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Abstract For a number field F and a prime number p, the Zp-torsion module of the Galois group of the

maximal abelian pro-p extension of F unramified outside p over F , denoted as Tp(F ), is an important subject

in abelian p-ramification theory. In this paper we study the group T2(F ) = T2(m) of the quadratic field F =

Q(
√
m). Firstly, assuming m > 0, we prove an explicit 4-rank formula for quadratic fields that rk4(T2(−m)) =

rk2(T2(−m))− rank(R) where R is a certain explicitly described Rédei matrix over F2. Furthermore, using this

formula, we obtain the 4-rank density of T2-groups of imaginary quadratic fields. Secondly, for l an odd prime, we

obtain results about the 2-power divisibility of orders of T2(±l) and T2(±2l), both of which are cyclic 2-groups.

In particular we find that #T2(l) ≡ 2#T2(2l) ≡ h2(−2l) (mod 16) if l ≡ 7 (mod 8) where h2(−2l) is the 2-class

number of Q(
√
−2l). We then obtain density results for T2(±l) and T2(±2l) when the orders are small. Finally,

based on our density results and numerical data, we propose distribution conjectures about Tp(F ) when F varies

over real or imaginary quadratic fields for any prime p, and about T2(±l) and T2(±2l) when l varies, in the spirit

of Cohen-Lenstra heuristics. Our conjecture in the T2(l) case is closely connected to Shanks-Sime-Washington’s

speculation on the distributions of the zeros of 2-adic L-functions and to the distributions of the fundamental

units.
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1 Introduction

Let p be a prime number. For a number field F , let M = M(F, p) be the maximal abelian pro-p extension

of F unramified outside p. By class field theory, Gal(M/F ) is a finitely generated Zp-module of rank

r2(F )+δp(F )+1, where r2(F ) is the number of complex places of F and δp(F ) > 0 is the Leopoldt defect

of F at p. Leopoldt’s Conjecture is that δp(F ) = 0 for all p and F and this has been proved when F/Q is

abelian. We call the Zp-torsion subgroup of Gal(M/F ), a finite abelian p-group, the Tp-group of F and

denote it by Tp(F ). The study of Gal(M/F ) and Tp(F ) which goes back to fundamental contributions
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of Serre, Shafarevich and Brumer, is the so-called abelian p-ramification theory. We refer the reader to

the historical survey [8] by Gras for this theory, in which the p-rank formula for Tp(F ) due to himself is

stated. When F is totally real, assuming δp(F ) = 0, the work of Coates [2] and Colmez [3] shows that

the order of Tp(F ) is essentially the residue of the p-adic zeta function of F up to a p-adic unit. This

motivates us to study the group structure of Tp(F ) in more detail. Like class groups, the study of Tp(F )

can be much more explicit in the case that F is a quadratic field and p = 2. In this paper, we will mainly

consider this case, and our main purpose is to study the distribution of T2(F ) when F varies in a certain

family of quadratic fields.

Note that the structure of a finite abelian p-group A is completely determined by its pi-rank rkpi(A) :=

dimFp p
i−1A/piA for all i. As a consequence, to study Tp(F ), it is necessary and sufficient to study

rkpi(Tp(F )) for all i.

The general p-rank formula for Tp(F ) becomes very explicit for p = 2 and F quadratic, after a compu-

tation of genus class numbers; see Theorem 2.1. If F is imaginary quadratic, we shall prove an explicit

4-rank formula of T2(F ), namely, rk4(T2(F )) is the difference of rk2(T2(F )) and the rank of a certain

explicitly described Rédei matrix; see Theorem 2.4. This formula is new and is analogous to the classical

4-rank formula for narrow class groups of quadratic fields. Applying this result, we deduce the following

4-rank density formula for T2-groups of imaginary quadratic fields, which is the main result of this paper:

Theorem 1.1 (4-rank density formula for T2 of imaginary quadratic fields). For integers t > 1 and

r > 0, and a real number x > 0, put

Nx := {m ∈ Z>0 | m 6 x squarefree},
Nt;x := {m ∈ Nx | exactly t prime numbers are ramified in Q(

√
−m)},

T r
t;x := {m ∈ Nt;x | rk4(T2(Q(

√
−m))) = r}.

Then for any integer r > 0, the limit dT∞,r, which is defined by

dT∞,r := lim
t→∞

lim
x→∞

#T r
t;x

#Nt;x
(1.1)

exists and

dT∞,r =

∏∞
i=r+2(1− 2−i)

2r(r+1)
∏r

i=1(1− 2−i)
=

η∞(2)

2r(r+1)ηr(2)ηr+1(2)
(1.2)

where ηs(q) :=
∏s

i=1(1− q−i) for s ∈ Z>0 ∪ {∞} and q > 2 and η0(q) := 1.

Remark 1.2. Theorem 1.1 is analogue to the density theorem of Gerth [5] on the 4-rank of narrow

class groups of quadratic fields, and to the theorem of Yue-Yu [24] on the 4-rank of the tame kernel of

quadratic fields.

We then turn to study the T2-groups of subfamilies of quadratic fields, namely Q(
√
±l) and Q(

√
±2l)

where l is an odd prime. For simplicity, write T2(m) for T2(Q(
√
m)), t2(m) for its order, and h2(m) for

the 2-class number of Q(
√
m). Such questions for T2(l) and T2(2l) have been studied by many researchers

before. For example, consider Q(
√
l) and let L2(1, χl) be the 2-adic L-function where χl is the quadratic

character associated with Q(
√
l). Recalling that h2(l) = 1, then Coates’ order formula (see [2, Appendix

1] or Proposition 3.3) directly relates #T2(l) to the 2-adic regulator of Q(
√
l) and therefore to the 2-adic

valuation of L2(1, χl) by the class number formula. The latter two objects and their relation to h2(−l)

and h2(−2l) have been studied by Kaplan, Leonard, Williams (see [10], [13], [23]) and by Shanks-Sime-

Washington [19]. However, it seems that there is no study for T2(−l) and T2(−2l) before.

By the 2-rank formula (2.7), T2(±l) = T2(±2l) = 0 if l ≡ ±3 (mod 8) and T2(±l) and T2(±2l) are

nontrivial 2-cyclic groups if l ≡ ±1 (mod 8). Applying our 4-rank formula and Coates’ order formula for

totally real fields, we obtain the following results:

• (Theorem 3.1) Determine the congruent conditions for l satisfying t2(−l) or t2(−2l) = 2, 4 and > 8,

and hence find the respective densities;
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• (Theorem 3.7) Determine the conditions for l ≡ 7 (mod 8) satisfying t2(l) = 4, 8 and > 16, and

deduce the formula

t2(l) ≡ 2t2(2l) ≡ h2(−2l) (mod 16). (1.3)

• (Proposition 3.9) Determine the conditions for l ≡ 1 (mod 8) satisfying t2(l) or t2(2l) = 2 or 4.

Here Theorem 3.1 is new, Theorem 3.7 is an improvement of the result in [13] and Proposition 3.9 is

essentially a summary of the results in [10], [13] and [23] using the language of T2-groups.
For the real case, we then have the following density result which is inspired by the work on the

distribution of 2-adic valuation of L2(1, χl) in [19].

Theorem 1.3. For i ∈ {0, 1} and e ∈ {0, 1},

lim
x→∞

#{l 6 x : l ≡ (−1)e (mod 8), t2(l) = 2i+1+e}
#{l 6 x : l ≡ (−1)e (mod 8)}

=
1

2i+1
. (1.4)

lim
x→∞

#{l 6 x : l ≡ (−1)e (mod 8), t2(2l) = 2i+1}
#{l 6 x : l ≡ (−1)e (mod 8)}

=
1

2i+1
. (1.5)

In the last section, we shall present several conjectures in light of the density results we proved in the

spirit of Cohen-Lenstra heuristics. We shall present computational evidence for our conjectures in the

Appendix.

2 The rank and density formulas for quadratic imaginary fields

2.1 Notations

We shall use the following notations.

(1) For a general number field F , OF is the ring of integers of F , O×
F is the group of units of F , r1

and r2 are the numbers of real and complex places of F , n = r1 + 2r2 = [F : Q]. For a finite place v of

F , we let Uv and U1,v be the groups of local units and principal local units. For v infinite, let Uv = F×
v .

Let AF be the adèle ring of F . The idèlic group of F , as the units of AF , is denoted by A×
F .

Let F+ = {α ∈ F | v(α) > 0 for all real places v of F} be the subgroup of F× of totally real elements.

Hence F×/F+ is an F2-vector space of dimension r1, by the approximation theorem.

Let S = Sp be the set of primes of F lying above p. Let OS , ES ,ClS and Cl+S denote the ring of

S-integers, the group of S-units, the S-class group, and the narrow S-class group of F , respectively. Let

E+
S = ES ∩ F+. Let U1,S =

∏
v∈S U1,v.

(2) In the special case that F is a quadratic field, write F = Q(
√
m), then (r1, r2) = (2, 0) if m > 0

and (0, 1) if m < 0. Let G = Gal(F/Q) = {1, σ}. Let Cl(m), Clp(m), h(m), hp(m) and Tp(m) be the

class group, the p-class group, the class number, the p-class number and the Tp-group of F = Q(
√
m)

respectively. Let tp(m) = #Tp(m).

If p = 2, the size of S is 2 if 2 splits and 1 if 2 is not split in F . If F is imaginary, F+ = F× and σ is

the restriction of complex conjugation on F .

(3) For any abelian group A, A[n] is the n-torsion subgroup of A and A[p∞] is the p-primary part of

A. For a finite abelian group A and a positive integer i, the pi-rank rkpi(A) := dimFp
pi−1A/piA. If A is

an F2-vector space, dimA := dimF2 A is its dimension.

(4) For Jacobi, 2-nd Hilbert and Artin -symbols with values in µ2 = {1,−1}, we use [ ] instead of ( )

to represent the corresponding additive symbols with values in F2 = {0, 1}.

2.2 The 2-rank and 4-rank formulas in general

For F a general number field, we recall some facts about Tp(F ). All are standard consequences of

global class field theory; see, for example, [22, Theorem 13.4]. The closed subgroup F×∏
v/∈S Uv of A×

F

corresponds to the maximal abelian extension of F unramified outside S. Set

AF := A×
F

/
F×

∏
v/∈S

Uv. (2.1)
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As known in the proof of [22, Theorem 13.4], the induced Artin map AF � Gal(M/F ) is surjective and

has finite kernel of prime-to-p order, thus induces a canonical isomorphism

Apro−p
F

∼= Gal(M/F ),

where Apro−p
F is the pro-p-part of AF . Let H be the p-Hilbert class field of F . Then Gal(H/F ) ∼= Clp(F )

canonically. Let ϕ be the canonical diagonal embedding F ↩→
∏

v∈S Fv and E1,S = ϕ−1(U1,S) ∩ O×
F . By

class field theory, the following diagram is commutative with exact rows:

..

0

.0.

U1,S/ϕ(E1,S)

. Gal(M/H).

Apro−p
F

. Gal(M/F ).

Clp(F )

. Gal(H/F ).

0

. 0.........

∼=

.

∼=

.

∼=

(2.2)

The group U1,S is a finitely generated Zp-module of rank n = r1 + 2r2 and the submodule ϕ(E1,S) is of

rank r1 + r2 − 1 − δp(F ) for some integer δp(F ) > 0. It follows that Gal(M/F ) is a finitely generated

Zp-module of rank r2 +1+ δp(F ). Leopoldt conjectured that δp(F ) is always 0 and this has been proved

when F is abelian over Q. Thus Tp(F ), by definition the torsion subgroup of Gal(M/F ), is finite and

Tp(F ) ∼= AF [p
∞], (2.3)

and the p-rank of Tp(F ) is given by

rkp(Tp(F )) = rkp(Gal(M/F ))− r2 − 1− δp(F ). (2.4)

From now on, we identify AF [p
∞] with Tp(F ). By abuse of notation, we write AF and Gal(M/F )

additively. Let L be the maximal abelian extension of F which is of exponent p and unramified outside p.

Then L is the intermediate field of M/F fixed by pGal(M/F ). The induced Artin map AF → Gal(M/F )

has kernel consisting of prime-to-p-torsion elements, hence is contained in pAF and the induced map

AF /pAF → Gal(L/F ) is an isomorphism. The kernel of the composite map

φ : Tp(F )[p] ↩→ AF → AF /pAF = Gal(L/F )

is Tp(F )[p] ∩ pAF = pTp(F )[p2], which is an Fp-space of dimension rkp2(Tp(F )). This gives the identity

rkp2(Tp(F )) = rkp(Tp(F ))− dimFp Im(φ). (2.5)

We first derive the 2 and 4-rank formulas of T2 for a general number field, and the 2-rank formula for

a quadratic field. The general 2-rank formula (2.6) was proved in Gras [6, Théorème I 3], and the 4-rank

formula is quite routine.

Theorem 2.1. Let F be a number field. Let S be the set of primes in F above 2 and Cl+S the narrow

S-class group of F .

(1) (Gras) The 2-rank of T2(F ) is given by the formula

rk2T2(F ) = #S + rk2(Cl
+
S )− 1− δ2(F ). (2.6)

In particular, if m is a squarefree integer with t odd prime factors, then for F = Q(
√
m),

rk2(T2(F )) =

{
t if q ≡ ±1 (mod 8) for all odd prime q | m,

t− 1 if q ≡ ±3 (mod 8) for some odd prime q | m.
(2.7)

(2) Suppose A is a finite set of idèles which generates T2(F ) ⊂ AF := A×
F

/
F×∏

v-2 Uv. Suppose B

is a finite set of elements in F× such that F (
√
B) is the maximal abelian extension of F of exponent

2 unramified outside 2. For a ∈ A and b ∈ B, let [a, b] = log−1(a, F (
√
b)) ∈ F2 be the additive Artin

symbol. Let R = ([a, b])a∈A,b∈B. Then

rk4(T2(F )) = rk2(T2(F ))− rank(R). (2.8)
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Remark 2.2. (1) The minimal size of A is rk2(T2(F )), and the minimal size of B is rk2(Gal(M/F ))) =

rk2(T2(F )) + r2(F ) + 1 + δ2(F ). Moreover, if F (
√
b) is contained in a Z2-extension of F , then [a, b] = 0

for all a ∈ A and we can delete the corresponding row in R.

(2) The p2-rank formula for Tp(F ) in the case µp ⊆ F can be proved similarly, as the kernel of the

map Tp(F )[p] ↩→ AF → AF /pAF
∼= Gal(L/F ) is pTp[p2]. Moreover, one can similarly deduce the formula

rkpi+1(Tp(F )) = rkpi(Tp(F ))− dimFp Im(Tp(F )[pi] → Gal(L/K)).

Proof. We are in the case p = 2. Then L is the maximal abelian extension of F of exponent 2 unramified

outside S. By Kummer Theory, L = F (
√
J), where J is the finite subgroup of F×/F×2 given by

J := {β ∈ F+ | βOS = b2 for some OS-fractional ideal b of F}/(F×)2. (2.9)

(1) First suppose F is general. The non-degeneracy of the Kummer pairing J × Gal(L/F ) → {±1}
then implies

rk2Gal(M/F ) = dimGal(L/F ) = dim J. (2.10)

Let pr be the natural projection Cl+S → ClS and ClS,+ = pr(Cl+S [2]) ⊂ ClS [2]. For [β] ∈ J , βOS = b2,

then the class map clS(b) lies in ClS,+. This gives an exact sequence of F2-vector spaces:

1 → E+
S /E2

S → J
β 7→clS(b)−−−−−−→ ClS,+ → 1. (2.11)

Let F×OS = {αOS | α ∈ F×} and F+OS = {αOS | α ∈ F+}, then ker pr = F×OS/F
+OS ⊂ Cl+S [2].

This gives an exact sequence of F2-vector spaces

1 → F×OS/F
+OS → Cl+S [2] → ClS,+ → 1. (2.12)

We also have the following natural exact sequence of F2-vector spaces:

1 → ES/E
+
S → F×/F+ → F×OS/F

+OS → 1. (2.13)

Combining the above results, we get

rk2Gal(M/F ) =dimE+
S /E2

S + dimClS,+

=dimE+
S /E2

S + dimCl+S [2]− r1 + dimES/E
+
S

=dimES/E
2
S + dimCl+S [2]− r1

=r2 +#S + dimCl+S [2],

where dimF×/F+ = r1 by the approximation theorem, and dimES/E
2
S = r1 + r2 + #S by Dirichlet’s

unit theorem that ES
∼= Zr1+r2+#S−1 × Z/dZ with d even. By (2.4), we then get the general 2-rank

formula (2.6) for T2-group of a general base field (see [6] for a slightly different approach).

Now suppose F = Q(
√
m) is a quadratic field. Then δ2(F ) = 0. Write G = Gal(F/Q). Since Q has

class number 1, we conclude that Cl+S [2] = (Cl+S )
G. Recall that t is the number of odd prime factors of

m. Applying the S-narrow version of the ambiguous class number formula (see, for example [16, Remark

4.5]) gives the following result:

dim(Cl+S )
G =


t− 2, if 2 splits and 2 /∈ N(F );

t− 1, if 2 splits and 2 ∈ N(F ) or 2 does not split and 2 /∈ N(F );

t, if 2 does not split and 2 ∈ N(F ).

(2.14)

By Lemma 2.3 below, 2 ∈ N(F ) if and only if q ≡ ±1 (mod 8) for all odd primes q | m, the 2-rank

formula (2.7) fo F = Q(
√
m) then follows.

(2) We may assume B̃ = {b (mod F×2) | b ∈ B} is an F2-basis of J . Then

Gal(L/F ) ↩→
∏
b∈B

Gal(F (
√
b)/F )

is an isomorphism. Written additively, the map φ sends a ∈ T2(F )[2] ⊂ AF to ([a, F (
√
b)])b∈B . Thus

dimF2(Im(φ)) is nothing but the rank of ([a, b])a∈A,b∈B . By (2.5), we get the 4-rank formula.
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We have the following easy lemma to transform the norm conditions into congruent conditions.

Lemma 2.3. Let m be a positive squarefree integer. Let F = Q(
√
−m) and F̃ = Q(

√
m). Then

2 ∈ N(F ) ⇐⇒ 2 ∈ N(F̃ ) ⇐⇒ q ≡ ±1 (mod 8) for all odd prime q | m;

−2 ∈ N(F̃ ) ⇐⇒ q ≡ 1, 3 (mod 8) for all odd prime q | m;

−1 ∈ N(F̃ ) ⇐⇒ q ≡ 1 (mod 4) for all odd prime q | m.

Proof. By Hasse’s norm theorem and the product formula, 2 ∈ N(F ) if and only if 2 ∈ N(Fv) for all

but one prime v of F . If v - 2m, then v is always unramified and 2 ∈ N(Fv) by local class field theory.

For an odd prime q | m, q is ramified in F . Let q be the unique ramified prime of F above q. Then

2 ∈ N(Fq) if and only if the Hilbert symbol (2,−m)q = 1, which is equivalent to that q ≡ ±1 (mod 8).

If 2 splits in F , then v | 2 is unramified and 2 ∈ N(Fv); in other cases, there is only one prime v above 2

which can be excluded from consideration. Hence 2 ∈ N(F ) if and only if q ≡ ±1 (mod 8) for every odd

prime q | m. The other cases can be proved similarly.

2.3 The explicit 4-rank formula for imaginary quadratic fields

We turn to work on the imaginary quadratic field case. We shall work out A and B explicitly for an

imaginary quadratic field and hence obtain an explicit 4-rank formula in this case. This explicit formula

will be used to deduce the 4-rank density formula of T2-groups of imaginary quadratic fields in next

subsection.

We suppose m > 0 and F = Q(
√
−m). Let {q1, . . . , qt} be the set of odd prime factors of m, arranged

in such a way that qi ≡ ±1 (mod 8) if 1 6 i 6 k and ±3 (mod 8) if k < i 6 t. Note that k = 0 if q ≡ ±3

(mod 8) for all q | m. Let p be a prime of F above 2. Then p is either the unique prime above 2 or

(2) = pp̄ splits in F where p̄ ̸= p is the complex conjugate of p. Let qi be the unique prime of F above

qi. For an odd prime q, let q∗ = (−1)(q−1)/2q. Then q∗i (1 6 i 6 k) and q∗j q
∗
j′ (k < j, j′ 6 t) are squares

in the 2-adic field Q2.

Our explicit 4-rank formula for T2(Q(
√
−m)) is

Theorem 2.4. Suppose F = Q(
√
−m). For 0 6 i 6 t, we define the idèles ai = (ai,v) ∈ A×

F as follows:

(1) a0,p =
√
−1 if Fp

∼= Q2(
√
−1), and a0,p = −1 if 2 = pp̄ splits in F ;

(2) if 1 6 i 6 k, ai,qi =
√
−m and ai,v =

√
q∗i for v | 2;

(3) if k < i < t, ai,qi = ai,qt =
√
−m and ai,v =

√
q∗i q

∗
t for v | 2;

(4) for all other places v, ai,v = 1. In particular, at = 1 if k < t.

Let π be a generator of pλ where λ is the order of p in the class group of F . If 2 is a norm of F , noting

that m is a norm of Z[
√
2], write m = 2g2 − h2 with g, h ∈ Z>0 and define

α =

{
h+

√
−m, if 2 ∈ N(F ) \N((OF

[
1
2

]
)×),

1, otherwise.
(2.15)

Let

A = {a0, · · · , at} ⊂ A×
F , B = {−1, q1, · · · , qt, π, α} ⊂ F×. (2.16)

Then A and B ∪ {2} satisfy the assumptions in Theorem 2.1(2), and [a, 2] = 0 for a ∈ A. Hence

rk4(T2(F )) = rk2(T2(F ))− rank(R) where R = ([a, b])a∈A,b∈B . (2.17)

Remark 2.5. For F a general real quadratic field, it is still quite easy to find B, but the harder part

is to find a set of generators A for T2(F )[2]. One reason is that it is not known how to obtain a system

of explicit generators Cl(F )[2] for an arbitrary real quadratic field F by a general formula.

If t = 1, then F = Q(
√
−1) or F = Q(

√
−2). In this case Theorem 2.4 can be verified directly. We

shall assume t > 1 in what follows. For an ideal a of F , let cl(a) be its ideal class in Cl(F ), and clS(a) be

its class in the S-class group ClS of F .

Theorem 2.4 is then a consequence of the following three propositions.
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Proposition 2.6. Let L be the maximal abelian extension of exponent 2 over F , unramified outside

S. Then L = F (
√
B′) where B′ = B ∪ {2} = {−1, 2, q1, . . . , qt, π, α}.

Proof. We include the proof, which is routine, for lack of exact references. Let J ′ be the subgroup of

F×/(F×)2 generated by B′. It suffices to show J ′ = J with J defined in (2.9).

We note that for all x ∈ B′, x ̸= α, F (
√
x)/F is unramified outside S. Thus if one can show that

F (
√
α)/F is unramified outside S, then J ′ ⊆ J .

Suppose first that either 2 ∈ N(ES) or 2 /∈ N(F ). In this case α = 1 and hence J ′ ⊂ J . We shall use

the exact sequence (2.11) to show that J ′ is indeed equal to J . Since F is imaginary, F+ = F×. (2.11)

becomes the following exact sequence:

1 → ES/E
2
S → J

g−→ ClS [2] → 1. (2.18)

Here we recall that the map g sends β to clS(b), for β ∈ J satisfying βOS = b2 for some OS-fractional

ideal b. Clearly ES/E
2
S ⊂ J ′, as ES is generated by −1, 2 and π. Thus, in order to prove J ′ = J , it

suffices to show that g(J ′) = ClS [2]. Let G = Gal(F/Q). Then ClGS = ClS [2]. Let IS be the subgroup

of fractional ideals of F which is generated by prime ideals not in S. There is an isomorphism (see [16,

Section 4])

Coker
(
IGS → ClGS

)
∼=
(
Z
[
1

2

])×

∩N(F×)/N(ES). (2.19)

Since −1 /∈ N(F ) as F is imaginary, the assumption that either 2 ∈ N(ES) or 2 /∈ N(F×) precisely

implies that the group on the right hand of (2.19) is trivial. Thus ClGS is generated by IGS . But IGS
is generated by the ramified primes (see [16, Lemma 4.4]), it follows that ClGS = ⟨q1, . . . , qt⟩. Since

g(qi) = clS(qi) for each i, this proves g(J ′) = ClGS = ClS [2]. Therefore, we have J ′ = J when either

2 ∈ N(ES) or 2 /∈ N(F ).

Suppose next that 2 ∈ N(F ) but 2 /∈ N(ES). By Lemma 2.3, qi ≡ ±1 (mod 8) for 1 6 i 6 t.

Hence we can write m = 2g2 − h2 for some g, h ∈ Z>0. In this case, α = h +
√
−m (see (2.15)). Then

α+ ᾱ = 2h and αᾱ = 2g2 where ᾱ is the complex conjugate of α. Clearly gcd(g, h) = 1. It follows that

gcd((α), (ᾱ)) | 2OF .

(1) If m ≡ 1 (mod 8) or 2 | m; then 2OF = p2 is ramified in F and g is odd. In this case, p | (α) but
2 - (α), otherwise 4 | αᾱ = 2g2. Hence p̄ = p | (ᾱ) and gcd((α), (ᾱ)) = p. Since the integral ideals (α)p−1

and (ᾱ)p−1 are coprime to each other and their product is a square, hence there exists an OF -integral

ideal a such that (α) = pa2.

(2) If m ≡ 7 (mod 8), then 2OF = pp̄ splits and g is even. Without loss of generality, we may assume

p | α. Then p̄ | ᾱ and hence p̄ | α = 2h − ᾱ. This means 2 | α and gcd((α), (ᾱ)) = 2OF . Now
α
2 · ᾱ

2 = 2 · ( g2 )
2, then one and only one of p and p̄ divides α

2 . Assume p | α
2 . Then the two integral ideals

(α/2)p−1 and (ᾱ/2)p̄−1 are coprime and their product is a square, hence there exists an OF -integral ideal

a such that (α) = 2pa2.

Thus, in both cases, we have

αOS = a2OS . (2.20)

This shows that F (
√
α)/F is unramified outside S. Hence J ′ ⊂ J . Following the same argument in the

previous case and applying (2.18), to show J ′ = J , we just need to show g(J ′) = ClS [2] = ClGS . If we can

prove ClGS = ⟨clS(IGS ), clS(a)⟩, by the fact clS(I
G
S ) ⊂ g(J ′) and clS(a) = g(α) ∈ g(J ′), then we are done.

We are left to prove the claim ClGS = ⟨clS(IGS ), clS(a)⟩. By the isomorphism (2.19) and by our as-

sumption 2 ∈ N(F ) \N(ES), we have [ClGS : clS(I
G
S )] = 2. Thus we just need to show clS(a) /∈ clS(I

G
S ).

Suppose, on the contrary, clS(a) ∈ clS(I
G
S ). Then we would have cl(a) ∈ ⟨cl(IGS ), cl(p), cl(p̄)⟩, since by

definition ClS = ClF /⟨cl(S)⟩. Also note that cl(p̄) = cl(p)−1. So we can write cl(a) = cl(p)r0
∏

i cl(qi)
ri

for some integers ri ∈ Z. Then, cl(a)2 = cl(p)2r0 . But, we have shown that cl(a)2 = cl(p)−1. Hence p2r0+1

would be principal, say p2r0+1 = (γ). This would imply that 2 = N(γ/2r0) ∈ N(ES) which contradicts

to our assumption 2 ∈ N(F×) \N(ES). This proves the claim.
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Lemma 2.7. If m ≡ 3 (mod 4), then {cl(q1), . . . , cl(qt−1)} is a basis of the F2-vector space Cl(F )[2].

If m ≡ 1 (mod 4), then {cl(p), cl(q1), . . . , cl(qt−1)} is a basis of Cl(F )[2]. If m ≡ 2 (mod 4), then

{cl(q1), . . . , cl(qt)} is a basis of Cl(F )[2].

Proof. The proof is the classical genus theory and we refer to [4, Theorem 6.1] for the details.

Proposition 2.8. Let Â be the image of A in AF . Then T2(F )[2] = Â.

Proof. For each i, a2i is clearly in F×∏
v/∈S Uv, hence âi, the image of ai in AF , is in AF [2] = T2(F )[2],

and Â ⊆ T2(F )[2]. We have the following exact sequence of F2-vector spaces induced from (2.2):

0 −→ U1,S/ϕ(E1,S)[2] −→ T2(F )[2]
f−→ Cl(F )[2]. (2.21)

Since E1,S = {±1}, the first term of (2.21) has order 2 and is generated by â0 if Fp = Q2 or Q2(
√
−1),

and is trivial otherwise. Thus dimKer(f) = dimKer(f |Â) = 1 if Fp = Q2 or Q2(
√
−1), and 0 if otherwise.

By definition, f(âi) = cl(qi) if 1 6 i 6 k and f(âj) = cl(qj)cl(qt) if k < j < t.

Suppose first that m ≡ 2 (mod 4). In this case Fp can not be Q2 or Q2(
√
−1), so Ker(f) = 0 and

dim(Â) = dim f(Â). If t = k, then dim f(Â) = t by Lemma 2.7. Then T2(F )[2] = Â by the 2-rank

formula (2.7) for T2(F ). If t > k, one can write

(f(â1), · · · , f(âk), f(âk+1ât), . . . , f(ât−1ât)) = (cl(q1), · · · , cl(qt))M,

where M is a matrix of rank t−1. Note that {cl(q1), · · · , cl(qt)} is an F2-basis of Cl(F )[2] by Lemma 2.7,

then dim Â = dim f(Â) = rank(M) = t − 1. However, dim T2(F )[2] = t − 1 by (2.7) if t > k, hence

T2(F )[2] = Â.

Suppose next that m ≡ ±1 (mod 8). Then t− k is even and Fp = Q2 or Q2(
√
−1). If t = k, it follows

from Lemma 2.7 that dim f(Â) = t− 1 and hence dim Â = t which coincides with dim T2(F )[2] by (2.7).

If t− k is positive and even, this time we can write

(f(â1), · · · , f(âk), f(âk+1ât), . . . , f(ât−1ât)) = (cl(q1), · · · , cl(qt−1))M,

where M is a matrix of rank t−2. Note that {cl(q1), · · · , cl(qt−1)} is linearly independent by Lemma 2.7,

then dim Â = dim f(Â) + 1 = rank(M) + 1 = t − 1, which coincides with dim T2(F )[2] by the 2-rank

formula (2.7). This proves T2(F )[2] = Â when m ≡ ±1 (mod 8).

Finally, suppose that m ≡ ±3 (mod 8). It follows that t − k is an odd integer and the local field Fp

can not be Q2 or Q2(
√
−1). Then

(f(â1), · · · , f(âk), f(âk+1ât), . . . , f(ât−1ât)) = (cl(q1), · · · , cl(qt−1))M,

where M is a matrix of rank t − 1. Thus dim Â = dim f(Â) = t − 1, which coincides with dim T2(F )[2]

by the 2-rank formula (2.7). This proves T2(F )[2] = Â when m ≡ ±3 (mod 8).

Proposition 2.9. [a, 2] = 0 for all a ∈ A.

Proof. Since F (
√
2) is the first layer of the cyclotomic Z2-extension of F , the proposition then follows

from Remark 2.2(1).

2.4 4-rank density formula

The aim of this subsection is to prove Theorem 1.1. We first give a simplification of the matrix R in

Theorem 2.4 when 2 is not a norm of F = Q(
√
−m). Although only the result in the case m ≡ 3 (mod 4)

will be used in the proof of Theorem 1.1, we also present the simplification in the case m ≡ 1, 2 (mod 4),

for completeness.
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Theorem 2.10. Let F = Q(
√
−m), where m is a positive squarefree integer. Let q1, q2, · · · qt be all the

ramified prime numbers in F and assume q1 = 2 if 2 is ramified in F . Set

RC :=

([
qi,−m

qj

])
26i,j6t

∈ Mt−1(F2)

and

τ :=


([

−2
q2

]
, . . . ,

[
−2
qt

] )T
, if m ≡ 3 (mod 8)( [

2
q2

]
, . . . ,

[
2
qt

] )T
, otherwise.

If 2 /∈ N(F ), then

rk4T2(F ) = t− 1− rank (τ,RC). (2.22)

Remark 2.11. A word on the notation: Note that in the above theorem, q1, · · · , qt denote the ramified

primes in F rather than the odd prime factors of m as used in Theorem 2.4 and in last subsection. Clearly,

this makes no difference when m ≡ 3 (mod 4).

Remark 2.12. Recall that (see [16, §2] for example) the classical Rédei matrix for ClF is

RCl :=

([
qi,−m

qj

])
16i,j6t

and rk4(ClF ) = t− 1− rank RCl.

The matrix RC defined above is obtained from RCl by deleting its first row and first column. When

m ≡ 2, 3 (mod 4), using the quadratic reciprocity law, one sees that the sums of each row and of each

column of RCl are zero, hence rank RC = rank RCl. Therefore

rk4ClF = t− 1− rank RC if m ≡ 2, 3 (mod 4).

Proof. Firstly, we consider the case that 2 is unramified, i.e., m ≡ 3 (mod 4). Then rk2(T2(F )) = t−1

by Theorem 2.1.

(1) Assume first m ≡ 3 (mod 8). Then 2 is inert in F . Note that

t∑
i=1

[
−2

qi

]
=

[
−2

m

]
= 0. (2.23)

Hence we can rearrange {q1, . . . , qt} without change the rank of (τ,RC). In this case, the sets A and B

of Theorem 2.4 are as follows: a0 = at = 1, α = 1 and π = 2. But by Proposition 2.9, [a, 2] = 0 for

each a ∈ A. So we may assume that A = {a1, · · · , at−1}, B = {−1 := q0, q1, . . . , qt}. Clearly, B can be

replaced by {−1 := q∗0 , q
∗
1 , . . . , q

∗
t } as they generate the same group.

For 1 6 i 6 t, note that
√
q∗i ∈ Fp = Q2(

√
5) and define

a′i := (· · · ,
√
q∗i
p

, . . . ,
√
−m
qi

, · · · ) ∈ A×
F .

Then we have ai = a′i for 1 6 i 6 k and aj = a′ja
′
t for k < j 6 t − 1. Since m ≡ 3 (mod 8), t − k must

be odd. Then a direct computation shows

a1 · · · at−1 ≡ a′t

(
mod

(
A×2

F , F×
∏
v/∈S

Uv

))
.

It follows that we may replace A by {a′1, · · · , a′t} as they generate the same group in T2(F ). Therefore,

by Theorem 2.4, we have

rk4T2(F ) = t− 1− rank ([a′i, q
∗
j ])16i6t,06j6t.

Using the quadratic reciprocity law, for i, j > 1, one checks that

[a′i,−1] =

[
−2

qi

]
and [a′i, q∗j ] =

[
m, q∗j
qi

]
=

[
qi,−m

qj

]
.
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By the row-sum-zero and column-sum-zero property of the matrix mentioned in Remark 2.12 and the

equation (2.23), we conclude that

rk4T2(F ) = t− 1− rank (τ,RC).

(2) Assume next m ≡ 7 (mod 8). The prime 2 splits in F . Note that t > k since 2 /∈ N(F ), hence the

element at ∈ A is trivial. We still replace B by {−1 := q0, π, q
∗
1 , . . . , q

∗
t }. Also note that both a0 ∈ A and

π ∈ B are nontrivial. We may choose the sign of π such that

[
π,−1

p

]
= 0. Then [a0, π] = 0. The matrix

R for T2(F ) in Theorem 2.4 is

R =



1 0 · · · 0 · · ·[
−1
q1

] [√
−m,π

q1

]
· · ·

[
m, q∗j
q1

]
· · ·

...
...

...[
−1

qtqk+1

] [√−m,π

qk+1

]
+

[√
−m,π

qt

]
· · ·
[
m, q∗j
qk+1

]
+

[
m, q∗j
qt

]
· · ·

...
...

...[
−1

qtqt−1

] [√−m,π

qt−1

]
+

[√
−m,π

qt

]
· · ·
[
m, q∗j
qt−1

]
+

[
m, q∗j
qt

]
· · ·


. (2.24)

We make the following elementary operations on the matrix R: Firstly, replace the first column by

(1, 0, . . . , 0)T , and replace the first row (· · · ) by

(
1,

[√
−m,π

qt

]
,··· ,

m, q∗j
qt

,···

)
. Secondly, add the first row

to the k + 2, · · · , t-th row. Thirdly, move the first row to the bottom. Finally delete the first row. It

follows that the matrix R in (2.24) is equivalent to

(τ, β,RC). (2.25)

where

β :=

([√
−m,π

qi

])T

26i6t

.

By Lemma 2.13 below, rank(R) = rank(τ,RC). This proves the case m ≡ 7 (mod 8) by Theorem 2.4.

Now we consider the case that 2 is ramified whence q1 = 2. Then m = q2 · · · qt ≡ 1 (mod 4) or

m = 2q2 · · · qt ≡ 2 (mod 4). Write 2OF = p2. By our condition 2 /∈ N(F ), the B in Theorem 2.4 is

B = {q∗0 := −1, q∗2 , . . . , q
∗
t }.

(3) Suppose m ≡ 1 (mod 8). Then A = {a0, a2, . . . , at−1}. It is clear that the matrix R for T2(F ) is

R =



0 · · · 0 · · ·

0 · · ·
[
m, q∗j
q2

]
· · ·

...
...

0 · · ·
[
m, q∗j
qk+1

]
+

[
m, q∗j
qt

]
· · ·

...
...

0 · · ·
[
m, q∗j
qt−1

]
+

[
m, q∗j
qt

]
· · ·


Firstly, replace the first row (· · · ) by

(
1, · · · ,

m, q∗j
qt

,···

)
. Then we get a matrix whose rank equals

1 + rank R. Secondly, add the first row to the k + 2, k + 3, · · · and the t-th row. Finally move the first

row to the bottom. Now we get (τ,RC). We have rk2 T2(F ) = t− 2 by Theorem 2.1. Thus

rk4T2(−m) = t− 2− rank R = t− 1− rank (τ,RC).
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This proves the case m ≡ 1 (mod 8). The arguments for the other cases are similar and we leave the

details to the reader.

Lemma 2.13. Assume that m ≡ 7 (mod 8) having a prime factor q ≡ ±3 (mod 8). Then β is a sum

of column vectors of RC .

Proof. Let λ be the order of p in Cl(F ). Suppose π = c+d
√
−m

2 with c, d ∈ Z such that πOF = pλ and(−1, π

p

)
= 1. Note that λ must be even; otherwise, 2 = N(π2−

λ−1
2 ) ∈ N(F ) which contradicts to the

assumption. Write λ = 2λ′. Then we have a decomposition in Z

(2λ
′+1 − c)(2λ

′+1 + c) = md2. (2.26)

Since
(−1, π

p

)
= 1, it follows from the product formula that

(−1, π

p̄

)
= 1. We obtain π ≡ 1 (mod p̄2)

and π̄ ≡ 1 (mod p2). But pλ | π and λ is even, we have π ≡ 0 (mod p2). Thus

c = π + π̄ ≡ 1 (mod p)2 =⇒ c ≡ 1 (mod 4).

Then 2λ
′+1 − c and 2λ

′+1 + c are coprime, by (2.26), there exist positive integers m+,m−, d+, d− such

that m = m+m−, d = d+d−, 2
λ′+1 + c = m+d

2
+, and 2λ

′+1 − c = m−d
2
−. In particular, m+ ≡ c ≡ 1

(mod 4) and m− ≡ −1 (mod 4). We obtain

2c = m+d
2
+ −m−d

2
−.

Now the vector

β =

([
qi, 2c

qi

])T

16i6t

.

If qi | m−, noting that m+ ≡ 1 (mod 4), we have[
qi, 2c

qi

]
=

[
qi,m+

qi

]
=
∑

q|2m+

[
qi,m+

q

]
=
∑
q|m+

[
qi,m+

q

]
=
∑
q|m+

[
qi,−m

q

]
.

If qi | m+, noting that −m− ≡ 1 (mod 4), we also have[
qi, 2c

qi

]
=

[
qi,−m−

qi

]
=
∑

q|2m−

[
qi,−m−

q

]
=
∑
q|m−

[
qi,−m−

q

]
=
∑
q|m−

[
qi,−m

q

]
=
∑
q|m+

[
qi,−m

q

]
.

This means that β is the sum of the column vectors

([
qi,−m

qj

])T

i

for qj | m+ of RC .

The rest of this subsection is dedicated to proving Theorem 1.1, which is based on the work of Gerth

[5] and Yue-Yu [24]. As in the statement of Theorem 1.1, x will always denote a positive real number

and t will denote a positive integer.

The set Nt,x is the disjoint union of subsets N
(i)
t,x (i = 1, 2, 3) defined by (all pi are odd distinct primes)

N
(1)
t,x := {m ∈ Nt,x | m = p1 · · · pt ≡ 3 (mod 4)};

N
(2)
t,x := {m ∈ Nt,x | m = p1 · · · pt−1 ≡ 1 (mod 4)};

N
(3)
t,x := {m ∈ Nt,x | m = 2p1 · · · pt−1 ≡ 2 (mod 4)}.

Following [5], we know that when x → ∞,

#N
(1)
t;x ∼ 1

2

1

(t− 1)!

x(log log x)t−1

log x
,

#N
(2)
t;x ∼ 1

2

1

(t− 2)!

x(log log x)t−2

log x
= o

(
#N

(1)
t;x

)
,

#N
(3)
t;x ∼ 1

(t− 2)!

x(log log(x/2))t−2

2 log(x/2)
= o

(
#N

(1)
t;x

)
.
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Here and after we denote f(x) ∼ g(x) if lim
x→∞

f(x)
g(x) = 1 and f(x) = o(g(x)) if lim

x→∞
f(x)
g(x) = 0. Then

#Nt;x ∼ #N
(1)
t;x ∼ 1

2

1

(t− 1)!

x(log log x)t−1

log x
. (2.27)

We define two equivalent relations in N
(1)
t,x .

Definition 2.14. For m = p1 · · · pt, n = q1 · · · qt ∈ N
(1)
t,x arranging such that p1 < p2 < · · · < pt and

q1 < q2 < · · · < qt, we say that m and n have the same Rédei type if qi ≡ pi (mod 4) for i 6 t and[
qj
qi

]
=
[
pj

pi

]
for 1 6 j < i 6 t; we say that m and n have the same Rédei type modulo 8, if furthermore

qi ≡ pi (mod 8) for i 6 t. Denote by [m] (resp. [[m]]) the equivalence class of m with the same Rédei

type (resp. modulo 8) respectively.

Lemma 2.15. For any m ∈ N
(1)
t,x , we define

R(m; t, x) := [m] ∩N
(1)
t,x = {m′ ∈ N

(1)
t,x | m′ and m have the same Rédei type},

S(m; t, x) := [[m]] ∩N
(1)
t,x = {m′ ∈ N

(1)
t,x | m′ and m have the same Rédei type modulo 8}.

Then when x → ∞, we have

#R(m; t, x) ∼ 21−
t2+t

2 ·#N
(1)
t,x ,

and

#S(m; t, x) ∼ #R(m; t, x)

2t
.

Proof. See [24, Lemma 2.1 and Corollary 2.2].

Remark 2.16. As mentioned in Gerth [5, Page 493], an intuitive explanation of the above lemma

might proceed as follows. To decide the equivalence class [m], we need to fix the conditions pi (mod 4)

for l 6 i 6 t− 1 since m =
∏t

i=1 pi ≡ 3 (mod 4), and the conditions
[
pj

pi

]
for 1 6 j < i 6 t. Hence, there

are 2
t2+t

2 −1 equivalence classes and the proportion of each equivalence class in N
(1)
t,x is the same by the

above lemma. Furthermore, given a class [m], then {p1 (mod 8), . . . , pt (mod 8)} have 2t choice. Hence

there are 2t modulo 8 equivalence classes in [m] and the proportion of each modulo 8 equivalence class

in [m] is the same by the above lemma again.

Lemma 2.17. Let W (t, x) = {m ∈ N
(1)
t,x | 2 ∈ N(Q(

√
−m))}. Then

lim
t→∞

lim
x→∞

#W (t, x)

#N
(1)
t,x

= 0.

Proof. Put

f(m) =

{
1, if 2 ∈ N(Q(

√
−m))

0, otherwise.

Given an equivalence class [m], we claim that there is exactly one class [[n]] in [m] such that f(n) = 1.

Indeed, qi (mod 4) is determined as n = q1 · · · qt ∈ [m]. Then by Hasse’s norm theorem, f(n) = 1 implies

that qi must be 1 (mod 8) (resp. 7 (mod 8)) in 1 (mod 4) (resp. 3 (mod 4)). Hence follows the claim.

Now we have

lim
t→∞

lim
x→∞

#W (t, x)

#N
(1)
t,x

= lim
t→∞

lim
x→∞

∑
[m]

∑
[[n]],n∈[m]

f(n) ·#S(n; t, x)∑
[m]

∑
[[n]],n∈[m]

#S(n; t, x)

= lim
t→∞

lim
x→∞

∑
[m]

#R(m; t, x)/2t∑
[m]

#R(m; t, x)
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= lim
t→∞

1

2t
= 0,

where the second equality is by lemma 2.15.

Proof of Theorem 1.1. By Theorem 2.10, Lemma 2.17, and the estimate (2.27), it suffices to prove that

for r > 0,

lim
t→∞

lim
x→∞

#{m ∈ N
(1)
t,x | rank (τ,RC) = t− 1− r}

#N
(1)
t;x

=
η∞(2)

2r(r+1)ηr(2)ηr+1(2)
.

For any matrix A ∈ Mt−1(F2), write ImA := {Ax | x ∈ Ft−1
2 }. Then we only need to prove that

lim
t→∞

lim
x→∞

#{m ∈ N
(1)
t,x | rank RC = t− 1− r, τ ∈ ImRC}

#N
(1)
t;x

=
1

2r
· η∞(2)

2r2ηr(2)2
(2.28)

and

lim
t→∞

lim
x→∞

#{m ∈ N
(1)
t,x | rank RCl = t− 2− r, τ /∈ ImRCl}

#N
(1)
t;x

=

(
1− 1

2r+1

)
· η∞(2)

2(r+1)2ηr+1(2)2
, (2.29)

since
1

2r
· η∞(2)

2r2ηr(2)2
+

(
1− 1

2r+1

)
· η∞(2)

2(r+1)2ηr+1(2)2
=

η∞(2)

2r(r+1)ηr(2)ηr+1(2)
.

By Lemma 2.15 and [24, Remark 2.3, Equation (3.19)], in each equivalence class [m] ⊂ N
(1)
t,x , τ ∈ ImRC

has probability 2t−1−r

2t−1 = 1
2r if rank RC = t− 1− r. i.e.,

lim
t→∞

lim
x→∞

#{m ∈ N
(1)
t,x | rank RC = t− 1− r, τ ∈ ImRC}

#{m ∈ N
(1)
t,x | rank RC = t− 1− r}

=
1

2r
.

It is proved by Gerth in [5] that

lim
t→∞

lim
x→∞

#{m ∈ N
(1)
t,x | rank RC = t− 1− r}

#N
(1)
t;x

=
η∞(2)

2r2ηr(2)2
.

This implies the equation (2.28). The proof of the equation (2.29) is similar and we leave the detail to

the reader. Thus

dT∞,r =
1

2r
· η∞(2)

2r2ηr(2)2
+

(
1− 1

2r+1

)
· η∞(2)

2(r+1)2ηr+1(2)2
=

η∞(2)

2r(r+1)ηr(2)ηr+1(2)
.

This completes the proof of Theorem 1.1.

3 Study of T2(±l) and T2(±2l) for odd prime l

By the 2-rank formula (2.7), if l is a prime, T2(±l) and T2(±2l) are trivial if l ≡ ±3 (mod 8), and

nontrivial cyclic 2-groups if l ≡ ±1 (mod 8). In what follows, we assume l ≡ ±1 (mod 8) is a prime. In

this section, we shall study the structures of T2(±l) and T2(±2l), or equivalently, the 2-power divisibility

of their orders t2(±l) and t2(±2l).

3.1 The imaginary case

Theorem 3.1. Let l ≡ ±1 (mod 8) be a prime. Then T2(−l) and T2(−2l) are non-trivial cyclic 2

groups, and

(1) t2(−l) = 2 if l ≡ 7 (mod 8), t2(−l) = 4 if l ≡ 9 (mod 16), and t2(−l) > 8 if l ≡ 1 (mod 16).

(2) t2(−2l) = 2 if l ≡ 7 (mod 8) or l ≡ 9 (mod 16), and t2(−2l) > 4 if l ≡ 1 (mod 16).
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Remark 3.2. Based on numerical data, we find out that the conditions t2(−l) = 2i for i > 3 and

t2(−2l) = 2i for i > 2 are not classified by congruence relations.

Proof. (1) Let F = Q(
√
−l). We consider (i) l ≡ 7 (mod 8) and (ii) l ≡ 1 (mod 8) separately.

(i) In this case 2 - h(−l) by genus theory. From the commutative diagram (2.2), we have

T2(−l) ∼=
((
Z×
2 × Z×

2

)
/±1

)
[2∞] ∼= Z/2Z.

(ii) In this case 2 is ramified and Fp = Q2(
√
−1).

Let a = (· · · , 1 +
√
−1

p
, · · · ) ∈ A×

F and â be its image in AF ; here we recall that AF is the group

defined in (2.1) with p = 2. Then a4 = (· · · ,−4
p
, · · · ) ∈ F×∏

v/∈S Uv and hence â ∈ T2(F )[4]. Since a2 =

(· · · , 2
√
−1
p

, · · · ) ≡ (· · · ,
√
−1
p

, · · · ) mod
(
F×∏

v/∈S Uv

)
and

√
−1 is nontrivial in U1,p/{±1} ⊂ Apro−2

F ,

we have â2 ̸= 0 in T2(F ). Thus â is a generator of the cyclic group T2(F )[4].

The 2-units ES of F is generated by −1 and 2. Clearly, 2 /∈ N(ES). Write l = 2g2 − h2. Let

α = h+
√
−l. By Proposition 2.6, L = F

(√
−1,

√
l,
√
2,
√
α
)
= F

(√
−1,

√
2,
√
α
)
is the maximal abelian

extension of exponent 2 over F unramified outside 2. The map

T2(F )[4] → Gal(F (
√
−1)/F )×Gal(F (

√
2)/F )×Gal(F (

√
α)/F )

has kernel 2T2(F )[8]. Thus t2(−l) > 8 if and only if the additive Artin symbols [a,−1] = [a, 2] = [a, α] = 0.

It is easy to see [a, 2] = [a,−1] = 0 since l ≡ 1 (mod 8). We have

[a, h+
√
−l] =

[
1 +

√
−1, h+

√
−l

Fp

]
=

[
−
√
l, h+

√
−l

Fp

]
+

[
−
√
l −

√
−l, h+

√
−l

Fp

]

=

[
−
√
l, 2g2

Q2

]
+

[
−
√
l −

√
−l, h+

√
−l

Fp

]

=

[√
l, 2

Q2

]
+

[
−
√
l −

√
−l, h+

√
−l

Fp

]
.

Note that [√
l, 2

Q2

]
=

{
0 if l ≡ 1 (mod 16),

1 if l ≡ 9 (mod 16).

For any x, y ∈ Fp, noting that −1 is a square in Fp, we have

0 =

[
x

x+y ,
y

x+y

Fp

]
=

[
xy, x+ y

Fp

]
+

[
x+ y, x+ y

Fp

]
+

[
x, y

Fp

]
.

Put x = −
√
l −

√
−l, y = h+

√
−l. Note that x+ y ∈ Q2. It follows that

[
x+ y, x+ y

Fp

]
= 0. Thus,

[
x, y

Fp

]
=

[
x+ y, xy

Fp

]
=

[
x+ y, 4g2l

Q2

]
= 0.

This proves (1).

(2) follows from the same argument used in the proof of (1). We omit the details here.

3.2 The real case

We need the following formula of Coates (see [2, Appendix] or [7, Chapter III. 2.6.5]):
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Proposition 3.3. Let K ̸= Q be a totally real number field. Assume that the Leopoldt Conjecture holds

for (p,K), i.e., δp(K) = 0. Then

#Tp(K) = (p-adic unit) · p · [K ∩Qp,cyc : Q] · h(K) ·Rp(K)√
DK ·

∏
p|p

Np
. (3.1)

Here h(K) is the class number, Rp(K) is the p-adic regulator and DK is the discriminant of K, Qp,cyc

is the cyclotomic Zp-extension of Q, and the product runs over all primes of K lying above p and N is

the norm map from K to Q.

Lemma 3.4. Assume l ≡ ±1 (mod 8) is a prime. Let ν2 be the normalized 2-adic valuation and log2
be the 2-adic logarithmic map. For m = l or 2l, let εm = am+bm

√
m be the fundamental unit of Q(

√
m).

Then

(1) ν2(t2(l)) = ν2(log2(εl))− 1 = ν2(al)− 1.

(2) ν2(t2(2l)) = ν2(h(2l)) + ν2(b2l)− 1.

Proof. (1) Let F = Q(
√
l). Recall that the 2-adic regulator R2(F ) is log2(εl). By Coates’ formula

above, we have ν2(t2(l)) = ν2(log2(εl))− 1 as 2 - h(l). It remains to show that ν2(log2(εl)) = ν2(al). We

shall use the basic property of logarithm that, for x ∈ Q2, if ν2(x− 1) > 1 then ν2(log2(x)) = ν2(x).

If l ≡ 1 (mod 8), then it is easy to see al and bl are integers. It is also known thatN(εl) = a2l −lb2l = −1.

It follows that 4 | al and bl is odd. Thus ν2(ε
2
l − 1) = ν2(ε

2
l + εlε̄l) = 1 + ν2(al) > 3. This implies that

ν2(log2(ε
2
l )) = ν2(ε

2
l − 1) = 1 + ν2(al). Hence, ν2(log2(εl)) = ν2(al).

If l ≡ 7 (mod 8), we first prove that al is even. In this case 2 is ramified in F , say 2OF = p2. Since

h(l) is odd, p must be principal, say p = (π) with π ∈ OF . Then π2/2 is a unit, say εkl . Note that k must

be odd. Otherwise,
√
2 ∈ F , which is absurd. Then (πε

−(k−1)/2
l )2 = 2εl and hence πε

−(k−1)/2
l ∈ OF .

Write πε
−(k−1)/2
l = c + d

√
l with c, d ∈ Z. Then c and d must be odd since N(c + d

√
l) = 2. Hence

al =
c2+d2l

2 is clearly even.

Thus, bl must be odd. Then ν2(ε
4
l − 1) = ν2(ε

4
l − ε2l ε̄

2
l ) = 2 + ν2(albl) = 2 + ν(al). Therefore,

ν2(log2(εl)) = ν2(al). This completes the proof of (1).

(2) Clearly a2l is odd and b2l is even. We have

ν2(ε
4
2l − 1) = ν2(ε

2
2l + ε2lε̄2l) + ν2(ε

2
2l − ε2lε̄2l) = ν2(2a2l) + ν2(2

√
2lb2l) =

5

2
+ ν2(b2l).

Hence, ν2(log2(ε2l)) =
1
2 + ν2(b2l). Then (2) follows from Coates’ formula for T2(Q(

√
2l)).

Remark 3.5. The proof of al is even for l ≡ 7 (mod 8) holds for l ≡ 3 (mod 4). For a different proof

of this fact, see [25].

The following proposition collects results about the 2-class groups Cl2(−l) and Cl2(−2l) due to Gauss,

Hasse [9], Brown [1] and others, most importantly due to Leonard-Williams [13], see [14, Theorem 4.2]

for a proof about Cl2(−2l).

Proposition 3.6. Let l be an odd prime. Then both Cl2(−l) and Cl2(−2l) are cyclic groups.

(1) h2(−l) = 1 if l ≡ 3 (mod 4), h2(−l) = 2 if l ≡ 5 (mod 8) and h2(−l) > 4 if l ≡ 1 (mod 8).

Moreover, if l ≡ 1 (mod 8), suppose l = 2g2 − h2, then h2(−l) = 4 if and only if g ≡ 3 (mod 4),

h2(−l) = 8 if and only if
(

2h
g

)(
g
l

)
4
= −1.

(2) h2(−2l) = 2 if l ≡ ±3 (mod 8) and h2(−2l) > 4 if l ≡ ±1 (mod 8). Moreover,

(i) If l ≡ 1 (mod 8), suppose l = u2 − 2v2 such that u ≡ 1 (mod 4), then h2(−2l) = 4 if and only if

u ≡ 5 (mod 8), h2(−2l) = 8 if and only if
(

u
l

)
4
= −1.

(ii) If l ≡ 7 (mod 8), then h2(−2l) = 4 if and only if l ≡ 7 (mod 16), and h2(−2l) = 8 if and only if

l ≡ 15 (mod 16) and (−1)
l+1
16

(
2u
v

)
= −1 where (u, v) ∈ Z2

>0 satisfying l = u2 − 2v2.

We have the following theorem:

Theorem 3.7. Assume l ≡ 7 (mod 8) is a prime. Then T2(l) and T2(2l) are non-trivial 2-cyclic

groups, 4 | t2(l) and
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(1) t2(l) = 4 ⇔ t2(2l) = 2 ⇔ h2(−2l) = 4 ⇔ l ≡ 7 (mod 16);

(2) t2(l) = 8 ⇔ t2(2l) = 4 ⇔ h2(−2l) = 8 ⇔ l ≡ 15 (mod 16) and (−1)
l+1
16

(
2u
v

)
= −1 where

(u, v) ∈ Z2
>0 is a solution of l = X2 − 2Y 2.

Consequently, we always have t2(l) ≡ 2t2(2l) ≡ h2(−2l) (mod 16).

Remark 3.8. However, in general the three numbers t2(l), 2t2(2l) and h2(−2l) are not equal if one

(hence all) of them > 16. For example, let l = 223, then t2(l) = 16, 2t2(2l) = 256 and h2(−2l) = 32.

Proof. (1) We first study t2(l). As shown in the proof of Lemma 3.4, εl = al + bl
√
l = 1

2 (c + d
√
l)2

where c, d are odd integers and N(c+ d
√
l) = c2 − d2l = 2. In particular, c2 ≡ 2 (mod d). It follows that

every prime factor of d is congruent to ±1 (mod 8). Hence d2 ≡ 1 (mod 16) and ν2(al) = ν2(1 + d2l).

For l ≡ 7 (mod 8), ν2(1 + d2l) > 3, with equality if and only if l ≡ 7 (mod 16). By Lemma 3.4(1),

4 | t2(l) = 2ν2(ld
2+1)−1, and t2(l) = 4 if and only if l ≡ 7 (mod 16).

Note that the Jacobi symbol
(
2u
v

)
is independent on the choices of u and v (see [14, Lemma 4.1]). By

the results of Leonard-Williams (Proposition 3.6(2)), we are left to show that if l ≡ 15 (mod 16), then

ν2(ld
2 + 1) = 4 ⇐⇒ (−1)

l+1
16

(
2u

v

)
= −1.

Since l = (u+
√
2v)(u−

√
2v) | ld2 = (c+

√
2)(c−

√
2), one of the prime elements u±

√
2v must divides

c+
√
2 in the Euclidean domain Z[

√
2].

(i) Suppose c+
√
2

u+
√
2v

∈ Z[
√
2]. Note that c +

√
2 and c −

√
2 are coprime in Z[

√
2], the integers c+

√
2

u+
√
2v

and c−
√
2

u−
√
2v

are coprime, but their product is d2 and Z[
√
2] has class number 1, hence there exist s, t ∈ Z

and ε ∈ {1, 1 +
√
2} such that

c+
√
2

u+
√
2v

= ε(t− s
√
2)2.

Since the left hand side is totally positive, we must have ε = 1. Comparing the coefficients of
√
2 gives

1 = (t2 + 2s2)v − 2tsu. (3.2)

Note that ts must be positive. We may assume that t, s are both positive. Since l = u2 − 2v2 ≡ −1

(mod 16), both u and v are odd. In fact, v ≡ 1 (mod 4) by (3.2). Hence
(
2u
v

)
=
(−st

v

)
=
(
t
v

) (
s
v

)
. Note

that d, t are odd. By quadratic reciprocity law,
(
t
v

)
=
(
v
t

)
=
(
2
t

)
. The last equality follows from (3.2).

Write s = 2rs0 with 2 - s0. If s ≡ 2 (mod 4), then v ≡ 5 (mod 8) and
(
s
v

)
=
(
2·s0
v

)
= −

(
v
s0

)
. If s ≡ 0

(mod 4), then t2 ≡ 1 (mod 8) and v ≡ 1 (mod 8). So
(
s
v

)
=
(
s0
v

)
=
(

v
s0

)
= 1. If s ≡ ±1 (mod 4), then(

s
v

)
=
(
v
s

)
= 1. Hence ( s

v

)
=

{
−1, if s ≡ 2 (mod 4),

1, otherwise.

Therefore
(
2u
v

)
= 1 if and only if ±d = t2 − 2s2 ≡ ±1 (mod 16). This implies that 16 ∥ ld2 + 1 if and

only if (−1)
l+1
16

(
2u
v

)
= −1.

(ii) Suppose c+
√
2

u−
√
2v

∈ Z[
√
2]. By similar argument, there exist two positive integers t, s such that

1 = 2stu− (t2 + 2s2)v.

For this equation, v ≡ 3 (mod 4) and
(
2u
v

)
=
(
t
v

) (
s
v

)
. One can repeat the argument above to obtain

that
(
t
v

)
=
(
2
t

)
and that ( s

v

)
=

{
−1, if s ≡ 2 (mod 4),

1, otherwise.

Again this implies that 16 ∥ ld2 + 1 if and only if (−1)
l+1
16

(
2u
v

)
= −1.

(2) If l ≡ 7 (mod 8), then h(2l) is odd. By Lemma 3.4(2), ν2(t2(2l)) = ν2(b2l) − 1. According to the

last paragraph in [13, § 3], we have h(−2l) ≡ b2l (mod 16). Then t2(2l) =
h2(−2l)

2 = t2(l)
2 if t2l = 2 or 4.

We just need to apply Proposition 3.6.
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Proposition 3.9. Assume l ≡ 1 (mod 8) is a prime.

(1) Write l = 2g2 − h2 with g, h ∈ Z>0. Then

t2(l) = 2 ⇐⇒ h2(−l) = 4 ⇐⇒ g ≡ 3 (mod 4); (3.3)

t2(l) = 4 ⇐⇒

{
h2(−l) = 8 if l ≡ 1 (mod 16)

h2(−l) > 16 if l ≡ 9 (mod 16)
⇐⇒ (−1)

l−1
8

(
2h

g

)(g
l

)
4
= −1. (3.4)

(2) Write l = u2 − 2v2 with u, v ∈ Z>0 and u ≡ 1 (mod 4). Then

t2(2l) = 2 ⇐⇒
(u
l

)
= −1, (3.5)

t2(2l) = 4 ⇐⇒ (−1)
l−1
8

(u
l

)
4
= −1. (3.6)

Proof. (1) For l ≡ 1 (mod 8), Williams [23] proved that

al ≡

{
h(−l) + l − 1 (mod 16), if h2(−l) > 8;

4(h(l)− 1) + l − 1− h(−l) (mod 16), if h2(−l) = 4.

Hence we have {
2t2(l) ≡ h(−l) + l − 1 (mod 16), if h2(−l) > 8;

t2(l) = 2, if h2(−l) = 4.
(3.7)

Applying Coates’ formula (3.1), Lemma 3.4 and Proposition 3.6(1), we get the result.

(2) It follows from (3.1) that t2(2l) is equal to log2(ε2l)h(2l)/(2
√
2) up to a 2-adic unit. Denote by

R+ S
√
2l the fundamental unit of norm 1 of Q(

√
2l) and by h+(2l) the narrow class number of Q(

√
2l).

Then, R + S
√
2l = ε2l and h+(2l) = 2h(2l) if N(ε2l) = 1; R + S

√
2l = ε22l and h+(2l) = h(2l) if

N(ε2l) = −1. Thus, by Lemma 3.4(2), we have

ν2(t2(2l)) = ν2(h
+(2l)) + ν2(S)− 2.

The main theorem in [10] tells us that

S · h+(2l)

2
≡ 1− l − h(−2l) (mod 16).

Then all results here directly follow the discussion in [13, § 2].

Now we can prove the density result about T2(l) and T2(2l):
Proof of Theorem 1.3. (1) We first show (1.4). In the case e = 0, then l ≡ 1 (mod 8). Stevenhagen

[20, Theorem 1] proved that h2(−l) > 8 if and only if l splits completely in Q(ζ8,
√
1 + i). Then by

Chebotarev’s density theorem,

lim
x→∞

#{l 6 x : l ≡ 1 (mod 8), h2(−l) = 4}
#{ l 6 x : l ≡ 1 (mod 8)}

= lim
x→∞

#{l 6 x : l ≡ 1 (mod 8), h2(−l) > 8}
#{ l 6 x : l ≡ 1 (mod 8)}

=
1

2
.

By (3.3) in Proposition 3.9, the case i = 0 follows.

Recently, Koymans ([11, Theorem 1.1]) proved that

lim
x→∞

#{l 6 x : l ≡ 1 (mod 8) and h2(−l) = 8}
#{ l 6 x : l ≡ 1 (mod 8)}

=
1

4
.

As a corollary of [20, Theorem 1], we have that l ≡ 9 (mod 16) such that h2(−l) > 8 if and only if the

Frobenius of l in Gal(Q(ζ16,
√
1 + i)/Q acts trivially in Q(ζ8,

√
1 + i) and maps ζ16 to −ζ16. Hence

lim
x→∞

#{l 6 x : l ≡ 9 (mod 16), h2(−l) > 8}
#{ l 6 x : l ≡ 9 (mod 16)}

= lim
x→∞

#{l 6 x : l ≡ 1 (mod 16), h2(−l) > 8}
#{ l 6 x : l ≡ 1 (mod 16)}

=
1

2
.
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If we can show

lim
x→∞

#{l 6 x : l ≡ 9 (mod 16), h2(−l) = 8}
#{ l 6 x : l ≡ 9 (mod 16)}

= lim
x→∞

#{l 6 x : l ≡ 9 (mod 16), h2(−l) > 16}
#{ l 6 x : l ≡ 9 (mod 16)}

=
1

4
,

(3.8)

then

lim
x→∞

#{l 6 x : l ≡ 1 (mod 16) and h2(−l) > 16}
#{ l 6 x : l ≡ 1 (mod 16)}

= lim
x→∞

#{l 6 x : l ≡ 1 (mod 16) and h2(−l) = 8}
#{ l 6 x : l ≡ 1 (mod 16)}

=
1

4
.

Hence the i = 1 case follows from (3.4). It suffices to show (3.8).

Let

el =


1, if h2(−l) > 16,

−1, if h2(−l) = 8,

0, if h2(−l) = 4.

By[11, Theorem 1.2], we have ∑
l6x, l≡1 (mod 8)

el ≪ x/ exp((log x)0.1). (3.9)

Replacing the spin symbol [w] in [11, Lemma 4.1, 4.2] by the twisted symbol [w]′ := [w] · λ(w) for all

totally positive elements w of Z[ζ8], where λ(w) = (−1)
Nw−1

8 if Nw ≡ 1 (mod 8) and 1 otherwise, one

follows the argument there and obtains∑
l6x, l≡1 (mod 8)

(−1)
l−1
8 el ≪ x/ exp((log x)0.1). (3.10)

Thus ∑
l6x, l≡1 (mod 8)

(
el − (−1)

l−1
8 el

)
= 2

∑
l6x, l≡9 (mod 16)

(
116|h(−l) − 18||h(−l)

)
≪ x/ exp((log x)0.1).

Note that as x → +∞, log x = o(exp((log x)0.1), by Dirichlet’s density theorem, then

#{l 6 x, l ≡ 9 (mod 16), h2(−l) = 8} ∼ #{l 6 x, l ≡ 9 (mod 16), h2(−l) > 16} ∼ x

32 log x
.

Hence we have (3.8).

In the case e = 1, l ≡ 7 (mod 8). By Theorem 3.7, the case i = 0 follows from the fact that t2(l) = 4 if

and only if l ≡ 7 (mod 16), and the case i = 1 follows from the following result of Milovic [17, Theorem

1] on h2(−2l) that

lim
x→∞

#{ l 6 x : l ≡ −1 (mod 8), h2(−2l) = 8}
#{ l 6 x : l ≡ −1 (mod 8)}

=
1

4
.

(2) Case 7 (mod 8) for (1.5) follows from (1) and Theorem 3.7, and case 1 (mod 8) follows from

Proposition 3.9(2) and [12, Theorem 1] with similar arguments for t2(l); we omit the details.

Remark 3.10. We actually proved that for i = 1 and 2,

lim
x→∞

#{l 6 x : l ≡ 1 (mod 16), t2(l) = 2i}
#{l 6 x : l ≡ 1 (mod 16)}

= lim
x→∞

#{l 6 x : l ≡ 9 (mod 16), t2(l) = 2i}
#{l 6 x : l ≡ 9 (mod 16)}

=
1

2i
.

4 Distribution Conjectures for Tp-groups of quadratic fields

4.1 Distribution conjecture of Tp in the full family

We first propose a distribution conjecture on the group structure of Tp(F ) when F varies in the family

of all imaginary (resp. real) quadratic fields Fim (resp. Fre).
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For 5 6 p 6 47, numerical data presented in [18, §5.2] suggested that of all real quadratic fields Q(
√
m)

such that m 6 109 is squarefree, the proportion of fields with trivial Tp-groups (so-called p-rational field)

is close to η∞(p). It was mentioned there that the authors also considered the distribution about the

group structures of Tp-groups, however, we did not find any further statement and subsequent studies in

the literature.

Based on Theorem 1.1 and numerical data in the appendix, we propose the following conjecture:

Conjecture 4.1. Let p be a prime. Let Fim (resp. Fre) be the family of all imaginary (resp. real)

quadratic fields. For each finite abelian p-group G, one has

lim
x→∞

#{F ∈ Fim | −DF 6 x, 6Tp(F ) ∼= G}
#{F ∈ Fim : −DF 6 x}

=
η∞(p)/η1(p)

#G ·#Aut(G)
; (4.1)

lim
x→∞

#{F ∈ Fre | DF 6 x, 6Tp(F ) ∼= G}
#{F ∈ Fre : DF 6 x}

=
η∞(p)

#Aut(G)
. (4.2)

Here DF is the discriminant of F , and we recall that ηs(q) :=
s∏

i=1

(1− q−i) for s ∈ Z>0 ∪ {∞} and q > 1.

Remark 4.2. (1) For p > 5, we have 6Tp(F ) ∼= Tp(F ) and hence the factor 6 can be removed from the

statement of our conjecture. For p = 2 or 3, we have 6Tp(F ) = pTp(F ). For p = 5 and 7, we have carried

out numerical computation of Tp(F ) with |DF | 6 5× 107; see Tables 1 - 4, which give strong evidence of

Conjecture 4.1 in these cases.

(2) In the bad primes 2 and 3 case, when the bound is 5 × 107, the distributions of 2T2 and 3T3 are

actually not quite good based on our computation, but this is expected just like the analogue phenomenon

for the distributions of narrow 2-class groups and tame kernels of quadratic fields: the bound is not big

enough. We gain confidence from recent breakthrough of Smith[21] on the distribution of narrow 2-class

groups of quadratic fields, as well as the 4-rank density formula for T2 of imaginary quadratic fields we

just proved here.

(3) If using the setting of local Cohen-Lenstra Heuristic, the weight function for p-class groups is ω0

for imaginary quadratic fields and ω1 for real ones where

ωi(G) =
1

(#G)i ·#Aut(G)
, (4.3)

the weight functions for Tp-groups are exactly the reverse order.

(4) For more general conjectures on distributions of Tp-groups of quadratic fields, which are also in the

spirit of the Cohen-Lenstra heuristics, see [15].

4.2 Distribution conjecture of T2 in sub-families

Conjecture 4.3. Assume all l appeared below are primes. For each integer i > 0 and e ∈ {0, 1}, then

lim
x→∞

#{l 6 x : l ≡ 1 (mod 16), t2(−l) = 2i+3}
#{l 6 x : l ≡ 1 (mod 16)}

=
3

4i+1
, (4.4)

lim
x→∞

#{l 6 x : l ≡ 1 (mod 16), t2(−2l) = 2i+2}
#{l 6 x : l ≡ 1 (mod 16)}

=
3

4i+1
, (4.5)

lim
x→∞

#{l 6 x : l ≡ (−1)e (mod 8), t2(l) = 2i+1+e}
#{l 6 x : l ≡ (−1)e (mod 8)}

=
1

2i+1
, (4.6)

lim
x→∞

#{l 6 x : l ≡ (−1)e (mod 8), t2(2l) = 2i+1}
#{l 6 x : l ≡ (−1)e (mod 8)}

=
1

2i+1
. (4.7)

We shall present numerical evidence in Tables 5 - 10.

Remark 4.4. (1) Under the setting of extended local Cohen-Lenstra heuristic, one can interpret (4.4)

more conceptually as follows. Let Mk = {Z/2i+kZ | i > 0} for k > 1. For G = Z/2i+kZ ∈ Mk, then a

direct computation gives
ω1(G)∑

H∈Mk
ω1(H)

=
3

4i+1
.
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Thus (4.4) is equivalent to that the natural density of primes l with T2(−l) ∼= G among all primes ≡ 1

(mod 16) is equal to the ratio of ω1(G) to the total 1-weight of the space M3. For (4.5), the corresponding

space is M2.

(2) One can also reformulate (4.6) and (4.7) by using the weight function ω0 and by noting the following

identity:
ω0(G)∑

H∈Mk
ω0(H)

=
1

2i+1
, where G = Z/2k+iZ.

In (4.6) (resp. (4.7)), the total space is Me+1 (resp. M1).

(3) By Lemma 3.4(1), (4.6) has the following equivalent form about the distribution of fundamental

units: for each i > 0 and e ∈ {0, 1},

lim
x→∞

#{l prime : l 6 x, l ≡ (−1)e (mod 8), ν2(al) = i+ 2 + e}
#{l prime : l 6 x, l ≡ (−1)e (mod 8)}

=
1

2i+1
. (4.8)

(4) Finally, for l ≡ 1 (mod 8), (4.6) actually has a finer form: for i > 0 and a ∈ {1, 9},

lim
x→∞

#{l 6 x : l ≡ a (mod 16), t2(l) = 2i+1}
#{l 6 x : l ≡ a (mod 16)}

=
1

2i+1
. (4.9)

The cases i = 0 and 1 were proved in Theorem 1.3. We actually speculate that this is the case for all

sub-congruent classes a (mod 2k) of 1 (mod 8).

In the case a = 9, let χl be the associated Dirichlet character of Q(
√
l) and L2(s, χl) be its 2-adic

L-function, by the 2-adic class number formula (see [22, Theorem 5.24]) and Coates’ order formula (3.1),

(4.9) has the following equivalent form which was implicitly proposed by Shanks-Sime-Washington in [19,

p. 1253]:

lim
x→∞

#{l prime : l 6 x, l ≡ 9 (mod 16) and ν2(L2(1, χl)) = i+ 2}
#{l prime : l 6 x and l ≡ 9 (mod 16)}

=
1

2i+1
. (4.10)
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[theorem]Conjecture

Appendix A Data for Conjecture 4.1

In Tables 1-4, we let the middle value be the ratio of field F such that Tp(F ) ∼= G among all quadratic

fields whose absolute discriminant 6 B, and D be the value predicted by Conjecture 4.1.

Table 1 T5 of real quadratic fields

B

G
Z/5Z Z/25Z (Z/5Z)2 Z/5Z× Z/25Z (Z/5Z)3

107 0.1876 0.03694 1.375 e-3 3.277 e-4 0

2 ∗ 107 0.1880 0.03712 1.396 e-3 3.463 e-4 1.645 e-7

3 ∗ 107 0.1880 0.03727 1.416 e-3 3.439 e-4 2.193 e-7

4 ∗ 107 0.1880 0.03739 1.438 e-3 3.447 e-4 3.290 e-7

5 ∗ 107 0.1882 0.03740 1.453 e-3 3.430 e-4 2.632 e-7

D 0.1901 0.03802 1.584 e-3 3.802 e-4 5.110 e-7

Table 2 T7 of real quadratic fields

B

G
Z/7Z Z/49Z (Z/7Z)2 (Z/7Z)3

107 0.1377 0.01950 3.622 e-4 0

2 ∗ 107 0.1382 0.01956 3.622 e-4 0

3 ∗ 107 0.1383 0.01963 3.713 e-4 0

4 ∗ 107 0.1385 0.01966 3.764 e-4 0

5 ∗ 107 0.1385 0.01968 3.833 e-4 5.483 e-8

D 0.1395 0.01992 4.151 e-4 2.477 e-8
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Table 3 T5 of imaginary quadratic fields

B

G
Z/5Z Z/25Z (Z/5Z)2 Z/5Z× Z/25Z (Z/5Z)3

107 0.04558 1.767 e-3 6.185 e-5 6.580 e-7 0

2 ∗ 107 0.04584 1.789 e-3 6.004 e-5 1.645 e-6 0

3 ∗ 107 0.04604 1.801 e-3 6.152 e-5 2.084 e-6 0

4 ∗ 107 0.04613 1.809 e-3 6.424 e-5 2.385 e-6 0

5 ∗ 107 0.04618 1.915 e-3 6.659 e-5 2.237 e-6 0

D 0.04752 1.901 e-3 7.920 e-5 3.802 e-6 5.110 e-9

Table 4 T7 of imaginary quadratic fields

B

G
Z/7Z Z/49Z (Z/7Z)2 (Z/7Z)3

107 0.02287 0.00043 3.619 e-6 0

2 ∗ 107 0.02297 0.00045 5.263 e-6 0

3 ∗ 107 0.02302 0.00045 5.593 e-6 0

4 ∗ 107 0.02307 0.00045 6.827 e-6 0

5 ∗ 107 0.02307 0.00045 7.435 e-6 0

D 0.02324 0.00047 9.883 e-6 8.425 e-11

Appendix B Data for Conjecture 4.3

In the last six Tables, we let the middle value be the ratio of field F such that Tp(F ) ∼= G among all

quadratic fields whose absolute discriminant 6 B, and D be the value predicted by Conjecture 4.3.

Table 5 T2 of Q(
√
−l), l ≡ 1 (mod 16) and l is a prime

B

G
Z/8Z Z/16Z Z/32Z Z/64Z Z/128Z

107 0.7508 0.1867 0.04704 0.01172 2.905 e-3

2 ∗ 107 0.7501 0.1872 0.04708 0.01170 3.062 e-3

3 ∗ 107 0.7501 0.1878 0.04658 0.01169 2.977 e-3

4 ∗ 107 0.7498 0.1881 0.04666 0.01166 2.910 e-3

5 ∗ 107 0.7496 0.1880 0.04694 0.01160 2.934 e-3

D 0.75 0.1875 0.04688 0.01172 2.930 e-3
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Table 6 T2 of Q(
√
−2l), l ≡ 1 (mod 16) and l is a prime

B

G
Z/4Z Z/8Z Z/16Z Z/32Z Z/64Z

107 0.7508 0.1876 0.04611 0.01144 3.134 e-3

2 ∗ 107 0.7501 0.1886 0.04604 0.01142 3.075 e-3

3 ∗ 107 0.7501 0.1885 0.04611 0.01140 3.029 e-3

4 ∗ 107 0.7498 0.1885 0.04633 0.01153 3.032 e-3

5 ∗ 107 0.7496 0.1883 0.04655 0.01157 3.051 e-3

D 0.7500 0.1875 0.04688 0.01172 2.930 e-3

Table 7 T2 of Q(
√
l), l ≡ 1 (mod 8) and l is a prime

B

G
Z/2Z Z/4Z Z/8Z Z/16Z Z/32Z Z/64Z

107 0.5002 0.2499 0.1245 0.06236 0.03169 0.01553

2 ∗ 107 0.5000 0.2499 0.1245 0.06255 0.03163 0.01567

3 ∗ 107 0.5005 0.2496 0.1246 0.06278 0.03115 0.01560

4 ∗ 107 0.5003 0.2496 0.1247 0.06278 0.03115 0.01564

5 ∗ 107 0.5001 0.2497 0.1247 0.06281 0.03116 0.01567

D 0.5000 0.2500 0.1250 0.06250 0.03125 0.01563

Table 8 T2 of Q(
√
l), l ≡ 7 (mod 8) and l is a prime

B

G
Z/4Z Z/8Z Z/16Z Z/32Z Z/64Z Z/128Z

107 0.5000 0.2484 0.1260 0.06361 0.03103 0.01518

2 ∗ 107 0.5000 0.2494 0.1255 0.06265 0.03123 0.01534

3 ∗ 107 0.4998 0.2497 0.1252 0.06278 0.03109 0.01557

4 ∗ 107 0.4999 0.2497 0.1254 0.06246 0.03112 0.01570

5 ∗ 107 0.5001 0.2497 0.1254 0.06237 0.03116 0.01570

D 0.5000 0.2.500 0.1250 0.06250 0.03125 0.01563

Table 9 T2 of Q(
√
2l), l ≡ 1 (mod 8) and l is a prime

B

G
Z/2Z Z/4Z Z/8Z Z/16Z Z/32Z Z/64Z

107 0.5006 0.2515 0.1237 0.06214 0.03100 0.01564

2 ∗ 107 0.5004 0.2511 0.1239 0.06219 0.03105 0.01576

3 ∗ 107 0.5001 0.2506 0.1245 0.06256 0.03093 0.01572

4 ∗ 107 0.5001 0.2505 0.1249 0.06233 0.03090 0.01564

5 ∗ 107 0.5000 0.2503 0.1252 0.06236 0.03083 0.01572

D 0.5000 0.2500 0.1250 0.06250 0.03125 0.01563



24 Li J N et al. Sci China Math

Table 10 T2 of Q(
√
2l), l ≡ 7 (mod 8) and l is a prime

B

G
Z/2Z Z/4Z Z/8Z Z/16Z Z/32Z Z/64Z

107 0.5000 0.2484 0.1253 0.06378 0.03129 0.01565

2 ∗ 107 0.5000 0.2.494 0.1253 0.06258 0.03137 0.01565

3 ∗ 107 0.4998 0.2497 0.1254 0.06258 0.03116 0.01575

4 ∗ 107 0.4999 0.2497 0.1252 0.06267 0.03129 0.01569

5 ∗ 107 0.5001 0.2497 0.1250 0.06268 0.03126 0.01573

D 0.5000 0.2500 0.1250 0.06250 0.03125 0.01563
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