

B/A is a finite B-module. Moreover,
if we assume that B is of finite presentation as an A-algebra, then we may
assume I is an ideal ofA[t1, · · · , tn] of finite type. So as aB = A[t1, · · · , tn]/I-
module, I/I2 is of finite type, using the exact sequence above again, we see
that Ω1

B/A is of finite presentation as an A-module. The last conclusion is a
direct consequence of the previous one and the definition of coherent mod-
ules.

Corollary 1.21. Let k be a field, X be a k-scheme. Given any rational point
x ∈ X(k), denote by ix the closed immersion {x} ↪→ X, then we have an
isomorphism i∗xΩ

1
X/k = (Ω1

X/k)x⊗OX,x
k(x) ' mx/m

2
x, where Ω1

X/k = Ω1
X/ Spec k.

Proof. Since x ∈ X(k) is a rational point, we have a commutative diagram

Spec k(x) � � ix //

'

&&LLLLLLLLLL X

��
Spec k

x

aa
.

Also, the rational point x gives a retraction of ix. From here we get an exact
sequence

0 //mx/m
2
x

// Ω1
X/k ⊗ k // Ω1

k(x)/k(' 0) // 0 ,

which implies that i∗xΩ
1
X/k = (Ω1

X/k)x ⊗OX,x
k(x) ' mx/m

2
x.

Corollary 1.22. Let k be a field, k[ε] be a k-algebra defined by the relation
ε2 = 0. Denote by i the natural closed immersion Spec k ↪→ k[ε] and choose
a rational point x ∈ X(k) of X, then we have an isomorphism Tx = {t ∈
X(k[ε]) | xi = x } ' (mx/m

2
x)
∧

Proof. By definition we have

Tx = { h ∈ Homk(OXx , k[ε] | πh = p }
= Derk(OX,x, kε)
= Hom(Ω1

Y/k⊗k(x), k)
= (mx/m

2
x)
∧
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Here π : k[ε] → k is the canonical map and p : OX,x → k is the morphism
corresponding to the rational point x.

Proposition 1.23. Let S = SpecA, P = Prs, then there is a canonical exact
sequence.

0 // Ω1
P/S

// Or+1
P (−1) // OP // 0

Proof. Let B = A[t0, · · · , tr], L = B(−1)r+1 =
⊕

0≤i≤r Bei, where deg ei = 1,

then OP (−1) = B̃(−1), Or+1
P (−1) = L̃. Hence we have an exact sequence

0 //M // L
u // B // A // 0 ,

where u is defined as (f0, · · · , fr) 7→
∑
fiti and M = Ker u. From here, we

get a short exact sequence

0 //
M̃

// L̃
v=ũ // B̃ // 0 .

Using the Koszul complex K•(u), on can see immediately that M =< eitj −
ejti >. This is a graded B-module such that M(ti) is free over B(ti) = A[(

tj
ti
)]

with basis
eitj−ejti

t2i
, i 6= j. On the other hand, we have

Ω1
P/S|Ui = (Ω1

A[(
tj
ti

)]/A
)∼ =

⊕
0≤j≤r,j 6=i

B(ti)d(
tj
ti
),

so we have a well-defined map

ϕi : M(ti) → Ω1

A[(
tj
ti

)]/A

eitj − ejti
t2i

7→ d(
tj
ti

)

One can check that ϕi|Ui ∩ Uj = ϕj|Ui ∩ Uj, we get a global isomorphism ϕ.

ϕ : M̃ ' Ω1
P/S,

hence the short exact sequence

0 // Ω1
P/S

// Or+1
P (−1) // OP // 0
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In fact, we have something more. From the previous proposition, we get
some exact sequence, which is denoted by ci, for each i (1 ≤ i ≤ r):

0 // Ωi
P/S

v // ∧iOr+1
P (−i) v // · · · v // Or+1

P (−1)
v // OP v // 0 ,

where Ωi
P/S =

∧i Ω1
P/S. So we get a quasi-isomorphism Ωi

P/S[i]→ σ≥−iK
•(v),

in particular Ωr
P/S '

∧r+1Or+1
P (−r − 1) = OP (−r − 1) (by the exactness of

Koszul complex). By the exactness of cr, we have cr ∈ ExtrOP
(OP ,Ωr

P/S) =

Hom(OP ,Ωr
P/S[r]) = Hr(P,Ωr

P/S) = Hr(P,OP (−r − 1)) ' A. In fact, cr
gives a basis of = Hr(P,Ωr

P/S) over A, hence is called the “fundamental

class”. Similarly, ci gives a nontrivial class of H i(P,Ωi
P/S) and Hj(P,Ωi

P/S) =

0, i 6= j. Further more, we have ci = ci1 given by the cup product defined as
follows: let a ∈ H i(P,Ωi

P/S), b ∈ Hj(P,Ωj
P/S) given by a : OP → Ωi

P/S[i] and

b : OP → Ωj
P/S[j], then we have a map: (a, b) 7→ ab ∈ H i+j(P,Ωi+j

P/S) defined

as the composition of OP ⊗LOP
OP

a⊗Lb // Ωi
P/S[i]⊗ Ωj

P/S[j] = Ωi ⊗ Ωj[i+ j] .

Theorem 1.24. Let f : X → Y be a morphism of schemes, Ωr
X/Y =∧i Ω1

X/Y , then there exists a unique family of maps of abelian sheaves d :

Ωi
X/Y → Ωi+1

X/Y such that

(1) d = f−1(OY )-basis;
(2) d ◦ d = 0;
(3 )d(a∧ b) = da∧ b+(−1)ia∧ db, for any a ∈ Γ(U,Ωi), b ∈ Γ(U,Ωj), where
U ⊂ X is an open set;
(4) d = dX/Y : OX → Ω1

X/Y .

Sketch of Proof. Since we have Γ(U,Ω1
X/Y ) = OX(U)d(OX(U)) for any affine

open subscheme U ⊂ X, hence an element of Γ(U,Ωi
X/Y ) can be written as

ω =
∑
adb1 ∧ · · · ∧ dbi for some a and bi ∈ OX(U), so we have d(adb1 ∧ · · · ∧

dbi) = da ∧ db1 ∧ · · · ∧ dbi. Hence the uniqueness is clear.
For the existence: first since the uniqueness we proved just now, we may

focus on the case that X = SpecB, Y = SpecA are affine. In this case,

Ω1
X/Y =

(
Ω1
B/A

)∼
and Ω•

X/Y =
(∧

Ω1
B/A

)∼
. So, we only need to construct an

antiderivation D :
∧

Ω1
B/A →

∧
Ω1
B/A of degree 1 such that (1) D(b) = d(b)

for any b ∈ B and (2) D(a · db1 ∧ db2 · · · ∧ dbs) = da ∧ db1 · · · dbs for any
a, b1, · · · bs ∈ B. We first treat a special case, that is when B = A[{ti}i∈I ]
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where I is an index set imposed with a total order. In this situation, we have
known that {dti}i ∈ I forms a B-basis of the free B-module Ω1

B/A. Hence

{ dti1 ∧ dti2 · · · ∧ dtir | i1 < i2 < · · · < ir } is a B-basis of
∧

Ω1
B/A. Then any

element ω ∈
∧

Ω1
B/A can be written uniquely as follows

ω =
∑

i1<···<ir,r<∞

adti1 ∧ · · · dtir

and so we define

Dω =
∑

i1<···<ir,r<∞

da ∧ dti1 ∧ · · · dtir =
∑

i1<···<ir,r<∞

∑
j

∂aj
∂tj

dtj ∧ dti1 · · · ∧ dtir .

One can check that indeed such a definition gives an antiderivation of
∧

Ω1
B/A

of order 1 satisfying (1) and (2). For the general case, see EGA IV, 16.6.2.

Remark. The morphism d defined in the previous theorem is called exterior
derivation. Using this construction, we get a complex of abelian sheaves

Ω•
X/Y = (· · · → 0 → OX

d→ Ω1
X/Y

d→ · · · d→ Ωi
X/Y → · · · ), which is

called de Rham complex of X/Y . The cohomology group of this complex
H•(X,Ω•

X/Y ) = H•
dR(X/Y ) is called de Rham cohomology.

2 Smooth unramified étale morphisms

Definition 2.1. Let f : X → Y be a morphism of schemes, then f is called
formally smooth (resp. unramified, resp. étale), if and only if for any diagram
of the form (∗) with i a thickening of order 1, locally on T0, there exists at
least(resp. at most, resp. exactly) one g making the diagram commutes.
It is equivalent to say that Hom(T0, X) → Hom(T0, X) is surjective(resp.
injective, resp. isomorphism).

X

f

��

(∗)

T0
� � i //

g0

77oooooooooooooo
T //

g
@@

Y

f is called smooth(resp. unramified, resp. étale), if and only if f is formally
smooth (resp. unramified resp. étale) and locally of finite presentation.
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Remark. (1) If f : X → Y , g : Y → Z are formally smooth, then gf is
formally smooth. The same holds in the case that f, g are ormally unramified
(resp. formally étale).

(2) Formal smoothness (resp. smoothness) is stable under base change,
that is if f : X → Y is formal smooth (resp. smooth), and

X ′

f ′

��

//

�

X

f

��
Y ′ // Y

is a cartesian diagram, then f ′ is also formally smooth (resp. smooth).
(3) Let X =

⋃
i∈I Ui, Ui is open, Ui/Y is smooth for any i, then X/Y is

smooth.
(4) If locally there exists g on T0, then in the étale case, we can extend g

globally, and such extension is uniquely.
(5) In the previous definition, the condition on the thickening can be

replaced by any thickening of order n for any positive n ∈ Z. Indeed, given
a thickening T0 ↪→ T of order n, we can construct a chain of thickening such
that the consecutive two are a thickening of order 1 as follows

T0 ↪→ T1 ↪→ · · · ↪→ Tn−1 ↪→ T

where Ti = (|T |,OT/I i+1). Then using the commutative diagram below

T0
� � I //
� o

  @
@@

@@
@@

T

T1 � o

  @
@@

@@
@@

T2

. �

NN ,

we can reduce to the previous case.

We give some examples of smooth morphism.

Example 2.1.1. Consider the commutative diagram:

An
S

f

��
T0

� � i //

77oooooooooooooo
T //

g
??

S
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Then f is smooth since by the following diagram

Γ(T0,OT0)
n Γ(T,OT )noo

HomS(T0,An
S) HomS(T,An

S)
oo

there exists a morphism h making the diagram commute.

Corollary 2.2. The morphism f : PnS → S is a smooth morphism.

Theorem 2.3. 1) A morphism f : X → Y is unramified if and only if
Ω1
X/Y = 0.

2) If f : X → Y is smooth, Ω1
X/Y is locally free of finite type.

3) Let X
f // Y

g // S be morphisms of schemes.
a) Assume that f is smooth, then the sequence

0 // f ∗Ω1
Y/S

// Ω1
X/S

// Ω1
X/Y

// 0 (∗)

is exact and locally split.
a’)Assume f étale, then f ∗Ω1

Y/S

∼−→ Ω1
X/S

b) Assume that g ◦ f is smooth, and (∗) is exact and locally split, then f
is smooth.

b’)Assume g ◦ f smooth, and f ∗Ω1
Y/S

∼−→ Ω1
X/S, then f is étale.

4) Consider a commutative diagram

X
� � i //

f

��

Z

g
~~~~

~~
~~

~

Y

where i is a closed immersion with ideal I, and let NX/Z = I/I2. Then
a) Assume that f is smooth, then the sequence

0 // NX/Z
dZ/Y // i∗Ω1

Z/Y
// Ω1

X/Y
// 0 (∗∗)

is exact and locally split.
a’) Assume that f is étale, then NX/Z

∼−→ i∗Ω1
Z/Y .

b) Assume that g is smooth. If (∗∗) is exact and locally split, then f is
smooth.

b’) Assume that g is smooth. If NX/Z
∼−→ i∗Ω1

Z/Y , then f is étale.
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Lemma 2.4. Consider a commutative diagram:

X

f

��
T0

g0

77oooooooooooooo
� � i // T

g1
??��������

g2

??��������
// Y

where i is a thickening of order 1 with ideal I, and g1i = g2i = g0. Then
g∗2 − g∗1 : OX → g0∗OT factors through g0∗I, and

g∗2 − g∗1 ∈ DerY (OX , g0∗I) = HomOX
(Ω1

X/Y , g0∗I) = HomT0(g
∗
0Ω

1
X/Y , I);

the homomorphism Ω1
X/Y → g0∗I corresponding to the derivation g∗2 − g∗1

sends dX/Y (a) to g∗2(a)− g∗1(a) ∈ g0∗I.

Proof. We may assume all schemes are affine. Then we have the following
commutative diagram:

B
g0

wwnnnnnnnnnnnnnnn

g2~~~~
~~

~~
~~g1

~~~~
~~

~~
~~

C0 CI
oo A.oo

OO

Define ϕ : B → C, b 7→ ϕ(b) = g2(b) − g1(b). We need to verify that
ϕ ∈ DerA(B, I[B]). In fact, ϕ(ab) = aϕ(b), for all a ∈ A. And for x, y ∈ B,

ϕ(xy) =g2(xy)− g1(xy)

=g2(x)(g2(y)− g1(y)) + g1(y)(g2(x)− g1(x))

=xϕ(y) + yϕ(x).

Proof of Theorem 2.3 (1). Consider the commutative diagram:

X

��
T0

g0

77oooooooooooooo
� � // T

g1
??��������

g2

??��������
// Y

Assume Ω1
X/Y = 0, we want to show g1 = g2. However g∗2−g∗1 ∈ HomT0(g

∗
0Ω

1
X/Y , I) =

0, hence g1 = g2.
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Conversely, consider the commutative diagram:

X

��
X

Id

44iiiiiiiiiiiiiiiiiiiiiiii
� � //

M %%JJJJJJJJJJJ (X ×Y X)1� _

��

p1

99ssssssssss
p2

99ssssssssss
// Y

(X ×Y X)

where (X ×Y X)1 is the first infinitesimal neighborhood of the diagonal M.
As f is unramified, we have 0=p∗2 − p∗1 ∈ HomOX

(Ω1
X/Y ,Ω

1
X/Y ). On the

other hand, p∗2 − p∗1 = dX/Y : OX → Ω1
X/Y which corresponds to the identity

Id : Ω1
X/Y → Ω1

X/Y . So IdΩ1
X/Y

= 0Ω1
X/Y

, which implies that Ω1
X/Y = 0.

For the proof of Theorem 2.3 (2), we need some preliminaries.

Definition 2.5. Let f : X → Y be a morphism, I ∈ Qcoh(X). A Y-
extension of X by I is a commutative diagram:

X
� � i //

f

��

X ′

~~||
||

||
||

Y

where i is a thickening of order 1 defined by the ideal I.
An isomorphism of Y-extensions

( X
� � i′ // X ′ )

∼−→ ( X
� � i

′′
// X

′′ )

is a Y-morphism a : X ′ → X”, such that ai′ = i
′′

and a induces the identity
map on I, i.e., the following diagrams

OX′

""F
FFFFFFF

0 // I

=={{{{{{{{

!!B
BB

BB
BB

B OX // 0

OX′′

<<yyyyyyyy

a∗

OO X ′

��

!!B
BB

BB
BB

B

X
. �

i′
=={{{{{{{{

� p

i
′′

  B
BB

BB
BB

B Y

X
′′

>>||||||||

commute. Note that a∗ is an isomorphism.
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Remark. Given a commutative diagram:

0 // I // A
p // OX // 0

f−1(OX)

OO ::ttttttttt

with exact row, where A is an f−1(OX)-algebra, p is a homomorphism of
f−1(OX)-algebras, and I2 = 0. One can show (|X|,A) is a scheme X ′, such
that A = OX′ and X ′ is a Y -extension of X by I.

Definition 2.6. ExtY (X, I)={isomorphism classes of Y -extensions}.

One can endow ExtY (X, I) with the structure of an abelian group with 0
element being the class of the trivial Y -extension, i.e. X ′ defined by OX ′ =
OX⊕I = D(I)(the dual number algebra on I), and f−1(OY )→ OX′ defined
by f−1(OY ) → OX → OX′ with canonical morphisms. The addition in
ExtY (X, I) is defined as follows: given two elements e1, e2 ∈ ExtY (X, I):

e1 : class of (0→ I → OX1 → OX → 0)

e2 : class of (0→ I → OX2 → OX → 0),

we construct the following commutative diagram:

OX1 ×OX
OX2

//

��

		

OX //

��

0

0 // I ⊗ I //

77ooooooooooo

��

OX1 ⊕OX2
// OX ⊕OX // 0

0 // I // OX3

>>||||||||||||||||||||

where OX → OX ⊕ OX is the diagonal map, I ⊕ I → I is the sum map,
OX3 = I

⊕
I⊕I(OX1 ×OX

OX2). Then e1 + e2 is the class of the extension
(0→ I → OX3 → OX → 0). One shows that e1 + e2 does not depend on the
choices and that we thus obtain a structure of abelian group on ExtY (X, I)
as desired. The proof is similar to the construction of structure of abelian
group on the set of isomorphism classes Ext(L,M) of L by M in an abelian
category.
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Proof of Theorem 2.3 (4)(a). Consider the commutative diagram:

X
� � //

��

i
))

Z1
� � //

~~}}
}}

}}
}}

Z

wwnnnnnnnnnnnnnnn

Y

where Z1 is the first infinitesimal neighborhood ofX in Z. As f is smooth,
locally there exists r ∈ HomY (Z1, X), such that r ◦ i1 = Id, i.e., such that
the following diagram commutes:

X

f

��
X

� � i1 //

Id

66nnnnnnnnnnnnnnn
Z1

r

>>}
}

}
}

// Y.

Therefore r gives a map:

ϕ : i∗Ω1
Z/Y → NX/Z

(da)− 7→ (−r∗i∗1a+ a)− = ϕ(a), a ∈ OZ
where ( )− represents a class mod I. The map ϕ is inverse toNX/Z → i∗Ω1

X/Y .
So

0→ NX/Z → i∗Ω1
Z/Y → Ω1

X/Y → 0

is exact and locally split.

Lemma 2.7. Let f : X → Y be smooth, I ∈ Qcoh(X). Following 2.3 (4)(a),
define ϕ : ExtY (X, I)→ Ext1

OX
(ΩX/Y , I) by

class of X
� � i //

��

X ′

~~||
||

||
||

Y



7→ class of 0→ I → i∗Ω1

Z/Y → Ω1
X/Y → 0

 .

Then ϕ is an isomorphism.

Proof. We easily checks that ϕ is a well defined group homomorphism. Define

ψ : Ext1
OX

(Ω1
X/Y , I)→ ExtY (X, I)
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in the following way. Given an exact sequence

0 // I u // E
v // Ω1

X/Y
// 0 ,

we form the commutative diagram:

0 // I
(
0
u)//

##F
FF

FF
FF

FF
F OX ⊕ E

Id⊕v// OX ⊕ Ω1
X/Y

// 0

OX′
q //

p

OO

OX //

Id+dX/Y =p∗2

OO

0

where OX′ = (OX ⊕ E)×OX⊕Ω1
X/Y
OX . We define

ψ(E) = X
� � i //

��

X ′

~~||
||

||
||

Y



.

It sufficient to check that ϕψ = Id, ψϕ = Id.
The fact that ψϕ = Id is clear. We verify ϕψ(E) = E. Note that p − q

induces a Y -derivation: OX′ → E, and hence a morphism α : i∗Ω1
X′/Y → E.

Considering the following commutative diagram:

0 // I // E // Ω1
X/Y

// 0

ϕψ(E) : 0 // I //

Id

OO

i∗Ω1
X′/Y

α

OO

// Ω1
X/Y

//

Id

OO

0

,

we conclude that α is an isomorphism.

Lemma 2.8. Let X be a scheme, E ∈ Qcoh(X) be of finite type. Assume
that for any F ∈ Qcoh(X), Ext1

OX
(E,F ) = 0, then E is locally free.

Proof. Locally we can write

0→ F → L→ E → 0 (∗)

with L free of finite type. So F ∈ Qcoh(X). Then by the assumption, (*)
locally splits, which implies that E is locally free.
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Proof of Theorem 2.3 (2). For any I ∈ Qcoh(X), by 2.7, we get

ExtY (X, I) ∼−→ Ext1
OX

(ΩX/Y , I),

so
ExtY (X, I) ∼−→ Ext1

OX
(ΩX/Y , I),

where ExtY (X, I) denotes the sheaf associated to U 7→ ExtY (U, I|U). As f is
smooth, locally any Y -extension of X by I admits a Y -retraction, i.e. any Y -
extension ofX by I is (locally) trivial. So ExtY (X, I) = 0 = Ext1

OX
(ΩX/Y , I),

then Ω1
X/Y is locally free of finite type by 2.8.

Lemma 2.9. Let X
f→ Y

g→ S be morphisms of schemes with f affine. Let
I ∈ Qcoh(X). Then the following sequence is exact.

0 // DerY (OX , I) // DerS(OX , I) α // DerS(OY , f∗I)

∂
rrffffffffffffffffffffffffff

ExtY (X, I) γ // ExtS(X, I)
β // ExtS(Y, f∗I)

(∗)

where α, β, ∂ are defined as follows:

(1) For any D ∈ DerY (OX , I), define α(D) : OY → f∗OX
f∗D→ f∗I.

(2) For any D ∈ DerS(OY , f∗I), define

∂(D) : 0 // I // OX ⊕ I // OX // 0

f−1(OY )

OO ::uuuuuuuuu

,

where f−1(OY )→ OX ⊕ I corresponds to (f ∗, D) : OY → f∗OX ⊕ f∗I.
(3) For a class E ∈ ExtS(X, I) as follows:

E : 0 // I // OX′ // OX // 0

f−1g−1(OS)

OO 99rrrrrrrrrr

,

define
β(E) : 0 // f∗I // OY ′ // OY // 0

f−1(OS)

OO ::uuuuuuuuu
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by the following commutative diagram:

0 // f∗I //

$$J
JJJJJJJJ f∗OX′ //

�

f∗OX // 0

OY ′ //

OO

OY //

OO

0

g−1(OS)

OO 99ssssssssss

where the upper row is exact, since f is affine.

Proof. We only prove the exactness at DerS(OY , f∗I), ExtY (X, I), ExtS(X, I).
(a) Exactness at DerS(OY , f∗I). Assume that D ∈ DerS(OX , I), then

α(D) : OY → f∗OX
f∗D→ f∗I. Define (1, D) : OX → OX ⊕ I, it is easy to

verify that the diagram:

0 // I // OX ⊕ I // OX
(1,D)
tt

// 0

f−1(OY )

(f∗,α(D))

OO

f∗

::uuuuuuuuu

is commutative. So ∂ ◦ α(D) is trivial in ExtY (OX , I). And hence Im(α) ⊂
Ker(∂).

Assume D ∈ DerS(OY , f∗I), and ∂(D) = 0. Then there exists a mor-
phism ϕ = (1, D1) : OX → OX ⊕ I making the diagram:

0 // I // OX ⊕ I // OX
(1,D1)
tt

// 0

f−1(OY )

(f∗,D)

OO

f∗

::uuuuuuuuu

commutes, which implies that D1 is a S-derivation and α(D1) = D. Hence
D1 ∈ DerS(OX , I) and then Ker(∂) ⊂ Im(α). So the sequence is exact at
DerS(OY , f∗I).
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(b) Exactness at ExtY (X, I). Assume D ∈ DerS(OY , f∗I). Then clearly,
the following diagram:

0 // I // OX ⊕ I // OX
(1,0)
ss

// 0

f−1(OY )

(f∗,D)

OO

f−1g−1(OS)

OO

BB������������������

commutes. Hence γ ◦ ∂(D) is trivial in ExtS(X, I). So Im ∂ ⊂ Ker(γ).
Let E defined by

0 // I // OX′
p // OX // 0

f−1(OY )

u

OO ::uuuuuuuuu

be a Y -extension whose image in ExtS(OX , I) is trivial. Then there exists an
OS-homomorphism r : OX → OX′ such that p ◦ r = Id. Then we can write
OX′ = OX ⊕ I and r = (Id, D), and D : OX → I is an S-derivation. Then
u = (f ∗, D), which shows that the class of E is ∂(D). So Ker(γ) ⊂ Im ∂.

(c) Exactness at ExtS(Y, f∗I). Assume that E defined by

0 // I // OX′ // OX // 0

f−1(OY )

OO ::uuuuuuuuu

is an element in ExtY (X, I). Consider the commutative diagram

0 // f∗I //

$$J
JJJJJJJJ f∗OX′ //

�

f∗OX // 0

OY ′ p
//

OO

OY //

OO]]

0

g−1(OS)

OO 99ssssssssss
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By the property of fiber product, there exists r : OY → OY ′ , such that
p ◦ r = Id, making the following diagram:

0 // f∗I // OY ′ p
// OY //

r
uu

0

g−1(OS)

OO ::uuuuuuuuu

commutes. Hence β ◦ γ(E) = 0
Assume

E : 0 // I // OX′ // OX // 0

f−1g−1(OS)

OO 99rrrrrrrrrr

and E ∈ Ker(β). Then there exists r : OY → OY ′ , making the diagram

0 // f∗I //

$$J
JJJJJJJJ f∗OX′ //

�

f∗OX // 0

OY ′ //

p

OO

OY //

OO

r

ii 0

g−1(OS)

OO 99ssssssssss

commutes. Hence we can define

ψ : f−1(OY )
f−1r→ f−1(OY ′)

f−1p→ f−1f∗OX′ → OX′ ,

making the diagram

0 // I // OX′ // OX // 0

f−1(OY )

ψ

OO 99rrrrrrrrrr

f−1g−1(OS)

OO

BB������������������

commutes, which implies E ∈ Im(γ). So the sequence is exact at ExtS(Y, f∗I).
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Proof of Theorem 2.3 (3)(a). It is a local problem, so we may assume that
X = Spec(C), Y = Spec(B), S = Spec(A) are affine, so that X → Y → S
corresponds to A→ B → C. We will show that the sequence

0→ C ⊗B Ω1
B/A → Ω1

C/A → Ω1
C/B → 0 (∗)

is exact and split. It is equivalent to showing that Hom((∗), I) is exact, for
any I ∈ Mod(C). By 2.9,

0→ DerB(C, I)→ DerA(C, I)→ DerA(B, I[B])→ ExtY (X, I)

is exact. By 2.3 (2), Ω1
X/Y is locally free of finite type, hence Ω1

C/B is pro-

jective of finite type. So Ext1
C(Ω1

C/B, I) = 0, and ExtY (X, I) = 0. So

Hom((∗), I) is exact.

Lemma 2.10. f : X → Y is a morphism. Then the following conditions are
equivalent:

(a) f is formally smooth.
(b) For any open subset U ⊂ X, and any I ∈ Qcoh(U), ExtY (U, I) = 0

Proof. (a)⇒ (b) is clear. For (b)⇒(a), we will show there exists g making
the following diagram commutes.

X

f

��
T0

//

g0

77oooooooooooooo
T //

g

??�
�

�
�

Y

We may assume all schemes are affine. Then the above diagram corresponds
to the following diagram:

C

wwooooooooooooooo

���
�

�
�

R0 Roo B

OO

oo

Consider the following commutative diagram:

E

h1

��

h2 //

�

C

g0
��

// 0

0 // I

@@��������
// R // R0

// 0

B

OO``AAAAAAAA
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where E = R×R0 C. By the property of fiber product, we get a Y -extension
of X by I,

0 // I // E // C // 0

B

OO ??~~~~~~~

.

Since ExtY (X, I) = 0, then 0 → I → E → C → 0 splits, so there exists s :
C → E, such that h2 ◦ s = Id. Then g = h1 ◦ s is the required morphism.

Proof of Theorem 2.3 (3)(b). As g ◦ f is smooth, then ExtS(X, I) = 0. We
may assume X, Y , S are affine. Using 2.9, we get an exact sequence:

DerS(OX , I) α // DerS(OY , f∗I) // ExtY (OX , I) // 0. (∗)
By the exactness and local splitting of the sequence:

0→ f ∗Ω1
Y/S → Ω1

X/S → Ω1
X/Y → 0,

we get that α is surjective. This implies ExtY (X, I) = 0. Together with 2.10,
we conclude that f is smooth.

When f ∗Ω1
Y/S

∼−→ Ω1
X/S, then Ω1

X/Y = 0, and hence f is étale, using

Theorem 2.3 (1).

Proof of Theorem 2.3 (4)(b). By 2.10, it is sufficient to show that ExtY (X, J) =
0, for any J ∈ Qcoh(X).

Suppose X
� � j // X ′ is a Y -extension of X by J . Since g is smooth, there

exists h : X ′ → Z, extending i. We have the following commutative diagram:

X

f

��

� � i //� p

j

  B
BB

BB
BB

B Z

g

tt

X ′

~~||
||

||
||

h
>>}

}
}

}

Y

Let i1 : X → Z1 be the first infinitesimal neighborhood of X in Z. We have
a commutative diagram with exact rows

N
dZ/Y//

Id

��

i∗Ω1
Z/Y

//

��

Ω1
X/Y

//

Id
��

0

N
dZ1/Y// i∗1Ω

1
Z1/Y

// Ω1
X/Y

// 0

, (∗)
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Let R (resp. R1) denote the set of retractions of dZ/Y (resp. dZ1/Y ). By the
composition with the middle vertical arrow of (∗) we get a map R1 → R, one
can show it is an isomorphism. So a splitting of

0→ NX/Z → i∗Ω1
Z/Y → Ω1

X/Y → 0

gives a derivation D : OZ1 → I and a retraction r : Z1 → X, such that
Id−r∗ ◦ i∗1 = D, and r ◦ h1 retracts j. Therefore ExtY (X, J) = 0.

If NX/Z → i∗Ω1
Z/Y is an isomorphism, Ω1

X/Y = 0 and f is étale.

This completes the proof of 2.3.

Corollary 2.11. The morphism f : X → Y is smooth if and only if locally
X is étale over An

Y . More precisely, suppose f is smooth, and let s1, · · · , sn ∈
Γ(X,OX), such that (ds1, · · · , dsn) is a basis of Ω1

X/Y over OX , where d =

dX/Y (such a system exists locally by 2.3 (1)). Then the morphism s : X →
An
Y given by (s1, · · · , sn) is étale.

Proof. We have a commutative diagram:

X
s //

f

��

An
Y

g
~~||

||
||

||

Y

If X is étale over An
Y , then X is smooth over Y by the stability of smooth-

ness.
For the second assertion, note that by definition of s, the map OnX =

s∗Ω1
An

Y /Y
→ Ω1

X/Y is an isomorphism. Apply 2.3 (3)(b), we get that s is

étale.

Lemma 2.12. Let A be a local ring, k = A/m be its residue field. Let
E,F ∈ Mod(A), E be of finite type and F be projective. Let u : E → F be a
homomorphism. Then the following conditions are equivalent:

(1) u is injective and split. (i.e. there exists v : F → E, such that
v ◦ u = Id)

(2) u⊗ k : E ⊗ k → F ⊗ k is injective.

Proof. (1)⇒ (2) is clear. We only prove (2)⇒ (1).
(a) Assume E is free of finite type. By hypothesis, since F is projective

and E → E⊗k is surjective, there exists v : F → E such that vu⊗k = IdE⊗k .
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Then det(vu) ∈ 1 + m, which implies that v ◦ u is an isomorphism. Thus u
is injective and split.

(b) General case. There exists L free of finite type, such that w : L→ E
is surjective, and L⊗ k

∼−→ E ⊗ k . Then uw⊗ k is injective. By case (a), we
get that u ◦ w is injective and split. Then w is an isomorphism, and thus u
is injective and split.

Corollary 2.13 (Jacobian criterion). Suppose we have a commutative
diagram:

X
� � i //

f

��

Z

g
~~~~

~~
~~

~

Y

with g smooth. Let I be the ideal of the closed immersion i. Let x be a point
of X, then f is smooth at x if and only if there exist sections {si}1≤i≤r of I
around x, such that ((si)x) generate Ix, and dZ/Y (si)⊗ k(x) ∈ Ω1

Z/Y ⊗ k(x)
are linearly independent.

In particular, for Z = An
Y , f is smooth at x if and only if fcan be defined

by s1 = · · · = sr = 0 locally around x, where the si’s are sections of OZ, such
that

rkk(x)(∂si/∂tj) 1≤i≤r
1≤j≤n

(x) = r,

where (∂si/∂tj)(x) ∈ k(x).

Proof. First we prove the necessity. If f is smooth at x, then the sequence

0→ I/I2 → Ω1
Z/Y ⊗OX → Ω1

X/Y → 0

is exact and split around x. This implies the sequence

0 // I/I2 ⊗ k(x) // Ω1
Z/Y ⊗ k(x) // Ω1

X/Y ⊗ k(x) // 0

si ⊗ k(x) � // dX/Y si ⊗ k(x)

is exact. Pick up (si) such that si ⊗ k(x) is a basis of Ix/I2
x ⊗ k(x). Using

Nakayama’s lemma, we get that (si) is a minimal system of generators of Ix.
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Then we prove the sufficiency. We have a commutative diagram:

Ix/I2
x ⊗ k(x)

dZ/Y ⊗k(x)
// Ω1

Z/Y ⊗ k(x)

k(x)r

(si)

OO

' �
dsi⊗k(x)

55jjjjjjjjjjjjjjjjj

Since k(x)r → Ω1
Z/Y ⊗ k(x) is injective, then k(x)r

∼−→ Ix/I2
x ⊗ k(x). Hence

by 2.12, dZ/Y is injective and split around x. Then we get the conclusion by
2.3 (4)(b).

Corollary 2.14. Suppose we have a commutative diagram:

X
� � i //

f

��

Z

g
~~~~

~~
~~

~

Y

with f , g smooth at x, and i a closed immersion. Then there exists an open
subset U ⊂ Z containing x, such that the diagram:

U ∩X

��

� � //

�

U ⊂ Z

h
��

Y [t1 · · · tn] = An
Y

� � // An+r
Y = Y [t1 · · · tn+r]

is cartesian, with h étale.

Proof. Let N = I/I2, where I is the ideal of i. Choose sections f1, · · · , fr
of I around x, and local sections g1, · · · , gn of OZ around x, such that df1⊗
k(x), · · · , dfr⊗k(x), dg1⊗k(x), · · · , dgn⊗k(x) is a basis of Ω1

Z/Y ⊗k(x), and

(f1)x, · · · , (fr)x generate Ix. By Nakayama’s lemma, df1, · · · , dfr, dg1, · · · , dgn
give a basis of Ω1

Z/Y around x. Hence we have a cartesian diagram:

U ∩X

��

// U

h
��

An
Y

� � // An+r
Y

where h : U → An+r
Y is defined by g1, · · · , gn, f1, · · · , fr, and An

Y ↪→ An+r
Y by

(t1, · · · , tn) 7→ (t1, · · · , tn, 0, · · · , 0). So h is étale, by 2.11.
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3 Smoothness, flatness and regularity

We recall the definition of regular local rings.
Let A be a noetherian local ring. m be the maximal ideal, k be the residue

field. Then d = dimA ≤ rankk m/m2. A is regular if and only if the following
equivalent conditions hold:

(1) d = rkkm/m
2.

(2) There exists x1, · · · , xd ∈ m generating m.
(3) grm(A) ' Sk(m/m

2) ' k [t1, · · · , td].
A sequence (x1, · · · , xd) ∈ Ad is called a regular system of parameters if

x1, · · · , xd generate m, i.e., (x1, · · · , xd) is a basis of m/m2, where xi is the
image of xi in k .

Proposition 3.1. Let A be a regular local ring, m be the maximal ideal,
dimA = d. Let I be an ideal contained in m, B = A/I. Then the following
two conditions are equivalent:

(1) B is regular.
(2) There exists a regular system of parameters (x1, · · · , xd) of A such

that I =
r∑
i=1

xiA

Proof. (2) ⇒ (1). We assume (x1, · · · , xr) is part of a regular system of
parameters of A, then dimB = d − r as (x1, · · · , xr) is part of a system of
parameters ([EGA0] IV 16.3.7). Let n = m/I be the maximal ideal of B,
then we have an exact sequence:

0→ (m2 + I)/m2 → m/m2 → n/n2 → 0 (∗)

Since x1, · · · , xr generate I and their images are linearly independent in
m/m2, dimk(m

2 + I)/m2 = r. So dim n/n2 = d − r = dimB, which implies
that B is regular.

(1) ⇒ (2): We assume B is regular. Suppose dimB = dim n/n2 =
d − r. Using the exact sequence (∗), we get dim(m2 + I)/m2 = r. Take
x1, · · · , xr ∈ I, such that the images of x1, · · · , xr in m/m2 are linearly inde-
pendent. Choose xr+1, · · · , xd ∈ m, such that (x1, · · · , xd) is a regular system

of parameters of A. Let I ′ =
r∑
i=1

xiA ⊂ I. Then we have an exact sequence

0→ I/I ′ → A/I ′ → A/I → 0.
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By (2)⇒(1), A/I ′ is regular and dimA/I ′ = d − r = dimA/I. As A/I is
regular, A/I is a domain, hence I/I ′ is prime, but since dimA/I ′ = dimA/I,
then I = I ′.

Theorem 3.2 (Serre). A is a regular local ring of dimension d if and only
if the global (homological) dimension gl dim(A) is equal to d.

Corollary 3.3. If A is a regular local ring, and p ∈ SpecA, then Ap is
regular.

Proof. Let J be an ideal in Ap. Then J = Ip, for some I ⊂ A. As A is
regular, ExtiA(A/I,M) = 0 for i > d, and any M ∈ Mod(A). Thanks to the
isomorphism

ExtiA(A/I,M)p
∼−→ ExtiAp

(Ap/Ip,Mp),

we have ExtiAp
(Ap/Ip,Mp) = 0 for i > d, which (by 3.2) implies that Ap is

regular.

Corollary 3.4. Let X be noetherian. If OX,x is regular at all closed point
x, then OX,x is regular for all x.

Proof. X is noetherian and hence quasi-compact. For any y ∈ X, there
exists a closed point x ∈ {y}. So we may assume X = SpecA. Since every
closed point corresponds to a maximal ideal, Am is regular for any maximal
ideal m. Therefore Ap = (Am)p is regular by 3.3, where p ⊂ m.

Definition 3.5. Let X be a scheme. X is called regular if X is locally
noetherian and OX,x is regular for any x ∈ X.

Remark. If X is regular, then the connected components of X are the
irreducible components of X and any component is open (cf. [EGAI] 6.1.10).

Recall that if X/k is of finite type, where k is a field, then x ∈ X is closed
if and only if [k(x) : k ] <∞ by Hilbert Nullstellensatz.

Let X/k be integral and of finite type. Let η be the generic point of X.
Then dimX = tr degk k(η) = dimOX,x if x is a closed point.

Proposition 3.6. Let X/k be of finite type. Then the following conditions
are equivalent:

(1) X/k is étale.
(2) Ω1

X/k = 0, i.e., X is unramified.

(3) X = SpecA, where A =
n∏
i=1

Ki, Ki/k is finite separable extension.
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Proof. (1)⇒ (2) is trivial.
(2)⇒ (3) We may assume X is affine. Let X = SpecA. We have to show

that if k is an algebraic closure of k , A⊗ k = k
N

.
Let Z = Spec(A⊗k), x be a closed point in Z. Then k(x) = k, Z = X⊗k .

Ω1
X/k = 0 implies Ω1

Z/k
= 0. Since x ∈ Z(k) (x is rational), mx/m

2
x

∼−→
Ω1
Z/k
⊗ k(x) implies mx/m

2
x = 0, and hence mx = 0. So OZ,x = k(x) = k .

(3)⇒ (1) We may assume X = SpecK, K/k is finite separable. Then
K = k [T ]/(f), where f ′(x) 6= 0, {x} = SpecK. Apply Jacobian criterion to

SpecK � � i //

��

Spec k [T ]

xxqqqqqqqqqq

Spec k

we get X/k is smooth, and hence X/k is étale.

Theorem 3.7. Let k be a field, and X/k be of finite type.
(1) If X is smooth over k, then X is regular. Moreover, if X is integral,

then rkΩ1
X/k = dimX.

(2) If k is perfect, and X is regular, then X/k is smooth.

Proof. (1) We have to check OX,x is regular for all closed point x ∈ X. Let
x ∈ X be a closed point, we have [k(x) : k ] <∞.

We may assume that we have a commutative diagram

X
� � i //

��

Z = An+r
k

xxrrrrrrrrrr

Spec k

where i is a closed immersion of ideal I. Pick up (fi)1≤i≤r, such that Ix =
r∑
i=1

(fi)xOZ,x, and dZ/k ⊗ k(x) are linearly independent. Let m = mZ,x. Since

the following diagram commutes

I/I2 ⊗ k(x) � � dZ/k //
� u

ϕ
''PPPPPPPPPPPPP

Ω1
Z/k ⊗ k(x)

m/m2

dZ/k

OO
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where ϕ : fi ⊗ k(x) 7→ (fi)x mod m2, the (fi)x mod m2 are linearly
independent in m/m2, so ((f1)x, · · · , (fr)x) is part of a regular system of
parameters of OZ,x. Then OX,x = OZ,x/Ix is regular, by 3.1.

Since X is smooth over k , the sequence

0→ I/I2 → Ω1
Z/k ⊗OX → Ω1

X/k → 0

is exact. As rk(Ω1
Z/k ⊗OX) = n+ r and rk(I/I2) = r, rkΩ1

X/k = n = dimX.

(2) We will apply Jacobian criterion to

x ∈ X � � i //

��

Z = An+r
k

xxrrrrrrrrrr

Spec k

where x is any closed point, and I is the ideal of the closed immersion i. It
is sufficient to show

d⊗ k(x) : I/I2 ⊗ k(x)→ Ω1
Z/k ⊗ k(x)

is injective.
Since k is perfect, k(x)/k is separable and hence Ω1

k(x)/k = 0, by 3.6.
Consider the exact sequences:

I/I2 ⊗ k(x)→ Ω1
Z/k ⊗ k(x)→ Ω1

X/k ⊗ k(x)→ 0 (∗)

mx/m
2
x → Ω1

X/k ⊗ k(x)→ Ω1
k(x)/k → 0 (∗∗)

The sequence (*) implies dim Ω1
Z/k ⊗k(x) ≥ n, and the sequence (**) implies

dim Ω1
Z/k⊗k(x) ≤ n. So dim Ω1

Z/k⊗k(x) = n, and hence d⊗k(x) is injective.

So X/k is smooth at x, using the Jacobian criterion.

Corollary 3.8. Let k be a field, and X/k be of finite type. Then the following
conditions are equivalent:

(1) X/k is smooth.
(2) For any extension k ′/k, X ⊗ k ′ is regular.
(3) There exists a perfect extension k ′/k, such that X ⊗ k ′ is regular.

Proof. We only proof (3)⇒(1). Let X ′ = X ⊗ k ′. Since k ′ is perfect, X ′ is
smooth over k ′ by 3.7. Since X/k is of finite type, there exists some n and a
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closed immersion i : X ↪→ An
k . Using base change, we have a similar closed

immersion: i′ : X ′ → An
k ′ . For any x ∈ X, let x′ ∈ X ′ be an inverse image of

x of the canonical map X ′ → X. Let I (resp. I ′) be the ideal of i (resp. i′),
let N = I/I2, N ′ = I ′/I ′2. As X ′/k ′ is smooth,

dAn
k′/k

′ ⊗ k(x′) : N ′ ⊗ k(x′)→ ΩAn
k′/k

′ ⊗ k(x′)

is injective by 2.3(4)(a) and 2.12. Since k → k ′ is flat, one can show that
N ′ ⊗ k(x) ∼= N ⊗ k(x′), and i′∗Ω1

An
k′/X

′ ⊗ k(x′) = i∗Ω1
An

k /X
⊗ k(x′). Then we

have a commutative diagram

N ′ ⊗ k(x′)
dAn

k′
/k′⊗k(x′)

// i′∗Ω1
An

k′/X
⊗ k(x′)

N ⊗ k(x)
dAn

k
/k⊗k(x)

//

OO

i∗Ω1
An

k /X
⊗ k(x)

OO
.

with the vertical arrows injective, which follows that dAn
k /k
⊗k(x) is injective.

Therefore X is smooth over k by 2.12 and 2.10(4)(b).

Theorem 3.9. Let f : X → Y be locally of finite presentation. Then the
following conditions are equivalent:

(1) f is smooth.
(2) f is flat, and for any y ∈ Y , Xy/y is smooth.

Lemma 3.10. Let A be an artinian local ring, with the maximal ideal m and
the residue field k = A/m. Let E be an A-module, then E ⊗ k = 0 implies
E = 0.

Proof. Since A is an artinian local ring, there exist n ∈ N, such that mn = 0.
Then E ⊗ k = 0 implies

E = mE = m2E = · · ·mnE = 0.

Lemma 3.11. Let A be an artinian local ring, M be an A-module. Then the
following conditions are equivalent:

(1) M is free.
(2) M is flat.
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Proof. (1)⇒ (2) is clear.
(2)⇒ (1): Let m be the maximal ideal of A and k be the residue field. As

M is flat, Tor1(M, k) = 0. Let (xα)α∈I be the elements of M whose images
in M/mM form a k -basis. Let P be a free A-module with basis (eα)α∈I and
φ be the homomorphism from P into M which maps eα to xα. By 3.10, φ is
surjective. Let N be its kernel. The exact sequence

0 // N // P //M // 0

gives rise to the exact sequence:

Tor1(P, k) = 0→ Tor1(M, k) = 0→ N/mN → P/mP
φ→M/mM → 0

As φ is bijective, N/mN=0 and hence N is zero.

Lemma 3.12. Let A, B be noetherian local rings, A → B be a local mor-
phism. Let E, F be finitely generated B-modules, and F be flat over A.
Assume u⊗ k : E ⊗ k → F ⊗ k is injective, then u is injective, and Cokeru
is flat over A.

Proof. (Raynaud) Let An = A/mn+1, En = E ⊗ An, Fn = F ⊗ An. First we
show that un : En → Fn is injective and split. Since Fn flat over An, Fn is
free over An, by 3.11. Take a basis of En ⊗ k , lift its image in Fn ⊗ k into a
part of basis of Fn, which forms a free submodule L′, making the following
diagram commutes:

L′ � p

!!B
BB

BB
BB

B

ϕ

��
En // Fn

where ϕ is defined in the obvious way. We have ϕ is surjective by Nakayama’s
lemma, and hence ϕ is an isomorphism. So the sequence

0→ En
un→ Fn → Coker(un)→ 0

is injective and split. Then Fn is flat over An implies Coker(un) is flat over
An for any n. Consider the commutative diagram

E
u //

��

F

��

lim−→En = Ê � � // F̂ = lim−→Fn
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where E → Ê and F → F̂ are injective ([B] III §5, Proposition 2). So E → F
is injective. Therefore Coker(u) is flat over A ([B] III §5, Theorem 1).

Lemma 3.13. Let A → B be a local morphism, with (A,mA), (B,mB)
noetherian local rings, f ∈ mB. Let M be a finitely generated B-module.
If M/fn+1M is flat over A for any n ≥ 0, then M is flat over A.

Proof. It is sufficient to show for any N ′ ↪→ N , where N ′, N are finitely
generated A-modules, u : M ⊗A N ′ →M ⊗A N is injective.

As M ⊗AN ′ is finitely generated B-module, it is separated for the f -adic
topology. Let x ∈ Ker(u). For any n ≥ 0, the map M/fn+1M ⊗A N ′ →
M/fn+1M⊗AN is injective, by the assumption that M/fn+1M is flat. Then
we deduce that x ∈ fn+1(M ⊗A N ′) from the commutative diagram:

M ⊗A N ′ //

��

M ⊗A N

��
M/fn+1M ⊗A N ′ //M/fn+1M ⊗A N

Thus x ∈
⋂
n

fn+1(M ⊗A N ′) = 0. So u is injective, and hence M is flat over

A.

Proposition 3.14. Let A→ B be a local morphism, with (A,mA), (B,mB)
noetherian local rings, k = A/mA. Let M be a finitely generated B-module,
f1, · · · , fr ∈ mB. Then the following conditions are equivalent:

(1) M is flat over A, and (f1 ⊗ k , · · · , fr ⊗ k) is (M ⊗ k)-regular.

(2) (f1, · · · , fr) is M-regular, and M/
r∑
i=1

fiM is flat over A

Proof. (1)⇒(2) By induction on r, we may reduce the case to r = 1. By
assumption, f ⊗ k : M ⊗ k →M ⊗ k is injective, and M is flat over A. Thus
f is injective and M/fM is flat, by 3.12.

(2)⇒(1) By induction on r, we may reduce to the case r = 1. Consider
the exact sequence:

0→M
f→M →M/fM → 0 (∗)

M/fM is flat over A, M/fM is free over A by 3.11, and hence (∗) splits. So
f ⊗ k : M ⊗ k → M ⊗ k is injective. It remains to show M is flat over A.
Consider the exact sequence:

0→M/fM
fn

→M/fn+1M →M/fnM → 0,
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by induction on r, we get that M/fn+1M is flat for any n. Hence M is flat
over A by 3.13.

Recall that a closed immersion i : Y → X of locally noetherian schemes
is regular at x ∈ Y if the ideal I of i can be locally defined by f1, · · · , fr at
x, such that (fi)x is a regular sequence in OX,x (this is equivalent to saying
that the Koszul complex K�(fi) is a resolution of OY around x).

Corollary 3.15. Consider the following commutative diagram:

x ∈ Ys � � //
� _

is
��

Y � _

i

��
Xs

��

� � // X

��
�

Spec k(s) = s � � // S

where i is a closed immersion, S is locally noetherian, X → S is locally of
finite type. Then the following conditions are equivalent:

(1) is is regular at x, and X is flat over S at x (i.e. OX,x is a flat
OS,s-module).

(2) Y is flat over S at x, and i is regular at x.

Proof. Apply 3.14 to A = OS,s, B = OX,x, M = OX,x.

Corollary 3.16. i is regular and Y is flat if and only if X is flat over S and
is is regular for any s ∈ S.

Proof of Theorem 3.9. (1)⇒ (2): Assume f is smooth, we need to prove (a):
Xy is regular for any y ∈ Y , (b): f is flat. (a) is trivial. So it sufficient to
prove (b). We have the commutative diagram

x ∈ X � � i //

��

Z = An+r
Y

xxrrrrrrrrrrrrr

y ∈ Y

where x ∈ Xy. Let I be the ideal of i, let f1, · · · , fr be local sections of I at
x such that (fi)x is a minimal system of generators of Ix (i.e. fi ⊗ k(x) is a
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basis of N ⊗ k(x). Define the diagram

0 // N ⊗ k(x) //
� t

''NNNNNNNNNNNN
Ω1
Z/Y ⊗ k(x) // Ω1

X/Y ⊗ k(x) // 0

mXy ,x/m
2
Xy ,x

dZ/Y

OO
,

the images of fi⊗ k(x) are linearly independent in mXy ,x/m
2
Xy ,x

. Hence (fi)x
is part of a regular system of parameters of OXy ,x, in particular, (fi)x form a
regular sequence in OXy ,x. So fi form a regular sequence and X is flat over
Y at x, by 3.14.

(2)⇒(1):exercise.

End of the proof of Theorem3: To show that (2) implies (1), we must
show that for any point x ∈ X, f is smooth at x. Let y = f(x). Since the
problem is local on X, we may assume X is embedded in some Z = An+r

Y

with ideal I.
Xy

//

��

X
i //

f

��

Z = An+r
Y

zzuuuuuuuuuu

y // Y

Then we have an exact sequence:

0→ Ix → OZ,x → OX,x → 0.

Since f is flat, applying ⊗k(y), one gets an exact sequence:

0→ I ⊗OY,y
k(y)→ OZy ,x → OXy ,x → 0.

Suppose g1, · · · , gr generate I⊗k(y) and dg1(x), · · · , dgr(x) are linearly inde-
pendent on k(y) in Ω1

Zy/y
⊗k(x) = Ω1

Z/Y ⊗k(x). Lift g1, · · · , gr to f1, · · · , fr in

Ix, then df1(x), · · · , dfr(x) are linearly independent on k(x). By Nakayama’s
Lemma, Ix is generated by f1, · · · , fr. Applied the Jacobian criterion, it
follows that f is smooth at x. This completes the proof of Theorem

Remark. Let f : X → Y be a smooth morphism. Then Ω1
X/Y is locally free

of finite type. For a point x in X, let y = f(x) and Ω1
Xy/y

= Ω1
X/Y ⊗ OXy ,

then the integer
rkk(x)Ω

1
X/Y ⊗ k(x) = rkk(x)Ω

1
Xy/y
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is called the relative dimension of f at x. This is a locally constant function
of x. By classical dimension theory, it’s just the dimension of the irreducible
component of theXy containing x. Obviously, for f to be étale , it’s necessary
and sufficient that f is smooth with relative dimension 0.

Corollary 3.17. A morphism f : X → Y is étale if and only if f is of finite
presentation, flat and Ω1

X/Y = 0.

Proof. The “only if” part, is clear. Conversely, by Theorem 3.9, we only
need to show that Xy → y is smooth. But since Ω1

X/Y ⊗ k(y) = Ω1
Xy/y

= 0,
by Proposition 3.6, Xy → y is étale, in particular smooth.

Corollary 3.18. Consider the following diagram:

X
i //

f

��

Z

g
~~~~

~~
~~

~

Y

,

where f, g are smooth, and i is a closed immersion. Then i is a regular
immersion.

Proof. For a point x in X, let U be an affine open neighborhood of x in Z,
such that we have the following cartesian diagram :

X ∩ U

��

� � // U

h
��

An
Y

// An+r
Y = SpecOY [t1, · · · , tn+r]

.

where h is étale. Then h∗(ti) = fi ∈ Γ(U,OU) (1 6 i 6 n + r), and An
Y

is the linear subspace with equations t1 = · · · = tr = 0. Thus X ∩ U
is the closed subscheme in U defined by the ideal I = (f1, · · · , fr). For
i to be regular at x, it suffices that f1, · · · , fr is a regular sequence, i.e.
ε : K·(f1, · · · , fr) → OX∩U is a quasi-isomorphism, where K•(f1, · · · , fr) is
the Kozsul complex. But the quasi-isomorphism ε0 : K•(t1, · · · , tr)→ OAn ,
remains a quasi-isomorphism by tensoring it with OU , since h : U → An+r

Y is
flat by Theorem 3.9, and ε0 ⊗OU = ε.

Before stating the next corollary, we first recall some basic definitions in
linear algebra. Let k be a field, and E be a finite dimensional k-vector space.
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Let V and W be two subspaces of E, then we say V and W are transversal
in E, if E = V +W . In this case we have

codim(V ∩W,E) = codim(V,E) + codim(W,E),

(i.e. there exists a decomposition of E = V ′ ⊕ (V ∩ W ) ⊕ W ′ such that
V ′ ⊕ (V ∩W ) = V and (V ∩W )⊕W ′ = W ).

Corollary 3.19 (Transversality). Let X be a scheme over S, and Y, Z be
two closed subschemes of X. Then we have the following cartesian diagram:

t ∈ Y ∩ Z := Y ×X Z h //

k
��

Y

i
��

Z
j // X

Suppose that X, Y, Z are smooth over S, and t is a point in Y ∩Z. From the
natural maps: NY/X → i∗Ω1

X/S and j∗Ω1
X/S → Ω1

Z/S, it follows that

h∗NY/X → h∗i∗Ω1
X/S = k∗j∗Ω1

X/S → k∗Ω1
Z/S.

After tensoring k(t), one gets a canonical map:

NY/X ⊗ k(t)→ Ω1
Z/S ⊗ k(t). (3.19.1)

Then the following conditions are equivalent:
(1) The canonical map (3.19.1) is injective.
(2) The analogous canonical map NZ/X ⊗ k(t)→ Ω1

Y/S ⊗ k(t) is injective.

(3) TY/S ⊗ k(t) and TZ/S ⊗ k(t) are transversal in TX/S ⊗ k(t).
When (1)-(3) are satisfied at t, then they are satisfied in a neighborhood of t
and the natural map

NY ∩Z/X → NY ∩Z/Y
⊕

NY ∩Z/Z

is an isomorphism. In particular, for any s ∈ S,

codimt((Y ∩ Z)s, Xs) = codimt((Y ∩ Z)s, Ys) + codimt((Y ∩ Z)s, Zs).

The proof of this corollary is quite elementary, we leave it as an exercise.
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4 Smoothness and Deformations

Let G be a sheaf of groups on a space X. A left G-sheaf on X is a sheaf E
equipped with a map of sheaves: G× E −→ E, satisfying:
(i) For any open subset U of X, g(ha) = (gh)(a) for g, h ∈ G(U), a ∈ E(U);
(ii) ea = a for any a ∈ E(U), where e ∈ G(U) is the neutral element.
A G-morphism (a G-equivariant morphism) between G-sheaves is a map
u : E → F commuting with the action of G, such that u(ga) = gu(a) for
g ∈ G(U) and a ∈ E(U).

Definition 4.1. A G-torsor on X (or a torsor under G on X) is a G-sheaf
E having the following properties:
(1) For any open subset U of X and a, b ∈ E(U), there exists a unique
g ∈ G(U) such that ga = b ;
(2) For any x ∈ X, Ex is not empty, or equivalently, there exists an open
covering (Ui) of X, such that E(Ui) 6= ∅.

Example 4.1.1. Let X = {pt}(the space with one point), then G is just a
group, and a G-sheaf E is just a G-set. E is a G-torsor if and only if E is an
affine space under G, i.e. E is nonempty and for any a, b ∈ E, there exists a
unique g ∈ G such that ga = b.
When E is a G-torsor, if one chooses a0 ∈ E, then the map G→ E given by
g 7→ ga0 is an isomorphism of G-sets.

Remark. Let E be a G-sheaf on X. Assume E satisfies 4.1 (1). Then if for
some U open in X, E(U) 6= ∅, then by taking some a ∈ E(U), one obtains
an isomorphism of G-sheaves G|U → E|U given by g 7→ g(a|V ), where V is
an open subset of U and g ∈ G(V ).
Hence for a G-sheaf E, E is a G-torsor if and only if E is locally G-isomorphic
to G acting on itself by left translations. And any G-equivariant morphism
of G-torsors u : E → F is actually an isomorphism.

Definition 4.2. Let E be a G-torsor. E is called trivial if E is isomorphic
to G acting on itself by left translations.

Note that E is trivial if and only if E(X) is nonempty.
4.3. Cohomology Class of a Torsor (Commutative Case) Let G be a

sheaf of abelian groups on X, E be a G-torsor on X, and we will write the
action of G on E additively, i.e. “g + a” instead of “ga”.
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Let U = (Ui)i∈I be an open covering of X, and si ∈ E(Ui). Denote Ui0 ∩
· · · ∩ Uip by Ui0···ip . There exists a unique gij ∈ G(Uij) such that

sj|Uij
− si|Uij

= gij.

Then
(gij − gik + gjk)|Uijk

= 0,

i.e. (gij) ∈ Ž1(U , G) = Z1Č(U , G). Let c(E) ∈ H1(X,G) be the image of
(gij) in H1(X,G) by the canonical map:

Ž1(U , G)→ Ȟ1(U , G)→ H1(X,G).

Proposition 4.4. c(E) does not depend on the choice of (U , si). Moreover
E 7→ c(E) induces a bijection:

Tors(X,G)−̃→H1(X,G),

where Tors(X,G) is the set of isomorphism classes of G-torsors on X. The
class of trivial torsors corresponds to the zero element in H1(X,G). In par-
ticular, a G-torsor E is trivial if and only if c(E) = 0.

4.5. Preliminary on Čech Cohomology: We have seen before that there
is a natural map Ȟ(U , G) → Hn(X,G), and we want to look at it more
closely. A covering V = (Vj)j∈J of X is said to refine U = (Ui)i∈I , if there
exists a map ϕ : J → I such that Vj ⊂ Uϕ(j) for any j ∈ J . Then ϕ induces
a natural map: ϕ∗ : Čn(U , G)→ Čn(V , G) given by

(ϕ∗a)j0···jn = aϕ(j0)···ϕ(jn)|Vj0···jn
.

It’s easily checked that ϕ∗ is actually a map of complexes between Č(U , G)
and Č(V , G), and that for two maps ϕ, ψ from J to I, the resulting maps
ϕ∗, ψ∗ are homotopic, i.e.

ϕ∗ − ψ∗ = hd+ dh,

where h : Čn(U , G)→ Čn−1(V , G) is given by

(h(s))j0···jn−1 =
n−1∑
k=0

(−1)ksψ(j0)···ψ(jk)ϕ(jk)···ϕ(jn−1)|Vj0···jn−1
.
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Thus one gets a well defined (independent of ϕ) map:

ρUV : Ȟn(U , G)→ Ȟn(V , G).

This ρUV makes the following diagram commute:

Ȟn(U , G)
ρUV //

&&NNNNNNNNNNN
Ȟn(V , G)

xxppppppppppp

Hn(X,G)

.

Hence one gets a natural map:

lim−→ Ȟn(U , G)→ Hn(X,G) (4.5.1)

where U runs through the open covering of X.

Lemma 4.6. The map (4.5.1) is bijective for n = 0, 1.

Proof. For n = 0, it follows from Ȟ0(U , G) = H0(X,G) = Γ(X,G). Suppose
that n = 1. Take an exact sequence

0→ G→ L
p−→M → 0 (4.6.1)

with L flasque. Then one gets

0→ C•(U , G)
u−→ C•(U , L)→ C•(U ,M). (4.6.2)

Denote by D•(U) the cokernel of u. Then one gets a long exact sequence:

0→ Γ(X,G)→ Γ(X,L)
ϕU−→ H0(D•(U))→ Ȟ1(U , G)→ 0

since L is flasque. Now in the diagram

Γ(X,L)
ϕU //

η
&&NNNNNNNNNNN

H0(D•(U))

ψU
��

Γ(X,M)

,

note that ψU is injective, H1(X,G) = Coker η and Ȟ1(U , G) = CokerϕU .
Then by Snake Lemma, one obtains

0→ Ȟ1(U , G)→ H1(X,G)→ CokerψU → 0.
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By passing to the limit, we see that it only remains to show that

lim−→CokerψU = Coker(lim−→H0(D•(U))→ Γ(X,M)) = 0.

Since (4.6.1) is exact, for any s ∈ Γ(X,M) there exists an open covering
U = (Ui)i∈I , such that s|Ui

= p(ti), where ti ∈ Γ(Ui, L). Hence ψU(p(ti)) = s,
this shows that the morphism lim−→H0(D•(U))→ Γ(X,M) is surjective. Our
conclusion follows from it.

Proof of Proposition (sketch): (a) First, we verify that the map E 7→ c(E)
(denoted by ϕ) does not depend on the choice of U . Suppose there are two
coverings, say U1 = (U1i)i∈I1 and U2 = (U2i)i∈I2 , and a torsor E with Čech
cocycles (g1ij) and (g2ij) respectively. Then one can find a third covering V
of X, which is a common refinement of U1 and U2. It’s easily checked that
in (g1ij) and (g2ij) has the same image in Ȟ1(V , G).
(b) We give a map ψ : H1(X,G)→ Tors(X,G) inverse to ϕ. Suppose there
is an element ξ in H1(X,G) represented by a Čech cocycle (gij) for some
open covering U = (Ui)i∈I of X. We can associate to it a torsor under G in
the following way:

U 7−→ E(U) = {(si ∈ G(Ui ∩ U)i∈I)|sj|Uij∩U − si|Uij∩U = gij|Uij∩U}. (4.6.3)

One verifies that E is a G-sheaf and E|Ui
' G|Ui

. This E is actually a
G-torsor. Then we define ψ(ξ) to be the isomorphism class of E. One can
verify that it does not depend on the representing Čech cocycle.
Immediately we note that the class of ψ(ξ) in H1(X,G) is the class of (gij).
This proves ϕψ = Id. Conversely, given a torsor F , let c(F ) be its corre-
sponding cohomology class. Then it is represented by a Čech cocycle (gij)
for some open covering U = (Ui)i∈I , i.e. ti|Uij

− tj|Uij
= gij, where ti ∈ F (Ui).

Then according to the above construction, ψ(c(F )) is represented by a torsor
E defined in (4.6.3). Hence for an element s = (si) in E(U), one has

si|Uij∩U + ti|Uij∩U = sj|Uij∩U + tj|Uij∩U .

This shows that (si|Uij∩U + ti|Uij∩U) paste together to give a section in F (U).
This gives a well defined G-equivariant map u : E → F . Hence it follows
that ψϕ = Id.
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Remark. Since H1(X,G) = Ext1(ZX , G), where ZX is the constant Z-sheaf
on X, one gets another description of the correspondence between cohomol-
ogy classes and torsors. Let

0 // G // L
p // ZX

// 0

be an element in Ext1(ZX , G), then we relate it to the torsor defined by
E = p−1(1), where 1 ∈ Γ(X,ZX).

Example 4.6.1. For G = O∗X , an O∗X-torsor is just an invertible sheaf (or a
line bundle) on X. Let L be a line bundle on X, and (ei ∈ L(Ui))i∈I a local
basis of L.Then there exist gij ∈ Γ(X,O∗X) such that ej = gijei on Uij. The
map L 7→ (gij) gives an isomorphism

Pic(X)−̃→H1(X,O∗X),

where Pic(X) is the set of isomorphism classes of O∗X torsors on X.

Theorem 4.7. Consider the diagram

X

f

��
T0

i //

g0

55jjjjjjjjjjjjjjjjjjjj
T //

g

88qqqqqqq
Y

, (4.7.1)

where f is smooth, and i is a first-order thickening with ideal sheaf I.
(a) There exists an obstruction

o(i, g0) ∈ Ext1(g∗0Ω
1
X/Y , I),

whose vanishing is necessary and sufficient for the existence of a global Y -
morphism g : T → X extending g0.
(b) If o(i, g0) = 0, then the set of extensions of g0 is an affine space under
Hom(g∗0Ω

1
X/Y , I).

Proof. First note that since Ω1
X/Y is locally free of finite type,

G := RHom(g∗0Ω
1
X/Y , I) = Hom(g∗0Ω

1
X/Y , I) ' g∗0TX/Y ⊗ I

hence
Exti(g∗0Ω

1
X/Y , I) = H i(T0, g

∗
0TX/Y ⊗ I) = H i(T0, G).
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We also note that an extension g of g0 is completely determined by its cor-
responding morphism g∗ : OX → g∗OT . Let E be the sheaf on T0 given
by

U0 7−→ {g∗|g ∈ HomY (U,X), g0 = g ◦ i}

where U is the open subscheme of T corresponding to U0. Then E is a
G-sheaf: for any g∗ in E(U0) and D in G(U0) = DerY (X, g0∗I), g∗ + D is
also in E(U0). Actually, E is a G-torsor, since locally there exist extensions
of g0(because f is smooth), and for any g∗1, g

∗
2 in E(U0), g

∗
1 − g∗2 ∈ G(U).

Thus one gets a cohomology class c(E) ∈ H1(T0, G), which is the desired
obstruction o(i, g0). When o(i, g0) = 0, E ' G as a G-sheaf, hence E(T0), the
set of global extensions of g0, is an affine space underG(T0) = H0(g∗0Ω

1
X/Y , I).

Corollary 4.8. In the diagram (4.7.1), if T is affine, then the obstruction
o(i, g0) vanishes, hence global extensions of g0 exists.

Proof. Indeed, g∗0TX/Y ⊗ I is a quasi-coherent sheaf on T0, and

H1(T0, g
∗
0TX/Y ⊗ I) = 0

since T0 is affine.

Definition 4.9. Let Y0 → Y be a first-order thickening with ideal I, and
f0 : X0 → Y0 be a smooth morphism. A deformation of X0 over Y is a
flat morphism f : X → Y such that X0 = Y0 ×Y X, such that one has the
following cartesian diagram

X0

f0
��

J // X

f

��
Y0

I // Y

(4.9.1)

with f flat.

Remark. (a) If f is a deformation of f0, then f is smooth according to
Theorem 3.9.
(b) In the cartesian diagram (4.9.1), if f0 is flat , then for f to be flat it is
necessary and sufficient that f ∗0I w J by the flatness criterion.
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In the sequel, we sometimes use the phrase “smooth lifting” (or “lifting”
for short) instead of “deformation”. For a given smooth f0 : X0 → Y0 and
thickening Y0 → Y , an isomorphism between two liftings, f1 : X1 → Y and
f2 : X2 → Y , is a morphism a : X1 → X2, such that the following diagram

X0

f0
��

// X1
a //

f1

  A
AA

AA
AA

A X2

f2~~~~
~~

~~
~~

Y0
// Y

commutes and f1 = f2 ◦ a. We note that it’s just a map of Y -extensions of
X0 by f ∗0I, hence automatically an isomorphism from X1 to X2.

Theorem 4.10. Let f0 : X0 → Y0 be a smooth morphism, and i : Y0 → Y a
first-order thickening with ideal sheaf I.
(a) There exists an obstruction

o(f0, i) ∈ Ext2(Ω1
X0/Y0

, f∗0I),

whose vanishing is necessary and sufficient for the existence of a lifting of
X0 over Y .
(b) When o(f0, i) = 0, the set of isomorphism classes of liftings is an affine
spaces under the group Ext1(Ω1

X0/Y0
, f∗0I).

(c) The group of automorphisms of a lifting X is naturally identified with
Hom(Ω1

X0/Y0
, f∗0I).

Proof. First of all, we note that since Ω1
X0/Y0

is locally free of finite type,
there is, for each i ∈ Z, a canonical isomorphism

Exti(Ω1
X0/Y0

, f∗0I) w H i(X0, G), (4.10.1)

where G := Hom(Ω1
X0/Y0

, f∗0I) w TX0/Y0 ⊗ f ∗0I.
Assertion (c) is a special case of 4.7 (b), the identification associates with an
automorphism u of X the “derivation”u− IdX .
For assertion (b), if X1 and X2 are two liftings of X0, consider the sheaf

E : U0 7−→ {a : X1|U1 → X2 extending IdU0},
where U0 is a open subscheme of X0, and U1 the corresponding open sub-
scheme in X1. As in the proof of 4.7, E is a torsor under

Hom(Ω1
X1/Y

⊗OX0 , f
∗
0I) = Hom(Ω1

X0/Y0
, f∗0I)
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Let E(X1, X2) ∈ Ext1(Ω1
X0/Y0

, f∗0I) be the obstruction to the existence of
a global isomorphism X1 w X2 according to 4.7. Fix X1, then one checks
the map X 7−→ E(X1, X) gives a bijection between isomorphism classes
of liftings of X0 and Ext1(Ω1

X0/Y0
, f∗0I). We note that if X0 is affine, then

Hom(Ω1
X0/Y0

, f∗0I) is a quasi-coherent sheaf on X0. Thus Ext1(Ω1
X0/Y0

, f∗0I)
vanishes by (4.10.1), hence all liftings of X0 over Y are isomorphic.

Sketch of proof of (a): First we claim that for a point x ∈ X0, there exists
an open neighborhood U0 of x, such that there exists a lifting U of U0 over
Y . We may assume that Y = SpecA is affine. Then X0 is also affine with
ring A0 = A/I. By the Jacobian criterion, there is an open neighborhood V0

of x, such that one has a commutative diagram

x ∈ V0

��

� � i0 // An+r
Y0

= SpecA0[t1, · · · , tn+r]

uujjjjjjjjjjjjjjjjjjjjjj

Y0

where i0 is a closed immersion with ideal J = (g1, · · · , gr), such that dg1(x), · · · ,
dgr(x) are linearly independent. Hence there exists an open neighborhood
U0 of x in V0, such that dg1(y), · · · , dgr(y) are linearly independent for any
y ∈ U0. Now choose g̃1, · · · , g̃r to be the lifting of g1, · · · , gr in A[t1, · · · , tn+r].
Let V = V (g̃1, · · · , g̃r) be the closed subscheme of An+r

Y , and U be the open
subscheme of V corresponding to U0. Then dg̃1(y), · · · , dg̃r(y) are linearly
independent for any y ∈ U . Again by the Jacobian criterion, U is smooth
over Y , hence a lifting of U0 over Y .
Secondly we prove (a) under the assumption that X0 is separated. Choose
an affine open covering U = ((Ui)0)i∈I of X0, such that for each i ∈ I, we
have a lifting Ui of (Ui)0 over Y . Since X0 is assumed to be separated, each
(Uij)0 = (Ui)0 ∩ (Uj)0 is affine. Consequently by (b), there exists an isomor-
phism gji : Uj|(Uij)0→̃Ui|(Uij)0 , which is completely determined by the induced
map

fji = g∗ji : OUi
|(Uij)0 → OUj

|(Uij)0

of OY -algebras. On the triple intersection (Uijk)0 = (Ui)0∩ (Uj)0∩ (Uk)0, the
automorphism fijk = fikfkjfji differs from the identity by a Čech 2-cochain
cijk = fijk − IdOUi

: OUi
→ f ∗0I of the sheaf Hom(Ω1

X0/Y0
, f∗0I). One verifies

that c = (cijk) is actually a Čech 2-cocycle for the covering U , i.e.

cjkl − cikl + cijl − cijk = 0 (4.10.2)
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for any i, j, k, l ∈ I. Note that from cjkl = fjlflkfkj − IdOUj
, we get

flk = flj(IdOUj
+ cjkl)fjk = fljfjk + cjkl.

Hence it follows that

cikl = filflkfki − IdUi
= filfljfjkfki + cjkl − IdUi

cjkl − cikl = −filfljfjkfki + IdUi

Similarly we also have

cijl − cijk = filfljfjkfki − IdUi
.

Combined the above two formulas, (4.10.2) follows. Hence (cijk) is a Čech
2-cocycle. It determines a cohomology class in Ȟ2(U , G)→̃H2(X0, G), since
X is assumed to be affine. This class vanishes if and only if there exists a
1-cochain h = (hij) such that cijk = hjk − hik + hij. Then one defines

f ′ij = fij − hij : OUj
|(Uij)0 → OUi

|(Uij)0 ,

and one can verify that f ′ik = f ′ijf
′
jk. Hence the corresponding maps g′ij :

Ui|(Uij)0→̃Uj|(Uij)0 glue on the triple intersections. Therefore one gets a global
lifting X of X0 over Y .

Corollary 4.11. Let f0 : X0 → Y0 be an étale morphism, and i : Y0 → Y
a first-order thickening with ideal sheaf I. Then there exists a unique lifting
f : X → Y of X0 over Y , and f is necessarily étale.

Proof. Since f0 étale, Ω1
X0/Y0

= 0 and Ext2(Ω1
X0/Y0

, f∗0I) = 0, thus liftings

exist. Moreover Ext1(Ω1
X0/Y0

, f∗0I) = 0 there all liftings are isomorphic. For
the lifting, say f : X → Y , from

Ω1
X/Y ⊗OY0 = Ω1

X0/Y0
= 0

it follows that Ω1
X/Y = 0 since I2 = 0. Hence f is necessarily étale.

Corollary 4.12. Let f0 : X0 → Y0 be a smooth morphism, and i : Y0 → Y a
first-order thickening with ideal sheaf I. If X0 is affine, there exists a unique
lifting of X0 over Y .

Indeed, this follows from H2(X0, TX0/Y0 ⊗ f ∗0I) = 0 and H1(X0, TX0/Y0 ⊗
f ∗0I) = 0 since TX0/Y0 ⊗ f ∗0I is a quasi-coherent sheaf.
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Corollary 4.13. Let f0 : X0 → Y0 be a smooth proper morphism with relative
dimension 1, and i : Y0 → Y a first-order thickening with ideal I. If moreover
Y is affine, then there always exists a lifting of X0 over Y .

Proof. First we note that

Hq(X0, TX0/Y0 ⊗ f ∗0I) = Γ(Y0, R
qf0∗(TX0/Y0 ⊗ f ∗0I)).

By Zariski’s main theorem, for any q > 1,

Rqf0∗(TX0/Y0 ⊗ f ∗0I) = 0.

Hence the obstruction o(f0, i) ∈ H2(X0, TX0/Y0 ⊗ f ∗0I) vanishes.

5 Serre-Grothendieck Global Duality Theo-

rem

For simplicity, we just discuss the locally neotherian case. Thus all schemes
are presumed to be locally noetherian unless otherwise stated.
5.1. The f ! Functor (a) Let i : Y → X be a closed immersion. Given a

complex F in D+(X), define

i!F := RHomOX
(OY , F )|Y

i.e. i∗i
!F = RHomOX

(OY , F ). It gives a functor from D+(X) to D+(Y ). If

Z
j // Y

i // X

is a composition of closed immersions, then j!i! = (ij)!, i.e. for any F ∈
D+(X)

RHomOY
(OZ , RHomOX

(OY , F )|Y )|Z = RHomOX
(OZ , F )|Z .

To prove it, we may assume that each F i(i ∈ Z) is an injective OX-module.
Then RHomOX

(OY , F )|Y = HomOX
(OY , F )|Y and each HomOX

(OY , F i)|Y
is an injective OY -module. Hence we have

j!i!F = HomOY
(OZ ,HomOX

(OY , F )|Y )|Z = HomOX
(OZ ,HomOX

(OY , F ))|Z
= HomOX

(OZ ⊗OX
OY , F )|Z = RHomOX

(OZ , F )|Z = (ij)!F.
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(b) Let f : X → Y be a smooth morphism with relative dimension d, then
ωX/Y = Ωd

X/Y is a line bundle. Define a functor f ! : D+(Y )→ D+(X) by

f !F := f ∗F ⊗L ωX/Y [d]

for an element F ∈ D+(X).
(c) Let

X
i //

f

��

Z

g
~~~~

~~
~~

~

Y

be a commutative diagram with i a closed immersion and g smooth. One can
define a functor i!g! from D+(X) to D+(Y ). The following theorem ensures
that it is independent on the choice of i and g.

Theorem 5.2. Suppose we have a commutative diagram

Z ′′

g′′   B
BB

BB
BB

B X
i′′oo

f

��

i′ // Z ′

g′~~}}
}}

}}
}}

Y

(5.2.1)

where i′ and i′′ are closed immersions and g′ and g′′ smooth. Then there is
a natural isomorphism

a(i′, i′′) : i′!g′! w i′′!g′′!

satisfying the transitive formula:

a(i2, i3) ◦ a(i1, i2) = a(i1, i3)

for any triple (i1, g1), (i2, g2), (i3, g3).

We say that these a(i′, i′′) form a transitive system. In order to prove this
theorem we need some preparation.

Proposition 5.3. Let i : Y → X be a regular immersion of codimension r
with X noetherian. Let I be the ideal sheaf of i, and NY/X = I/I2.
(1) NY/X is locally free of rank r.
(2) ∧qNY/X w T orOX

q (OY ,OY ) for any q ∈ Z. In particular, T orOX
r (OY ,OY ) w

∧rNY/X is a line bundle on Y .
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(3) (a) RHomOX
(OY ,OX) w ωY/X [−r], where ωY/X is a line bundle on Y .

(b) ωY/X w (∧rNY/X)∨.
(4) For F ∈ D+(X), there exists a functorial isomorphism

i!F w Li∗F ⊗LOY
ωY/X [−r]

i.e. i∗i
!F = RHomOX

(OY , F ) w i∗(Li
∗F ⊗LOY

ωY/X [−r]).
In particular

Ext qOX
(OY , F ) w T orOX

r−q(OY , F )⊗ ωY/X .

Proof. From the exact sequence

0→ I → OX → OY → 0,

one gets
NY/X = I/I2 w T orOX

1 (OY ,OY ).

But since i is regular, locally one has a Koszul complex K•(f1, · · · , fr) =
(0→ OX → · · · → OrX → OX), which is a resolution of OY . Hence locally

T orOX
1 (OY ,OY ) = H−1(K•(f)⊗OX

OY ) = OrY .

This proves (1).
In the Appendix, we see that T orOX

∗ (OY ,OY ) carries a graded anti-commutative
OX-algebra structure. When i is regular, locally one can take the Koszul
complex K•(f) to calculate T orOX

q (OY ,OY ) explicitly. One obtains

T orOX
q (OY ,OY ) = ∧q(OrY ),

and that the canonical anti-commutative OX-algebra homomorphism

∧∗ T orOX
1 (OY ,OY ) −→ T orOX

∗ (OY ,OY ).

is an isomorphism. But T orOX
1 (OY ,OY ) w NY/X , hence the assertion (2) of

our theorem follows.
For the assertion (3)(a), Ext qOX

(OY ,OX) can be computed locally using
Koszul complexes

Ext qOX
(OY ,OX) = Hq(K•(f)) = Hq(K•(f)[−r])

which is 0 when q 6= r and OY when q = r. Hence RHomOX
(OY ,OX)[r] is

a line bundle.
Before proceeding to the proof of assertion (4) and (3)(a), we state the fol-
lowing two lemmas, which are useful in the sequel.
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Lemma 5.4. Let i : Y ↪→ X be a regular closed immersion. Then one has

F ⊗LOX
i∗G w i∗(Li

∗F ⊗LOY
G),

for F ∈ D+(X) and G ∈ Db(Y ).

Proof. Note that Li∗ = OY⊗LOX
, hence (by the existence of a Koszul reso-

lution) i∗ is of finite cohomological dimension when i is regular. Li∗ make
sense on D+(X).
First we have to define a map F ⊗L i∗G → i∗(Li

∗F ⊗LOY
G). But there is a

natural map between Li∗(F ⊗L i∗G) and Li∗F ⊗LOY
G defined by

Li∗(F ⊗L i∗G)→ Li∗F ⊗L Li∗(i∗G)→ Li∗F ⊗LOY
G,

where the last map is given by the natural map Li∗i∗G → G. This gives
the desired map F ⊗L i∗G→ i∗(Li

∗F ⊗LOY
G) by the adjointness of Li∗ and

i∗. To show this is an isomorphism, by canonical truncations (using the fact
that i∗ is of finite cohomology dimension), we may assume that F ∈ Db(X).
Replacing F by F ′, where F ′ → F is quasi-isomorphism with F ′i flat, we
may assume F i flat. Then

F ⊗L i∗G = F ⊗ i∗G w i∗(i
∗F ⊗G) = i∗(Li

∗F ⊗L G).

Lemma 5.5. Let F ∈ D+(X) and L,M ∈ Db(X)perf , where Db(X)perf
means the subcategory of Db(X) consisting of perfect complexes on X. Then
one has a natural isomorphism:

F ⊗LOX
RHom(L,M) w RHom(L, F ⊗LM). (5.5.1)

Proof. Note that RHom(L,M) ∈ Db(X)perf , and F ⊗LM ∈ D+(X), hence
both sides of 5.5.1 make sense. Defining the map

K := F ⊗LOX
RHom(L,M) −→ RHom(L, F ⊗LM)

is equivalent to giving a map L ⊗L K → F ⊗L M . Since the problem is in
D(X), we may assume, for all i ∈ Z, Li, F i are flat and that M i are injective.
Then one has the natural map

L⊗L K = F⊗L⊗Hom(L,M) −→ F ⊗M = F ⊗LM
f⊗x⊗ u 7−→ f ⊗ u(x).
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This defines the map (5.5.1). To show that it is an isomorphism, we may
assume that L,M are both strictly perfect since the problem is local. Then
(5.5.1) becomes

F ⊗Hom(L,M)→ Hom(L, F ⊗M).

By canonical truncations we assume furthermore that L is concentrated in
degree 0, and finally L = OX . Then the conclusion becomes obvious.

Now we can return to the proof of 5.3 (4). We need to show that

i∗i
!F = RHomOX

(OY , F ) w i∗(Li
∗F ⊗LOY

ωY/X [−r]) (5.5.2)

for each F ∈ D+(X). By Lemma 5.4, the right hand side of 5.5.2 is just

F ⊗LOX
i∗ωY/X [−r] = F ⊗LOX

RHomOX
(OY ,OX).

Applying Lemma 5.5 one obtains RHomOX
(OY , F ), which is exactly the left

hand side of (5.5.2).
Finally for assertion 5.3(3)(b), one sets F = OY in (5.5.2) and applies H0.
Then one gets

T orOX
r (OY ,OY )⊗ ωY/X w H0(RHomOX

(OY ,OY )).

But clearlyH0(RHomOX
(OY ,OY )) = OY , and by 5.3(2),T orOX

r (OY ,OY ) w
∧rNY/X , thus ωY/X w (∧rNY/X)∨.

Lemma 5.6. Consider a cartesian diagram

Y ′ i′ //

g

��

X ′

f

��
X ′ i // X

where i is closed immersion and f is flat. Then one has g∗i! w i′!f ∗.

Proof. We have to show that for any F ∈ D+(X), there is a natural isomor-
phism i′∗g

∗i!F w i′∗i
!f ∗F . But the left hand side is

i′∗g
∗i!F = i′∗(g

∗i∗RHomOX
(OY , F )) = f ∗RHomOX

(OY , F );

where the right hand side is

i′∗i
!f ∗F = RHomOX′ (OY ′ , f∗F ) = RHomOX′ (f

∗OY , f∗F ).

Then our conclusion follows from the following lemma.
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Lemma 5.7. Let X, Y be locally noetherian, and f : X → Y be a flat
morphism. Then

f ∗RHom(L,M)→̃RHom(f ∗L, f ∗M)

for M ∈ D+(Y ) and L ∈ Db(Y )coh, where Db(Y )coh is the subcategory of
Db(Y ) consisting of complexes with coherent cohomology.

Proof. Replacing M by an injective resolution, we may assume that M i(i ∈
Z) is injective. Then one gets

f ∗RHom(L,M) = f ∗Hom(L,M)→ Hom(f ∗L, f ∗M)→ RHom(f ∗L, f ∗M).

This defines the map. To show it is an isomorphism, we may assume that
Y is noetherian and affine, since the problem is local. Then there is a quasi-
isomorphism L′ → L, where each L′i(i ∈ Z) is free of finite type and L′i = 0
when i is sufficiently large. Hence finally one reduces to prove it for L = OY .
This is trivial.

Having these preparations, we can return to the proof of Theorem 5.2.

Proof of Theorem 5.2. Consider diagram 5.2.1. Let Z ′′′ = Z ′ ×Y Z ′′, then
one can complete the diagram 5.2.1 as follows:

Z ′′′

}}{{
{{

{{
{{

!!C
CC

CC
CC

C

Z ′′

g′′ !!D
DD

DD
DD

D X

i

OO

i′′oo

f

��

i′ // Z ′

g′}}{{
{{

{{
{{

Y

where i is the map determined by (i′, i′′). In general, i is not a closed immer-
sion, but only an immersion, i.e. a composition of a closed immersion with
an open immersion:

X
closed−−−→ Z

open−−→ Z ′′′.

Thus one can replace Z ′′′ by Z, and consider the diagram

Z

h′

��
X

i′ //

i
>>}}}}}}}}
Z ′



5. SERRE-GROTHENDIECK GLOBAL DUALITY THEOREM 167

where i and i′ are both closed immersions, and h′ is smooth. If one can show
that i′! w i!h′!, then one gets

i′!g′! w i!h′!g′! = i!h′′!g′′! w i′′!g′′!.

This gives the desired functor isomorphism.
Let X ′ = X ×Z′ Z, then one get the following cartesian diagram:

X ′ j //

p

��

Z

h′

��
X

s

II

i′ //

i
>>||||||||
Z ′

where s is the section of X determined by (IdX , i)(hence ps = IdX). Notice
that j is a closed immersion as the base change of i′, hence so is s. But p
is smooth(because h′ is smooth), thus it follows that s is actually a regular
closed immersion by 3.18.
Now suppose the relative dimension of h′ is d, then for an arbitrary F ∈
D+(Z ′), one has

i!h′!F = s!j!h′!F = s!j!(h′∗F ⊗ ωZ/Z′ [d])

But

j!(h′∗F ⊗ ωZ/Z′ [d]) = RHomOZ
(O′X , h′∗F ⊗ ωZ/Z′ [d])|X′

= (RHomOZ
(OX′ , h′∗F )⊗ ωZ/Z′ [d])|X′

= RHomOZ
(OX′ , h′∗F )|X′ ⊗ ωX′/X [d]

= j!h′∗F ⊗ ωX′/X [d].

Hence

i!h′!F = s!j!h′!F = s!(j!h′∗F ⊗ ωX′/X [d])

= s!(p∗i′!F ⊗ ωX′/X [d]),

where the third equality is according to Lemma 5.6. Hence it only remains
to show: s!(p∗M ⊗ ωX′/X [d]) = M for any M ∈ D+(X). By 5.3 (4), the left
hand side of the above formula is just

Ls∗(p∗M)⊗L ωX/X′ [−d]⊗ s∗ωX′/X [d] = M ⊗ ωX/X′ ⊗ s∗ωX′/X ,
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Since ps = IdX , we have Ls∗p∗ = Id. But the conormal sheaf NX/X′ w
s∗Ω1

X′/X , and by 5.3 (3)(b) it follows that

ωX/X′ w (∧dNX/X′)∨ = (s∗ωX′/X)∨,

and hence
M ⊗ ωX/X′ ⊗ s∗ωX′/X = M.

This completes the proof.

Appendix 5.8 (the Algebra Structure on T orOX
∗ (OY ,OY )). Let i : Y ↪→

X be a closed immersion. Then T orOX
∗ (OY ,OY ) =

⊕r
q=0 T orOX

q (OY ,OY )
carries a natural structure of graded anti-commutative OX-algebra.
Consider the morphism ϕ given by:

(OY ⊗LOX
OY )⊗LOX

(OY ⊗LOX
OY )
ϕ //

σ23

��

OY ⊗LOX
OY

(OY ⊗LOX
OY )⊗LOX

(OY ⊗LOX
OY )

π⊗Lπ
44iiiiiiiiiiiiiiiii

where σ23 is the permutation between the second and the third tensor com-
ponent, and

π : OY ⊗LOX
OY → OY

is the morphism induced by the multiplication OY ⊗OX
OY → OY . Now de-

note OY ⊗LOX
OY by E, the OX-algebra structure on T orOX

∗ (OY ,OY ) derives
easily from the composition of the two natural map

H∗(E)⊗H∗(E) // H∗(E ⊗L E) // H∗(E)

T orOX
i (OY ,OY )⊗ T orOX

j (OY ,OY ) // T orOX
i+j(OY ,OY )

.

Locally this can be illustrated as follows: The map OX → OY corresponds
to a surjection of rings A � B. Choose a quasi-isomorphism P • → B with
P i a projective A-module for all i ∈ Z. Then consider the following diagram

P • ⊗ P • //

ϕ

��

B ⊗B

��

// 0

P • // B // 0

.
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There exists a map ϕ : P • ⊗ P • → P • making the diagram commute, since
P •⊗P • is a projective resolution of B⊗B. By classical homological algebra
any two such maps are homotopic. Hence the multiplication map π : B ⊗LA
B → B can be calculated as ϕ : P •⊗P • → P •, which is uniquely determined
in the derived category.
Then the morphism

B ⊗LA B ⊗LA B ⊗LA B → B ⊗LA B

is given by

P • ⊗ P • ⊗ P • ⊗ P • → P • ⊗ P • (5.8.1)

x⊗ y ⊗ z ⊗ w 7−→ (−1)pqyz ⊗ xw) (5.8.2)

where y ∈ P p and z ∈ P q. Taking cohomology, one gets

TorAi (B,B)⊗ TorAj (B,B)→ H i+j(P • ⊗ P • ⊗ P • ⊗ P •)→ TorAi+j(B,B).
(5.8.3)

Now we check that this map endows TorA∗ (B,B) an anti-commutative A-
algebra structure, i.e.
(1) (αβ)γ = α(βγ) for any α, β, γ ∈ TorA∗ (B,B).
(2) αβ = (−1)ijβα for α ∈ TorAi (B,B) and β ∈ TorAj (B,B).

(1) follows from a direct computation using 5.8.2. In order to prove (2),
we introduce a kind of “permutation” morphisms. Denote by P •⊗n the n-
copies tensor product of P •. Let η be a permutation of the set {1, 2, · · · , n}.
We say that (i, j) with 1 6 i < j 6 n is a permutated pair, if η−1(i) > η−1(j).
Define a morphism of complexes ση : P •⊗n → P •⊗n by

x1 ⊗ · · · ⊗ xn 7→ (−1)s(x,η)xη(1) ⊗ · · · ⊗ xη(n),

where
s(x, η) =

∑
all permutated pairs (i,j)

degxi · degxj.

Example 5.8.1. When n = 4 and η =

(
1 2 3 4
2 4 3 1

)
, the map ση is given

by
x1 ⊗ x2 ⊗ x3 ⊗ x4 7→ (−1)p1(p2+p3+p4)+p3p4x2 ⊗ x4 ⊗ x3 ⊗ x1,

where pi(1 6 i 6 4) is the degree of xi.
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One can checks that this ση is indeed a morphism of complexes, and
ση1η2 = ση1ση2 for any permutations η1, η2.
In particular when n = 2, we denote by σ the nontrivial permutation σ(12).
Then we note that the diagram

P • ⊗ P •

σ

��

ϕ // P •

P • ⊗ P •

ϕ
::uuuuuuuuu

(5.8.4)

is commutative up to homotopy. When n = 4, the map defined in (5.8.2)
can be represented as (ϕ⊗ ϕ)σ(23).
We claim that, in order to prove (2), it suffices to show that

(ϕ⊗ ϕ)σ(23)σ(13)(24) w (ϕ⊗ ϕ)σ(23), (5.8.5)

where “w” means the homotopy equivalence. Because when passing to co-
homology, the right hand side of (5.8.5) is the multiplication (α, β) 7→ αβ
defined in (5.8.3); and the left hand side is the map (α, β) 7→ (−1)degα·degββα.
But (5.8.5) is equivalent to

(ϕ⊗ ϕ)σ(23)σ(13)(24)σ
−1
(23) w ϕ⊗ ϕ.

And one has σ(23)σ(13)(24)σ
−1
(23) = σ(12)(34), hence

(ϕ⊗ ϕ)σ(23)σ(13)(24)σ
−1
(23) = (ϕ⊗ ϕ)σ(12)(34)

= (ϕσ)⊗ (ϕσ) w ϕ⊗ ϕ,

where the last equivalence is according to (5.8.4). This completes the proof.

Definition 5.9. A morphism of schemes f : X → Y is smoothable if it can
be decomposed as f = gi

X
� � i //

f
��

Z

g
~~~~

~~
~~

~

Y

where i is a closed immersion and g is a smooth morphism.

In this case, i!g! : D+(Y )→ D+(X) depends only on f , and we denote it
by f !.
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Definition 5.10. A morphism of S-schemes f : X → Y if S-smoothable if
there exists a commutative diagram

X
� � i //

f
��

g
����

��
��

��

��
Y

�� ����
��

��
��

S

with i a closed immersion and g a smooth morphism such that the parallel-
ogram is Cartesian.

Let f : X → Y and g : Y → Z be S-smoothable morphisms. Then there
exists a commutative diagram

X
� � //

f

��

X1
� � i′ //

f2

wwnnnnnnnnnnnnnnn

��

W

��

h

vvnnnnnnnnnnnnnnnn

Y

g

��

� � i // Y1

g2

��~~
~~

~~
~~

��

T

vvnnnnnnnnnnnnnnnn

~~||
||

||
||

||

Z

��

Y2
g1

~~}}
}}

}}
}}

f1
vvnnnnnnnnnnnnnnnnn

S

with f1, g1 smooth, X → X1, i : Y → Y1 closed immersions such that all
the parallelograms are Cartesian (and thus f2, g2, h are smooth, i′ is a closed

immersion.) It follows that X → X1
i′−→ W is a closed immersion, and

the morphism W
h−→ Y1

g2−→ Z is the base change of the smooth morphism
T → Y2

g1−→ S. Hence gf is S-smoothable. By Lemma 5.6, f !
2i

! ' i′!h! (cf.
the proof of 5.2), and thus (gf)! ' f !g!.

5.11. Trace map. We proceed to define a natural transformation of functors
Trf : Rf∗f

! → Id in certain cases.
(a) Let i : Y → X be a closed immersion. For E ∈ D+(X), define Tri to

be the morphism

i∗i
!E ' RHomOX

(i∗OY , E)→ RHomOX
(OX , E) ' E



172 CHAPTER 3. DIFFERENTIAL CALCULUS

induced by OX → i∗OY .
(b) Let X = PrY , f : X → Y be the projection. We have a canonical

exact sequence
0→ Ω1

X/Y
v−→ Or+1

X (−1)
u−→ OX → 0,

which is locally the exact sequence constructed in 1.24. The Koszul complex
of u is

0→ ∧r+1(Or+1
X )(−r − 1)→ · · · → Or+1

X (−1)→ OX → 0. (5.11.1)

It follows from what we have mentioned there (without proof) that each
sequence

0→ Ωi
X/Y

∧iv−−→ ∧i(Or+1
X )(−i)→ · · · → Or+1

X (−1)→ OX → 0, i ≥ 0,

is exact. In particular, both (5.11.1) and

0→ Ωr
X/Y → ∧r(Or+1

X )(−r)→ · · · → Or+1
X (−1)→ OX → 0 (5.11.2)

are exact, and we have a canonical isomorphism Ωr
X/Y ' OX(−r−1). These

facts follow from the following lemma.

Lemma 5.12. Let (X,OX) be a ringed space,

0→ F
v−→ E

u−→ OX → 0 (5.12.1)

be an exact sequence of locally free sheaves of finite ranks. Then the Koszul
complex of u

K•(u) = (0→ ∧nE dn−→ ∧n−1E → · · · → E
d1=u−−−→ OX → 0) (5.12.2)

(where n = rankE) is acyclic and each sequence

0→ ∧iF ∧iv−−→ ∧iE d−→ ∧i−1E · · · → E
d−→ OX → 0 (5.12.3)

is exact. Hence ∧iv induces an isomorphism ∧iF → B−i−1K•(u), i ≥ 0. In
particular, taking i = n−1, we get an isomorphism ∧n−1F → ∧nE such that

∧n−1F ∧n−1v
++WWWWW

�� ∧n−1E
∧nE dn

33fffffff

commutes, which coincides with the isomorphism ∧n−1F → ∧nE given by
taking the highest exterior power of (5.12.1) and locally defined by u(b)a 7→
b ∧ (∧n−1v)(a), a ∈ ∧n−1F (U), b ∈ E(U).
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Proof. We may assume E = OX ⊕ F and u is the projection. Then

di : ∧iF ⊕ (OX ⊗ ∧i−1F ) = ∧iE → ∧i−1E = ∧i−1F ⊕ (OX ⊗ ∧i−2F )

is induced by
a⊕ (1⊗ b) 7→ b⊕ 0.

It can be checked directly that (5.12.3) is exact. Take i = n, we get the
acyclicality of (5.12.2). The remainder of the lemma is then obvious.

We define Trf : Rf∗ω[r]→ OY , where ω = ωX/Y = Ωr
X/Y , as follows. The

class of (5.11.1) corresponds to a morphism c : OX → ω[r] in D(X). In fact,
the morphism from the first row to the second row of the diagram

0 // ω //

��

0

0 // ∧r(Or+1
X )(−r) // · · · // OX // 0

0 // OX //

OO

0

is a quasi-isomorphism, and c is just the inverse of it in D(X) composed with
the morphism from the third row to the second. Since Rf∗(OqX(−i)) = 0 for
1 ≤ i ≤ r and for all q, Rf∗[0 → ∧r(Or+1

X )(−r) → · · · → Or+1
X (−1) → 0] =

0. Hence Rf∗c is an isomorphism. We define Trf to be the inverse of the
composition of isomorphisms

OY
∼−→ Rf∗OX

Rf∗c−−→ Rf∗ω[r],

where the first morphism is the canonical mapOY → f∗OX → Rf∗OX , which
is an isomorphism by Section II.3.

When Y is affine, the image of c under the morphism

HomD(X)(OX , ω[r]) ' Hr(X,ω) ' H0(Y,Rf∗ω[r])
H0(Y,Trf )
−−−−−−→ H0(Y,OY )

is 1.
For E ∈ D+(Y ), define Trf by

Rf∗f
!E = Rf∗(f

∗E ⊗ ω[r]) ' E ⊗L Rf∗ω[r]
E⊗LTrf−−−−−→ E,
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where the isomorphism in the middle is the projection isomorphism ([I], 3.2).
(c) The general case. Let f : X → Y be a morphism which can be

factorized as

X
� � i //

f

��

PrY

g
~~}}

}}
}}

}}

Y

where i is a closed immersion and g is the projection. This is the case when,
e.g., f is projective and Y has an ample line bundle. (Then, X ' ProjB
with B a quasi-coherent sheaf of graded OY -algebras generated by B1, B1

of finite type. Up to replacing ⊕Bn by ⊕(Bn ⊗ L⊗m), where L is an ample
line bundle on Y , we may assume that we have an epimorphism Or+1

Y →
B1. Thus we get an epimorphism S(Or+1

Y ) → B, and a closed immersion
ProjB ↪→ ProjS(Or+1

Y ) = PrY .)
Define Trf = Trg(Rg∗ Tri g

!). More specifically, for E ∈ D+(Y ), define
Trf by the composition

Rf∗f
!E ' Rg∗i∗i

!g!E
Rg∗ Tri(g

!E)−−−−−−−→ Rg∗g
!E

Trg−−→ E.

This does not depend on the embedding, and is compatible with composition
and flat base change. (Proof omitted.)

5.13. The duality theorem.
Let f : X → Y be a projective morphism with Y noetherian, dimY <∞,

Y having ample line bundle. Then the condition (c) above holds and so
dimX < ∞. Hence, by Ex. I.30, f∗ has finite cohomological dimension. It
follows that Rf∗ extends to a functor D(X) → D(Y ) (sending D−(X) →
D−(X) and Db(X)→ Db(Y )) (Ex. I.20).

For E,F ∈Mod(X), define a canonical morphism

f∗Hom(E,F )→ Hom(f∗E, f∗F )

as follows. For U ⊂ Y open, an element in Γ(U, f∗Hom(E,F )) is a morphism
E|f−1(U)→ F |f−1(U). It induces homomorphisms Γ(f−1(V ), E|f−1(U))→
Γ(f−1(V ), F |f−1(U)) for all V ⊂ U open, which determine a morphism
f∗E|U → f∗F |U , that is, an element in Γ(U,Hom(f∗E, f∗F )).

For E,F ∈ C(X), we get a morphism of complexes

f∗Hom•(E,F )→ Hom•(f∗E, f∗F ).
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For E ∈ D(X), F ∈ D+(X), take quasi-isomorphisms F → F ′, E →
E ′ with F ′ ∈ C+(X), F ′i injective, E ′i f∗-acyclic (I.5.7), for all i. Then
RHom(E,F ) ' Hom•(E ′, F ′). Observe that Hom i(E ′, F ′) is flasque for all
i. In fact, for any L,M ∈ Mod(X), M injective, we have Hom(L,M) is
flasque. For an open embedding j : U ↪→ X, any morphism L|U →M |U can
be extended to L as M is injective:

0 // j!j
∗L //

��

L

||z
z

z
z

z

M

We define a morphism

Rf∗RHom(E,F )→ RHom(Rf∗E,Rf∗F )

by composition of canonical morphisms

Rf∗RHom(E,F ) ' Hom•(E ′, F ′)→ Hom•(E ′, F ′)

→ RHom•(f∗E
′, f∗F

′) ' RHom(Rf∗E,Rf∗F )
.

For L ∈ D(X), M ∈ D+(Y ), define θf (L,M) (sometimes abbreviated θf )
to be the composition

Rf∗RHom(L, f !M)→ RHom(Rf∗L,Rf∗f
!M)

RHom(Rf∗L,Trf )
−−−−−−−−−−→ RHom(Rf∗L,M),

where the first map is the canonical map defined above.

Theorem 5.14 (Grothendieck). For L ∈ D−(X)coh , M ∈ D+(Y )coh , the
morphism θf is an isomorphism.

Proof. f : X → Y can be factorized as

X
� � i //

f

��

P

g
����

��
��

��
PrY

Y

where i is a closed immersion and g is the projection. Then it is easily seen
that θf (L,M) = θg(Ri∗L,M)(Rg∗θi(L, g

!M)), with Ri∗L ∈ D−(P )coh and
g!M ∈ D+(P )coh , so it is enough to check that θi, θg are isomorphisms.
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Let L ∈ D−(X)coh , M ∈ D+(P )coh . To show θi is an isomorphism, we
may assume, by τ≤, induction and “way out functor”, that L ∈ Coh(X). We
may assume P affine. Then we can write

L ' (· · · → L−1 → L0),

with Li free of finite type. Using σ≥, we may assume L = OX . Then θi is
nothing but the canonical isomorphism

i∗RHomOX
(OX , i!M) = i∗i

!M → RHomOP
(OX ,M).

Therefore, we may assume that f : X = PrY → Y is the projection. Using
τ≤, we may assume L is concentrated in degree 0, that is, L ∈ Coh(X). Then
there is an exact sequence

· · · → OX(−n1)
m1 → OX(−n0)

m0 → L→ 0

with all ni > r+ 1. Using σ≥, we may assume L = ω(−d) with d ≥ 0 (where
ω = Ωr

X/Y ' OX(−r − 1)).
Then, we have isomorphisms

Rf∗RHom(L, f !M) = Rf∗RHom(ω(−d), f∗M ⊗ ω)[r] ' Rf∗(f
∗M)(d)[r]

'M ⊗L Rf∗OX(d)[r] 'M ⊗L f∗OX(d)[r],

where the last but second isomorphism is the projection formula (Ex. I.30),
and isomorphisms

RHom(Rf∗L,M) = RHom(Rf∗ω(−d),M) ' Hom•(Rrf∗ω(−d)[−r],M)

'M ⊗Hom(Rrf∗ω(−d),OY )[r],

where we have used the fact that Rrf∗ω(−d) is a locally free sheaf of finite
type. We have to check

θf : f∗OX(d)→ Hom(Rrf∗ω(−d),OY )

is an isomorphism, that is, the pairing

f∗OX(d)⊗Rrf∗ω(−d)→ OY

is perfect. For V = SpecA ⊂ Y , the pairing

Γ(V, f∗OX(d))× Γ(V,Rrf∗ω(−d))→ Γ(V,OY )
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is given by

(ta,
1

tbt0 · · · tr
) 7→

{
0, if a 6= b,
1, if a = b,

where
∑
ai =

∑
bi = d, and thus is a perfect pairing.

Applying RΓ to θf , we get an isomorphism

RHom(L, f !M)
∼−→ RHom(Rf∗L,M)

in D(Ab). Applying H i, we get Exti(L, f !M)
∼−→ Exti(Rf∗L,M).

In the remainder of this section, we suppose Y = Spec k, f : X → Y pro-
jective. Then KX = f !OY ∈ D+(X) is called a dualizing complex on X. By
the remark above, Exti(L,KX) ' Exti(RΓ(X,L), k) = Hom(H−i(X,L), k),
hence the following corollary.

Corollary 5.15. Let X/k be projective, L ∈ D−(X)coh . Then there is a
perfect pairing of finite dimensional k-vector spaces between Hj(X,L) and
Ext−j(L,KX).

We first consider the case when X/k is smooth.

Corollary 5.16 (Serre). Let X/k be projective, smooth, purely of dimension
d. Then KX = ωX [d]. Hence there is a perfect pairing between Hj(X,L) and
Extd−j(L, ωX). In particular, for L locally free of finite type, Hj(X,L) is
dual to Hd−j(X, Ľ⊗ ωX), where Ľ = Hom(L,OX).

Proof. We only need to prove the last assertion. For that, RHom(L, ωX) =
Ľ⊗ ωX , so Extn(L, ωX) = HnRΓ(X,RHom(L, ωX)) = Hn(X, Ľ⊗ ωX).

In fact, the pairing is given by the natural pairing followed by Tr:

Hj(X,L)⊗Hd−j(X, Ľ⊗ ω)→ Hd(X,ω)
Tr−→ k.

When d = 1, we get “Roch’s half” of the Riemann-Roch theorem, which
claims that for L a line bundle, H1(X,L) is dual to H0(X, Ľ⊗ ωX).

Corollary 5.17. Let X/k be projective, smooth, purely of dimension d. Then
Hj(X,Ωi

X) is dual to Hd−j(X,Ωd−i
X ).
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Let hij = dimkH
k(X,Ωi). These numbers hij are called the Hodge

numbers of X. Then hij = hd−i,d−j. Let hn = dimHn(X,Ω•
X/k). When

char(k) = 0, the Hodge degeneration theorem implies hn =
∑

i+j=n h
ij.

When char(k) = p > 0, we might have hn <
∑

i+j=n h
ij. See e.g. L. Il-

lusie, Frobenius and Hodge Degeneration, in [B-D-I-P].

Corollary 5.18. Let X be projective over an algebraically closed field k,
smooth, connected, of dimension d > 2, and let Y ⊂ X be an effective
Cartier divisor such that OX(Y ) = I⊗−1 is ample, where I is the ideal of Y .
Then Y is connected. In particular, Y is irreducible if it is smooth.

Proof. Let Yn = V (In+1). Then we have a short exact sequence

0→ OX(−(n+ 1)Y )→ OX → OYn → 0,

and hence a long exact sequence

H0(X,OX(−(n+ 1)Y ))→ H0(OX)→ H0(OYn)→ H1(X,OX(−(n+ 1)Y )).

The first term is 0, the second term is k, and the fourth term is dual to
Hd−1(X,ωX(−(n+1)Y )), which is 0 for n >> 0 by Serre’s vanishing theorem
(II.4.7) since d− 1 > 1. Then the third term must be k, and so |Y | = |Yn| is
connected.

Next, we discuss KX in general.

Proposition 5.19. Let X/k be projective with dimX = n. Then KX ∈
D[−n,0](X)coh .

Proof. We have

X
� � i //

f

��

P

g
||yy

yy
yy

yy
y

PrY

Spec k

with i a closed immersion. i∗KX = RHomOP
(OX , ωP )[N ], so it is enough to

show Ext i+NOP
(OX , ωP ) = 0 for i /∈ [−n, 0], that is,

E j = Ext jOP
(OX , ωP ) = 0
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for j < N − n or j > N . This holds for j > N since for all x ∈ X,
Ext jOP

(OX , ωP )x = ExtjOP,x
(OX,x, ωP,x), where ωP,x ' OP,x is regular of di-

mension ≤ N . Note that for q >> 0, E j(q) is generated by global sections. It
then suffices to show for a fixed j < N−n, Γ(P, E j(q)) = 0 for q >> 0. By the
following lemma, Γ(P, Ext j(OX , ωP )(q)) = ExtjP (OX , ωP (q)), which is dual to
HN−j(P,OX(−q)) = HN−j(X,OX(−q)) = 0 since N − j > n = dimX.

Lemma 5.20. For fixed E,F ∈ Coh(P ) and fixed l, H0(P, Ext l(E,F )(q)) =
Extl(E,F (q)) for q >> 0.

Proof. We have biregular spectral sequences

Eij
2 (q) = H i(P, Ext j(E,F )(q))⇒ Exti+j(E,F (q)),

which concentrate in the first quadrant. By Serre’s vanishing theorem (II.4.7),
there exists q0 such that for all q ≥ q0, j ≤ l, i > 0, Eij

2 (q) = 0. Hence d0l
r = 0,

for all r ≥ 2. It follows that

Extl(E,F (q)) ' E0l
∞(q) = E0l

2 (q) = H0(P, Ext l(E,F )(q))

.

Let A be a local ring with residue field k, M be an A-module. The depth
of M is

depthAM = sup{n | there exists M -regular sequence (t1, · · · , tn), ti ∈ A}
= inf{m | ExtmA (k,M) 6= 0}.

The depth of A is its depth as an A-module. A is called Cohen-Macaulay if
its depth is equal to dimA. A scheme X is called Cohen-Macaulay if all its
local rings are Cohen-Macaulay.

Proposition 5.21. Let X/k be projective. Suppose X is Cohen-Macaulay
and all irriducible components have dimension n. Then KX ∈ D[−n,−n](X),
and so KX ' ω◦X [n] with ω◦X = H−n(KX)[n].

Proof. By the proof of Proposition 5.19, we only need to show for all j >
N − n, x ∈ X,

ExtjOP,x
(OX,x, ωP,x) = 0,
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which follows from the equation

proj dimOP,x
= dimOP,x − depthOP,x

OX,x by [EGAIV], 0, 17.3.4

= dimOP,x − depthOX,x
OX,x

= dimOP,x − dimOX,x = N − n.

The sheaf ω◦X in the proposition is called the dualizing sheaf for X in [H].
X is Cohen-Macaulay if, e.g., there is a regular k-immersion i of X into

a projective space over k.

X
� � i //

f

��

P

g
����

��
��

��
PNk

Spec k S

In this case, we even have ω◦X is a line bundle. Indeed,

f !OY ' i!g!OY = i!ωP [N ]

' i∗ωP ⊗ ωX/P [−(N − n)][N ] by Proposition 5.3

= i∗ωP ⊗ ωX/P [n],

and hence ω◦X = i∗ωP ⊗ ωX/P .

6 Spectral Sequences

6.1. The spectral sequences of a filtered complex. Let A be an abelian
category. A filtered complex (K,F p) in A is a complex K of A endowed with
a decreasing filtration by subcomplexes

K · · · ⊃ F pK ⊃ F p+1K ⊃ · · ·

Denote by grpF (K) the quotient complex F pK/F p+1K.

Problem. We want to relate Hn(K) to Hm(grpF (K)). For the inclusion
F pK → K we denote Im(Hn(F pK) → Hn(K)) by F p(Hn(K)). In par-
ticular, we want to understand the relationship between grpF (Hn(K)) and
Hn(grpF (K)).
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Example 6.1.1. Let K be a complex of A, K ′ a subcomplex of K. Define
a filtered complex (K,F p) as follow: F 0K = K ⊃ F 1K = K ′ ⊃ F 2K = 0
We have the short exact sequence:

0→ K ′ → K → K ′′ → 0

and gr1
F (K) = K ′, gr0

F (K) = K ′′.
From the long exact sequence:

· · · // Hn−1(K ′′)
δ // Hn(K ′) // Hn(K) // Hn(K ′′) δ // Hn+1(K ′) // · · ·

we get a short exact sequence:

0→ Coker(Hn−1gr0
F (K)→ Hngr1

F (K))→ Hn(K)→ Ker(Hngr0
F (K)→ Hngr1

F (K))→ 0

i.e. we have

F 1Hn(K) = Coker(Hn−1gr0
F (K)→ Hngr1

F (K))

gr0
FH

n(K) = Ker(Hngr0
F (K)→ Hngr1

F (K))

6.2. Now we consider the general case. We follow the approach of [C-E].
Let (K,F p) be a filtered complex. For ∞ ≥ q ≥ p ≥ −∞, let K(p, q) =
F pK/F qK, F−∞K = K, F∞K = 0. With these notations, we get grpF (K) =
K(p, p+ 1), K/F qK = K(−∞, q) and F pK = K(∞, p).
For integers p ≤ q ≤ r, we have a short exact sequence:

0 // K(q, r) // K(p, r) // K(p, q) //

δ

mm 0 (∗)

We denote this sequence (∗) by K(p, q, r). It defines a distinguished triangle
in D, with δ : K(p, q) → K(q, r)[1]. Let n = p + q and r ≥ 1, denote
Hn(p, p+ r) = Hn(F pK/F p+rK) and Ep,q

1 = Hn(p, p+ 1) = Hn(grpF (K)).
For a fixed r, consider the triangles defined by (p, p+ 1, p+ r), and (p+ r +
1, p, p+ 1), and define

Zp,q
r = Ker(Hn(p, p+1)

δ−→ Hn+1(p+1, p+r)) = Im(Hn(p, p+r)→ Hn(p, p+1)) ⊂ Ep,q
1

Bp,q
r = Im(Hn−1(p−r+1, p+1)

δ−→ Hn(p, p+1)) = Ker(Hn(p, p+1)→ Hn(p−r+1, p)) ⊂ Ep,q
1

We have Zp,q
1 = Ep,q

1 and Bp,q
1 = 0
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Theorem 6.3. (1) We have a chain of inclusions 0 = B1 ⊂ · · · ⊂ Br ⊂
· · · ⊂ B∞ ⊂ Z∞ ⊂ · · · ⊂ Zs ⊂ · · · ⊂ Z1 = E1

(2) In the diagram:

Hn(p, p+ 1) δ // Hn+1(p+ 1, p+ r + 1)

Br+1
� � // Hn+1(p+ r, p+ r + 1)

OO

we have Im(δ) ⊂ Im(Br+1 → Hn+1(p + 1, p + r + 1)), and δ induces an
isomorphism

Zp,q
r /Zp,q

r+1
δ−→
'
Bp+r,q−r+1
r+1 /Bp+r,q−r+1

r

(3) Let Ep,q
r = Zp,q

r /Bp,q
r and denote by dr the composition:

Ep,q
r = Zr/Br

// // 00Zr/Zr+1
δ
'
// Br+1/Br

� � // Zr/Br = Ep+r,q−r+1
r

we have dr · dr = 0 and Hp,q(Er) = Ep,q
r+1 i.e. H(Ep−r,q+r−1

r
dr−→ Ep,q

r
dr−→

Ep+r,q−r+1
r ) = Z/B = Ep,q

r+1

(4) Let F pHn(K) = Im(Hn(F pK)→ Hn(K)), in the diagram:

Z∞ ⊂ Hn(p, p+ 1) can // Hn(−∞, p+ 1)

F pHn(K) � � // Hn(K)

OO

we have can(Z∞) ⊂ Im(F pHn(K) → Hn(K) → Hn(−∞, p + 1)), and an
isomorphism

Zp,q
∞ /Bp,q

∞
∼−→ grpF (Hn(K))

Proof. (1) To show Zr+1 ⊂ Zr, we consider the morphism of short exact
sequences K(p, p+1, p+ r+1)→ K(p, p+1, p+ r) which gives the following
commutative diagram:

K(p, p+ q) δ // K(p+ 1, p+ r + 1)[1]

��
K(p, p+ q) δ // K(p+ 1, p+ r)[1]

Thus we get Zr+1 ⊂ Zr. Similarly we have Br ⊂ Br+1.
To show Br ⊂ Zs for all r, s, we need the following lemma:
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Lemma 6.4. For integers p ≤ q ≤ r ≤ s, K(p, q)
δ−→ K(q, r)[1]

δ−→ K(r, s)[2]
we have δ · δ = 0.

Proof. We have the diagram:

K(q, r)[1]

δ2xxppppppppppp
(2) (1)

K(p, q)
δ1

oo

δ3xxqqqqqqqqqq

K(r, s)[1] // K(q, s)[1]

u

ffNNNNNNNNNNN

In which (1) is commutative and (2) is distinguished. We get δ2 · δ1 =
δ2 · u · δ3 = 0

By the above lemma we get the composition:

Hn−1(p− r + 1, p)
δ−→ Hn(p, p+ 1)

δ−→ Hn+1(p+ 1, p+ s)

to be 0. This gives the injection of Br ↪→ Zs.
(2) We need a very useful lemma the proof of which is left as an exercise.

Lemma 6.5 (C-E,XV1.1). Suppose we have a commutative diagram with
the bottom row exact:

M

c

��

d

!!B
BB

BB
BB

B

L′

>>}}}}}}}}
a // L

b // L′′

Then b induces an isomorphism Im c/ Im a
∼−→ Im d

The morphism of short exact sequences K(p, p+ r, p+ r+ 1)→ K(p, p+
1, p+ r + 1) gives a commutative diagram:

Hn(p, p+ r)

u1

��

ϕ�� ε// Hn+1(p+ r, p+ r + 1)

Hn(p, p+ 1) δ// Hn+1(p+ 1, p+ r + 1)

; Secondly, we have a commutative diagram with exact row

Hn(p, p+ r)

u1

��

ϕ

))TTTTTTTTTTTTTTT

Hn(p, p+ r + 1)

66lllllllllllll
v // Hn(p, p+ 1) δ // Hn+1(p+ 1, p+ r + 1)
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; we have Imu1 = Zp,q
r and Im v = Zp,q

r+1, and the lemma shows Zp,q
r /Zp,q

r+1
∼−→

Imϕ; Finally we have a commutative diagram with exact row

Hn(p, p+ r)

ε

��

ϕ

**VVVVVVVVVVVVVVVVV

Hn(p+ 1, p+ r)

44jjjjjjjjjjjjjjjj
ε′ // Hn+1(p+ r, p+ r + 1)

u2 // Hn+1(p+ 1, p+ r + 1)

we have Im ε = Bp+r,q−r+1
r+1 and Im ε′ = Bp+r,q−r+1

r , and the lemma shows

Bp+r,q−r+1
r+1 /Bp+r,q−r+1

r
∼−→ Imϕ. Composing the two isomorphisms we get

Zr/Zr+1
δ−→
'
Br+1/Br.

(3) Obviously we have Kerdr = Zp,q
r+1/B

p,q
r and Im dr = Bp+r,q−r+1

r+1 /Bp+r,q−r+1
r .

This implies that dp+r,q−r+1
r ◦ dp+r,q−r+1

r = 0 and H(Er) = Er+1.
(4) The morphism of exact sequences K(−∞, p+ 1,∞)→ K(−∞, p,∞)

gives a commutative diagram:

Hn(p,∞)

u

��

a�� c // Hn(−∞,∞) = Hn(K)

Hn(p, p+ 1) can // Hn(∞, p+ 1)

Secondly, we have a commutative diagram with exact row:

HnF pK = Hn(p,∞)

u

��

a

))TTTTTTTTTTTTTTT

Hn(−∞, p)

δ
55kkkkkkkkkkkkkk

δ // Hn(p, p+ 1) can. // Hn(−∞, p+ 1)

where Im u = Z∞ and again by the CE lemma we get Z∞/B∞
∼−→ Im a.

Similarly from the diagram:

HnF pK = Hn(p,∞)

c

��

a

))TTTTTTTTTTTTTTT

Hn(p+ 1,∞)

55jjjjjjjjjjjjjjj
// Hn(K) d // Hn(−∞, p+ 1)

we get F pHn(K)/F p+1Hn(K)
∼−→ Im a.By composing the two isomorphisms

together we get grpH(K)
∼−→ Z∞/B∞
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Definition 6.6. A spectral sequence in A, denoted as Ep,q
a ⇒ (Hn, F ) for

0 ≤ a ∈ Z and usually a = 1 or 2, consists of the following data:
(1) A family of objects Hn in A for all n ∈ Z, and a decreasing filtration:

Hn = F 0Hn ⊃ F 1Hn ⊃ · · · ⊃ F pHn ⊃ F p+1Hn ⊃ · · ·
(2) A family of objects Ep,q

r in A for all p, q in Z and for r ≥ a; and a
family of morphisms dr : Ep,q

r → Ep+r,q−r+1
r such that dr · dr = 0.

(3) A family of isomorphisms αp,qr : Hp,q(Er)
∼−→ Ep,q

r+1

(4) For s ≥ a and r ≥ a, define

0 = Ba ⊂ Ba+1 ⊂ · · · ⊂ Br ⊂ · · · ⊂ Zs ⊂ · · · ⊂ Za = Ea

inductively as follows:

Bp,q
a+1 = Im(da) ⊂ Ep,q

r , Zp,q
a+1 = Ker(da) ⊂ Ep,q

r

We have Zp,q
a+1/B

p,q
a+1 = Ep,q

a+1, define Zp,q
a+2/B

p,q
a+1 by Ker(da+1) and Bp,q

a+2/B
p,q
a+1

by Im(da+1), by pulling-back we get Ba+1 ⊂ Ba+2 ⊂ Za+2 ⊂ Za+1. Induc-
tively we define Br+1/Br to be Im(dr), and Zr+1/Zr to be Kerdr, and then
by pulling-back we have Br ⊂ Zr.

(5) Two objects in A, Bp,q
∞ ⊂ Zp,q

∞ ⊂ Ep,q
a such that Bp,q

r ⊂ Bp,q
∞ ⊂ Zp,q

∞ ⊂
Zp,q
s , for all s, r, and an isomorphism

β : Ep,q
∞ = Zp,q

∞ /Bp,q
∞

∼−→ grpF (Hn)

The spectral sequence associated to a filtered complex constructed in 6.3
is a example, with a = 1.

The term E·,·
a is called the initial term, the filtered term Hn, F the abut-

ment of the spectral sequence. We usually give a picture of a spectral se-
quence by plotting the term Ep,q

r at the point of coordinates (p, q) in the
plane. The differential dr corresponds to a generalized ”knight’s jump”

· r //

dr

��=
==

==
==

r−1
��
·

6.7. Let Ep,q
a ⇒ (Hn, F ) and E ′p,q

a ⇒ (H ′n, F ) be two spectral sequences.
A morphism of spectral sequences

Ep,q
a ⇒ (Hn, F )

u

��
Ep,q
a ⇒ (Hn, F )
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consists of morphisms up,qr : Ep,q
r → E ′p,q

r and un : Hn → H ′n satisfying the
following conditions:
(i) The diagram:

Hn un
// H ′n

F pHn //

OO

F pH ′n

OO

commutes, so un induces a morphism γ : grHn → grH ′n.
(ii) The diagram:

Er
ur //

dr

��

E ′
r

dr

��
Er

ur // E ′
r

commutes.
((iii) Morphisms Z∞ → Z ′

∞ and B∞ → B′
∞ which induces a morphism

epsilon : E∞ → E ′
∞ so that the following diagram commutes:

E∞
ε //

'beta
��

E ′
∞

' β
��

grHn γ // grH ′n

(iv) The following diagram commutes.

H(Er) //

αr'
��

H(E ′
r)

αr '
��

Er+1
// E ′

r+1

In this way spectral sequences of A form an Additive Category.

Definition 6.8. A spectral sequence Ep,q
a ⇒ (Hn, F ) is called biregular if it

satisfies the following properties:
(i) For any pair (p, q), there exists an integer r0 such that Bp,q

r = Bp,q
r0

and
Zp,q
r = Zp,q

r0
for all r ≥ r0

(ii) For all n, (F pHn)p∈Z is a finite filtration, i.e. F pHn = Hn for p sufficiently
small and F qHn = 0 for q sufficiently large.
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Example 6.8.1. A filtered complex (K,F p) is said to be regular if for all n,
the filtration (F pKn) is finite. The spectral sequence Ep,q

1 = Hp,q(grpK) ⇒
(Hn, K) is then biregular.

Proposition 6.9. Let u : (Ep,q
a ⇒ (Hn, F )) → (E ′p,q

a ⇒ (H ′n, F )) be a
morphism of biregular spectral sequences. If for some r ≥ a, up,qr : Ep,q

r →
E ′p,q
r is an isomorphism for all p, q, then un : Hn → H ′n is an isomorphism

for all n.

Proof. We have the following diagram:

Ep,q
r0

∼ // E ′p,q
r0

Ep,q
∞

∼ // E ′p,q
∞

grpHn ∼ // grpH ′n

As the filtrations of Hn and H ′n are finite ,so we get the conclusion.

Definition 6.10. A spectral sequence Ep,q
a ⇒ (Hn, F ) is said to degenerate

at Er0 , if it is biregular and dr = 0, for all r ≥ r0.

Proposition 6.11. Let E be a biregular spectral sequence in A where A
is the category of modules of finite length over some ring R. Then (Ep,q

a ⇒
(Hn, F )) degenerates at Er0 if and only if

∑
p+q=n lgEp,q

r0
= lgHn, for all n.

Proof. We have · · · ≤ lgEp,q
r+1 ≤ lgEp,q

r ≤ · · · and lgEp,q
∞ ≤ lgEp,q

r . For N
sufficiently large,we have Ep,q

N = Ep,q
∞ , so

lgHn =
∑
p+q=n

lg(grp(Hn)) =
∑
p+q=n

lgEp,q
∞ =

∑
p+q=n

lgEp,q
N ≤

∑
p+q=n

lgEp,q
r0

E degenerates at Er0 if and only if Zr = Er = Er+1, for all r ≥ r0,which holds
if and only if lgEp,q

∞ = lgEp,q
r = lgEp,q

r0
, for all r ≥ r0. Thus the conclusion

follows.

6.12. Spectral sequences of a bicomplex. LetA be an additive category.
Let K = K•,• = (Kp,q; d′, d”) be a bicomplex of A. Then d′2 = d”2 =
(d′ + d”)2 = 0. We call the complex (K•,q, d′) the q-th row complex and the
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complex (Kp,•, d”) the p-th column complex. Recall that K is biregular if
for all n, the set {(p, q)|p+ q = n,Kp,q 6= 0} is finite. For K biregular, then
the simple complex sK ∈ C(A) associated to K is

sKn =
⊕
p+q=n

Kp,q, d = d′ + d”.

For any double complex K, there are two filtrations on K•,•:

F
′pKi,j =

{
Ki,j, i ≥ p;

0, i < p.

F ”pKi,j =

{
Ki,j, j ≥ p;

0, j < p.

We now assume K is regular.
(1). The first spectral sequence. We have

(F
′p(sK) = s(F

′pK), grpF ′(sK) = (Kp,•)[−p].

The spectral sequence of (sK, F ′) is

Ep,q
1 = Hp+q(grpF ′ K)⇒ Hp+q(sK).

Since Ep.q
1 = Hq+p(Kp,•[−p]) = ”Hq(Kp,•) and d1 : ”Hq(Kp,•)→ ”Hq(Kp+1,•)

is induced by d′, then

Ep,q
2 = ′H

p
”Hq(K•,•)

and
′FHn(sK) = Im(Hn(sF

′pK)→ Hn(sK)).

(2). The second spectral sequence. Similar to the first case, we have

Ep,q
1 = ′H

q
(K•,p), Ep,q

2 = ”Hp′H
q
(K•,•)⇒ Hp+q(sK)

and

”FHn(sK) = Im(Hn(sF ”pK)→ Hn(sK)).

Remark. If F ′(resp. F”) is biregular, then these spectral sequences are
biregular.
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Proposition 6.13. Let u : K•,• → L•,• be a morphism of biregular complexes
which hence induces su : sK → sL. Then

(a). If u induces a quasi-isomorphism on each row(resp. column), then
su is a quasi-isomorphism.

(b). If u induces a quasi-isomorphism on each cohomology row(resp. col-
umn), then su is a quasi-isomorphism.

Proof. Exercise.

6.14. Spectral sequences of hypercohomology. Let A and B be two
abelian categories. Let T : A → B be an additive functor. Assume cA
has enough injectives. Then RT : D+(A) → D+(B) is well defined. For

K ∈ K+(A), then RT (K) = T (K ′) where K
quis
ra K ′, K ′ ∈ K(A) with K ′p

injective. We write RnT (K) = HnRT (K).

Theorem 6.15 (Cartan-Eilenberg). One can construct spectral sequences:
(1) ′Ep,q

1 = RqT (Kp)⇒ RnT (K), where d1 is induced by d : Kp → Kp+1.
This is called the first spectral sequence of hypercohomology of K for T .

(2) ”Ep,q
2 = RpT (HqK) ⇒ RnT (K), which is called the second spectral

sequence of hypercohomology.
Moreover, (1) and (2) are biregular. (1) is functorial in K ∈ C(A), and

in K ∈ K+(A) from E2 on; (2) is functorial in K ∈ D+(A). The abutment
filtration of (1) is

F pRnT (K) = Im(RnT (K≥p)→ RnT (K)), K≥p = σ≥pK.

The abutment filtration of (2) is

F pT n(K) = Im(RnT (τ≤n−pK)→ RnK)

where τ≤mK = (· · · → Km−1 → Zm → 0).

We need to construct the injective Cartan-Eilenberg resolution to prove
the theorem.

Lemma 6.16. Consider a diagram

0 // I ′ // • // I” // 0

0 // L′ //

OO

L //

OO

L” //

OO

0

0

OO

0

OO

0

OO



190 CHAPTER 3. DIFFERENTIAL CALCULUS

with exact rows and columns and I ′, I” injective, then we can complete the
diagram.

Proof. This is an easy exercise.

From the above Lemma, one has

Lemma 6.17. Let 0 → L′ → L → L” → 0 be an exact sequence. Let
L′ → I

′• and L”→ I”• be injective resolutions. Then there exists an injective
resolution L→ I• to complete the diagram

0 // I
′• // I• // I”• // 0

0 // L′ //

OO

L //

OO

L” //

OO

0

0

OO

0

OO

0

OO

Lemma 6.18. let K ∈ C(A). Then there exists an exact sequence

0→ K → [M•,0 →M•,1 → · · · ]

where M•,•, such that

0→ Kp →Mp,0 →Mp,1 → · · ·

is an injective resolution of Kp, and

0→ ZpK → ZpM•,0 → ZpM•,1 → · · ·

0→ BpK → BpM•,0 → BpM•,1 → · · ·
0→ HpK →′ HpM•,0 →′ HpM•,1 → · · ·

are all injective resolutions. This resolution is called Cartan-Eilenberg reso-
lution.

Proof. We first apply Lemma 6.17 to the exact sequence

0→ BpK → ZpK → HpK → 0

and then apply it to the exact sequence

0→ ZpK → Kp → Bp+1K → 0.
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Remark. (1). Suppose that

K → K
′•,•, L→ L

′•,•

are Cartan-Eilenberg resolutions. Then any map f : K → L can be lifted to

f ′ : K
′•,• → L

′•,•.

Any two liftings f ′, f” are related by vertical homotopy

s : K
′p,q −→ L

′p,q−1f”− f ′ = ds+ sd, sd′ + d′s = 0.

(2). Suppose f ∼ g : K → L, and k : K → L is a homotopy of f and g:
dk + kd = g − f . If f ′ : K ′ → L′ and g′ : K ′ → L′ lift f and g respectively.
Then there exists a homotopy s = s′ + s” such that

g′ − f ′ = ds+ sd, s′d” + d”s′ = 0, s”d′ + d′s” = 0.

Proof of Theorem 6.15. Suppose K ∈ C+(A). Let K → M•,• be an injec-
tive Cartan-Eilenberg resolution of K. Note that K → sM•,• is a quasi-
isomorphism, and

(sM)n =
∏

p+q=n

Mp,q injective,

Then
RT (K) = T (sM•,•) = s(TM•,•).

(1). The 1st spectral sequence of hypercohomology is just the 1st spectral
sequence of TM•,•, with

′Ep,q
1 =′ HqT (Mp,•) = RqT (Kp),

and d1 induced by d : Kp → Kp+1. Since

K≥p = σ≥pK
• quis−→ ′F

p
sM•,•,

then
RT (K≥p) = T ′F p(sM•,•) = Fp(sTM•,•)

and F pRnT (K) = Im(RnT (K≥p)→ RnTK).
(2). The second spectral sequence of hypercohomology is the second

spectral sequence of TM•,•, with

Ep,q
2 = ”Hp′H

q
(TM•,•).
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Since ′Hq(TM•,j) = T ′Hq(M•,j), and all the components, boundaries and
cycles of M•,j are injectives,

”Hp′H
q
(TM•,•) = RpT (HqK).

The abutment filtration of the 2nd spectral sequence needs to use ”décalage”
of Deligne. We leave it as an exercise.

Corollary 6.19 (Spectral sequence of a composite functor). Suppose

A F→ B G→ C,

where F,G are additive functors of abelian categories. Assume that A and B
have enough injectives, and F (injective) = G− acyclic. Thus

D+(A)
RF //

R(GF )

33D+B RG // D+(C).

Then there exists, for K ∈ D+(A), a functorial, biregular spectral sequence

Ep,q
2 = RpGRqF (K)⇒ (GF )(K).

Proof. Take the second spectral sequence of hypercohomology of RF (K)
for G, then Ep,q

2 = RpG(Hq(RF (K))) = RpGRqF (K) and RnG(RFK) =
Hn(RG(RF (K))) = Hn(R(GF )(K)) = Rn(GF )(K), thus

Ep,q
2 = RpGRqF (K)⇒ (GF )(K).

The abutment is

F pRn(GF )(K) = Im(Rn(GF )(τ≤n−pK)→ Rn(GF )(K))

= Im(RG(τ≤n−pRFK)→ Rn(GF )K).

We give three applications for Cartan-Eilenberg’s Theorem and the corol-
lary.

6.20. Hodge-de Rham spectral sequence. Let k be a field and X/k be
a proper smooth scheme. Then Ω•

X/k ∈ C(X, k). The first spectral sequence
of hypercohomology of Ω•

X/k for

T = Γ(X,−) : Mod(X, k)→ V (k) = {finite dimensional k-vector spaces}
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is
Ep,q

1 = Hq(X,Ωp
X)⇒ Hp+q(X,Ω•

X) = Hp+q
dR (X/k),

d1 is induced by d : Ωp → Ωp+1. This spectral sequence is biregular and
concentrated on the first quadrant. For every r and for every p, q, Ep,q

r is
finite dimensional over k, therefore Hn

dR(X/k) is finite dimensional over k.
This spectral sequence is called the Hodge to de Rham spectral sequence.
Let

hn = hn(X/k) = dimkH
n
dR(X/k), hp,q = hq(X,Ωp

X) = dimkH
q(X,Ωp

X).

From the Hodge to De Rham spectral sequence, we always have

hn ≤
∑
p+q=n

hp,q.

If k = k̄,X is connected and dimX = d, then one can show thatHd(X,Ωd
X) =

H2d
dR(X/k) and hp,q = hd−p,d−q.

One would like to show the Hodge to de Rham spectral sequence degen-
erates at E1, which means that dr = 0 for all r ≥ 1, in particular, E1 = E∞.
This is equivalent to show that for all n,

hn =
∑
p+q=n

hp,q.

Theorem 6.21 (Hodge+Deligne). If char k = 0, then the Hodge to de
Rham spectral sequence degenerates at E1

Theorem 6.22 (Deligne-Illusie). If char k = p > 0, k perfect and dimX ≤
p and X is liftable to the second Witt ring W2(k), then the Hodge to de Rham
spectral sequence degenerates at E.

6.23. Leray spectral sequence. Let f : X → Y be a morphism of ringed
spaces. Then Γ(Y, f∗(−)) = Γ(X,−). We have a spectral sequence

Ep,q
2 = Hp(Y,Rqf∗K)⇒ Hp+q(X,K).

6.24. Local to global spectral sequence of Ext. Let X be a ringed
space, L ∈ D−(X), M ∈ D+(X). Then

RHom(L,M) ∈ D+(X), Extn(L,M) = Hn(RHom(L,M)).
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RHom(L,M) = RΓ(X,RHom(L,M)) ∈ D+(Ab),

Extn(L,M) = Hn(RHom(L,M)) = Hn(X,RHom(L,M)).

The second spectral sequence of hypercohomology for Γ(X,−) then gives

Ep,q
2 = Hp(X, Ext q(L,M))⇒ Extp+q(L,M).



Chapter 4

Grothendieck’s Comparison
and Existence Theorems in
Formal Geometry

1 Locally Noetherian Formal Schemes

Definition 1.1. An adic noetherian ring is a noetherian ring which is sep-
arated and complete in the I-adic topology for some ideal I ⊂ A, i.e.
A ' lim←−A/I

n+1.

Set An = A/In+1 and Xn = SpecAn. It is clear that the X ′
ns have the

same underlying topological space and one obtains an increasing sequence of
thickenings of SpecA/I in SpecA:

X0 = SpecA/I ↪→ X1 ↪→ X2 ↪→ · · · ↪→ SpecA

OXo � · · ·� OXn � OXn+1 � · · ·� OSpecA

Associated to this sequence is the formal spectrum ofA, denoted by Spf(A) =
(X,OX), where X = |X0| as topological spaces and OX = lim←−OXn is a sheaf
of topological rings.

For any open subset U ⊂ X, define the section Γ(U,OX) to be the topologi-
cal ring lim←−Γ(U,OXn) where Γ(U,OXn) is endowed with the discrete topology.
For instance, given f ∈ A, denote by f0 the image of f modulo I in A0, then
the section over the open set D(f) = Xf = Spec(A0)f0 , where f0 is invertible,
is the completed fraction ring A{f} = lim←−Γ(Xf , OXn) = lim←−S

−1
f A⊗A (A/In).

195
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Remark 1.2. (1) As a topological space, X = Spf A depends only on A
as a topological ring. It doesn’t change if one replaces I by some ideal of
definition, namely, an ideal J such that J ⊃ Ip ⊃ Jq for some positive integer
p and q. The space X is the subspace of SpecA consisting of open prime

ideals, and OX = lim←− (̃A/J) where J runs through the ideals of definition of
A.

(2) X = SpecA0 ↪→ SpecA being a closed subspace, X contains all the
closed points of SpecA and thus every open subset of SpecA containing X

coincides with SpecA itself, resulting from I ⊂ RadA.

Definition 1.3. An affine noetherian formal scheme is a topologically ringed
space isomorphic to (X = Spf A,OX) for some adic notherian ring A. A local
noetherian formal scheme is a topologically ringed space covered by affine
noetherian formal schemes, namely, every point lies in a neighborhood which
is an affine noetherian formal scheme. Morphisms between local noetherian
formal schemes (X,OX) and (Y,OY) are those morphisms (f, f#) between
ringed spaces that are local and continuous, i.e. for every point x ∈ X the
map OY,f(x) → OX,x is local and for any affine open subscheme V ⊂ Y,
the homomorphism between topological rings Γ(V,OY)→ Γ(f−1(V ),OX) is
continuous.

As in the case of usual schemes, for any local noetherian formal scheme
(X,OX) and affine formal scheme (Y = Spf A,OY),

Hom(X,Y) = Homcont(A,Γ(X,OX))

where Homcont stands for the set of continuous ring homomorphisms.
Let X = Spf A be an affine noetherian formal scheme and I an ideal

of definition of A. With any A-module of finite type M is associated an
OX-module M∆ = lim←− M̃n where M̃n is the coherent module on SpecAn
associated to the An-module Mn. Immediately derived from the definition is
the following

Proposition 1.4. Γ(X,M∆) = lim←−Mn = M . For f ∈ A, Xf ⊂ X,

Γ(Xf ,M
∆) = (Mf )

∧ is the I-adic completion of the fractional module Mf .
The functor M →M∆ is exact where M ranges over the category of finitely
generated A-modules. The map (HomA(M,N))∧ → Hom(M∆, N∆) induced
by v 7→ v∆ is an isomorphism. In particular, any homomorphism u : M∆ →
N∆ is uniquely determined by its global section v via u = v∆.
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Recall that given a ringed space (X,OX), an OX-module E is locally
of finite type if for every x ∈ X there exists a neighborhood U ⊃ x and
an epimorphism OrU → E|U → 0; it is locally of finite presentation if the
exact sequence above can be extended to OmU → OnU → E|U → 0. If OX is
coherent, an OX-module E is coherent if and only if it is finitely generated
and locally of finite presentation.

Proposition 1.5. Let X be a locally noetherian formal scheme, then
(1) OX is coherent;
(2) given E ∈ Mod(X), E is coherent if and only if for every affine open

piece U = Spf A ⊂ X, there exists M an A-module of finite type such that
E|U = M∆.

The set of coherent OX-modules will be denoted by Coh(X) in later sec-
tions.

Proof. (1) The question may be reduced to local case, and one may assume
that X = Spf A is affine. Actually for any epimorphism OrX → OX, the
kernel of the corresponded map v = Γ(X, u) : Ar � A is of finite type
because A is noetherian itself, namely there exists a exact sequence of the
form As

w→ Ar
v→ A → 0. The exactness of the functor ∆ implies an exact

sequence OsX
w∆

→ OrX
v∆→ OX → 0.

(2) The part of ⇐ is clear. For the ⇒ part, it suffices to show that
E = M∆ for some A-moduleM of finite type. Put En = E⊗OXn ∈ Coh(Xn),
Mn = Γ(Xn, En), and let M = lim←−Γ(Xn, En). Thus

E = lim←−En = lim←− M̃n = M∆

is coherent.

1.6. Ideals of Definition and Inductive Limits

Definition 1.7. For a local noetherian formal scheme X, an ideal of definition
of X is a coherent ideal sheaf I ∈ Coh(X) such that the formal scheme
(X,OX/I) has the same underlying topological space as X.

Proposition 1.8. Let X,OX be a local noetherian scheme.
(1) An ideal sheaf I ⊂ OX is an ideal of definition of (X,OX) if and only

if for any affine open subscheme U = Spf A ⊂ X, I|U = I∆ where I ⊂ A is
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an ideal of definition for the topological ring A = lim←−A/J
n, with I ⊃ Jp ⊃ Iq

for some positive integer p and q.

(2) (Similar to the case of schemes) Ideals of definition exist and there
exist a largest one T such that (X,OX/T) is reduced. On any affine open
subscheme U = Spf A, T = N∆, where N = {a ∈ A : An → 0 as n → ∞}
is the ideal of topological nilpotent elements which coincides with the inverse
image of the nilpotent radical of A via A = lim←−A/I

n. Any ideal of definition
is contained in T.

Remark 1.9. Given a noetherian formal scheme X, two ideals of definition
of X, say I and J, gives a chain I ⊃ Jp ⊃ Iq for some positive integer p and
q.

Fix an ideal of definition I of X. For n ∈ N, the ringed space (X,OX/I
n+1)

is a locally noetherian scheme, denoted Xn. One obtains an increasing chain
of thickenings

X. = (X0 ↪→ X1 ↪→ · · · ↪→ Xn ↪→ · · · ) (1.9.1)

whose inductive limit, in the category of locally noetherian formal schemes,
is X: the thickenings induce the identity map on the underlying topological
spaces, which are all equal to |X|, and it is clear that OX = lim←−OXn as
sheaves of topological rings, where Γ(U,OXn) is endowed with the discrete
topology for any open subset U ⊂ Xn. Let Jn = Ker(OXn → OX0) be the
ideal of X0 in Xn. Then for integers m ≤ n, the ideal of Xm in Xn is Jm+1

n ,
and in particular Jn+1

n = 0. J1 is a coherent module on X0 and Jn = I/In+1.

Converse to the argument above is the following

Proposition 1.10. Consider a sequence of ringed spaces 1.9.1 satisfying

(1) X0 is a locally noetherian scheme;

(2) the underlying maps of topological spaces are homeomorphisms and,
using them to identify the underlying spaces, the maps of sheaves of rings
OXn+1 → OXn are surjective;

(3) setting Jn = Ker(OXn → OX0), then for m ≤ n, Ker(OXn → OXm) =
Jm+1
n ;

(4) J1 is a coherent OX0-module.

Then the topologically ringed space X = (X0, lim←−OXn) is a locally noethe-
rian formal scheme, and I := lim←− Jn = Ker(OX → OX0) is an ideal of
definition of X and In+1 = Ker(OX → OXn).
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Proof. The verification is straightforward as reduced to the affine case. As-
sume X0 = SpecA0 is affine, one checks easily that each Xn is affine noethe-
rian of ring An = Γ(Xn,OXn). Then A = Γ(X0,OX) = lim←−An is separated
and complete. X = Spf A is an affine noetherian formal scheme.

Let X be a locally noetherian formal scheme, I an ideal of definition of
X. Consider the corresponding chain of thickenings as above. For m ≤ n,
denote by umn : Xm → Xn and un : Xn → X0 the canonical morphisms.
Given a coherent module E on X, then En := u∗nE is a coherent module on
Xn and these modules form an inverse system, with OXn-linear transition
maps En → Em inducing isomorphisms u∗mnEn

∼→ Em and E = lim←−En.
Conversely, let F. = (Fn, fmn) be an inverse system of OXn-modules,

with OXn-linear transition maps fmn : Fn → Fm for m ≤ n. F. is said
to be coherent if each Fn is OXn-coherent and the transition maps fmn in-
duce isomorphisms u∗mnFn

∼→ Fm. If F. is coherent and F := lim←−Fn is the
corresponding OX-module, then F is coherent and F. is canonically isomor-
phic to the inverse system (u∗nF ). The functor Coh(X)→ Coh(X.), sending
E to the system (u∗nE) from the category of coherent sheaves on X to the
category Coh(X.) of coherent inverse systems (Fn) is an equivalence. For
E = lim←−En ∈ Coh(X) as above, the support of E is, as E is coherent, closed
and coincides with that of E0. By a special case of flatness criterion, E is
flat, or equivalently locally free of finite type, if and only if En is locally free
of finite type for all n.

Let f : X → Y be a morphism of locally noetherian formal schemes, J

an ideal of definition of Y. Since J ⊂ TY, the continuity of f implies that
the ideal f ∗(J)OX is contained in TX. Fix an ideal of definition I such that
f ∗(J)OX ⊂ I and consider the inductive systems X., Y. defined by I and
J respectively. Then, since f ∗(Jn+1)OX ⊂ In+1, f induces a morphism of
inductive systems

f. : X.→ Y. (1.10.1)

i.e. morphisms of schemes fn : Xn → Yn such that the squares

Xm
//

fm

��

Xn

fn

��
Ym // Yn

(1.10.2)



200 CHAPTER 4. FORMAL GEOMETRY

are commutative and f = lim−→ fn, characterized by making the squares

Xn
un //

fn

��

X

f
��

Yn
un // Y

(1.10.3)

commutative. It is easily checked [EGA I 10.6.8] that f → f. defines a
bijection from the set of morphisms {f ∈ Hom(X,Y) : f ∗(J)OX ⊂ I} to the
set of morphisms of the type f. : X.→ Y..

The above results is summarized as follows:

Proposition 1.11. Let (X,OX) be a locally noetherian formal scheme.
(1) the functor Coh(X) → Coh(X.), sending E to the inverse system

(u∗nF ), is an equivalence.
(2) given morphism of locally noetherian formal schemes f : X → Y,

and assume that J ⊂ TY is an ideal of definition of Y and f ∗(J)OX ⊂ I

where I is an ideal of definition for X. Then f = lim←− fn where the f ′ns are
characterized by the diagram

X0
//

f0
��

X1
//

f1
��

· · · // Xn
//

fn

��

// · · · // X

f
��

Y0
// Y1

// · · · // Yn // · · · // Y

and the X ′
ns (resp. the Yn’s) are thickenings defined by the ideal I (resp. J).

The map sending f : X→ Y to f. : X.→ Y. is bijective.

In general, f ∗(J)O(X) is not an ideal of definition of X. When this is the
case, f is called an adic morphism and X an Y-adic formal scheme. One
can then take I = f ∗(J)OX and the squares 1 are cartesian. Conversely any
morphism of inductive systems 1.10.1 such that the squares 1 are cartesian
define an adic morphism from X to Y.

Let f : X→ Y be an adic morphism and E a coherent sheaf on X. Then
the following conditions are equivalent:

(1) E is flat over Y (or Y-flat), i.e. for every point x ∈ X, the stalk Ex
is flat over OY,f(x);

(2) with the notations of 1.10.3, En = u∗nE is Yn-flat for all n ≤ 0;
(3) E0 is Y0-flat and the natural epimorphism

grnOY ⊗
gr0OY

gr0E −→ grnE
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is an isomorphism for all n, where the associated graded module is taken
with respect to the J-adic filtration.

This is a consequence of the flatness criterion, and when the equivalent
conditions are satisfied for E = OX , f is said to be flat.

1.12. Formal Completion Let X be a locally noetherian scheme, and X ′

a closed subset of the underlying topological space of X. Choose a coherent
ideal I ⊂ OX such that the closed subscheme of X defined by I has X ′ as
its underlying space. Such ideals do exist, and there is, in fact, a largest
one, consisting of the local sections of OX vanishing on X ′ for which X ′

has the reduced scheme structure. Consider the inductive system of locally
noetherian schemes, all having X ′ as the underlying space,

X0 ↪→ X1 ↪→ · · · ↪→ Xn ↪→ · · ·

where Xn is the closed subscheme of X defined by In+1. It satisfies the
conditions of Proposition 1.10 and therefore the inductive limit X/X′ :=
lim−→Xn is a locally noetherian formal scheme, having X ′ as the underlying

space, called the formal completion of X along X ′, sometimes denoted by X̂.
It is easily checked that X/X′ does not depend on the choice of the ideal

I. Actually OX̂ = lim←−OX/J where J runs through all the coherent ideals of
OX such that the support of OX/J is X ′ and on any noetherian open subset
of X, the powers of I form a cofinal system. If X is affine, X = SpecA and
I = J̃ , then X̂ = Spf Â, with Â = lim←−A/J

n

The canonical immersion in : Xn ↪→ X defines a morphism of ringed
spaces

i = iX : X̂ → X (1.12.1)

which is flat and for any coherent sheaf F on X, the natural map

i∗F → F/X′ := lim←− i
∗
nF (1.12.2)

is an isomorphism. When X = SpecA and F = M̃ , M being an A-module
of finite type, then F/X′ = M∆.

The assertion above follows from Krull’s theorem: if A is noetherian and
J an ideal of A, then the J-adic completion Â is (faithfully) flat over A, and
for any A-module of finite type, M̂ = M ⊗A Â. One writes then F̂ for F/X′

when no confusion arises. Note that if F is not coherent, 1.12.2 is not in
general an isomorphism. One checks easily that the kernel of the adjunction
map

F → i∗i
∗F (1.12.3)
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consists of sections of F that vanish in a neighborhood of X ′.
Let f : X → Y be a morphism of locally noetherian schemes, X ′ (resp.

Y ′) a closed subset of X (resp. Y ) such that f(X ′) ⊂ Y ′. Choose coherent
ideals J ⊂ OX , I ⊂ OX , defining closed subschemes with underlying spaces
X ′ and Y ′ resppectively and such that f ∗(I)OX ⊂ J . Then f induces a
morphism of inductive systems f. : X.→ Y., and thus a morphism

f̂ : X/X′ → Y/Y ′ (1.12.4)

which does not depend on the choice of J and I, called the extension of f to
the completions X/X′ and Y/Y ′ . This morphism sits in a commutative square

X/X′
iX //

f̂
��

X ′

f

��
Y/Y ′

iY // Y

(1.12.5)

When X ′ = f−1(Y ′), one may take J = f ∗(I)OX , all the squares

Xn

fn

��

// X

f

��
Yn // Y

are cartesian, hence the same holds for the square and therefore f̂ is an adic
morphism.

2 The Comparison Theorem

Let f : X → Y be a morphism of locally noetherian schemes, Y ′ a closed
subscheme of locally noetherian schemes, let Y ′ be a closed subset of Y ,
X ′ = f−1(Y ′). Write X̂ = X/X′ and Ŷ = Y/Y ′ . For F ∈ Mod(X) the square

X/X′
iX //

f̂
��

X ′

f

��
Y/Y ′

iY // Y
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defines base change maps

i∗Rqf∗F −→ Rqf̂∗(i
∗F )

for all q ∈ Z, which are maps of OY -modules. When F is coherent, then i∗F
can be identified with F̂ = F/X′ and similarly i∗Rqf∗F with (Rqf∗F )/Y ′ if
Rqf∗F is coherent, which is the case when F is coherent and f is proper (or
f is of finite type and the support of F is proper over Y , i.e. (see [EGA II
5.4.10]) the there is a closed subscheme of X, proper over Y and with SuppF
as the underlying space, by the finiteness theorem for proper morphisms
[EGA III 3.2.1, 3.2.4]. In this case 2 can be rewritten as

(Rqf∗F )∧ −→ Rqf̂∗F̂

On the other hand the squares 1.10.3, with X = X̂ and Y = Ŷ , define
OYn-linear base change maps

u∗nR
qf̂∗F̂ −→ Rq(fn)∗Fn

where Fn = u∗nF̂ = i∗nF , following the notation of 1.12.1. By adjunction,
these maps can be viewed as OŶ -linear maps

Rqf̂∗F̂ −→ Rq(fn)∗Fn

hence define OŶ -linear maps

Rqf̂ F̂ −→ lim←−R
q(fn)∗Fn

Note that the base change map 2 is defined more generally for F ∈ D+(X,OX),
as induced on the sheaves Hq from the base change map in D+(Ŷ ,OŶ )

i∗Rf∗F −→ Rf̂i∗F

Theorem 2.1. Let f : X → Y be a morphism of finite type between noethe-
rian schemes, Y ′ a closed subset of Y , X ′ = f−1(Y ′), f̂ : X̂ → Ŷ the
extension of f to the formal completions of X and Y along X ′ and Y ′ re-
spectively. Let F be a coherent sheaf on X whose support is proper over Y .
Then the canonical maps (Rqf∗F )∧ → Rqf̂∗F̂ and Rqf̂ F̂ −→ lim←−R

q(fn)∗Fn
are topological isomorphisms for all q ∈ Z.
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Remark 2.2. (a) It follows from the assumption of 2.1 on f that for any
F ∈ D+(X,OX) such that for any i, HiF is coherent and properly supported
over Y , the base change map i∗Rf∗F −→ Rf̂i∗F is an isomorphism. Noting
that the natural functor from the bounded derived category Db(Coh(X))
of coherent sheaves on X to the full subcategory Db(X)coh of Db(X) :=
Db(Mod(X)) is an equivalence [SGA 6-II 2.2.2.1], where Db(X) consists of
the complexes with coherent cohomology, one can extend the isomorphism 2
of 2.1 to the case F ∈ Db(X)coh

(b) Grothendieck’s original approach, though not published, is guessed
to consists of two steps: (1) proof in the case where f is projective, using
descending induction on q; (2) proof in the general case by reducing to the
projective case via Chow’s Lemma and noetherian induction. The proof given
in [EGA III 4.1.7 4.1.8] follows an argument due to Serre.

By considering a closed subscheme Z of X whose underlying space is the
support of F , 2.1 is reduced to the case where f is proper. And it is easily
seen that the theorem is reduced to the following special case:

Corollary 2.3. Under the assumption of 2.1, suppose that Y = SpecA,
with A a noetherian ring, I an ideal of A such that Supp(OY /I) = Y ′, where
I = Ĩ. Set Yn = Spec(A/In+1, Xn = Yn ×

Y
X, Fn = i∗nF = F/In+1F . Then

for all q ∈ Z the natural maps

ϕq : Hq(X,F )∧ −→ lim←−H
qX,Fn

defined by the composition of 2 and 2, and

ψq : Hq(X̂, F̂ ) −→ lim←−H
q(X,Fn)

defined by 2, are topological isomorphisms.

The proof of the corollary, which also appears in [EGA III 4.1.7], uses two
ingredients: (a) the Artin-Rees Lemma and the Mittag-Leffler Conditions,
mainly elementary commutative and homological algebra; (b) the finiteness
theorem for proper morphisms ([EGA III 3.2]), especially a graded variant
[EGA III 3.3.2]. A brief revision of (a) and (b) will be given before the proof
of the theorem is presented.

2.4. Artin-Rees and Mittag-Leffler Let A be an noetherian ring, I an
ideal of A and M a finitely generated A-module endowed with a descending
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filtration by submodules (Mn)n∈Z. The filtration (Mn)n∈Z is called I-good if
it is exhaustive, i.e. Mn0 = M for some n0, and it satisfies the following two
conditions:

(i) IMn ⊂ Mn+1 for all n ∈ Z, namely, M is a filtered module over the
ring A filtered by the I-adic filtration;

(ii) Mn+1 = IMn when n is large enough.
All I-good filtrations define on M the same topology, namely the I-adic

topology, filtering M by Mn = In+1M for n ≥ 0.
Assume the condition (i) holds. Consider the associated graded ring

A′ := grA = ⊕n∈NI
n, sometimes written ⊕Intn where t is an indeterminate,

to make clear that In = Intn is the n-th component of A′, and the graded
module associated to M is M ′ = grM = ⊕n∈NMn = ⊕Mnt

n. A basic
observation [B, III, §3, th.1] is that the condition (ii) is equivalent to

(ii)’ M ′ is finitely generated over A′.
Since A′ is noetherian, this immediately implies the classical Artin-Rees

Theorem: for any submodule N ⊂ M , the filtration on N induced by the
I-adic filtration of M is I-good, namely there exists n0 ∈ N such that
(In+n0M) ∩N = In(In0M ∩N) for all n ∈ N.

Let A be a ring, M. = (Mn, umn) be a projective system of A-modules,
indexed by N. The terminology below will be useful:

(1) M. is strict if the transition maps umn : Mn →Mm are all surjective;
(2) M. is essentially zero if for each m there exists n ≥ m such that

umn = 0, i.e. the pro-object defined by M. is zero.
(3) M. satisfies the Mittag-Leffler Condition (ML for short) if for each m

there is an n ≥ m such that Imumn′ = Imumn in Mm for all n′ ≥ n.
It is sometimes useful to consider the following stronger conditions :
(2)′ M. is Artin-Rees zero (AR zero for short) if there exists an integer

r ≥ 0 such that un,n+r = 0 for all n;
(3)′M. satisfies the Artin-Rees-Mittag-Leffler condition (ARML for short)

if there exists an integer r ≥ 0 such that Imumn = Imum,m+r for all m and
all n ≥ m+ r.

The following facts about the Mittag-Leffler conditions are found in [EGA
0III 13]

(a) If M. is essentially zero, then lim←−Mn = 0;
(b) The functor M. 7→ lim←−Mn is left exact; and for any exact sequence of

inverse system of A-modules, say

0 −→ L. −→M. −→ N. −→ 0
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the sequence
0 −→ lim←−Ln −→ lim←−Mn lim←−Nn −→ 0

is exact whenever L. satisfies the ML condition.
(2)Mittag-Leffler condition and projective limits.
Let A be a ring. Let Mod(A•) denote the category of projective systems

of A-modules indexed by N, E• = (E0 ← E1 ← · · · ), with En ∈ Mod(A),
umn : En → Em (m ≤ n). For E• ∈ Mod(A•), the projective limit of E• is
the A-module lim−→E• = lim−→En = {(xn)|umn(xn) = xm}.
Definition 2.5. Let E• ∈ Mod(A•), then

(1) E is strict if umn is surjective for any m ≤ n.
(2) E satisfies the Mittag-Leffler condition (ML for short) if for any m,

there exists n ≥ m, such that for any p ≥ n, umn(En) = ump(Ep).

Remark. (1) If E• is strict, then it satisfies ML.
(2) Let E• ∈ Mod(A•), then for any fixed n, unp(Ep) ⊂ En decreases

with p. Define E ′
n =

⋂
p≥n unp(Ep) ⊂ En (E ′

n is called a universal image).
Let E = lim−→En, define un : E → E ′

n in the obvious way, then un(E) ⊂ E ′
n,

umn(E
′
n) ⊂ E ′

m, and lim−→E ′
n

∼−→ lim−→En.
If E satisfies ML, it means that for any fixed n, {unp(Ep)}p is stationary.

In particular E ′ is strict.

We have similar definitions of “ML” and “strict” in the category of sets.

Proposition 2.6. Let

0→ L•
f−→M•

g−→ N• → 0

be an exact sequence of A•-modules. Then the sequence

0→ lim−→Ln → lim−→Mn → lim−→Nn

is exact, and if L• satisfies ML, then lim−→Mn → lim−→Nn is surjective.

Proof. The first assertion is immediate. Assume L• satisfies ML. Let

z = (zn) ∈ lim−→Nn, En = g−1
n (zn).

Let E• = (E0 ← E1 ← · · · ) be the projective system of sets induced by M•,
and denote by vmn : En → Em the transition map for n ≥ m. As L• satisfies
ML, and En is an affine space under Ln, E• satisfies ML, and hence E ′ is
strict. As {vnp(Ep)}p is stationary for any n, E ′

n =
⋂
p≥n unp(Ep) 6= ∅, hence

lim−→En ∼= lim−→E ′
n 6= ∅. So there exist (yn) ∈ lim−→En, such that g maps (yn) to

(zn).
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Definition 2.7. Let L• = ((Ln)n∈N, umn) ∈ Mod(A•), then L• satisfies uni-
form ML (or AR ML) if there exists r ≥ 0, such that for any n ≥ 0, and any
p ≥ n+ r, Imun,n+r = Imun,p.

See [SGA5, V] for a detailed discussion of this notion.

Definition 2.8. Let L• ∈ Mod(A•), L• is called essentially zero if for any
m ≥ 0, there exists n ≥ m, such that umn : Ln → Lm is the zero map.

Remark. L• is essentially zero implies lim−→Ln = 0.

Definition 2.9. Let L• ∈ Mod(A•), L• is called uniformly essentially zero
(or AR zero) if there exist r ≥ 0, such that un,n+r = 0, for any n.

Lemma 2.10. Let n ∈ N, define

ε∗n : Mod(A•)→ Mod(A) E• 7→ En,

then ε∗n has a right adjoint functor εn∗ : Mod(A)→ Mod(A•) which is defined
as follows:

εn∗(F ) = (0← · · · ← 0← F
Id←− · · · Id←− F ← · · · )

Proof. We need to verify Hom(ε∗n(E•, F )
∼−→ Hom(E•, εn∗(F )). Define

ϕ : Hom(ε∗n(E•), F )→ Hom(E•, εn∗(F ))

in the following way. Given f : En → F , then ϕ(f) is defined by the diagram

E• :

��
εn∗(F ) :

E0

��

· · ·oo En−1
un−1,noo

��

Enoo

f

��

En+1
un,n+1oo

f◦un,n+1

��

· · ·oo Ep
up−1,poo

f◦unp

��

· · ·oo

0 · · ·oo 0oo Foo F
Idoo · · ·Idoo F

Idoo · · ·oo

.

Define
ψ : Hom(E•, εn∗(F ))→ Hom(ε∗n(E•), F )

(fi)i≥0 7→ fn.

Easy to verify ϕ ◦ ψ = Id, ψ ◦ ϕ = Id.

Remark. As ε∗n is exact, this implies εn∗ maps injectives to injectives.
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Lemma 2.11. There exist enough injectives in Mod(A•), which are injective
in each degree and strict.

Proof. Let E• ∈ Mod(A•), then we can choose for each n an injective

ε∗nE = En ↪→ In,

where In is injective. And hence we have injectives

E ↪→
∏
n∈N

εn∗(ε
∗
nE•) ↪→

∏
n∈N

εn∗In.

Let F• =
∏
n∈N

εn∗In, then Fn =
∏
p≤n

Ip, is injective. And F• is strict.

Remark. (1)lim−→Fn =
∏
In, in particular, is injective.

(2)Thanks to 2.11, we can define the derived functor

R lim−→ : D+(A•)→ D+(A).

For any E• ∈ D+(A•), define Rq lim−→E• = HqR lim−→E•. Then lim−→E• =
R0 lim−→E•.

Proposition 2.12. (a)For any E• ∈ Mod(A•), any q > 1, Rq lim−→E = 0.
(b)If E satisfies ML, then Rq lim−→E• = 0, for any q > 0.

Proof. We first show(b). We have an exact sequence

0→ E• → F• → G• → 0

where F• is injective and strict, and hence G• is strict. Consider the long
exact sequence of cohomology

0→ lim−→E• → lim−→F• → lim−→G• → R1 lim−→E• → R1 lim−→F• → · · ·

As E satisfies ML, by 2.6, R1 lim−→E• → R1 lim−→F• is injective. SinceR1 lim−→F• =
0, R1 lim−→E• = 0. By induction on q ≥ 1, we get Rq lim−→E = 0, for all q ≥ 1.

Then we show (a). For any E• ∈ Mod(A•) we have an exact sequence

0→ E• → F• → G• → 0

with F• injective and strict, and hence G• strict. Apply (b) to G•, we have
G• lim−→-acyclic, which implies the conclusion.
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We have the following generalization. Let (X,OX) be a ringed space. Let

Mod(X•) = {E0 ← · · · ← Em
umn←−− En ← · · · }

denote the category of inverse systems of OX-modules. For E• ∈ Mod(X•),
E• is called strict if umn is surjective for any m ≤ n. E• is said to satisfy
the Mittag-Leffler condition (ML for short) if for any m, there exists n ≥ m,
such that for any p ≥ n, umn(En) = ump(Ep). Define ε∗n(E•) = En,

εn∗(F ) = (0← · · · ← 0← F
Id←− · · · Id←− F ← · · · ).

Using the adjoint functors (ε∗n, εn∗) we see again that there exist enough
injectives in Mod(X•) whose components are injective and which are strict.
We can define a derived functor:

R lim−→ : D+(X•)→ D+(X).

For any L• ∈ D+(X•), define Rq lim−→L• = HqR lim−→L•. Then lim−→L• =
R0 lim−→L•.

Proposition 2.13. Let T : Mod(X•) → Mod(Z) be the functor defined
by T (E•) = Γ(X, lim−→En) = lim−→Γ(X,En). Then we have a commutative
diagram:

D+(X•)
R lim−→ //

RΓ
��

RT

%%KKKKKKKKKK
D+(X)

RΓ
��

D+(Z•)
R lim−→ // D+(Z)

Proof. For any E• ∈ Mod(X•),

Γ(E•) = (· · · ← Γ(X,En)← · · · ) ∈ Mod(Z•).

If E• =
∏
εn∗(In), where In is injective for any n, then Γ(E•) =

∏
εn∗Γ(X, In)

is acyclic for lim−→, So we get R lim−→RΓ = RT .On the other hand, lim−→E• =
∏
In

is injective, so we get RΓR lim−→ = RT .Hence

R lim−→◦RΓ = R(T ) = RΓ ◦R lim−→ .

For further discussion of R lim−→, see [N],[J].
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Theorem 2.14. Let X be a scheme, F• ∈ Qcoh(X•). Assume F• is strict,
and for any i ∈ Z, H i(X,F•) = (· · · ← H i(X,Fn)← · · · ) satisfies ML, then
for any q, the natural map

Hq(X, lim−→
n

Fn)→ lim−→
n

Hq(X,Fn)

is an isomorphism.

Proof. By 2.13, RΓ(X,R lim−→F•) = R lim−→RΓ(X,F•), where Rq lim−→F• is the
sheaf associated to the presheaf (U 7→ Rq lim−→Γ(U, Fn)). If U is affine, by
Serre, Γ(U, Fn) is strict. If U is affine, then Rq lim−→Γ(U, Fn) = 0, for any

q > 0. Hence Rq lim−→Fn = 0, for any q > 0, which implies lim−→Fn
∼−→ R lim−→F•.

Let F = lim−→F•. Consider the spectral sequence

Epq
2 = Rp lim−→Hq(X,Fn)⇒ Hp+q(X,F ) (∗)

As Hq(X,F•) satisfies ML, by 2.12, Epq
2 = 0 for any p > 0. Then (∗)

degenerates at E2, and Hq(X,F )
∼−→ E0,q

2 = lim−→Hq(X,F•).

Proof of ??. Consider the long exact sequence of cohomology associated with
the short exact sequence

0→ In+1F → F → Fn → 0,

namely
Hq(In+1)→ Hq(F )→ Hq(F n)→ Hq+1(In+1F ),

where Hq(−) = Hq(X,−). Let

Rn = Ker(Hq(F )→ Hq(Fn)) = Im(Hq(In+1F )→ Hq(F )),

Qn = Ker(Hq+1(In+1F )→ Hq+1(F )) = Im(Hq(Fn)→ Hq+1(In+1F ).

The main points are the following:
(1) For all q, the descending filtration Rn of Hq(F ) is I-good.
(2) Q• is AR zero.
(3) For all q, Hq(F•) satisfies ML.
Let’s first show that (1),(2),(3) imply the conclusion. Consider the exact

sequence
0→ Hq(F )/Rn → Hq(Fn)→ Qn → 0.
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By (2) we have lim−→Q• = 0, using the left exactness of the functor lim−→, we
get an isomorphism:

lim−→Hq(F )/Rn
∼−→ lim−→Hq(Fn).

By (1) the map

Hq(F )̂ = lim−→
n

Hq(F )/In+1Hq(F )→ Hq(F )/Rn

is an isomorphism, so we get

Hq(F n)̂
∼−→ lim−→Hq(Fn).

Thanks to (3), the assumptions of 2.14 are satisfied, therefore

Hq(X̂, F̂ ) = Hq(X̂, lim−→Fn) = Hq(X, lim−→Fn) = lim−→Hq(X,Fn)

.
Proof of (1) Consider the graded module

⊕
Hq(In+1F ) over the graded

ring
⊕

In, it is finitely generated (by the graded variant of the finiteness
theorem, applied to IF ).The exact sequence⊕

n∈N

Hq(In+1F )→
⊕
n∈N

Rn → 0

implies
⊕
n∈N

Rn is finitely generated over
⊕
n∈N

In, hence (Rn) is I-good.

Proof of (2) LetB =
⊕

In.By the finiteness theorem again,
⊕

nH
q+1(In+1F )

is finitely generated over B. Since B is noetherian,
⊕

Qn as a sub-B-
module of

⊕
nH

q+1(In+1F ) is also finitely generated, and therefore there
exists r ≥ 0 such that Qn+1 = IQn for all n ≥ r. Since Qr, as a quotient
of Hq(Fk) is killed by Ik+1(as an A-module), each Qn is therefore killed by
Ir+1(as an A-module). For any a ∈ Ip, the composition of the multiplica-
tion by a from Hq+1(In+1F ) to Hq+1(Ip+n+1F ) with the transition map from
Hq+1(Ip+n+1F ) to Hq+1(In+1F ) is the multiplication by a in Hq+1(In+1F ).
Since Qn+r+1 = Ir+1Qn for any n ≥ r, it follows that, for any n ≥ r, the
transition map Qn+r+1 → Qn is zero, and hence, if s = 2r + 1, for all n, the
transition map Qn+s → Qs is zero.

Proof of (3) Consider the exact sequence

0→ Hq(F )/Rn → Hq(Fn)→ Qn → 0
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As Hq(F )/Rn is strict and Qn is AR zero, they both satisfies ARML, then
the middle term satisfies ARML using the following lemma, whose proof is
elementary.

Lemma 2.15. Let
0→ L′• → L• → L′′•

be an exact sequence in Mod(A•). If L• satisfies ML (resp. ARML), so does
L′′, and if L′• and L′′• satisfies ML (resp. ARML), then L• satisfies ML(resp.
ARML).

Corollary 2.16 (theorem on formal functions). Let f : X → Y be a
proper morphism of noetherian schemes. Let y be a point of Y , m = mY,y,
Xy = X ×Y Spec k(y) be the fiber of f at y. Let F be a coherent sheaf of X,
then the natural map

(Rqf∗(F )y )̂ = lim−→Rqf∗(F )y/m
n+1Rqf∗(F )y → lim−→Hq(Xy, F/m

n+1F )

is an isomorphism.

Proof. If y is closed, this is a special case of the comparison theorem. The
general case can be reduced to this one by base change. In fact, consider the
following commutative diagram

Xy
//

��
�

X ′

f ′

��

h //

�

X

f

��
y // SpecOY,y

g // Y

As g is flat, we have the base change isomorphism g∗Rqf∗F
∼−→ Rf ′∗(h∗F ),

hence
Rqf∗(F )Y )̂ = (g∗Rqf∗(F ))ŷ

∼−→ (Rf ′∗(h
∗F )y )̂

The following special cases in which the assumptions are those of 2.16

Corollary 2.17. f∗(F )ŷ → lim−→H0(Xy, F/m
n+1F ) is an isomorphism.

Corollary 2.18. Assume dimXy = r, then for any q > r, there exists an
open set U contains y, such that Rqf∗(F )|U = 0.
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Proof. Since

Rqf∗(F )y ↪→ Rqf∗(F )ŷ = lim−→Hq(Xy, F/m
n+1F ) = 0,

Rqf∗(F )y = 0. As Rqf∗(F ) is coherent, there exists an open set U contains
y, such that Rqf∗(F )|U = 0.

2.19. Stein factorization and Zariski’s main theorem
Let Y be a scheme and let B be a quasi-coherent OY -algebra. Let Z =

SpecB. Recall that for any commutative diagram of schemes

Z = SpecB

g

��
X

f
//

f ′
99rrrrrrrrrrr
Y

,

the natural morphism

HomY (X,Z)→ HomOY
(g∗OZ , f∗OX) (∗)

is a bijection. In particular, let Y be a locally noetherian scheme, f : X → Y
a proper morphism. Then f∗OX is a coherent OY -algebra, the identity map
Id : f∗OX → f∗OX corresponds by (∗) to a morphism f ′ : X → Y ′ making
the following diagram commutes:

Y ′ = Spec f∗OX
g

��
X

f
//

f ′
77pppppppppppp
Y

(∗∗)

We have g∗(f∗OX) = g∗OY ′
∼−→ f∗OX . It follows that the adjoint map OY ′ →

f ′∗OX is an isomorphism. (∗∗) is called Stein factorization of f .

Corollary 2.20 (Zariski’s connectedness theorem). Under the assump-
tions above, f ′ has connected, nonempty fibers, (i.e. for any y′ ∈ X ′,
f ′−1(y′) 6= ∅, and connected.)

Proof. We may assume f∗OX = OY . As

OY,ŷ = f∗(OX)ŷ
∼−→ H0(Xy, lim−→OX/m

n+1OX)

is a local ring, Xy is connected and nonempty. (If Xy had n ≥ 2 components,
then H0(Xy, lim−→OX/m

n+1OX) would be a product of n ≥ 2 non zero rings,
which is impossible since OY,ŷ is local.)
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Lemma 2.21. Let A be a local noetherian ring with the residue field k =
A/m, k ′/k be a field extension. Then there exists a local noetherian ring A′,
flat over A, with the residue field A′/m′ = k ′.

Proof. In the case [k ′ : k ] <∞, we reduce to the case k ′ = k(y) = k [T ]/(f),
where f is the minimal polynomial of y. Lift f to a monic polynomial
F ∈ A[T ], then A′ = A[T ]/(F ) is just the required local ring.

For general case, see [EGA0] III 10.3.1.

Remark. In the situation of 2.20, the fibers of f ′ are geometrically con-
nected. This means that for any y′ ∈ Y ′ and any y′′ = Spec k(y′) → y′ (or
equivalently, any y′′ → y′ with [k(y′′) : k(y′′)] < ∞), the fiber Xy′ ×y′ y′′ is
connected.

Proof of the remark. We may assume Y ′ = Y , i.e. f∗OX = OY . By base
change, using SpecOY,y → Y we may assume Y local, let k ′ be a finite
extension of k . By 2.21, choose Y ′ → Y flat with Y ′ local, with the residue
field k ′. Base changing by Y ′ → Y , we get the result.

Corollary 2.22. In the situation of 2.20, π0(Xy) = |g−1(y)|, where π0(Xy)
is the set of connected components of Xy, and |g−1(y)| denotes the underlying
finite set of g−1(y).

Corollary 2.23. Let f : X → Y be a proper and surjective morphism of
integral schemes, with Y normal. Let ζ be the generic point of X, η = f(ζ) be
the generic point of Y . Assume that the generic fiber Xη of f is geometrically
connected. Then all fibers of f are geometrically connected.

Proof. The hypothesis on generic fiber means that the algebraic closure K ′

of K = k(η) in k(ζ) is a finite radiciel extension of K. Let y be a point of Y ,
we want to show Xy is geometrically connected. Since OY,y is normal and K ′

is radiciel over K, the normalization A of OY,y in K ′ is a local ring and the
residue field extension is radiciel. Since A contains (f∗OX)y, (f∗OX)y is a
local ring and (f∗OX)y/my is radiciel over k(y). ThereforeXy is geometrically
connected.

Remark. We can give a simpler argument in the case f is birational. Then
k(ζ) = k(η). We have the commutative diagram:

f∗(OX)y
� � // k(η)

OY,y

OO

� � // k(η)
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where OY,y → f∗(OX)y is finite and OY,y normal, which implies f∗(OX)y =
OY,y.

Corollary 2.24. Let f : X → Y be a proper morphism of locally noetherian
schemes. Consider the Stein factorization of f

X
f ′ //

f

��

Y ′

g
~~}}

}}
}}

}}

Y

(a) Let x be a point of X, y = f(x), y′ = f ′(x), then x is isolated (i.e.
both open and closed) in its fiber f−1(y) if and only if f ′−1(y′) = {x}.

(b) Let U = {x ∈ X|x isolated in f−1(f(x))}, then U is open in X,
U ′ = f ′(U) is open in Y ′, f ′ induces an isomorphism f ′ : U

∼−→ U ′ and
U = f ′−1(U ′).

Proof. (a) As g−1(y) is finite and discrete, x is isolated in f−1(y) if and
only if x is isolated in f ′−1(y′). So we may assume f∗OX = OY . By Zariski’s
connectedness theorem, f−1(y) is connected and nonempty. So f−1(y) = {x}
if and only if x is isolated in its fiber.

(b) For any x ∈ U , f ′−1(y′) = {x}. So f ′ : U → U ′ is bijective as a map
of sets and f ′−1(U ′) = U . We may assume f∗OX = OY (replace Y by Y ′).
It is enough to show U is open and f is a local isomorphism. It is enough
to show that for any x ∈ U , there exists an open neighborhood T of x such
that T ⊂ X and f : T

∼−→ f(T ). Let V = SpecB be an affine neighborhood
of x, such that f(V ) ⊂ W , where W = SpecA is an affine neighborhood
of y = f(x). We know that f−1(y) = {x}. On the other hand, f is closed
implies f(X − V ) is closed. As f−1(y) = {x}, y /∈ f(X − V ), we can find
s ∈ A, such that Ws∩f(X−V ) = ∅, where Ws = SpecAs, i.e. f−1(Ws) ⊂ V .
Then f−1(Ws) ⊂ Vs, in fact, f−1(Ws) = Vs. As f∗OX = OY , f ′∗OVs = OWs ,
which implies As = Bs. Therefore Vs ⊂ U and f : Vs

∼−→ Ws.

Corollary 2.25. Let f : X → Y be a proper morphism of locally noetherian
schemes. Suppose f is quasi-finite (i.e. f−1(y) is finite for any y), then f is
finite.
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Proof. In this case U = X, and in the Stein factorization of f

X
f ′ //

f

��

Y ′

g
~~}}

}}
}}

}}

Y

f ′ is an isomorphism.

Corollary 2.26 (Zariski’s main theorem). Let f : X → Y be a quasi-
finite morphism, with Y locally noetherian. Suppose f can be compactified
into

X
� � j //

f
��

P

~~~~
~~

~~
~

Y

where j is an open immersion and P → Y is proper (e.g. f is quasi-
projective). Then f can be factored as

X
� � i //

f

��

Z

g
~~~~

~~
~~

~

Y

with g finite and i an open immersion.

Proof. Consider the commutative diagram

X
� � j //

f

��

� q

""F
FF

FF
FF

FF
P

h

��

U
- 

<<xxxxxxxxx

��
h(U)� p

""D
DD

DD
DD

D

Y Y ′
g

oo

where U is the set of points of P isolated in their fibers, P → Y ′ → Y is
the Stein factorization of P → Y . We have U

∼−→ h(U), and U → P and
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h(U) → Y ′ are open immersions. It remains to show j(X) ⊂ U , i.e. for
any x ∈ X, x is isolated in (gh)−1(y), where y = f(x). As f is quasi-finite,
x is isolated in f−1(y). Since X ↪→ P is open, x is open in (gh)−1(y). As
[k(x) : k(y)] <∞, x is closed in (gh)−1(y).

Exercise. Let A be a henselian noetherian local ring, S = SpecA, s be
a closed point, X be a proper scheme over S. Then the natural map

π0(Xs)→ π0(X)

is a bijection.

3 Grothendieck’s existence theorem

Let Y = SpecA be an affine scheme, where A is a noetherian ring, I is an
ideal of A, and A = lim−→A/In+1. The problem which is addressed in this

section is the following: given a proper adic noetherian Ŷ -formal scheme Z,
when can we assert the existence of a proper scheme Z over Y , whose I-adic
completion Ẑ = lim←−Zn, where Zn = Z ×Y Yn, is isomorphic to Z?

The strategy is try to embed Z in the completion P̂ of some projective
space P over Y , then try to algebraize the ideal of Z in P̂ . We first consider
this second problem.

Theorem 3.1. Consider a commutative diagram

X̂ //

��

X

f

��
Spf(A) = Ŷ // Y = SpecA

where A = Â = lim−→A/In+1, X is separated and of finite type over Y . Then
the functor

E ∈ Coh(X) 7→ Ê = i∗(E) ∈ Coh(X̂)

defines an equivalence of categories:

{E ∈ Coh(X)|Supp(E) proper overY } ≈→ {F ∈ Coh(X̂)|Supp(F ) proper overŶ }

(here Supp(F ) = Supp(F0) ⊂ X0).
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We will give the proof in the case f is proper. In this case, the statement
E 7→ Ê gives an equivalence (“GAGA style”) Coh(X)

≈→ Coh(X̂). For the
general case see [EGAIII] or [T].

Proposition 3.2. Let A be a noetherian ring, I be an ideal of A. Consider
the commutative diagram

X̂ //

��

X

f

��
Spf(A) = Ŷ // Y = SpecA

where f is proper. Let F , G be coherent sheaves on X, then for any q,
ExtqOX

(F,G) is finitely generated over A, and the natural map ExtqOX
(F,G)→

ExtqOX̂
(F̂ , Ĝ) induces an isomorphism

ExtqOX
(F,G)→ ExtqOX̂

(F̂ , Ĝ)

(F̂ = i∗F , Ĝ = i∗G).

Proof. We have

Extq(F,G) = Hq RHom(F,G) = Hq(X,RHom(F,G)).

As RHom(F,G) ∈ D+(X)coh (i.e. Exti(F,G) ∈ Coh(X), for any i), by
the finiteness theorem,Hq(X,RHom(F,G)) is finitely generated over A. We
have a spectral sequence

Eij
2 = H i(X,Extj(F,G))⇒ Exti+j(F,G).

Consider the map

RΓ(X,RHom(F,G)→ RΓ(X̂, i∗ RHom(F,G))

defined by i : X̂ → X. As i is flat, and F,G ∈ Coh(X),

i∗ RHom(F,G)
∼−→ RHom(i∗F, i∗G) = RHom(F̂ , Ĝ),

in particular,

i∗Extq(F,G) = Extq(F,G)̂
∼−→ Extq(F̂ , Ĝ).
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Therefore we have a map of spectral sequences

Hp(X,Extq(F,G))̂
(∗∗) //

��

Hp(X̂, Extq(F̂ , Ĝ))

��

Extp+q(F,G)̂
(∗) // Extp+q(F̂ , Ĝ)

As Extq(F̂ , Ĝ) = Extq(F,G)̂, (∗∗) is an isomorphism by the comparison
theorem.So (∗) is an isomorphism.

Remark. The conclusion holds for X separated and of finite type over Y ,
and Supp(F ) ∩ Supp(G) proper over Y (see [EGAIII]).

Proof of 3.1. (In the case X proper over Y )
(1) Proof of full faithfulness. Let F , G be coherent sheaves on X Since

Hom(F,G) is finitely generated over A and A = Â, Hom(F,G) = Hom(F,G)̂.
By 3.2 for q = 0, the natural map

Hom(F,G)→ Hom(F̂ , Ĝ)

is an isomorphism. This proves that the (−)̂ functor is fully faithful.
(2) Proof of essential surjectivity. (a) Consider the projective case. As-

sume X is projective over Y . Let L be an ample line bundle on X, L̂ is an
ample line bundle on X̂. For M on X (resp. X̂), M(n) = M ⊗ L⊗n (resp.
M⊗L̂⊗n). Let E ∈ Coh(X̂). By the following lemma, we have a presentation

OX̂(−m1)
r1 u→ OX̂(−m0)

r0 → E → 0.

By the full faithfulness, there exists a unique v : OX(−m)r1 → OX(−m0)
r0 ,

such that v̂ = u. Let F = Coker(v), then by the exactness of (−)̂, E = F̂ .

Lemma 3.3. Let E be a coherent sheaf on X̂, then there exists m ≥ 0, r ≥ 0,
and a epimorphism

OX̂(−m)r → E → 0.

Proof. Let I = I4 ⊂ OŶ , OŶ /I = OY0 , E = (En), En = E/In+1E. We
have grkIE = IkE/Ik+1E ∈ Coh(X0). Let M = grIE =

⊕
n≥0

grnIE. This is a

graded module over f ∗0 (grIOY ), where grIOY =
⊕
In/In+1. Since

grI0E ⊗gr0IOY
grOY → grIE, E/IE ⊗OY0

In/In+1 7→ InE/In+1E
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is surjective, M is of finite type over f ∗0 (grIOY ), hence corresponds to a
coherent module M ′ on X ′, where X ′ is defined by the following cartesian
diagram

X0

f0
��

�

Spec f ∗0 (grIOY ) = X ′oo

f ′

��
Y0 SpecgrIOY = Y ′oo

(with f0 and f ′ proper). Since L is ample, L′ = L0 ⊗ OX′ is ample, where
L0 = L ⊗ OX0 . Apply Serre’s vanishing theorem to f ′, M ′ and L′, there
exists n0 ∈ N, such that for any n ≥ n0 and any q > 0, Rqf ′∗M

′(n) = 0.
Since Rqf ′∗(M

′(n)) = (
⊕
k≥0

Rqf0∗grkIE(n)) , it follows that for any k ≥ 0, any

n ≥ n0, any q > 0, Rqf0∗grkIE(n) = 0. Apply the Γ(X0,−) to the following
exact sequence

0→ grkIE(n)→ Ek+1(n)→ Ek(n)→ 0,

we get an exact sequence

Γ(X0, Ek+1(n))→ Γ(X0, Ek(n))→ H1(X0, grkIE(n)).

For any n ≥ n0, H
1(X0, grkIE(n)) = 0, and hence

Γ(X̂, Ê(n)) = lim−→
k

Γ(X0, Ek(n)) � Γ(X0, E0(n)).

Choose m ≥ n, such that E0(m) is generated by a finite number s1, · · · , sr of
global sections. Lift these sections to ti ∈ Γ(X̂, Ê(m)), we get Or

X̂
→ Ê(m),

Or
X̂

(−m)→ Ê, such that u0 = u⊗OX0 : OrX0
(−m)→ E0 given by the si’s is

surjective. Recall I ⊂ Rad(A), so by Nakayama’s lemma, u is surjective.

Let A be a noetherian ring, I be an ideal of A, and A = lim←−A/I
n+1.

Suppose Y = SpecA, and X/Y is a proper morphism. Ŷ = Spf(A). Then
we have

Theorem 3.4. The functor F 7→ F̂ from the category of coherent sheaves
on X whose support is proper over Y to the category of coherent sheaves on
X̂ whose support over Ŷ is an equivalence.
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Proof. Essentially surjectivity (have been proved)
Case (i): Projective case (have been proved);
Case(ii): General case: We use noetherian induction on X. Assume that

for all closed subschemes T of X distinct of X, and all E ∈ Coh(T̂ ), whose
support is proper over Ŷ is algebraizable, i.e., there exists F ∈ Coh(T ) with
proper support over Y , such that E = F̂ , and we want to show that every
E ∈ Coh(X̂) whose support is proper is algebraizable.

By Chow’s lemma, there exists a projective and surjective morphism g :
Z → X such that fg is projective, and there exists an open dense subset U
of X such that g induces an isomorphism from g−1(U) to U , that is, we have
the following commutative diagram:

g−1(U) � � //

o
��

X ′

g

��
fg

��

U
� � // X

f

��
S.

For E ∈ Coh(X̂), we have the following canonical exact sequence

0→ K → E → ĝ∗ĝ
∗E → C → 0 (∗).

We will show the following points:
(1) ĝ∗ĝ

∗E is algebraizable ;
(2) Let J be the ideal of OX defining T = X − U , with T = Tred, then

there exits a N ≥ 0 such that Ĵ NC = Ĵ NK = 0 ;
(3)Let T ′ be the closed subscheme of X defined by the ideal sheaf J N ,

then C,K ∈ Coh(T̂ ′), and C,K are algebraizable ;
(4) The category of algebraizable coherent sheaves on X is stable under

kernel, cokernel and extension.
We claim that (1)− (4) imply the theorem. In fact, we can write (∗) to two
short exact sequences:

0→ K → E → H → 0,

0→ H → ĝ∗ĝ
∗E → C → 0,

then by (1), (3), (4), H is algebraizable, and by (3), (4) we get that E is
algebraizable.
Now we only need to prove conditions (1)− (4).
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For (1), Since ĝ∗E ∈ Coh(Ẑ) and g is projective, by case (i), we know

ĝ∗E = F̂ for some F ∈ Coh(Z). By the comparison theorem, ĝ∗F̂ = ˆ(g∗F ),
and by the finiteness theorem, g∗F ∈ Coh(X), thus we get (1).

To Prove (2), we may work locally on X̂, assume X̂ = Spf(B), where B is
an IB-adic noetherian ring. Then E = F̂ for a coherent sheaf F on SpecB,
and we have an exact sequence corresponding to (∗)

0→ K ′ → F → g∗g
∗F → C ′ → 0,

where K̂ ′ = K, Ĉ ′ = C. Since g|U is an isomorphism, C ′|U = K ′|U = 0, then
C ′ and K ′ are killed by a positive power of J , and we get (2).

In view of (2), (3) follows from the noetherian induction assumption.
In (4), for u : E1 → E2 with E1, E2 ∈ Coh(X̂) and E1 = F̂1, E2 = F̂2.

By full faithfulness, there exists u : F1 → F2 such that u = v̂. So

ˆKerv = Keru, ˆCoker v = Cokeru.

And the stability under extension follows from the isomorphism

Ext1(F,G)
∼−→ Ext1(F̂ , Ĝ).

3.5. Algebraizable of closed formal scheme
Let X be a locally noetherian formal scheme. A closed formal scheme of

X is a formal subscheme (Z,OZ) such that Z = SuppOZ, OZ = OX/J with
J being a coherent ideal of X. If X = Spf(A), then Z = Spf(A/J ) for some
ideal of A. If I is an ideal of definition of X, and Xn = (X,OX/In+1), so
that X = lim−→Xn. Let Zn be the closed subscheme of Xn such that OZn =
OZ ⊗OX

O(Xn), then we have

Z0
� � //

� _

��

· · · � � // Zn
� � //

� _

��

· · · � � // Z� _

��
X0

� � // · · · � � // Xn
� � // · · · � � // X

and Z = lim−→Zn. Conversely, given a morphism of inductive systems as
follows,

Z0
� � //

� _

i0
��

�

· · · � � // Zn
� � //

� _

in
��

· · ·

X0
� � // · · · � � // Xn

� � // · · ·
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such that i′ns are closed immersions, and each square is cartesian, then Z =
lim−→Zn ↪→ X is a closed formal scheme of X.

Corollary 3.6. Suppose A = Â, Y = SpecA, and X/Y is proper. Then the
map Z 7→ Ẑ is a bijection from the set of closed subschemes of X to the set
of closed subschemes of X̂.

Proof. We only need prove surjectivity. Let Z be a closed formal subscheme
of X̂. It corresponds to a coherent quotient

OX̂
u→ OZ → 0.

By3.4, there exists a unique coherent OX-module F such that F̂ = OZ, and
a unique v : OX → F such that v̂ = u. Since u0 is surjective, so is v, hence
F = OZ for a closed subscheme Z of X such that Ẑ = Z.

3.7. Algebraizable of finite morphism Let X be a locally noetherian
formal scheme, and Z → X be a morphism of locally noetherian formal
schemes. f is called finite if f is an adic map and f0 : Z0 → X0 is finite. We
have

Z0
� � //

� _

��

· · · � � // Zn
� � //

� _

��

· · · � � // Z� _

��
X0

� � // · · · � � // Xn
� � // · · · � � // X,

Obviously f is finite if and only if f is adic and for all n, fn is finite. This
is also equivalent to saying that for every open subset U = Spf(A) ⊂ X,
Z|U = f−1(U) = Spf(B), where B is a finite A-algebra and IB-adic, I being
a n ideal of definition of A. To see the second equivalence, one reduce to
affine case, see [B]III, §2, no.11. We have that if X = X̂, and Z is a finite
scheme over X, then Ẑ is finite over X̂.

Corollary 3.8. Suppose Y = SpecA, A = Â, and X/Y is proper. Then the
functor Z 7→ Ẑ is an equivalence from the category of finite X-schemes to
the category of finite X̂-formal schemes.

Proof. Full faithfulness: let B,C be finite OX-algebras, and u : B̂ → Ĉ
is a map of OX̂-algebras. By full faithfulness for modules, one can find
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v ∈ HomOC−mod(B,C) such that u = v̂. v is automatically a map of OX-
algebras. In fact, we need check that the following two diagrams

B ⊗B //

v⊗v
��

B

v

��
C ⊗ C // C

(∗)

and

B
v // C

OX
ε

aaBBBBBBBB η

==||||||||

(∗∗)

are commutative, where η, ε are canonical morphisms as OX-algebras. We
have that (∗)∧ and (∗∗)∧ are commutative, by full faithfulness, so are (∗) and
(∗∗).

Essential surjectivity: let B be a finite OX̂-algebra, then by 3.4, there

exists a coherent OX-module B such that B̂ = BB = B̂ as OX̂-module.
The maps B ⊗ B → B and OX̂ → B giving the algebra structure on B

is uniquely algebraized to maps B ⊗ B → B and OX → B. So we get a
coherent OX-algebra B, such that B̂ = B.

Corollary 3.9. Let Y be as above. Then the functor X → X̂ from the cate-
gory of all proper Y -schemes to the category of all proper Ŷ -formal schemes
is fully faithful.

Proof. Let X1, X2 be proper schemes over Y , we want to show that

HomY (X1, X2)→ HomŶ (X̂1, X̂2)

is bijective. If f : X1 → X2 is a Y -morphism, we have the following diagram

X1 ×Y X2

pr1
yyssssssssss pr2

%%KKKKKKKKKK

X1

Γf

99ssssssssss

%%KKKKKKKKKKK X2

yysssssssssss

Y

where Γf : X1 → X1 ×Y X2 is the graph morphism of f . It is a closed
immersion and pr1 induces an isomorphism Γf (X1)

∼−→ X1. Conversely, for
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any closed subscheme Γ ⊂ X1 ×Y X2 such that pr1 : Γ
∼−→ X1, Γ = Γf where

f = pr2 ◦ pr−1
1 ∈ HomY (X1, X2).

On the other hand, apply Corollary 3.8 to X1 ×Y X2, we have that the
set of all closed subschemes of X1 × X2 is bijective to the set of all closed
formal subschemes of (X1×Y X2)

∧ = X̂1× X̂2, and pr1 : Γ
∼−→ X1 if and only

if p̂r1 : Γ̂
∼−→ X̂. So we get the correspondence

{′′graph like′′ closed formal subschemes of X1 ×X2}OO

��

{′′graph like′′ closed formal subschemes of X̂1 × X̂2},

hence the conclusion.

Theorem 3.10 (Grothendieck, 1959). Let A = Â be a complete noethe-
rian ring, Y = SpecA. Let fx = lim←−Xn be a proper, adic formal Ŷ -scheme,
where Xn = X×Ŷ Yn. Let L be a line bundle on X such that L0 = L⊗OX

OX0

is ample. Then X is algebraizable, and if X is a proper Y -scheme such that
X = X̂, then there exists an unique line bundle M on X such that L = M̂ .
Moreover, X is projective over Y , and M is ample.

Proof. (??)The proof is not clear.
S = grI OY =

⊕
n∈N

In/In+1 can be viewed as an OY0-algebra.

X0

f0

��
�

Spec f ∗0S = X̃oo

f̃
��

Y0 SpecS = Ỹoo

OX0(1) = L0 is ample, L̃ = φ∗L0 is ample.
By Serre-Grothendieck vanishing theorem, there exists n0 such that for

all n ≥ n0 and q > 0,

Rqf̂∗(Ẽ(n)) = 0.

Since
Rqf̂∗(Ẽ(n)) =

⊕
n∈N

Rqf0∗ grkI E(n)

=
⊕
n∈N

Hq(X0, grkI E(n)),
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and the exact sequence

0→ grkI E(n)→ Ek+1(n)→ Ek(n)→ 0,

so in particular, for n ≥ n0,

Γ(X0, Ek+1(n))→ Γ(X0, Ek(n))

is surjective, hence

Γ(X, E(n)) = lim←−
k

Γ(Xk, Ek(n))→ Γ(X), E0(n))

is surjective for all n ≥ n0. Apply this to E = OX, then there exists n0

such that for all n ≥ 0, Γ(X̂,OX̂(n))→ Γ(X0,OX0(n)) is surjective. Choose
n ≥ n0 such that OX0(n) is very ample corresponding to

X0

  @
@@

@@
@@

@
� � i0 // P0 = PrY0

zzvvvvvvvvv

Y0

where i0 is a close immersion. i∗0OP0(1) = OX0(n). E0(n0) is generated by
a finite number of global sections, lifting these sections to H0(X̂, E(n0)), we
find a map

u : Or
X̂
→ OX(n)

such that u0 = u⊗OX0 : OrX0
→ E(n) is surjective. By Nakayama’s lemma,

uk = u⊗OXn is surjective for all k.

X0
//

i0
��

· · · // Xn
//

ik
��

· · · // X

i
��

// X

j

��
PrY0

= P0 // · · · // Pn // · · · // P̂ // P = PrY ,

Since i0 ia a closed immersion, ik is a closed immersion for all k, thus X is
a closed formal subscheme of P̂ . By 3.6, X is algebraizable, i.e., X = X̂ for
some closed subscheme of P . Then by 3.4, there exists a unique line bundle
M on X such that L = M̂ , and

(M⊗n)∧ = M̂⊗n

= OX̂(n)

= ĵ∗OP̂ (1)
= (j∗OP (1))∧,
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by 3.4 again, M⊗n ' j∗OP (1), then M⊗n is very ample, hence M is ample.

4 Application to lifting problems

Let A be a local noetherian ring with maximal ideal m and residue field
k = A/m. Let T = SpecA, Sn = SpecAn, S = Spf(Â) where An = A/mn+1.
Given a scheme X0 proper over S0 = Spec k, we have the following diagram

X0

��
S0

// · · · // Sn // Ŝ // S // T.

There are three problems:
Pb1: Find a proper flat lifting of X0 to T ;
Pb2: Find a proper flat lifting of X0 to S, for X/S proper, flat, such that

X ×S S0 = X0;
Pb3: Find X proper, flat over Ŝ lifting X0. Try to lift X0 to an inductive

system of (proper and flat) schemes Xn such that Xn+1 ×Sn+1 Sn = Xn. For
flatness, Xn/Sn is flat for all n, if and if only in the diagram

X0
//

��

· · · // Xn
//

��
�

Xn+1
//

��

· · · // X

��
S0

// · · · // Sn // Sn+1
// · · · // S

,

Xn/Sn flat for all n.
Suppose Xn has been constructed, Xn is flat, proper over Sn lifting X0.

We want to findXn+1 liftingX0 to Sn+1. Encounters an obstruction o(Xn, in),
where in : Sn → Sn+1, in some global cohomology group of X0. For example,
if Xn is smooth,

o(Xn, in) ∈ H2(Xn,m
n+1/mn+2 ⊗OS0

TX0/S0)

= H2(X0,m
n+1/mn+2 ⊗OS0

TX0/S0)

= H2(X0, TX0/S0)⊗mn+1/mn+2.

Pb: Assume X0 has been lifted to X proper, flat over Ŝ, algebraize this X,
find X proper, flat over S such that X̂ = X (Note that if X̂ = X, X is proper
over S, then X will be flat over S).
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Pb4: Lift L0 to L on X, where L0 is a line bundle on X0. Suppose L0

has been lifted to Ln, we want to lift Ln to Ln+1 on Xn+1. Encounters an
obstruction

o(Ln, in) ∈ H2(X0,OX0)⊗mn+1/mn+2.

4.1. Deformation of vector bundles Let i : X0 → X be a thickening of
order one, defined by an ideal I of square zero. Let E0 be a vector bundle on
X0. We want to find a vector bundle E on X such that OX0 ⊗E = E/IE =
E0. More precisely, by a lifting of E0 to X, we mean a pair of a vector bundle
E on X and an OX linear map E → i∗E0 such that i∗E

∼−→ E0.
Suppose E ∈ Mod(X) is a lifting of E0 to X, we have a short exact

sequence
0→ IE → E → i∗E0 → 0,

since E is flat over X, I ⊗ E0
∼−→ IE, then we get

0→ I ⊗ E0 → E → i∗E0 → 0.

Proposition 4.2. Let i : X0 → X be as above.
(a) Let E, F be vector bundles on X, E0 = i∗E, F0 = i∗F , and u0 : E0 →

F0 be a OX0-linear map. There exists an obstruction

o(u0, i) ∈ Ext1OX0
(E0, I ⊗ F0)

such that o(u0, i) = 0 if and only if there exists u : E → F such that u⊗OX0 =
u0. When o(u0, i) = 0, the set of extensions u is an affine space under
Ext0(E0, I ⊗ F0).

Note: ExtiOX0
(E0, I ⊗ F0) = H i(X0, I ⊗Hom(E0, F0)).

(b) Let E0 be a vector bundle on X0. There is an obstruction

o(E0, i) ∈ Ext2(E0, I ⊗ F0) = H2(X0, I ⊗ End(E0)

such that o(E0, i) = 0 if and only if there exists a vector bundle E lifting E0.
When o(E0, i) = 0, the set of isomorphisms of E is an affine space under
Ext1(X, I ⊗End(E0)), and the group of automorphisms of E is identified by
a 7→ a− Id with Ext0(E0, I ⊗ End(E0)).

Proof. (a) We want to find u such that the diagram commutes:

0 // I ⊗ E0

Id⊗u0

��

// E //

u

���
�
� E0

//

u0

��

0

0 // I ⊗ F0
// F // F0

// 0.
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Denote M by the pushout of E and I ⊗ F0 over I ⊗ E0, similarly let N be
the pullback of F and E0 over F0, we get

I ⊗ E0
//

��

E
f //

��

E0,

I ⊗ F0
//M

α
==||||||||

and

N //

��

E0

��
I ⊗ F0

g //

β
;;xxxxxxxxx
F // F0,

where α = (f, 0), β = (0, g). One can easily check that existence of u is
equivalent to that

[0→ E ⊗ F0 →M → F0 → 0]− [0→ I ⊗ F0 → N → F0 → 0] = 0

in Ext1(E0, I ⊗ F0), denote by o(u0, i), then it is the desired one.
When o(u0, i) = 0, fix one extension v, we have that the composite mor-

phism

E
u−v // F // F0

is zero, so can be factored as

E

{{ww
ww

ww
ww

w

��
I ⊗ F0

u−v // F.

Thus we get a group action
u 7−→ u− v

under which the set of extensions is an affine space.
(b) For simplicity, we assume that X0 (or X, this is equivalent) is sep-

arated. Choose U = (Ui)i∈S, (Ei)i∈S such that U is an affine open cover of
X0 and Ei is a vector bundle on X|Ui

extending E|Ui
. Since X0 is sep-

arated, Uij = Ui ∩ Uj is affine, so by (a) one can find an isomorphism
gij : Ei|Uij

∼−→ Ej|Uij
inducing the identity on E0|Uij

. On Uijk = Ui ∩Uj ∩Uk,
cijk = gijg

−1
ik gjk ∈ Aut(Ej|Uijk). cijk − Id ∈ H0(Uijk, I ⊗ End(E0)), and
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(cijk) = d((hij)) for some hij ∈ H0(Uij, I ⊗ End(E0)) if and only if the (hij)
can be modified into a gluing data for the (Ei), i.e., (hij) can be replaced by
g′ij = gij + hij such that g′ijg

′−1
ik g′jk = Id. Then gluing (Ei), we get global E

extending E0. Thus d(cijk) = o(E0, i) ∈ H2(X, I ⊗ End(E0)) is the desired
obstruction, and it does not depend on the choices. If E1 and E2 are two
extendings of E0 over X, then by (a) the isomorphisms from E1 to E2 form
a torsor under I ⊗ End(E0).

Remark 4.3. (1) If L is a line bundle, then OX0

∼−→ End(L0), so o(L0, i) ∈
H2(X0, I).

(2) Let L0, M0 be line bundles, then

o(L0 ⊗Mi, i) = o(L0, i) + o(Mi, i).

Corollary 4.4. Let A be a complete local noetherian ring, with maximal
ideal m and residue field k. Let S = SpecA, Ŝ = Spf(A) = lim−→Sn, where

Sn = SpecA/mn+1, S0 = Spec k = s. Let X be a m-adic formal Ŝ-scheme,
and proper, flat over Ŝ.

(a) If X/S is proper and X̂ = X, then X is flat over S.
(b) If H2(X0,OX0) = 0, then any line bundle L0 on X0 can be lifted to

a line bundle L on X, and L is unique up to (non unique) isomorphism if
H1(X0,OX0) = 0. Moreover, if L0 is ample, then any lifting L is ample and
X is projective.

Proof. (a) Each Xn = Sn ×S X is flat over Sn (=Sn ×Ŝ X), so by flatness
criterion, for all x ∈ X0 = Xs, OX,x is flat over A. By openness of flatness
introduced later, X is flat over S on an open neighborhood U of Xs, since
X/S is proper, we get U = X.

Theorem 4.5 (openness of flatness). Let Y be a locally noetherian scheme,
f : X → Y be locally of finite type, F ∈ Coh(X). Then the set of x ∈ X
such that Fx is flat over OY,f(x) is open in X.

Proof. Uses flatness criterion and the following theorem.

Theorem 4.6 (Generic flatness). Let f : X → Y be of finite type, where
Y is a locally noetherian integral scheme, F ∈ Coh(X). Then there exists
an open nonempty subset V of Y such that F|f−1(V ) is flat over V .

Proof. See [EGA], IV, 6.9.1.
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(b)

X0
//

f0
��

�

· · · // Xn
//

fn

��
�

Xn+1
//

fn+1

��
S0

// · · · // Sn // Sn+1
//

We want to lift L0 to X. Assume L0 has been lifted into Ln on Xn.

o(Ln, in) ∈ H2(Xn,m
n+1/mn+2 ⊗OXn)

= H2(X0,OX0)⊗k mn+1/mn+1

= 0,

so we get L on X lifting L0, X = X̂. And by the existence theorem, L = L̂
for some L ∈ Coh(X). When L0 is ample, L is ample.

Uniqueness of lifting in case H1(X0,OX0) = 0: Suppose L, M be two
liftings of L0, we will find an isomorphism L

∼−→ M inducing identity on L0.
Suppose we have got un : Ln

∼−→ Mn, since H1(X0,m
n+1/mn+2 ⊗ OX0) = 0,

we get an isomorphism un+1 : Ln+1
∼−→Mn+1 lifting un.

Corollary 4.7. Let S be as in 4.4, X0/S0 be proper and smooth. Then
(a) If H2(X0, TX0/S0) = 0, then there exists a proper and flat formal

scheme X lifting X0.
(b) If moreover H2(X0,OX0) = 0, and X0 is projective, then there exists

a proper and smooth scheme X/S lifting X0.

Proof. (a) We have the diagram

X0
� � //

� _

��

· · · � � // Xn

��
S0

� � // · · · � � // Sn
� � // Sn+1.

Suppose Xn/Sn is a smooth lifting X0, then

o(Xn, in) ∈ H2(Xn, TXn/Sn ⊗OSn
mn+1/mn+2)

= H2(X0, TX0/S0 ⊗k mn+1/mn+2)
= H2(X0, TX0/S0)⊗mn+1/mn+2

= 0.

so we have X = lim−→Xn is a lifting of X0.



232 CHAPTER 4. FORMAL GEOMETRY

Note: If H1(X0, TX0/S0) = 0, then the lifting X is unique up to isomor-
phism (unique isomorphism if H0(X0, TX0/S0) = 0).

(b) Take L0 being ample on X, lifting it to L on X, then algebraizing it
by 3.10, we get X = X̂, L = L̂, and L is ample over X.

X0
� � //

�
��

X

��
S0

� � // S

where X/S is projective and flat. Since X/S is flat, X0/S0 is smooth, X is
smooth at every point x ∈ X0 = Xs, then X is smooth over S in an open
neighborhood U of Xs, hence U = X since X/S is proper.

4.8. Curves Let Y be a locally noetherian scheme. By a curve over Y we
mean a morphism f : X → Y which is flat, separated and of finite type, with
relative dimension 1.

Corollary 4.9. Suppose X0/S0 = Spec k is a proper, smooth, geometrically
connected curve of genus g. Then there exists a proper smooth curve X/S
with geometrically connected fibers of genus g lifting X0.

Proof. From
H2(X0, TX0/S0) = 0, H2(X0,OX0) = 0,

we get a projective smooth lifting X/S, with fibers smooth of dim 1. Have
to show f∗OX = OS, where F : X → S is the structure morphism.

Lemma 4.10. Suppose f : X → Y is proper an flat, and we have the
following diagram

X //

f

��

X ′

�
g

~~}}
}}

}}
}}

X ′′oo

g′}}{{
{{

{{
{{

Y Y ′hoo

,

where X ′ = Spec f∗OX → Y is the stein factorization of X → Y . Assume
the fibres of f are geometrically reduced. Then g is finite étale and g∗OX′

commutes with any base change, i.e., h∗g∗OX′ = g′∗OX′′. In particular, f is
cohomologically flat in degree zero, and the following conditions are equiva-
lent:

(i) f∗OY = OY ;
(ii) the fibers of f are geometrically connected.
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Proof. See [SGA 1], X, 1.2.

Now we want to prove the fibers are of genus g. In fact, since Rf∗OX
is perfect, of tor-amplitude in [0, 1], by lemma 4.10, and that S is locally
noetherian, one can prove that R1f∗(OX) is locally of finite rank g and com-
mutes with base change. In general, let E ∈ D(S) be a perfect complex of
tor-amplitude in [0, 1], and assume for some s ∈ S, the canonical map

α0(s) : k(s)⊗H0(E)→ H0(k(s)⊗L E)

is surjective. Then α0(s) is an isomorphism, and H0(E), H1(E) are locally
free of finite type around s (and commute with base change).

Note: f∗Ω
1
X/S is locally free of rank g, since by Grothendieck’s duality

theorem, we have

f∗Ω
1
X/S ⊗R1f∗OX //

((RRRRRRRRRRRRRR
R1f∗Ω

1
X/S

'
��
OS.

Proper smooth curves in positive characteristic can be lifted to charac-
teristic zero: if k is of characteristic p > 0, there exists a complete dis-
crete ring A which is flat over Zp with residue field k = A/pA (Cohen
ring of k). Denote by K = Frac(A). When k is perfect, we can take
A = W (k) = {(a0, a1, · · · )| ai ∈ k}, the Witt vectors on k.

Spec k // SpecA SpecK? _oo

X0

OO

// X

OO

Xk

OO

? _oo

. (??)

4.11. Surfaces Let X be a locally noetherian scheme. By a étale cover of
X we mean a finite and étale morphism Y → X. A morphism Y ′ → Y of
étale covers is defined as an X-morphism from Y ′ to Y . Denote by Et(X)
the category of finite étale covers of X. Suppose X is connected and fix a
geometric point x of X, i.e., a morphism Spec k(x) → Spec k(x), with k(x)
a separably closed field. The functor

Fx : Y 7−→ Y (x) = Yx
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associating to an étale cover Y of X the finite set of its points over O, is
called fiber functor. We define the fundamental group of X at O to be the
group of automorphisms of Fx, Aut(Fx).

Corollary 4.12. Let A be a complete local noetherian ring, with residue field
k. Let S = SpecA, Ŝ = Spf(A) = lim−→Sn, where Sn = SpecA/mn+1. Let X
be a proper scheme over S. Then the inverse image functor

Et(X) −→ Et(Xs)

where s = S0 = Spec k, is an equivalence. So if X0 is connected (so that X
is connected), and x is a generic point of X0 (hence of X), then the natural
homomorphism

π1(X0, x)→ π1(X, x)

is an isomorphism.

Proof. Let X̂ be the formal completion along Xs, so that X̂ = lim−→Xn, where
Xn = Sn ×S X, then we have

Xs
i //

��

X̂
j //

��

X

��
s // Ŝ // S.

Consider the natural morphisms

Et(X)
j∗ // Et(X̂)

i∗ // Et(Xs) ,

where j∗ : Y 7→ Ŷ and i∗ : y 7→ ys. We claim that i∗ is an equivalence. In
fact, let Y0/X0 be finite é tale. Suppose that Yn lifting Y0 and étale over Xn

exists and is unique. Since Y0/X0 is étale, TY0/X0 = 0, then

H2(Y0, TY0/X0)⊗mn+1/mn+2 = H1(Y0, TY0/X0)⊗mn+1/mn+2 = 0,

we can find Yn+1 lifting Y0, étale over Xn+1, and is unique. Thus get a
unique Y lifting X. To prove the full faithfulness, consider a Y -morphism
i0 : Z0 → Y0, by a similar argument, o(un, in) = 0, where un : Zn → Yn, so
u0 can be lifted.

For j∗, it is fully faithful. It remains to prove j∗ is essentially surjective.
Let Y be a étale cover of X̂, by 3.8, there exists a unique scheme Y finite
over X such that Ŷ = Y. Since Yn/Xn is étale for all n ≥ 0, then Y/X is
étale at all points x ∈ Ys, therefore Y/X is étale since X/S is proper.
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4.13. Abelian varieties In 1961, Serre constructed an example. Let X0/k
be a proper smooth scheme, where k is an algebraically closed of characteristic
p > 0. For any local integral domain A with residue field k, then there is no
proper, smooth lifting of X0 to A.

In 1962, Lang, Raynaud and Szpiro constructed examples of proper smooth
surfaces X0/k such that the spectral sequence

Eij
1 = Hj(X0,ΩX0/k)⇒ H i+j

dR (X0/k)

does not generate at E1. Then by a theorem of Deligne-Illusie, X0 can’t be
lifted to W2(k) = W (k)/p2W (k).

4.14. K3 surfaces Here are some results in the positive direction. For
example K3 surfaces. For a K3 surface over an algebraically closed field k,
we mean a proper, smooth, connected surface X0 such that

Ω2
X0/k
' OX0 , and H1(X0,OX0) = 0.

More precisely, we have the following result, due to Rudakov-Shafarevich and
Deligne:

Theorem 4.15. Let A be a complete local noetherian ring, with maximal
ideal m and residue field k which is algebraically closed. Let S = SpecA,
Ŝ = Spf(A) = lim−→Sn, where Sn = SpecA/mn+1. Let X0 be a K3 surface

over k. Then there exists a proper and smooth formal scheme X over Ŝ
lifting X0.

5 Serre’s Example

Let k be an algebraically closed field with characteristic p > 0. Let P0 = Pnk
be the projective space. In this section, we will construct a smooth complete
intersection Y0 = V (h1, · · · , hn−r) ⊂ P0 of dimension r, together with a free
action of a finite group G such that X0 = Y0/G has the following property:
Let A be a complete local integral noetherian ring with residue field k, and
whose fraction field is of characteristic 0. Then there exists no formal flat
scheme Y over Spf(A) lifting Y0.

First, recall that we have a natural identification(see [H] II.7.1)

Autk P0→̃PGLn+1(k) = GLn+1(k)/k
∗

g 7→ (x = (x0, · · · , xn) 7→ gx).
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Let G be a finite group. A homomorphism ρ0 : G → PGLn+1(k) gives an
action of G on P0. For each g ∈ G, we have a morphism Tg : P0 → P0 given
by x 7→ gx on the point x ∈ P0(T ), where T is a k-scheme. Define a closed
subscheme of P0

Fix(g) = Γg ×P0×P0 ∆ ⊂ P0,

where Γg is the graph of Tg and ∆ is the diagonal of P0 × P0. Then we
see that for any k-scheme T , x ∈ P0(T ) belongs to Fix(g)(T ) if and only if
gx = x. Let Q0 =

⋃
g∈G,g 6=e Fix(g). This is a closed subset of P0.

Proposition 5.1. Let r > 1 be an integer. Assume dim Q0 < n − r. Then
there exists an integer d0 > 1, such that for any d = md0 (m > 1) there
exists a smooth complete intersection Y0 ⊂ P0 of dimension r defined by
V (h1, · · · , hn−r) (hi ∈ Γ(P0,OP0(d))), such that Y0 is stable under the action
of G on P0 and G acts freely on Y0.

Proof. Since G acts admissibly on P0, i.e. P0 is the union of affine open
subsets stable under G, Z0 = P0/G exists and one has OZ0 = (f0∗OP0)

G,
where f0 is the natural projection P0 → Z0 (see [SGA1 5.1.8]). Moreover
since Z0 is normal, and by [EGA II 6.6.4], Z0 is projective. Hence we get a
closed immersion i : Z0 → Psk. Composed with the m-uple embedding of Psk
in PNk , where N =

(
s+m
s

)
−1, we obtain im : Z0 → PNk and the following

diagram:
P0

f0
��

f0(Q0) // Z0
i // Psk // PNk

.

We have f ∗0 (i∗OPs
k
(1)) = OP0(d0) for some d0 ∈ Z (as Pic(P0) = Z), then

f ∗0 i
∗
mOPN (1) = OP0(md0). Since f0 is finite, hence f ∗(i∗OPs

k
(1)) is ample and

we have d0 > 0. Since dim f0(Q0) = dimQ0 < n − r, by Bertini’s theorem
(see [J 6.11]) there exists a linear surface L0 ⊂ P ′ = PNk of codimension n− r
defined by V (g1, · · · , gn−r)(gi ∈ Γ(P ′,OP ′(1))), such that L0 ∩ f0(Q0) = ∅
and L0 intersects U0 = Z0 − f0(Q0) transversally. In particular, X0 :=
L0 ∩ Z0 = L0 ∩ U0 is smooth. Let hi = (imf0)

∗gi ∈ Γ(P0,OP0(md0)) and
Y0 = V (h1, · · · , hn−r). We claim that this Y0 satisfies our requirement. Since
f0 : f−1

0 (U0)→ U0 is an étale cover with group G (see [SGA1 5.2.3]) and Y0

is a complete intersection in f−1
0 (U0), f0 : Y0 → X0 is also an étale cover with

group G. In particular, G acts freely on Y0.



5. SERRE’S EXAMPLE 237

Proposition 5.2. Assume r > 3 and d > 2 (d = md0 as in Proposition 5.1)
or r = 2 and p|d, p - n + 1. Let f0 : Y0 → X0 = Y0/G as in the proof of
Proposition 5.1. Let A be a complete local noetherian ring with reside field
k. Let X/Spf(A) be a flat formal lifting of X0/k. Then X is algebraizable,
i.e. there exists a unique proper and smooth scheme X/ Spec(A), such that

X̂ = X . Moreover X is projective and the representation ρ0 of G lifts to
A, i.e. there exists a homomorphism ρ : G → PGLn+1(A) such that the
following diagram commutes.

G
ρ0 //

ρ

%%JJJJJJJJJJJ PGLn+1(k)

PGLn+1(A)

OO

In order to prove this proposition we need some preliminaries.

Lemma 5.3. Let P = Pnk and Y = V (h1, · · · , hn−r) (where hi ∈ Γ(P,OP (di)))
be a complete intersection of dimension r > 1. Here “complete intersection”
means that

h :
n−r⊕
i=1

OP (di)
(h1,··· ,hn−r)−−−−−−−→ OP

is a regular morphism, i.e. the Koszul complex

K• = (0→ K−(n−r) → · · · → K−1 h−→ K0 → 0),

where K0 = OP , K−1 =
⊕n−r

i=1 OP (di) and K−i = ∧iK−1, is quasi-isomorphic
to OY by the natural augmentation. Then H0(Y,OY ) = k and H i(Y,OY ) = 0
for 0 < i < r.

Proof. Note that H∗(Y,OY ) = H∗(P,OY ) = H∗(P,K•). Hence we have
a natural spectral sequence Ep,q

1 = Hq(P,Kp) converging to Hp+q(Y,OY ),
where K−p =

⊕
i1<···<ip OP (−di1 − · · · − dip). From the fact that Ep,q

1 = 0

for 0 < q < n, it follows that H i(Y,OY ) = 0 for all i ∈ (0, r). And from

Ep,0
1 =

{
k p = 0
0 p < 0

,

we obtain that H0(Y,OY ) = k.
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Remark 5.4. (a) For Hr(Y,OY ), we have the following exact sequence:

0→ Hr(Y,OY )→ E
−(n−r),n
1 → E

−(n−r)+1,n
1 → · · · → E0,n

1 → 0,

where E−p,n = Hn(P,K−p) =
⊕

i1<···<ip H
n(P,OP (−di1−· · ·−dip)). Through

the analysis of the dimension of E•,n
1 , we obtain that Hr(Y,OY ) = 0 if and

only if
∑
di 6 n.

(b) Similarly, we can obtain H i(Y,OY (1)) = 0 for 0 < i < r. And if di > 2
for any i, then H0(Y,OY (1)) = kn+1.

Now we recall some base change formula. Suppose that in the cartesian
diagram

X ′

f ′

��

h // X

f

��
Y ′ g // Y

,

X and Y are noetherian separated schemes, and that f is proper. Let F be a
coherent sheaf on X, flat over Y . Then there is a base change isomorphism:

Lg∗Rf∗F −̃→Rf ′∗(h∗F ).

We can thus obtain a natural map

g∗Rqf∗F → Hq(Lg∗Rf∗F ) = Rqf ′∗(h
∗F )). (5.4.1)

F is called cohomologically flat in degree q if (5.4.1) is an isomorphism for
any base change Y ′ → Y .
Now let y be a point in Y , denote the map

k(y)⊗Rqf∗F → Hq(Xy, k(y)⊗OY
F ).

by αq. We have the following convenient criterion of cohomological flatness.

Lemma 5.5. Assume Hq+1(Xy, Fy) = 0, then in a neighborhood of y, αq is
an isomorphism and F is cohomologically flat in degree q. Moreover, if αq−1

is surjective, then in a neighborhood of y, Rqf∗F is locally free of finite type
and of formation compatible with base change.

Proof. Exercise (or see Trieste notes).

Having these lemmas in hand, we can come to the proof of Proposition
5.2.
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Proof. (1) Since Y0/X0 is étale, Y0 lifts uniquely (up to a unique isomorphism)
to Ym/Xm étale for all m > 1. Hence we get a formal étale cover Y of X .
Similarly suppose that the action of G on Y0 has been lifted to an action
on Ym: G × Ym → Ym. Then it extends uniquely G × Ym+1 → Ym+1, since
Ym → Xm is étale. This is a group action automatically by uniqueness.
Hence finally we get a free action of G on Y/X , which makes Y/X an étale
Galois cover.

Remark. For each n > 0, the diagram

Y0
//

��

Yn

pn

��
Spec k // SpecAn

,

where An = A/mn, is cartesian. Since dimY0 = r > 1, by Lemma 5.3 we
have H0(Y0,OY0) = k and H1(Y0,OY0) = 0. And by Lemma 5.5, it follows
that pn∗OYn = An, hence H0(Y ,OY) = lim←−H

0(Yn,OYn) = A.

(2) Consider the natural ample line bundle L0 = OY0(1) on Y0 induced
by OP0(1). We want to lift it to a line bundle L on Y .
(a) Case r > 3. We have a chain of thickenings:

Y0 ↪→ · · · ↪→ Ym ↪→ Ym+1 ↪→ · · · ↪→ Y

As H2(Y0,OY0) = 0 and H1(Y0,OY0) = 0 by Lemma 5.3, the obstruction to
lifting L0 to Ym vanishes. We get a unique (up to non-unique isomorphisms)
line bundle Lm on Ym, hence finally a line bundle L on Y (unique up to
isomorphisms), which lifts L0.
(b) When r = 2, it no longer holds that H2(Y0,OY0) = 0 (see 5.4 (a)). But
we have the following argument due to Mumford. Let I be the ideal of the
closed immersion i : Y0 → P0. Then we have a natural exact sequence

0→ I/I2 → i∗Ω1
P0
→ Ω1

Y0
→ 0.

Then Ω2
Y0

= Ωn
P0
⊗ (∧n−2I/I2)∨. But via the Koszul complex, it follows that

∧n−rI/I2 = T or
OP0
n−r(OY0 ,OY0) = OY0(−(n− r)d).

Hence we get ε0 : Ω2
Y0

w OY0(N) w L⊗N0 , where N = (n − 1)d − n − 1. By
the assumption that p|d and p - n+ 1, it follows that p - N .
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Now consider the immersion im : Ym → Ym+1 and assume that L0 has been
lifted to Lm on Ym and the isomorphism ε0 lifted to εm : Ω2

Ym
→̃L⊗Nm . Let’s

show that this isomorphism extends to m+1. Since Ω2
Ym+1

lifts Ω2
Ym

, we have

0 = o(Ω2
Ym
, im) = o(L⊗Nm , im) = N · o(Lm, im).

Since p - N , it follows that o(Lm, im) = 0, i.e. Lm can be lifted to Lm+1 over
Ym+1. But since H1(Y0,OY0) = 0 by 5.3, ε0 can be lifted to an isomorphism
ε0 : Ω2

Ym+1
→̃L⊗Nm+1.

Combining (a) and (b), we get (in all cases) an ample line bundle L on Y
lifting L0. By Grothendieck’s Existence Theorem, Y is algebraizable, i.e.
there exists a projective and flat (hence smooth) scheme Y/ SpecA with an

ample line bundle L, such that Ŷ = Y and L̂ = L.
(3) Algebraization of Y/X . Denote by M0 the line bundle ∧|G|f0∗L0 on X0,
where |G| denotes the cardinality of G. Since L0 is ample, by [EGA II 6.5.1]
it follows that M0 is ample too. Clearly, for each m > 1, the line bundle
Mm = ∧|G|fm∗Lm lifts M0, and the line bundle M = lim←−Mm lifts L0 to
X . By Grothendieck’s Existence Theorem, there is a projective, flat (hence

smooth) scheme X/ SpecA with an ample line bundle M , such that X̂ = X
and M̂ = M. And by full faithfulness of the functor Z → Ẑ, there is a
morphism f making the following diagram cartesian:

Y = Ŷ //

��

Y

f

��
X = X̂ // X

.

For the same reason the action of G on Ŷ comes from an action of G on Y :

G× Y −̃→Y ×X Y
(g, y) 7−→ (y, gy).

And moreover, M = ∧|G|f∗L. By the comparison theorem, we have M̂ =
∧|G|f̂∗(L̂) = ∧|G|(f∗L)∧.
(4) Lifting of ρ0. Since we have assumed d > 2, it follows from Remark 5.4
that H0(Y0,OY0(1)) = kn+1 and H1(Y0,OY0) = 0. By Lemma 5.5, we get
H0(Ym,OYm(1)) = An+1

m , hence H0(Y,OY (1)) = An+1.
For any g ∈ G there is a natural isomorphism a(g)0 : g∗L0→̃L0 on Y0 induced
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by the isomorphism g∗OP0(1)→̃OP0(1) given by the action of g on P0. Now
suppose that a(g)0 has been lifted to a(g)m : g∗Lm→̃Lm, then the obstruction

o(a(g)m, im) ∈ H1(Y0,OY0)⊗k mm+1/mm+2 = 0.

Therefore a(g)m can be lifted, uniquely up to automorphisms of Lm, to an
isomorphism a(g)m+1 : g∗Lm+1 → Lm+1. Hence finally it can be lifted to an

isomorphism â(g) : g∗L → L. Algebraizing â(g), we get a(g) : g∗L → L,
unique up to automorphisms of L. For g, h ∈ G, a(gh) = a(g)a(h) and
a(e) = IdL up to automorphism of L. But

Aut(L) = (End(L))∗ = H0(Y, End(L))∗ = H0(Y,OY )∗ = A∗,

(since H0(Y ,OY) = A). From the isomorphism a(g) : g∗L→ L, we get

H0(Y, L)
δ //

ρ̌(g)

''NNNNNNNNNNN
H0(Y, g∗L)

H0(P0,a(g))
��

H0(Y, L)

,

where δ is given by the functoriality of H0. Note H0(Y, L) = An+1 and
that ρ̌(g) lifts (̌ρ)0(g) up to an element of A∗, where ρ̌0(g) : H0(Y, L0) =
kn+1 → H0(Y, L0) = kn+1 is obtained similarly via the action of g on P0.
Hence finally we get a representation ρ : G −→ PGLn+1(A), which lifts
ρ0 : G −→ PGLn+1(k).

Now we give explicit constructions of G and its representation ρ0. Let n
and r be integers with 1 6 r < n, and let G be a group of type (p, · · · , p) of
order ps, i.e. G w Fsp. Moreover we suppose that p > n + 1 and s > n. We
choose an injective homomorphism of Fp-vectors spaces h : G→ k (since k is
infinite dimensional over Fp). Let N ∈Mn+1×n+1(k) be the nilpotent matrix
given by

N =


0 1 0 · · · 0
0 0 1 · · · 0
. . . . . . . . . . . . . . .
0 . . . . . . . . . 1
0 . . . . . . . . . 0

 .

For g ∈ G, set

ρ̃0(g) = exp(h(g)N)

= 1 + h(g)N + · · ·+ h(g)nNn

n!
,
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then ρ̃(g) ∈ GLn+1(k). Let ρ0(g) be the image of ρ̃(g) in PGLn+1(k), then
we get a representation

ρ0 : G −→ PGLn+1(k). (5.5.1)

It is easily seen that ρ0g = Id if and only if h(g) = 0. Hence ρ0 is faithful,
since h is injective. For g 6= e in G, Fix(g) consists of only one point
(1, 0, · · · , 0). Thus dimQ0 = 0 (< n − r), so that the condition of 5.1 is
satisfied.

Proposition 5.6. Assume that p > n+1 and s > n+1. Let A be an integral
local ring with residue field k and field of fractions K of characteristic zero.
If ρ0 is the representation defined in 5.5.1, then there is no homomorphism
ρ : G −→ PGLn+1(A) lifting ρ0.

Proof. Assume that such a lifting ρ exists. Then ρ is necessarily faithful
(since ρ0 is faithful), and so is the composition, still denoted by ρ, G −→
PGLn+1(K). Note that we have a central extension of groups

1→ µn+1(K)→ SLn+1(K)→ H → 1, (5.6.1)

where H the canonical image of SLn+1(K) in PGLn+1(K). Since G is fi-
nite, after an extension of scalars, we may assume that the image of ρ lies
in H. Pulling back the extension 5.6.1 by G, we obtain an extension of G
by µn+1(K) denoted by E. E corresponds to an element in H2(G, µn+1(K)).
Since p - |µn+1(K)|, we haveH2(G, µn+1(K)) = 0 and in particular the exten-
sion E splits. Hence the representation ρ lifts to a (faithful) representation
ρ′ : G −→ SL(V ), where V = Kn+1. After some extension of scalars again,
we may assume that K contains µp, the group of pth roots of unit. As G is
commutative and K is of characteristic zero, V decomposes into a sum

V =
n+1⊕
i=1

Vi

of sub-representations of dimension 1. Let χi : G → µp ⊂ K∗ be the corre-
sponding character of Vi. Then one has

∏n+1
i=1 χi = 1. Each kernel Hi of χi

is a hyperplane in G. Since by assumption s = dimFp G > n + 1, the kernel
of ρ′

Z = Kerρ′ =
n+1⋂
i=1

Hi =
n⋂
i=1

Hi
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will be at least of dimension 1 over Fp, in particular not zero. This contradicts
the faithfulness of ρ′.

Combining all the results above, we have obtained the following theorem.

Theorem 5.7. Let r and n be integers with 2 6 r < n and n + 1 < p. Let
G = Fsp with s > n+1. Then there exists a smooth, projective complete inter-
section Y0 = V (h1, · · · , hn−r) ⊂ P0 = Pnk of dimension r (and of multi-degree
(d, · · · , d)), endowed with a free action of G, and such that the projective
smooth scheme X0 = Y0/G has the following property. Let A be a complete,
integral, noetherian local ring with residue field k and field fractions of char-
acteristic zero. Then there exists no formal scheme X flat over SpfA, lifting
X0. A fortiori, there exists no proper smooth lifting of X0 over SpecA.

Proof. Let ρ0 be the representation defined in (5.5.1), through which G acts
on P0. The existence of such a complete intersection Y0 is guaranteed by
Proposition 5.1. Assume that there exists a lifting X of X0 over Spf(A).
Then by Proposition 5.2, we get a representation ρ : G −→ PGLn+1(A)
lifting ρ0. But Proposition 5.6 claims that such a ρ cannot exist. Hence we
get a contradiction.

Remark. Serre has improved the above results as follows.
(a) One can take s = 2, i.e. G = Fp × Fp, in the theorem.
(b) Suppose A is a complete noetherian local ring with residue field k. If
there exists a flat formal lifting X of X0 over Spf(A), then it is necessary
that pA = 0.

For details of this remark see Trieste notes.
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Math. IHES 4(1960).

[EGAII] J. Dieudonne and A. Grothendieck, Étude globale élémentaire de
quelques classes de morphismes, Publ. Math. IHES 8(1961).

[EGAIII] J. Dieudonne and A. Grothendieck, Étude cohomologique des fais-
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