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CHAPTER 1

Preliminaries

1. Theory of Integers
1.1. Size of an integer. Let Z be the ring of integers and Z+ the

subset of positive integers. For N ∈ Z+, suppose the binary expansion of N
is

N = a0 + · · ·+ an−1 · 2n−1 + 2n, ai = 0 or 1.

Then n = [log2N ] + 1 is called the size or length of N , as it takes n bits to
store the number N in a computer.

1.2. Division with remainder.

Theorem 1.1. For a, b ∈ Z and b 6= 0, there exist unique integers q
(called quotient) and r (called remainder) in Z, such that

a = bq + r, 0 ≤ r < |b|.

Recall that an ideal I of a commutative ring R is a nonempty subset of
R such that for any a, b ∈ I and r, s ∈ R, ra+ sb ∈ I. Certainly any subset
(a) = aR for a ∈ R is an ideal of R, which is called a principal ideal of R.
R is called a principal ideal domain (PID) if every ideal of R is principal

Theorem 1.2. The ring of integers Z is a PID.

Proof. Let I be any non-zero ideal of Z, let 0 6= a ∈ I, then ±a ∈ I
and hence I ∩ Z+ 6= ∅. Let d be the smallest positive integer in I. Then
on one hand, by definition dZ ⊆ I. On the other hand, for any b ∈ I, write
b = dq + r, 0 ≤ r < d. Then r = b− dq ∈ I. By the minimality of d, r = 0,
b ∈ dZ and hence I ⊆ dZ. □

Theorem 1.3 (Bezout). For a, b ∈ Z not all zero, there exist u, v ∈ Z
such that ua + vb = gcd(a, b). Moreover, gcd(a, b) = 1 if and only if there
exist u, v ∈ Z such that ua+ vb = 1.

Proof. Let I be the ideal generated by a and b. Then I = dZ for
some d > 0 by Theorem 1.2. It suffices to show d = gcd(a, b). On one
hand, d is a Z-linear combination of a and b, hence a multiple of gcd(a, b)
and d ≥ gcd(a, b). On the other hand, Let a = qd + r, 0 ≤ r < d, then
r = a − qd ∈ I and by the minimality of d, one must have r = 0 and d | a.
Similarly d | b. Hence d is a common divisor of a and b, and d ≤ gcd(a, b).
Thus d = gcd(a, b). □
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2 1. PRELIMINARIES

Problem 1.1. Find all possible u’s (and v’s) such that the Bezout iden-
tity ua+ vb = gcd(a, b) is satisfied.

1.3. Euclidean Algorithm. The Euclidean Algorithm is an algorithm
finding the greatest common divisor of two integers. The algorithm was first
described in Euclid’s Elements 2300 years ago but is still effective and widely
used in practice nowadays.

Algerithm 1.1 (Euclidean Algorithm). Input: a, b ∈ Z, not simultane-
ously zero.

Output: gcd(a, b) ∈ Z+, u and v in Z such that ua+ vb = gcd(a, b).
• Let q0 = a and r0 = |b| > 0. Perform the division algorithm:
q0 = r0q1 + r1, 0 ≤ r1 < r0.
• If r1 = 0, then gcd(a, b) = r0; if r1 > 0, repeat the division algo-

rithm: r0 = r1q2 + r2.
• Continue until rn−1 = rnqn+1 (i.e., rn+1 = 0), then rn = gcd(a, b).
• Moreover,

rn = rn−2 − rn−1qn = · · · = ua+ vb.

Example 1.1. Compute gcd(33, 111).

Problem 1.2. Decide the complexity of Euclidean Algorithm.

1.4. Congruent theory. For n ∈ Z+. The integer a is congruent to b
modulo n, denoted by a ≡ b mod n, if n divides a− b, i.e., a and b have the
same remainder if divided by n. The congruent relation is an equivalence
relation:

(1) (reflexive) a ≡ a mod n for any a ∈ Z;
(2) (symmetric) If a ≡ b mod n, then b ≡ a mod n;
(3) (transitive) If a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

Moreover, if a ≡ b mod n and c ≡ d mod n, then
a± c ≡ b± d mod n, ac ≡ bd mod n.

For i ∈ Z, the congruent class ī of i modulo n is the subset i+nZ = {i+nk |
k ∈ nZ} of Z. Then

Zn = Z/nZ := {0̄, 1̄, · · · , ¯n− 1}
is the set of all congruent classes of Z modulo n.

Proposition 1.1. The set Z/nZ is a commutative ring under the fol-
lowing addition and multiplication:

ā+ b̄ = a+ b, ā · b̄ = ab.

Moreover,
(0) The reduction map Z→ Z/nZ, i 7→ ī is a surjective homomorphism

of commutative rings.
(1) The multiplicative group (Z/nZ)×, i.e. the set of invertible elements

in Z/nZ, is the set {ā | 0 < a < n, gcd(a, n) = 1}.
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(2) As a cyclic group, the set of generators of Z/nZ is (Z/nZ)×. Con-
sequently, the set of generators of a cyclic group of order n with a generator
g is {ga | 0 < a < n, gcd(a, n) = 1}.

(3) Z/nZ is a domain if and only if n = p is a prime. When this is the
case, Fp := Z/pZ is a field of p elements.

Proof. We prove (1). On one hand, if gcd(a, n) = 1, then there exist
u and v such that au + vn = 1, hence ū is the inverse of ā. On the other
hand, if ā is invertible in Z/nZ, let b̄ be its inverse. Then ab = 1̄ and hence
ab ≡ 1 mod n. Then ab = 1 + kn and gcd(a, n) = 1. □

Remark 1.1. From now on, we drop ¯ and write Z/nZ = {0, 1, · · · , n−
1}, and call it the residue ring modulo n.

Let φ(n) be the order of the group (Z/nZ)×. The function n 7→ φ(n) is
called Euler’s totient function. By Proposition 1.1(2), φ(n) is the number
of generators of a cyclic group of order n. One also has

Corollary 1.1. The following identities hold:

n =
∑
d|n

φ(d),(1.1)

φ(n) =
∑
d|n

µ(d)
n

d
(1.2)

where µ(d) is the Möbius function: µ(d) = (−1)s if d is squarefree of s prime
factors and 0 if d is not squarefree.

Proof. The set X = {0, 1, · · · , n−1} is the disjoint union of Xd = {a ∈
X | gcd(a, n) = d} for 1 ≤ d | n. But Xd = {cd | 0 ≤ c < n

d , gcd(c, nd ) = 1}
is of order φ(n/d), hence n =

∑
d|n φ(n/d) =

∑
d|n φ(d). The second formula

follows from Möbius inversion formula. □

Suppose m | n. Then the natural reduction map Z/nZ→ Z/mZ, a 7→ a
is again a surjective homomorphism.

Theorem 1.4 (Chinese Remainder Theorem). If gcd(m,n) = 1, then
the reduction map induces an isomorphism of rings:

Z/mnZ ∼= Z/mZ× Z/nZ.

Equivalently, if n has a factorization

n = pα1
1 · · · p

αs
s ,

then the reduction map induces

Z/nZ ∼=
s∏

i=1

Z/pαi
i Z.
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Theorem 1.5 (Equivalent form of Chinese Remainder Theorem). If m
and n are coprime, then the congruent equations{

x ≡ a mod m

x ≡ b mod n

is solvable for any integers a and b, and all solutions are in the same con-
gruent class modulo mn.

Chinese Remainder Theorem has an immediate consequence:

Corollary 1.2. (1) If gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).
(2) If n has a factorization n = pα1

1 · · · pαs
s , then φ(n) =

s∏
i=1

φ(pαi
i ).

(3) If p is a prime and α ∈ Z+, then φ(pα) = pα−1(p− 1).

Applying Lagrange’s Theorem in group theory that the order of an el-
ement in a group is a factor of the group order, then one has the famous
theorems of Euler and Fermat:

Theorem 1.6. (Euler) If a ∈ Z and gcd(a, n) = 1, then aφ(n) ≡ 1 mod

n. Equivalently, aφ(n) = 1 if a ∈ (Z/nZ)×.
(Fermat’s Little Theorem) In particular, if p is a prime and a ∈ Z, then

ap ≡ a mod p. Equivalently ap = a if a ∈ Fp.

1.5. Quotient ring and Chinese Remainder Theorem in general
setting. Let R be a commutative ring and I be an ideal of R. For a, b ∈ R,
a is congruent to b modulo I, denoted by a ≡ b mod I, if a − b ∈ I. This
congruent relation is again an equivalence relation in R. For a ∈ R, let ā be
the congruent class of a modulo I. Let R/I be the set of congruent classes
modulo I. Define

ā+ b̄ := a+ b, ā · b̄ := ab.

Then R/I becomes a commutative ring, called the quotient ring of R modulo
I, and the natural map

π : R→ R/I, a 7→ ā

is a surjective ring homomorphism.

Theorem 1.7 (Chinese Remainder Theorem). Suppose I1, · · · , In are
ideals of R such that Ii + Ij = R if i 6= j. Then one has

R/I1 ∩ · · · ∩ In ∼=
n∏

i=1

R/Ii.

2. Polynomials over a field
In this section, we assume F is a field and a polynomial is of one variable

over F .
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2.1. Degree of a polynomial. The set F [x] of polynomials of one
variable over F is a commutative ring. For 0 6= f(x) = a0+a1x+· · ·+anxn ∈
F [x] and an 6= 0, set deg(f) := n and deg 0 := −∞. F is a natural subring
of F [x] by inclusion. A polynomial f(x) is called non-constant if f(x) /∈ F ,
i.e. deg(f) ≥ 1.

Proposition 1.2. The degree function f 7→ deg(f) satisfies the follow-
ing two properties:

(1) deg(f + g) ≤ max{deg f, deg g};
(2) deg(fg) = deg(f) + deg(g).

In other words, let γ > 1 be a constant. Then the function f 7→ |f | := γdeg f

is a metric on F [x] satisfying
(1) |f + g| ≤ max{|f |, |g|};
(2) |fg| = |f | · |g|.

2.2. Division with remainder.

Theorem 1.8. Suppose f(x), g(x) ∈ F [x] and f(x) 6= 0. Then there
exist unique polynomials q(x) and r(x) such that

g(x) = q(x)f(x) + r(x), deg(r) < deg(f).

In particular, for a ∈ F and g(x) ∈ F [x], there exists a unique polynomial
q(x) ∈ F [x] such that

g(x) = q(x)(x− a) + g(a).

Consequently x− a | g(x) if and only if a is a root of g(x), i.e., g(a) = 0.

The following results follow from the above Theorem.

Theorem 1.9. The ring F [x] is a PID.

Theorem 1.10 (Bezout). For f(x), g(x) ∈ F [x], there exist polynomials
u(x) and v(x), such that uf + vg = gcd(f, g). Moreover, gcd(f, g) = 1 if
and only if there exist polynomials u(x) and v(x), such that uf + vg = 1.

We leave it to the readers to formulate the Euclidean algorithm for
polynomials.

Remark 1.2. The greatest common divisor is unique up to a multiple of
some element in F×. However, if F1 ⊆ F2 are two fields, f and g are poly-
nomials in F1[x], then their gcd in F1[x] and F2[x] are the same polynomial
in F1[x] if we assume the gcd is monic.

Theorem 1.11 (Lagrange). A non-constant polynomial f(x) over a field
F has at most deg(f) roots (counting multiplicities) in F .

Proof. By induction to the degree of f . □
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2.3. Congruent theory. Suppose m(x) is a non-constant polynomial
of degree n. For f(x) ∈ F [x], let f(x) := f(x) +m(x)F [x] be the congruent
class of f(x) modulo m(x).

Proposition 1.3. The quotient ring F [x]/(m(x)) of F [x] modulo the
ideal (m(x)) = m(x)F [x] is {a(x) | deg(a) < n}.

(1) It is an F -vector space of dimension n with a basis {1̄, x̄, · · · , xn−1}.
(2) Its group of units (F [x]/(m(x)))× = {a(x) | deg(a) < n, gcd(a,m) =

1}.
(3) It is a domain if and only if m(x) is irreducible. When this is the

case, F [x]/(m(x)) is a field extension of F of degree n, isomorphic to F (α)
where α is a root of m(x) in an algebraic closure of F via the evaluation
map at α: a(x) 7→ a(α).

Remark 1.3. For simplicity, we drop ¯ and write F [x]/(m(x)) = {a(x) |
deg(a) < n}.

3. Finite fields
Suppose p is a prime, then

Fp := Zp = Z/pZ

is a field of p elements, which is also called a prime field. Fermat’s Little
Theorem tells us that ap = a for any a ∈ Fp.

3.1. Main theorem of finite fields. Now suppose F is a finite field of
characteristic p, then F is an Fp-vector space of finite dimension, and hence
F must be of order pdimFp F .

Lemma 1.1. If F is a field of characteristic p > 0, then f(xp) = f(x)p

for any f(x) ∈ F [x].

Proof. This is because the binomial coefficient
(
p
i

)
is a multiple of p

for 1 ≤ i ≤ p− 1. □

Theorem 1.12. Let p be a prime and Fp be a fixed algebraic closure of
Fp.

(1) For each r ∈ Z+, there exists a unique field, denoted by Fpr , of order
pr inside Fp given by Fpr = {x ∈ Fp, x

pr = x}.
(2) The multiplicative group F×

pr = Fpr − {0} is a cyclic group of order
pr − 1.

(3) Let f(x) ∈ Fp[x] be any irreducible polynomial of degree r over Fp

and α ∈ Fp be a root of f(x). Then

Fpr = Fp(α) = {a0 + a1α+ · · ·+ ar−1α
r−1 | 0 ≤ ai ≤ p− 1}.

Now suppose q is a p-power.
(4) Fqr1 ⊇ Fqr2 if and only if r2 | r1, i.e., qr1 is a power of qr2.
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(5) In Fq[x], one has the factorization

xq
r − x =

∏
d|r

∏
f(x) monic irred.

deg f=d

f(x).

In particular, let Nq,d = #{f(x) ∈ Fq[x] monic irreducible of degree d}, then

qr =
∑
d|r

Nq,d, Nq,d =
∑
d|r

µ(d)qr/d.

(6) For any r ∈ Z+, Fqr/Fq is a cyclic Galois extension of degree r with
the q-Frobenius

σq : x 7→ xq

a generator of Gal(Fqr/Fq).

Proof. (1) Let Xpr = {x ∈ Fp | xp
r
= x} be the root set of xpr − x.

By Lagrange’s Theorem, Xpr is of order pr. If F is a subfield of order pr in
Fp, then the group F× = F\{0} is of order pr − 1 and every a ∈ F× must
satisfy apr−1 = 1 and hence a ∈ Xpr . Certainly 0 ∈ Xpr and thus F ⊆ Xpr .
They must be equal since both have pr elements. Now it is easy to check
that Xpr is indeed a field.

(2) This is a special case of the following fact: any finite multiplicative
group in a field must be cyclic, which is a consequence of Lagrange’s Theorem
and the fact that n =

∑
d|n φ(d).

(3) This follows from the isomorphism Fp[x]/(f(x)) → Fp(α), a(x) 7→
a(α).

(4) On one hand if r2 | r1, certainly Fqr1 = Xqr1 ⊇ Fqr2 = Xqr2 . On the
other hand, if Fqr1 ⊇ Fqr2 , then F×

qr2 is a subgroup of F×
qr1 , hence qr2 − 1 |

qr1 − 1. However, in general gcd(qm − 1, qn − 1) = qgcd(m,n) − 1.
(5) For any monic irreducible f(x) of degree d | r over Fq with a root

α ∈ Fp, α ∈ Fqr and xqr − x is a zero polynomial of α, hence f(x) | xqr − x.
On the other hand, if g(x) is an irreducible factor of xqr −x of degree d and
β is a root, then β ∈ Xqr = Fqr and Fq(β) = Fqd ⊆ Fqr , hence d | r. Since
xq

r − x is separable (has no multiple roots), we get the identity.
(6) It is easy to check σq ∈ Gal(Fqr/Fq). Let α be an generator of F×

qr .
Then σdq (α) 6= α for d < r and hence σq is of order ≥ r . Since Gal(Fqr/Fq)
is of order ≤ r, it must be of order r and have σq as its generator. □

Remark 1.4. Both Zpr and Fpr are finite rings of order pr, and Zp = Fp.
However, Fpr is a field but Zpr is not even a domain if r > 1.

Proposition 1.4. Suppose q is p-power and f(x) ∈ Fq[x] is monic
irreducible of degree r. Let α ∈ Fp be a root of f(x), then

f(x) = (x− α)(x− αq) · · · (x− αqr−1
) =

r−1∏
i=0

(x− σiq(α)).
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Proof. It suffices to check the root set of f(x) is {α, · · · , αqr−1}. □
Definition 1.1. Suppose q is p-power. An element α ∈ Fq is called a

primitive element in Fq if α is a generator of the cyclic group F×
q .

A monic irreducible polynomial f(x) ∈ Fq[x] of degree r is called a
primitive polynomial over Fq if a (any) root of f is a primitive element in
Fqr .

Proposition 1.5. There are φ(qr−1)/r primitive polynomials of degree
r in Fq[x].

Proof. By Proposition 1.1(2), there are φ(qr−1) primitive elements in
Fqr . Now every primitive polynomial of degree r has r distinct roots which
are primitive elements in Fqr . □

Example 1.2. The polynomial x2 + x + 1 is irreducible of degree 2 in
F2[x]. Let α be a root of it. Then F4 = {0, 1, α, 1 + α}. Since α(α + 1) =
α2+α = 1, α−1 = 1+α. α is a generator of F×

4 , hence x2+x+1 is primitive.

Example 1.3. The polynomial x3 + x2 + 2 is irreducible of degree 3 in
F3[x]. Let α be a root of it. Then F27 = {c0 + c1α+ c2α

2 | 0 ≤ ci ≤ 2}. We
can check α−1 = α2 + 1 and α13 = 1, hence x3 + x2 + 2 is not a primitive
polynomial.



Notations

If not stated otherwise, from now on, we shall use the following nota-
tions/conventions.

• p is a prime.
• q > 1 is a power of p and Fq is the finite field of order q.
• Fm×n

q is the Fq-vector space of all m× n matrices over Fq.
• Fn

q is identified with the row vector space F1×n
q .

• A row vector of dimension n is a 1× n matrix, a column vector of
dimension n is an n× 1 matrix.
• 0n := (0, 0, · · · , 0), 1n := (1, 1, · · · , 1) ∈ Fn

q . If there is no need to
specify n, we also use 0 to represent the zero vector.
• ei is the row vector of dimension n whose i-th entry is 1 and other

entries are 0.
• In is the identity matrix of size n.
• For a vector c = (c1, c2, · · · , cn), the cyclic matrix generated by c

is the square matrix

P (c) =


c1 c2 · · · cn−1 cn
c2 c3 · · · cn c1

. .
.

. .
.

. .
.

cn−1 cn cn−3 cn−2

cn c1 · · · cn−2 cn−1


n×n

.

• For a matrix A, rank(A) and AT are the rank and transpose of A.
• The row (resp. column) vector space of a matrix A is the vector

space generated by all row (resp. column) vectors of A, both spaces
are of dimension rank(A).

9
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CHAPTER 2

Introduction to Coding Theory

1. Background
Transmitting messages through an unreliable and sometimes noisy chan-

nel often results in errors. Coding theory is the basic tool to detect and
correct the errors to ensure safe and sound communication. It has many
practical applications, used not only in network communication, USB chan-
nels and satellite communication, but also in hard disks, CDs and DVDs
etc.

We give several examples in application.

Example 2.1 (Parity check code). For a (binary) message x = x1 · · ·xn
in bits string, define the parity check bit p(x) =

∑s
i=1 xi. The code C(x) =

(x, p(x)) can detect one single error because the error will change the sum
of components of C(x) from 0 to 1, but it cannot correct the error or detect
two errors.

Example 2.2 (Repetition code). In a noisy channel, it is often wise to
send a message repeatedly many times. Following this idea we can construct
the repetition code. Let x be a message and let r be the number of errors
that we wish to correct, define C(x) = x ‖ x ‖ · · · ‖ x where x is repeated
2r + 1 times. This code can correct r errors. In fact, for the 2r + 1 values
of x, at most r of them are changed and thus at least r + 1 values remain
unchanged, so the original value of x must be the value with majority.

Example 2.3 (Resident Identity Card Number). The Identity Card
Number of a Chinese resident consists of 18 digits. For a ID number
a1a2 · · · a18, a1a2 is the code for province/municipality/autonomous region,
a3a4 is the city/prefecture code, a5a6 is the county/district code, a7a8a9a10
is the birth year, a11a12 is the birth month, a13a14 is the birth date, a15a16a17
is the code assigned by local police station with a17 being odd for male and
even for female. The last digit a18 is the check digit, given by the formula

(2.1) a18 = 1−
17∑
i=1

218−iai mod 11 ∈ F11 = {0, 1, · · · , 10},

with the letter X representing 10.
For example, suppose someone has the resident Identity Card number

53010219200508011X. By computing,
∑17

i=1 2
18−iai = 189 = 2 in F11 and

hence (2.1) holds, so this number is a legal identity card number. Based
13
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on this number, one knows that this person is a male born in May 8, 1920
and was living in Wuhua District, Kunming City, Yunnan Province when
the card was issued.

Example 2.4 (International Standard Book Number). The Interna-
tional Standard Book Number (ISBN), administered by International ISBN
Agency and National ISBN Agencies, is an identifier for public available
books (text-based monographic publications) used by publishers, booksellers,
libraries, internet retailers and other supply chain participants for ordering,
listing, sales records and stock control purposes. The ISBN identifies the
registrant as well as the specific title, edition and format.

The old version of ISBN, used until the end of December 2006, is also a
code in the finite field F11. The ISBN of a book consists of 10 digits. The
first nine digits are grouped in three sections: the registration group element
of length up to 5 digits which is assigned by International ISBN Agency and
identifies the particular country, geographical region, or language area; the
registrant element of length up to 5 digits which is assigned by National
ISBN Agencies and identifies the particular publisher or imprint; and the
publication element which is assigned by the publisher and identifies the
particular edition and format of a specific title. The last digit a10 is the
check digit, calculated via the formula

(2.2) a10 =

9∑
i=1

iai ∈ F11.

Again here 10 is represented by the letter X.
Current version of ISBN is in use since January 1, 2007. It consists of

13 digits and is divided into 5 sections. The prefix element, either 978 or
979, represents the European Article Number. The next three sections of
9 digits are the same as in the old version: the registration group element
is of length up to 5 digits, the registrant element is of length up to 7 digits
and the publication element is of length up to 6 digits. The check digit, the
final single digit validating the number, is the weighted sum of the previous
12 digits with alternate weights of 3 and 1 in a modulus 10 system, i.e.,

(2.3) a13 = 3
6∑

i=1

a2i−1 +
6∑

i=1

a2i mod 10.

For example, the author has a book whose ISBN is 978-7-04-052753-
5. Here the prefix element is 978; the registration group element is 7,
representing China; the registrant element is 04, representing Higher Ed-
ucation Press; the publication element is 052753. The check digit 5 =
(9 + 8 + 0 + 0 + 2 + 5) × 3 + (7 + 7 + 4 + 5 + 7 + 3) × 1 mod 10, vali-
dating this number.

Problem 2.1 (Main problems of coding theory).
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(1) Construct codes that can correct a maximal number of errors while
using a minimal amount of redundancy.

(2) Construct codes with efficient encoding and decoding procedures.

2. Basic Definitions
We first give the definition of a code.

Definition 2.1. Let A = {a1, · · · , aq} be an alphabet of size q. A block
code C of length n over A is a nonempty subset of An. An element c ∈ C is
called a codeword. The number of elements in C, denoted |C|, is called the
size of this code. A code of length n and size M is called an (n,M)-code over
A (or an (n,M)q-code if one wants to specify the size q of the alphabet).

Remark 2.1. It seems that the definition of a code depends on the actual
alphabet, in fact its size is more essential. Let A and A′ be two alphabets of
the sane size, let σ : A→ A′ be a bijection of sets. Then σ induces bijection
of C ⊆ An to σ(C) ⊆ A′n. C and σ(C) can be regarded as the same code.
Hence there is no difference to choose whatever alphabet of the same size.
However, some alphabet is easier to describe mathematically than others.
For example, if q is a prime power, the alphabet of size q is often chosen to
be the finite field Fq.

If A is of size q, An is of order qn, i.e. n-tuples of A can label qn objects.
Hence to label M objects, ([logqM ] + 1)-tuples are sufficient. From this the
rate of a code is introduced to evaluate its efficiency and redundancy.

Definition 2.2. Let C be an (n,M)-code over an alphabet of size q.
The rate of C is defined to be

rate(C) :=
logqM

n
.

By definition, one certainly has
(2.4) 0 < rate(C) ≤ 1.

One can see that the closer rate(C) is to 0, the more redundant and the less
efficient is the code.

Example 2.5. The rate of the trivial code C = An is 1. This code
cannot correct any error.

Example 2.6. Let C be the repetition code (of any set X of length n
over an alphabet of size q) which can correct r errors. Then 0 < rate(C) ≤

n
(2r+1)n = 1

2r+1 and lim
r→∞

rate(C) = 0.

Definition 2.3 (Hamming distance). For two elements x = x1 · · ·xn
and y = y1 · · · yn in An, the Hamming distance of x and y is defined to be
d(x, y) = #{i | xi 6= yi}.

The following proposition is immediate.
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Proposition 2.1. The function d is a metric, then for every x, y, z ∈
An, we have

(1) 0 ≤ d(x, y) ≤ n.
(2) d(x, y) = 0 if and only if x = y.
(3) d(x, y) = d(y, x).
(4) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

Definition 2.4 (Nearest neighbor decoding rule). Let C be a code of
length n over an alphabet A. The nearest neighbor decoding rule states that
every x ∈ An is decoded to cx ∈ C which is closest to x, i.e., D(x) = cx
where cx is the unique codeword such that d(x, cx) = minc∈C{d(x, c)}. If
there exist at least two codewords with minimal distance to x, then ⊥ is
returned (and the decoding is failed).

Definition 2.5. The distance of a code C, denoted by d(C), is the
minimal distance of all pairs of different codewords, i.e.,

d(C) := min{d(c1, c2) | c1, c2 ∈ C, c1 6= c2}.
An (n,M)-code of distance d is called an (n,M, d)-code, n,M and d are
called its parameters.

Definition 2.6. The relative distance of a code C of length n and
distance d is δ(C) = d−1

n .

Example 2.7. (1) The trivial code An: d = 1 and δ = 0.
(2) The repetition code C = {(a, · · · , a) | a ∈ Fq} ⊂ Fn

q is a (n, q, n)-code
over Fq. If n→ +∞, δ(C) = n−1

n → 1 and rate(C) = 1
n → 0.

Definition 2.7. Let C be a code of length n over an alphabet A.
(1) C detects µ errors if for every codeword c ∈ C and every x ∈ An,

if 0 < d(c, x) ≤ µ, then x /∈ C.
(2) C corrects ν errors if for every codeword c ∈ C and every x ∈ An,

if d(x, y) ≤ ν, then the nearest neighbor decoding of x outputs c.

Theorem 2.1.
(1) A code C can detect µ errors if and only if d(C) > µ.
(2) A code C can correct ν errors if and only if d(C) ≥ 2ν + 1.

Proof. (1) The condition d(C) > µ is equivalent to that d(c, c′) > µ
for any two codewords c 6= c′ ∈ C. This in turn is equivalent to that for any
c ∈ C, any x ∈ An satisfying 0 < d(c, x) ≤ µ must not be in C, i.e., that C
can detect µ errors.

(2) Suppose d(C) ≥ 2ν+1. Let x ∈ An and c ∈ C such that d(x, c) ≤ ν.
Then for any c′ ∈ C\{c}}, d(x, c′) ≥ d(c, c′)− d(x, c) ≥ ν + 1 and hence c is
the nearest neighbor of x.

Conversely, for c ∈ C, let D(c, ν) = {x ∈ An | d(c, x) ≤ ν}. That
C can correct ν errors means nothing but the sets D(c, µ) for c ∈ C are
pairwise disjoint. Assume c 6= c′ and d(c, c′) < 2ν + 1. Then the set
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I = {1 ≤ i ≤ n | ci 6= c′i} is of order ≤ 2ν. We can divide it into two disjoint
subsets I1 and I2, each of order ≤ ν. Let x ∈ An such that xi = ci for i /∈ I
or i ∈ I1 and xi = c′i for i ∈ I2, then x ∈ D(c, µ) ∩ D(c′, µ), impossible.
Hence d(c, c′) ≥ 2ν + 1 for c 6= c′. This means d(C) ≥ 2ν + 1. □

Definition 2.8 (Most likely decoding rule). Let C be a code of length n
over an alphabet A. The most likely decoding rule states that every x ∈ An

is decoded to cx ∈ C satisfying
Pr(x is received | cx was sent) = max

c∈C
Pr(x is received | c was sent).

If there exist more than one c with maximal probability, then ⊥ is returned.

A code with the alphabet A = F2 = {0, 1} is called a binary code. A
binary symmetric channel is a binary channel such that

Pr(1 is received | 0 was sent) = Pr(0 is received | 1 was sent) = p,

Pr(1 is received | 1 was sent) = Pr(0 is received | 0 was sent) = 1− p.
The probability p is called the crossover probability of this binary symmetric
channel.

Theorem 2.2. In a binary symmetric channel with p < 1
2 , the most

likely decoding rule is equivalent to the nearest neighbor decoding rule.

Proof. Suppose C is a binary code of length n. Let x be the received
word in Fn

2 . For every c ∈ C and for every 0 ≤ i ≤ n, if d(x, c) = i, then
Pr(x is received | c was sent) = pi(1− p)n−i.

Since p < 1
2 , we have that 1−p

p > 1 and

pi(1− p)n−i = pi+1(1− p)n−i−1 · 1− p
p

> pi+1(1− p)n−i−1.

Thus the sequence pi(1 − p)n−i (0 ≤ i ≤ n) is a decreasing sequence. This
implies that the codeword c closest to x is the one with maximal probability
that this codeword was sent and x is received. □





CHAPTER 3

Linear Codes

1. Basic definitions
1.1. Linear code and its dual code.

Definition 3.1. A linear code of length n over Fq is a vector subspace
of Fn

q . The dimension of a linear code is its dimension as an Fq-vector space.
A linear code is called an [n, k, d]q-code or an [n, k, d]-code over Fq if

it is of length n, dimension k (that is, of size qk) and distance d over the
alphabet Fq.

For x = (x1, · · · , xn) and y = (y1, · · · , yn) in Fn
q , the inner product x · y

is
x · y = (x, y) := xyT = x1y1 + · · ·+ xnyn.

The inner product is a non-degenerate symmetric bilinear form on Fn
q which

induces an isomorphism of Fn
q to its dual via the map x 7→ (y 7→ x · y).

Assume W is a subspace of Fn
q , the orthogonal complement of W in Fn

q is
the subspace given by

W⊥ := {y ∈ Fn
q | x · y = 0 for all x ∈W}.

Then Fn
q =W ⊕W⊥ and in particular

(3.1) dimW⊥ = dimFn
q − dimW = n− dimW.

By the fact (W⊥)⊥ =W , we can switch the role of W and W⊥.

Definition 3.2. Let C be a linear code over Fq of length n. The or-
thogonal complement C⊥ of C in Fn

q is called the dual code of C.
A linear code C is called self-orthogonal if C ⊆ C⊥. A linear code C is

called self-dual if C = C⊥.

Proposition 3.1. The dual code of C⊥ is C, and
(1) if C is a [n, k, d]-code, then dimC⊥ = n− k;
(2) if C is a self-orthogonal [n, k, d]-code, then k ≤ n/2;
(3) if C is a self-dual [n, k, d]-code, then n must be even and k = n/2.

Proof. Clear, just use the identity dimC + dimC⊥ = n. □
19
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1.2. Hamming weight.

Definition 3.3. The Hamming weight of a vector x in Fn
q is

wt(x) := #{i | xi 6= 0} = d(x, 0),

where d is the Hamming distance in Fn
q .

Certainly for n = 1, wt(x) = 1 − δx,0 where δ is the Kronecker symbol
(i.e. δij = 0 if i 6= j and 1 if i = j). In general, one has

wt(x) =

n∑
i=1

wt(xi).

Lemma 3.1. On Fn
2 , set x ∗ y := (x1y1, · · · , xnyn). Then

wt(x+ y) = wt(x) + wt(y)− wt(x ∗ y).

Hence wt(x) + wt(y) ≥ wt(x+ y).

Proof. It suffices to check the n = 1 case. □

Lemma 3.2. On Fn
q for general q, one has

wt(x) + wt(y) ≥ wt(x+ y) ≥ wt(x)− wt(y).

Proof. Again it suffices to check the n = 1 case. □

Definition 3.4. The weight of a linear code C, denote by wt(C), is the
minimal Hamming weight of nonzero codewords in C, i.e.

wt(C) = min
0̸=c∈C

wt(c).

Theorem 3.1. For a linear code C, one always has d(C) = wt(C).

Proof. Apply the fact d(c, c′) = d(c−c′, 0) = wt(c−c′) to the definitions
of d(C) and wt(C). □

1.3. Advantages of Linear Codes. There are some advantages for
linear codes:

(1) Linear codes are vector spaces over finite fields, so tools and theories
from linear algebra can be used to study linear codes. In particular, a linear
code can be described by a basis.

(2) By the identity d(C) = wt(C), the distance of a linear code is the
smallest Hamming weight of a nonezero codeword. This fact makes it is
easier to find the distance of a linear code.

(3) (Linear) mapping is usually simple to describe.
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1.4. Generator and parity check matrices.
Definition 3.5. Let C be a linear code over Fq.
(1) A generator matrix G for C is a matrix whose rows form a basis of

C as an Fq-vector space;
(2) A parity check matrix H for C is a generator matrix for C⊥.
Remark 3.1. If C is a linear [n, k]-code over Fq, then a generator matrix

G of C is a k × n matrix of full row rank and is a parity check matrix of
C⊥, a parity check matrix H of C is a (n − k) × n matrix of full row rank
and is a generator matrix of C⊥.

On the other hand, for a matrix A of full row rank, the row vector space
W of A and its orthogonal complement W⊥ are both linear codes, A is a
generator matrix of W and a parity check matrix of W⊥. Because of this, a
matrix of full row rank is called a legal generator or parity check matrix.

We recall the following facts from linear algebra.
Lemma 3.3. Suppose A and A′ are matrices of the same size over a field

F . Then A′ can be obtained from A through finite steps of elementary row
transformations if and only if A′ = MA for some invertible matrix M . In
this case, the row vector spaces of A and A′ are the same vector space.

Lemma 3.4. Let A be an n×m matrix over a field F . Then the solutions
of the homogeneous linear equations (x1, · · · , xn)A = 0 form a subspace of
Fn of dimension n− rank(A).

Theorem 3.2. Suppose C is an [n, k]-code over Fq, G is a generator
matrix and H a parity check matrix of C. Then a matrix G′ is a generator
matrix of C if and only if G′ =MG for some invertible matrix M , a matrix
H ′ is a parity check matrix of C if and only if H ′ = NH for some invertible
matrix N .

Proof. This follows from Lemma 3.3. □
Theorem 3.3. Let C be an [n, k]-code over Fq, G a generator matrix

and H a parity check matrix of C respectively.
(1) A vector v ∈ Fn

q is a codeword in C if and only if vHT = 0. In
other words, C = {x ∈ Fn

q | xHT = 0}.
(2) A vector v ∈ Fn

q is a codeword in C⊥ if and only if vGT = 0. In
other words, C⊥ = {x ∈ Fn

q | xGT = 0}.
(3) HGT = GHT = 0.
(4) A k×n matrix A is a generator matrix of C if and only if rank(A) =

k and AHT = 0.
(5) An (n− k)× n matrix B is a parity check matrix of C if and only

if rank(B) = n− k and BGT = 0.
Proof. (2) follows from (1) via the duality of C and C⊥. (3) follows

from (1) and (2). (5) follows from (4) by duality. It suffices to show (1) and
(4).
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(1) By definition dimC = rank(G) = k. Let W = {x ∈ Fn
q | xHT = 0}.

By Lemma 3.4, dim(W ) = n − rank(HT ) = k. C and W are of the same
dimension. We just need to show C ⊆W .

Let the set of row vectors of G be {α1, · · · , αk} and the set of row vectors
of H be {β1, · · · , βn−k}. For any i and for any β ∈ C⊥, αiβ

T = 0, thus

αiH
T = αi(β

T
1 , · · · , βTn−k) = 0, i.e. αi ∈W.

Hence C, as the space generated by αi (i = 1, · · · , k), is contained in W .
(4) If A is a generator matrix of C, then rank(A) = k by definition and

AHT = 0 by (1). On the other hand, the row vector space U of A has
dimension = rank(A) = k and the row vectors of A form a basis of U . Since
AHT = 0, by (1), C contains all row vectors of A. This means C ⊇ U .
Then C = U since both are of dimension k. In other words, A is a generator
matrix for C. □

Definition 3.6. A generator matrix (resp. a parity check matrix) of
the form (Ik | X) (resp. (Y | In−k)) is called a standard form.

Corollary 3.1. If G = (Ik, X) is a generator matrix in standard form
for C, then H = (−XT , In−k) is a parity check matrix in standard form for
C, and vice versa.

Proof. Just need to check GHT = 0. □

Theorem 3.4. Let C be a linear code with a parity check matrix H.
Then

(1) d(C) ≥ d if and only if every d − 1 columns of H are linearly
independent;

(2) d(C) ≤ d − 1 if and only if there exist d − 1 columns of H which
are linearly dependent.

Proof. First note that it suffices to show the ⇒ parts of (1) and (2).
Let H = (βT1 , · · · , βTn ) with βTj the j-th column vector of H. Then for a

vector v = (λ1, · · · , λn) ∈ Fn
q , vHT =

∑n
i=1 λiβi. Theorem 3.3 tells us that

v ∈ C if and only if v is a solution of the equations
∑n

i=1 λiβi = 0.
(1) If d(C) ≥ d, then any non-zero codeword c ∈ C has weight at least

d. So any solution x of the equations
∑n

i=1 xiβi is either 0 or has weight
at least d. Hence for any i1 < · · · < ik with k < d, the vector equation∑k

j=1 xijβij has only zero solution, which means that {βi1 , · · · , βik} are lin-
early independent, hence every d−1 columns of H are linearly independent.

(2) If d(C) ≤ d − 1, one can find 0 6= c = (c1, · · · , cn) ∈ C such that
wt(c) ≤ d− 1. This means the set I = {i | ci 6= 0} is of order ≤ d− 1. Then
c ∈ C implies that the vectors βi(i ∈ I) are linearly dependent. □

Corollary 3.2. The distance d(C) = d if and only if any d−1 columns
of H are linearly independent and there exists d columns of H which are
linearly dependent.
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2. Hamming codes
2.1. Binary Hamming code. Let m be a fixed positive integer. There

are n = 2m−1 non-zero vectors in the column vector space Fm×1
2 . We write

F1×m
2 \{0} = {u1, · · · , un}. The matrix H := (u1, · · · , un) is a m× n matrix

of full row rank m, hence it is a legal parity check matrix.

Definition 3.7. The binary Hamming code H(2,m) is the linear code
over F2 with H a parity check matrix, i.e., H(2,m) = {c ∈ Fn

2 | cHT = 0}.

Proposition 3.2. The binary Hamming code H(2,m) is a linear [2m−
1, 2m −m− 1, 3]-code over F2.

Proof. The length and dimension are clear. For the distance, note that
• Every 2 columns of H are linearly independent;
• For two columns ui and uj , then ui, uj , ui + uj = uk are linearly

dependent.
By Corollary 3.2, we know d(H(2,m)) = 3. □

2.2. Hamming code. Again let m be a positive integer. There are
qm − 1 non-zero column vectors in F1×m

q . We say that two vectors α ∼ β

if there exists λ ∈ F×
q such that α = λβ. The relation ∼ is an equivalence

relation in F1×m
q \{0}. The set of equivalent classes is actually the protective

space Pm−1
Fq

of dimension m− 1 over Fq.
Pick one representative in each equivalent class, say v1, · · · , v qm−1

q−1
and

let H = (v1, · · · , v qm−1
q−1

). Then H is an m× qm−1
q−1 matrix over Fq of full row

rank m and hence a legal parity check matrix.

Definition 3.8. The (extended) Hamming code H(q,m) is the linear
code over Fq with H a parity check matrix, i.e., H(q,m) = {c ∈ Fn

q | cHT =

0}, where n = qm−1
q−1 .

Again we have
• Every 2 columns of H(q,m) are linearly independent;
• There exist 3 columns of H(q,m) which are linearly dependent.

Hence

Proposition 3.3. The Hamming code H(q,m) is a linear [ q
m−1
q−1 ,

qm−1
q−1 −

m, 3]-code over Fq.

3. Equivalence of codes
Definition 3.9. Two codes C and C ′ of the same alphabet and length

are called equivalent if there exists a distance-preserving bijection σ : C →
C ′, i.e. d(c1, c2) = d(σ(c1), σ(c2)) for any c1, c2 ∈ C.

By definition, if C and C ′ are equivalent, they must have the same
parameters.
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Example 3.1. We give three examples of distance-preserving bijections.
(1) Permutation of the coordinates. Let C be a code of length n over A.

Let σ be a permutation of {1, · · · , n}. Then
C ′ = {(cσ(1), · · · , cσ(n)) | (c1, · · · , cn) ∈ C}

is an equivalent code of C. If C is a linear code, then the effect of this
permutation on a generator matrix or a parity check matrix of C is nothing
but rearranging columns.

(2) Permutation of the alphabet A. Let τ be a permutation of the
alphabet A. Then for a code C over A, the code

C ′ = {(τ(c1), · · · , τ(cn)) | (c1, · · · , cn) ∈ C}
is an equivalent code of C.

(3) Translation. Suppose C is a linear code of length n over Fq. Then
for any vector v ∈ Fn

q , the code C + v = {c + v | c ∈ C} is an equivalent
code of C. Note that if v /∈ C, then C + v is not a linear code.

Example 3.2. It seems that the Hamming code H(q,m) depends on H,
which in turn depends on the choice of representatives and the order of the
vectors, however, all of them are equivalent.

Theorem 3.5. Every linear code is equivalent to a linear code with a
generator matrix (resp. a parity check matrix) in standard form.

Proof. Let G be a generator matrix of the linear code C. By Gaussian
Elimination Method, after row transformation, we may assume G = (gij)k×n

is in row echelon form satisfying
g1j1 = · · · = gkjk = 1, j1 < j2 < · · · < jk,

gij = 0 if either j < ji or i < s and j = js for some s.
Rearranging the columns of G, we get a matrix in standard form. Thus C is
equivalent to a linear code with a generator matrix in standard form. The
parity check case is the same. □

Remark 3.2. In the world of linear algebra, any generator matrix is
equivalent to the matrix (Ik | 0), however, a linear code with a generator
matrix (Ik | X) with X 6= 0 is usually not equivalent to the linear code with
a generator matrix (Ik | 0).

From now on, we regard equivalent codes as the same code.

4. Encoding and decoding Algorithms
4.1. Encoding messages into a linear code. Usually this is easy.

Suppose the messages are stored in the space Fk
q . Suppose C is a linear

[n, k]-code over Fq and G is a generator matrix of C. Let αi be the i-th row
vector of G. Then the linear map

E : λ = (λ1, · · · , λk) 7→ c = λG =
k∑

i=1

λiαi
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encodes the message space Fk
q into the code C.

Moreover, if G = (Ik | X) is in standard form, then E(λ) = c = (λ, λX),
thus one can recover the original message λ easily by just taking the first k
coordinates of the codeword c.

4.2. Decoding. For a linear [n, k, d] code C over Fq, let

ℓ = ℓ(C) := [
d− 1

2
].

Through a noisy communication channel, a codeword v ∈ C was sent and a
vector w ∈ Fn

q is received. The decoding problem is to recover v from w, or
equivalently, find the error ε = v−w from w. As we know by Theorem 2.1,
up to ℓ errors can be corrected, we shall assume wt(ε) ≤ ℓ.

One ideal for decoding is that ε and w are in the same coset C +w and
the weight of ε is small. If some unique element of weight ≤ ℓ can be found
in this coset, then it must be the error vector ε. So the decoding problem is
reduced to find the element in the coset C + w with the smallest Hamming
weight.

Definition 3.10. In a coset of C, the codeword with the smallest Ham-
ming weight is called a leader of this coset.

Lemma 3.5. Let C be a linear [n, k, d]-code. If the smallest Hamming
weight of a coset C + v is ≤ ℓ(C), then the leader of this coset is unique.

Proof. Suppose v1 and v2 are two leaders of this coset. Then v1− v2 ∈
C and wt(v1 − v2) ≤ wt(v1) + wt(v2) < d, hence v1 = v2. □

Example 3.3. The linear code C = {0000, 1011, 0101, 1110} over F2 is
a [4, 2, 2]-code. There are four cosets for C with respect to F4

2:
• C + 0000 = {0000, 1011, 0101, 1110}, leader is 0000;
• C + 0001 = {0001, 1010, 0100, 1111}, leader is 0001 or 0100;
• C + 0010 = {0010, 1001, 0111, 1100}, leader is 0010;
• C + 1000 = {1000, 0011, 1101, 0110}, leader is 1000.

One can see that the two leaders in the coset C + 0001 are of weight 1, so
C cannot correct 1 error. Certainly from d(C) = 2, we know C can correct
ℓ = [d−1

2 ] = 0 errors.

The syndrome decoding is a generic method to decode a general linear
code if its distance is bounded.

Definition 3.11. Let C be an [n, k, d]-code over Fq. Suppose H is a
parity check matrix of C. For w ∈ Fn

q , the syndrome of w by H is

S(w) = SH(w) = wHT ∈ Fn−k
q .

It is easy to check that

Lemma 3.6.
(1) S(u+ v) = S(u) + S(v);
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(2) S(u) = 0 if and only if u ∈ C;
(3) S(u) = S(v) if and only if u and v are in the same coset.

Definition 3.12. A syndrome decoding array (SDA) for C, or a syn-
drome lookup table, is the table containing the pairs (ε, S(ε)) where ε is the
leader of some coset of C in Fn

q .

Algerithm 3.1 (SDA decoding algorithm). Suppose an SDA for C is
already constructed.

(1) Compute S(w);
(2) Look at the SDA, find S(ε) = S(w);
(3) Decoding v = w − ε.

To make the SDA decoding algorithm effective, we need to find an effi-
cient way to construct SDA. Note that

• There are too many cosets: in fact, there are qn−k cosets of C in
Fn
q . A SDA should not contain the leaders of all cosets.

• Not all cosets have a unique leader, as can be seen from Exam-
ple 3.3, but every coset has at most 1 leader of weight ≤ ℓ = [d−1

2 ]
by Lemma 3.5.
• Only up to ℓ errors can be corrected, i.e., if a coset has a leader of

weight > ℓ, the number of errors cannot be corrected.
This leads to the following construction:

Algerithm 3.2 (Constructing SDA). For each ε ∈ Fn
q of wt ≤ ℓ, com-

pute and store (ε, S(ε)) in SDA.
Proposition 3.4. The number of elements ε of weight ≤ ℓ is

ℓ∑
i=0

(
n

i

)
(q − 1)i ≤

(
n

ℓ

)
qℓ.

Hence the SDA decoding algorithm is a polynomial time algorithm if d is
bounded.

Proof. The number of ε with wt(ε) = i is
(
n
i

)
(q − 1)i, hence follows

the first formula. To show the inequality, just expand qℓ = (q − 1 + 1)ℓ by
Newton’s Binomial Theorem and use the identity

(
n
ℓ

)(
ℓ
i

)
=

(
n
i

)(
n−i
n−ℓ

)
. □

If d is small (for example d ≤ 5 and hence ℓ ≤ 2), one can also use the
following algorithm.

Algerithm 3.3. Suppose C is an [n, k, d]-code over Fq, ℓ = [d−1
2 ] and

H = (uT1 , · · · , uTn ) is a parity check matrix of C. For the received vector w,
compute its syndrome SH(w) = wHT .

(1) If SH(w) = 0, then ε = 0 and v = w.
(2) If SH(w) 6= 0, then one must have SH(w) = ai1ui1 + · · ·+aituit for

some 1 ≤ t ≤ ℓ. Let ε = (ε1, · · · , εn), where εij = aij (1 ≤ j ≤ t)
and εk = 0 for all other k. Then v = w − ε.
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Correctness of Algorithm 3.3. Let ε = (ε1, · · · , εn) be the error
vector, then SH(ε) = ε1u1 + · · · + εnun = SH(w). If SH(w) = 0, there is
nothing to prove. If SH(w) 6= 0, then ε 6= 0 and 1 ≤ t := wt(ε) = #{i |
εi 6= 0} ≤ ℓ. Thus SH(w) must be of the form εi1ui1 + · · ·+ εituit for some
1 ≤ t ≤ ℓ.

Now suppose a = (a1, · · · , an) and b = (b1, · · · , bn) ∈ Fn
q , both of weight

≤ ℓ satisfying SH(a) = a1u1+ · · ·+anun = b1u1+ · · ·+ bnun = SH(b). Then
SH(a − b) = 0 and a − b ∈ C. Since wt(a − b) ≤ wt(a) + wt(b) < d − 1,
one must have a − b = 0 and a = b. This implies that if SH(w) is of the
form a1u1 + · · ·+ anun with a = (a1, · · · , an) of weight ≤ ℓ, one must have
a = ε. □

Algorithm 3.3 can be used to decode the Hamming Code H(q,m). Note
that H(q,m) is a linear [ q

m−1
q−1 ,

qm−1
q−1 − m, 3]-code over Fq. Then d = 3

and [d−1
2 ] = 1. So it can only correct 1 error. We then have the following

algorithm.

Algerithm 3.4 (Decoding Hamming Codes). Given a parity check ma-
trix H = (uT1 , · · · , uTn ) of H(q,m). Suppose a codeword v was sent and a
vector w ∈ Fn

q is received. Then ε = w − v is of weight ≤ 1.
(1) Compute the syndrome SH(w) = wHT .
(2) If SH(w) = 0, then ε = 0 and v = w.
(3) If SH(w) 6= 0, then SH(w) = δuTi for some i ∈ {1, · · · , n} and

δ ∈ F×
q . Then ε = δei and v = w − ε = w − δei, where ei ∈ Fn

q

whose i-th component is 1 and other components 0.





CHAPTER 4

Bounds of codes and codes with good bounds

1. Bounds of codes
1.1. Basic setup. As mentioned in Problem 2.1, the construction of

codes with good properties is the main problem of coding theory. Naturally
we want to know relations between the parameters of the codes.

Definition 4.1. Fix integers n ≥ 1, 1 ≤ d ≤ n and q > 1 which is a
prime-power in the linear code case. Define

Aq(n, d) := max{M | ∃ an (n,M, d)-code of alphabet size q},
Bq(n, d) := max{qk | ∃ an [n, k, d]-code over Fq}.

Moreover, the code (resp. linear code) with maximal size Aq(n, d) (resp.
Bq(n, d) for linear code) is called an optimal code.

Upper and lower bounds provide us important guidance for the con-
struction of codes: there is no need to find codes of size exceeding the upper
bound and a code within the lower bound should have good properties. This
leads to the following fundamental problem in coding theory.

Problem 4.1. Find upper/lower bounds of Aq(n, d) and Bq(n, d).

Proposition 4.1. Fix n ≥ 1 and q > 1 a prime power.
(1) Bq(n, d) ≤ Aq(n, d) ≤ qn for all possible d;
(2) Bq(n, 1) = Aq(n, 1) = qn;
(3) Bq(n, n) = Aq(n, n) = q.

Here for Aq(n, d), q > 1 is enough.

Proof. (1) By definition, a code is a subset of An, so M ≤ qn.
(2) Both An and Fn

q are of length n and distance d = 1.
(3) The repetition code {(a, · · · , a) | a ∈ Fq} is a linear [n, 1, n]-code

over Fq, so q ≤ Bq(n, n) = Aq(n, n). It suffices to prove that Aq(n, n) ≤ q.
Suppose not, there exists a code C of size q + 1, length n and distance
n. Since C is of size q + 1, by Pigeonhole principle, there must exist two
codewords c1 6= c2 with the same value at one coordinate. So their distance
d(c1, c2) < n = d(C), not possible. □

1.2. Sphere covering lower bound and sphere packing upper
bound.

29
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Definition 4.2. Fix an alphabet A of size q > 1. For u ∈ An and
integer r ≥ 0, SA(u, r) := {v ∈ An | d(u, v) ≤ r} is the ball with center u
and radius r, and its volume V n

q (r) := |SA(u, r)|.
Lemma 4.1. One has

(4.1) V n
q (r) =


r∑

i=0

(
n
i

)
(q − 1)i, if 0 ≤ r ≤ n;

qn, if r ≥ n.
Proof. If r ≥ n, then for any v ∈ An, d(u, v) ≤ r, so SA(u, r) = An

and V n
q (r) = qn.

Now suppose r < n. Let the surface SA(u, r)◦ = {v ∈ An | d(u, v) = r}.
Then SA(u, r) =

r⋃
i=0

SA(u, i)
◦ is a disjoint union. It suffices to show

|SA(u, i)◦| =
(
n

i

)
(q − 1)i.

But v = (v1, · · · , vn) ∈ SA(u, i)◦ if and only if there are exactly i components
among {1, · · · , n} where u and v have different coordinates. There are

(
n
i

)
ways to choose the i components and q − 1 ways to choose each coordinate
of v in these i components. □

Theorem 4.1. Aq(n, d) ≥ qn

V n
q (d−1) .

Proof. Let M = Aq(n, d) and C be an optimal (n,M, d) code. We
claim that for every u ∈ An, there exists a codeword c ∈ C such that
d(u, c) ≤ d − 1. Indeed, if not, there exists u ∈ An such that d(c, u) ≥ d
for all c ∈ C. Add u to C and we obtain an (n,M + 1, d) code, contrary
to the maximality of M . Hence An =

⋃
c∈C

SA(c, d − 1). This implies qn ≤

MV n
q (d− 1) and M = Aq(n, d) ≥ qn

V n
q (d−1) . □

Theorem 4.2 (Hamming bound). Aq(n, d) ≤ qn

V n
q ([ d−1

2
])

.

Proof. Let C be an arbitrary (n,M, d)-code. It suffices to show M ≤
qn

V n
q ([ d−1

2
])

. For any two codewords c 6= c′ ∈ C, if u ∈ SA(c, [d−1
2 ])∩SA(c′, [d−1

2 ]),

then d ≤ d(c, c′) ≤ d(c, u) + d(u, c′) ≤ 2[d−1
2 ] < d, impossible. Hence

SA(c, [
d−1
2 ]) and SA(c′, [d−1

2 ]) are disjoint. By the inclusion
⋃

c∈C SA(c, [
d−1
2 ]) ⊂

An, then MV n
q ([d−1

2 ]) ≤ qn and M ≤ qn

V n
q ([ d−1

2
])

. □

Definition 4.3. An (n,M, d)-code of alphabet size q is called a perfect
code if the Hamming bound is achieved, i.e., M = qn

V n
q ([ d−1

2
])

.

By definition, a perfect code is optimal.
Example 4.1. The Hamming code H(q,m) is a [ q

m−1
q−1 ,

qm−1
q−1 −m, 3] code

over Fq. Then [d−1
2 ] = 1, V n

q (1) = 1 +
(
n
1

)
(q − 1) = qm, and M = qn−m =

qn

V n
q (1) . Hence H(q,m) is a perfect code.
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1.3. Singleton bound and MDS codes.
Theorem 4.3 (Singleton Bound). Fix n, d and q, then Aq(n, d) ≤

qn−d+1. In particular, if C is a linear [n, k, d]-code over Fq, then k ≤ n−d+1.

Proof. Let C be an arbitrary (n,M, d)-code. We delete the last d− 1
coordinates of codewords in C and obtain a new code C ′ of length n−d+1.
Assume c1, c2 ∈ C are different codewords and the corresponding codeword
in C ′ are c′1 and c′2 respectively. By d(c1, c2) ≥ d, we have d(c′1, c′2) ≥ 1 and
hence c′1 6= c′2. This means that C ′ is again of size M . ThusM ≤ qn−d+1. □

Definition 4.4. A linear [n, k, d]-code is called a maximal distance sep-
arable code (or MDS code in short) if k = n− d+ 1.

Theorem 4.4. Let C be an [n, k, d]-code, G a generator matrix and H
a parity check matrix of C. Then the followings are equivalent:

(1) C is an MDS code;
(2) every n− k columns of H are linearly independent;
(3) every k columns of G are linearly independent;
(4) C⊥ is an MDS code.

Proof. (1) ⇒ (2): since d = n − k + 1 and every d − 1 columns of H
are linearly independent (Theorem 3.4).

(2) ⇒ (1): (2) means that d ≥ n − k + 1 by Theorem 3.4, and the
Singleton bound indicates that d ≤ n− k + 1. Hence d = n− k + 1.

(3) ⇔ (4): same as (1) ⇔ (2).
(1) ⇒ (4) (then naturally (4) ⇒ (1)): we know C⊥ is an [n, n− k]-code,

so it suffices to prove that d(C⊥) = k+1. Suppose not, the Singleton bound
indicates that d(C⊥) ≤ k, hence there exists a nonzero codeword c ∈ C⊥ of
weight at most k. That is, at least n− k coordinates of c is 0. Without loss
of generality, we may assume the last n − k coordinates of c are zeros. We
write H = (A,H ′), where A ∈ F(n−k)×k

q and H ′ ∈ F(n−k)×(n−k)
q . Then c is a

linear combination of row vectors of H, thus the same linear combination of
the row vectors of H ′ is 0. By the equivalence of (1) and (2), H ′ is invertible
and hence its row vectors are linearly independent. If a linear combination
of the row vectors of H ′ equals zero, all coefficients must be zero. Hence
c = 0, contradiction! □

Example 4.2. (1) The repetition code is a [n, 1, n]-code, hence is an
MDS code.

(2) Hamming code H(m, q) is not an MDS code if m ≥ 3.

1.4. Plotkin bound. This is an upper bound for binary codes.

Theorem 4.5 (Plotkin bound). For a binary (n,M, d)-code, if 2d > n,
then:

(4.2) M ≤

{
2[ d

2d−n ], if M is even;
2[ d

2d−n ]− 1, if M is odd.
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Proof. Write C = {ci | 1 ≤ i ≤ M} ⊆ Fn
2 . The matrix A = ((c1 +

c2)
T , · · · , (cM−1+cM )T )T is a

(
M
2

)
×n matrix over F2. Let N be the number

of 1’s in the entries of A. We compute N in two ways. On one hand, since
wt(ci + cj) ≥ d, we have N ≥ d

(
M
2

)
. On the other hand, suppose Ni is the

number of 1’s in the i-th coordinate of all codewords of C. Then the number
of 1’s in the i-th coordinate among all vectors cs+ ct (s 6= t) is Ni(M −Ni),
so N =

∑n
i=1Ni(M −Ni). If M is even, then Ni(M −Ni) ≤M2/4 and

d

(
M

2

)
≤ N ≤

n∑
i=1

(
M

2
)2 =

nM2

4
,

which means M ≤ 2d
2d−n and M

2 ≤ [ d
2d−n ]. If M is odd, then Ni(M −Ni) ≤

(M + 1)(M − 1)/4 and

d

(
M

2

)
≤ N ≤

n∑
i=1

(M + 1)(M − 1)

4
,

hence M+1
2 ≤ [ d

2d−n ]. □

1.5. Gilbert-Varshamov Bound (GV Bound). In 1952. Gilbert
and Varshamov independently proved the following lower bound for Bq(n, d).

Theorem 4.6 (Gilbert-Varshamov Bound). Assume that 2 ≤ d ≤ n,
1 ≤ k ≤ n and V n−1

q (d − 2) < qn−k. Then there exists a linear [n, k]-code
over Fq with distance at least d.

Proof. It suffices to construct a legal parity check matrix H ∈ F(n−k)×n
q

such that any d − 1 columns of H are linearly independent. Write H =

(c1, · · · , cn). We need to construct the column vectors ci ∈ F(n−k)×1
q for

1 ≤ i ≤ n. This is done as follows:
(1) For 1 ≤ i ≤ n − k, let ci = ei be the i-th standard column vector.

This implies that H is of full row rank and hence legal.
(2) For n− k ≥ j ≥ n− 1, after cj is constructed, find a vector cj+1 /∈

Span{ci | i ∈ I} where I is any subset of {1, · · · , j} of order d− 2.
We are left to show the induction step in (2) can always continue. For any
j < n, the number N of vectors which are linear combinations of ≤ d − 2
vectors ( with terms of 0 coefficient removed) in {ci | 1 ≤ i ≤ j} satisfies

N ≤
d−2∑
i=0

(
j

i

)
(q − 1)i ≤

d−2∑
i=0

(
n− 1

i

)
(q − 1)i = V n−1

q (d− 2) < qn−k.

This means we can always choose cj+1 for n− k ≤ j < n. □
Corollary 4.1 (Gilbert-Varshamov Bound). If q > 1 is a prime-power

and 2 ≤ d ≤ n, then:

(4.3) Bq(n, d) ≥
qn−1

V n−1
q (d− 2)

.
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Proof. Let k = n− dlogq(1 + V n−1
q (d− 2))e. Then

qn−k ≥ 1 + V n−1
q (d− 2) > V n−1

q (d− 2).

By Theorem 4.6, there exists an [n, k, d′]-code C over Fq with distance d′ ≥ d.
Then C ′ = {(c, 0d′−d) | c ∈ C} is a linear [n + d′ − d, k, d′] code (so called
the extension operation). Suppose c, c′ ∈ C ′ such that d(c, c′) = d′, then the
set I = {i | ci 6= c′i} is of order d′. Take J ⊆ I and |J | = d′ − d. Deleting
all j-th components (j ∈ J) of codewords of C ′ (so called the puncturing
operation), then the new code obtained is an [n, k, d]-code. So

Bq(n, d) ≥ qk = qn−⌈logq(1+V n−1
q (d−2))⌉ ≥ qn−1

1 + V n−1
q (d− 2)

≥ qn−1

V n−1
q (d− 2)

.

This gives the Gilbert-Varshamov bound. □

Example 4.3. For the Hamming code H(q,m), n = qm−1
q−1 , k = n −m

and d = 3. Then V n−1
q (d−2) = qm−q+1 and qk = qn−m ≥ qn−1

qm−q+1 . Hence
H(q,m) beats the GV bound.

2. Golay Codes
2.1. The codes G24 and G23.
Definition 4.5. The extended Golay Code G24 is a linear [24, 12]-code

over F2 with a generator matrix G = (I12 | A) in standard form, where

A =

(
0 111

(111)T P

)
, P =


1 1 0 1 1 1 0 0 0 1 0
0 1 1 0 1 1 1 0 0 0 1
1 0 1 1 0 1 1 1 0 0 0
0 1 0 1 1 0 1 1 1 0 0
0 0 0 1 0 1 1 0 1 1 1
1 0 0 0 1 0 1 1 0 1 1
1 1 0 0 0 1 0 1 1 0 1
1 1 1 0 0 0 1 0 1 1 0
0 1 1 1 0 0 0 1 0 1 1
1 0 1 1 1 0 0 0 1 0 1

 .

Here 111 = (1, · · · , 1) ∈ F11
2 whose entries are all 1, and P = P (α) is the

cyclic matrix whose first row is α = 11011100010.

Proposition 4.2. G24 satisfies the following conditions:
(1) n = 24 and k = 12.
(2) It has a parity check matrix H = (A | I12).
(3) It is self-dual: G24 = G⊥

24.
(4) For all codewords c ∈ G24, wt(c) is divisible by 4.
(5) There exists no codeword of weight 4 in G24, hence d(G24) = 8.

Proof. The first two claims are easy, we omit the proof here.
For (3), for any 2 rows ri, rj of G, their inner product ri · rj = rir

T
j = 0,

hence G24 ⊆ G⊥
24. Also dim(G24) = dim(G⊥

24) = 12, so G24 = G⊥
24.

For (4), let v ∈ G24. Suppose v is the sum of k different rows of G. We
show by induction to k that 4 | wt(v). If k = 1, i.e. v = ri, then wt(v) = 8
or 12. If k = 2, i.e., v = ri + rj , then by Lemma 3.1,

wt(v) = wt(ri) + wt(rj)− 2wt(ri ∗ rj).
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Since ri · rj =
∑24

ℓ=1 ri,ℓrj,ℓ = 0 ∈ F2, the vector ri ∗ rj = (ri,ℓrj,ℓ) is of even
weight. So 4 | wt(v). This argument is applicable to general k.

For (5), suppose on the contrary that there exists v ∈ G24 such that
wt(v) = 4. Write v = (v1, v2) with both vi ∈ F12

2 . Note that G24 is self-dual,
so H = (A | I12) is also a generator matrix for G24. Now v1 (resp. v2)
is uniquely a sum of standard vectors ei ∈ F12

2 , v must be the sum of the
corresponding row vectors ri of G (resp. row vectore r′i of H). By symmetry
of v1 and v2, we may assume wt(v1) ≤ 2:

• If v1 = 0, then v = 0, not possible;
• If wt(v1) = 1, then v1 = ei and v = ri must be one of the rows,

impossible by simple observation;
• If wt(v1) = 2, then v1 = ei + ej and v = ri + rj , also impossible by

observation.
This finishes the proof of (5). □

Definition 4.6. The binary Golay code G23 is the linear code over F2

with a generator matrix Ĝ = (I12 | Â), where Â is obtained by deleting the
last column of A.

Theorem 4.7. G23 is a binary [23, 12, 7]-code, and it is perfect.
Proof. Obviously G23 is a binary [23, 12]-code, and d(G23) ≥ 7 since

d(G24) = 8. The last row of Ĝ is of weight 7, so d(G23) = 7.
Now n = 23, k = 12 and [d−1

2 ] = 3, then

V n
2 (3) =

3∑
i=0

(
23

i

)
= 2048 = 211.

Thus 223

V n
2 (3) = 212 and G23 is perfect. □

2.2. The codes G12 and G11.
Definition 4.7. The extended ternary Golay code G12 is the linear

[12, 6]-code over F3 with a generator matrix G = (I6 | A) where

A =

(
0 15

(15)T P

)
, P =


0 1 2 2 1
1 2 2 1 0
2 2 1 0 1
2 1 0 1 2
1 0 1 2 2

 .

Here 15 ∈ F5
3 is the vector whose entries are all 1; P is the cyclic matrix

whose first row is 01221.
The ternary Golay code G11 is the linear [11, 6]-code over F3 with a

generator matrix Ĝ = (I6 | Â) where Â is the matrix obtained by deleting
the last columns of A.

Theorem 4.8.
(1) G12 is a [12, 6, 6]-self dual code.
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(2) G11 is a [11, 6, 5]-ternary perfect code.

Proof. For (1): it is easy to show G12 is a self-dual [12, 6]-ternary
code, so it suffices to show that d(G12) = 6, equivalently, that no non-zero
codeword has weight ≤ 6. Assume c = (c1, c2) is a nonzero codeword of
weight ≤ 6, where ci ∈ F6

3. Since G12 is self-dual, H = (−AT | I6) =
(−A | I6) is also a generator matrix of G12. By symmetry, one may assume
wt(c1) ≤ 2:

• wt(c1) = 0 indicates c = 0, contradiction to c 6= 0;
• wt(c1) = 1, then c = ±ri, this is impossible;
• wt(c1) = 2, then c = ±ri ± rj , again it is impossible.

For (2), it is easy to show that G11 is a [11, 6, 5]-ternary code. Now
d = 5, [d−1

2 ] = 2, and V n
3 (2) =

∑2
i=0 2

i
(
11
i

)
= 243 = 35 = 3n−k, hence G11 is

perfect. □

2.3. Decoding of G24 and G23. The basic fact is that G = (I12 | A)
and H = (A | I12) are both generator and parity check matrices of G24. Let
αi ∈ F12

2 (i = 1, · · · , 12) be the i-th row vector of A. We know wt(αi) ≥ 7
and wt(αi + αj) ≥ 6 if i 6= j. By GHT = 0 we know A2 = I.

Suppose v was sent and w is received, ε is the error. Let S1 = SG(w) =
wGT = εGT and S2 = SH(w) = wHT = εHT . Write ε = (ε1, ε2) with each
εi ∈ F12

2 . Then S1 = εGT = ε1 + ε2A and S2 = εHT = ε1A+ ε2 = S1A.
Note that d = 8, [d−1

2 ] = 3, so we need to assume wt(ε) ≤ 3. We have
the following analysis.

(1) If ε2 = 0, then S1 = ε1, ε = (S1, 0) and wt(S1) ≤ 3. Similarly, if
ε1 = 0, then S2 = ε2, ε = (0, S2) and wt(S2) ≤ 3.

(2) If ε1 and ε2 are both not zero, then they have weight at least 1.
• If wt(ε2) = 1, then ε2 = ei ∈ F12

2 for some i. Hence S1 =
ε1 + eiA = ε1 + αi. Then wt(S1) ≥ wt(αi) − wt(ε1) ≥ 5.
Similarly, If wt(ε1) = 1, then ε1 = ej ∈ F12

2 for some j. Hence
S2 = ε2 + αj and wt(S2) ≥ 5.
• If wt(ε1) = 1 and wt(ε2) = 2, then S1 = ε1 + αi + αj and
wt(S1) ≥ 5; if wt(ε1) = 2 and wt(ε2) = 1, then similarly we
have wt(S2) ≥ 5.

So anyway we have wt(S1) > 3 and wt(S2) > 3 in this case.
This gives the following algorithm:

Algerithm 4.1 (Decoding G24).
(1) Compute S1 = SG(w) and S2 = SH(w).
(2) If either S1 = 0 or S2 = 0, then v = w.
(3) If wt(S1) ≤ 3, then ε = (S1, 0); if wt(S2) ≤ 3, then ε = (0, S2).
(4) If there exists i such that wt(S1 +αi) ≤ 2, then ε = (S1 +αi, ei); if

there exists i such that wt(S2 + αj) ≤ 2, then ε = (ej , S2 + αj).

Now the decoding for G23 is easy.
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Algerithm 4.2 (Decoding G23).
(1) For w = (w1, · · · , w23) received, let w′ = (w1, · · · , w23, 1 + w1 +
· · ·+ w23).

(2) By Algorithm 4.1, find ε′ such that wt(ε′) ≤ 3 and c′ = w′−ε′ ∈ G24.
(3) c is the vector by removing the last component of c′.

Here we note that if c ∈ G23 was the sent and d(w, c) ≤ 3, let c′ ∈ G24 be
a codeword extending c, then d(w′, c′) ≤ 4. Since wt(c′) is even and wt(w′)
is odd, we must have d(w′, c′) ≤ 3 and c′ is unique. Hence Algorithm 4.1 is
applicable.

2.4. No more perfect codes. van Lint and Tietäväinen in 1973 showed
that Hamming codes and Golay codes are the only perfect codes.

3. Other examples of optimal codes
3.1. Reed-Solomon Codes. Suppose k ≤ n ≤ q and q is a prime

power.

Definition 4.8. Pick distinct elements α1, · · · , αn ∈ Fq. For any poly-
nomial f(x) ∈ Fq[x], set

cf := (f(α1), · · · , f(αn)) ∈ Fn
q .

Then the Reed-Solomon code RSq,n,k, also called the polynomial code, is the
code {cf | deg(f) ≤ k − 1} ⊂ Fn

q .

Theorem 4.9. RSq,n,k is a linear [n, k, n− k + 1]-code, hence an MDS
code.

Proof. Let Vk := {f ∈ Fq[x] | deg(f) ≤ k−1}. Then Vf is an Fq-vector
space of dimension k. Define the map

φ : Vk → Fn
q , φ(f) = cf .

It is easy to see that φ is Fq-linear and φ(Vk) = RSq,n,k. Moreover, if
φ(f) = 0, then αi (i = 1, · · · k) are k different roots of f whose degree
≤ k−1, hence f must be the zero polynomial. In other words, φ is injective
and dimFq RSq,n,k = dimFq Vk = k.

Next we consider the distance: if f ∈ Vk is not the zero polynomial, then
f has at most k− 1 roots in Fq, so wt(cf ) ≥ n− k+1. Hence d ≥ n− k+1.
Moreover, for the polynomial g(x) =

∏k−1
i=1 (x − αi), wt(cg) = n − k + 1,

hence d = n− k + 1. The last fact can also be deduced from the Singleton
bound. □

By the isomorphism φ : Vk → RSq,n,k, the basis {xi | 0 ≤ i ≤ k − 1} of
Vk corresponds to the basis. {cxi | 0 ≤ i ≤ k − 1} of RSq,n,k. So we have:
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Proposition 4.3. RSq,n,k has a generator matrix

G =


1 1 · · · 1
α1 α2 · · · αn
...

...
...

αk−1
1 αk−1

2 · · · αk−1
n

 .

Remark 4.1. Later on we shall study Generalized Reed-Solomon code,
in particular,

(1) Find a parity check matrix of RSq,n,k.
(2) Decode the Reed-Solomon code.

Example 4.4. Suppose q = n and Fq = {αi | 1 ≤ i ≤ n}. Then
(1) Ck := RS(q, q, k) is a [q, k, q − k + 1]-code over Fq;
(2) C⊥

k = Cq−k.

Proof. We only prove (2), since (1) is trivial. Note that Ck has a basis:
{cxi | 0 ≤ i ≤ k − 1} and Cq−k has a basis: {cxi | 0 ≤ i ≤ q − k − 1}.

(a) If i = j = 0, then (c1, c1) =
∑q

ℓ=1 1 = q = 0 ∈ Fq;
(b) If otherwise, then 1 ≤ i + j ≤ q − 2 and (ci, cj) =

∑q
ℓ=1 α

i+j
ℓ =∑

α∈F∗
q
αi+j = 0 ∈ Fq, where α is a primitive root of Fq.

Combining (a) and (b), we have Ck⊥Cq−k. Finally we check the dimensions:
dimCk + dimCq−k = q, so C⊥

k = Cq−k. □

Example 4.5. Suppose n = q − 1 and F×
q = {αi | 1 ≤ i ≤ q − 1}. Let

C ′
k := RS(q, q − 1, k) and C ′′

k := {cf | deg(f) ≤ k − 1, f(0) = 0}. Then
(1) C ′

k is a [q − 1, k, q − k]-MDS code over Fq;
(2) C ′′

k is a [q−1, k−1, q−k+1]-MDS code over Fq, and (C ′′
k )

⊥ = C ′
q−k.

Proof. Exercise. □

3.2. Hadamard Codes.

Definition 4.9. A square matrix Hn of size n is called a Hadamard
matrix if all its entries are in {−1, 1} and HnH

T
n = nIn.

The existence and construction of Hadamard matrices are still active
research problems. First one has

Proposition 4.4 (Sylvester). If n is a 2-power, then one can construct
a Hadamard matrix of size n inductively:

(1) H1 = 1;

(2) H2n =

(
Hn Hn

Hn −Hn

)
.
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Proof. Only need to check H2nH
T
2n = 2nH2n:

H2nH
T
2n =

(
Hn Hn

Hn −Hn

)(
HT

n HT
n

HT
n −HT

n

)
=

(
HnH

T
n +HnH

T
n HnH

T
n −HnH

T
n

HnH
T
n −HnH

T
n HnH

T
n +HnH

T
n

)
= 2nI2n. □

Definition 4.10. Suppose Hn = (hij) is a Hadamard matrix and hi =
(hij) (i = 1, · · · , n) is the i-th row vectors of Hn. The Hadamard code Hadn
derived from Hn is the binary code

Hadn := {±hi | 1 ≤ i ≤ n} ⊆ {±1}n.

Lemma 4.2. For any i 6= j, d(hi, hj) = n
2 . That is, n must be even.

Proof. We has hihTj =
∑n

k=1 hikhjk = nδij = 0 if i 6= j. So exactly
half of hikhjk = 1, i.e., hik = hjk. Thus d(hi, hj) = n

2 . □
Proposition 4.5. Hadn is a binary (n, 2n, n2 )-code.

Proof. Obviously Hadn is a binary (n, 2n)-code. And we notice that for
any i 6= j, by the above lemma, d(−hi,−hj) = d(−hi, hj) = d(hi, hj) =

n
2 .

So the distance of Hadn is n
2 . □

Remark 4.2. Another form of Plotkin Bound states that: if there exist
codewords c1, · · · , cM in {±1}n such that d(ci, cj) ≥ n

2 for every i 6= i, then
M ≤ 2n. In this sense, the Hadamard Code Hadn is optimal.

3.3. Walsh-Hadamard Code. Let m be a fixed positive integer and
n = 2m − 1. Write Fm×1

2 \{0} = {u1, · · · , un}. The matrix G = (u1, · · · , un)
is a m×n matrix of full row rank m. Recall G (denoted as G there) is used
as a parity check matrix to define the binary Hamming code H(2,m) in last
Chapter.

Definition 4.11. The binary Walsh-Hadamard Code WHm is the linear
code over F2 with G as a generator matrix, i.e., the dual code of H(2,m).

Proposition 4.6. The Walsh-Hadamard Code WHm is a [2m−1,m, 2m−1]-
code, any non-zero codeword of WHm has weight 2m−1, and WHm is optimal
to the Plotkin bound.

Proof. For x = (x1, · · · , xm) ∈ Fm
2 , then x 7→ c(x) = xG is a bijection

of Fm
2 to WHm. Moreover, wt(c(x)) = #{z ∈ Fm×1

2 | xz = 1}. If c(x) is a
non-zero codeword, suppose xi 6= 0. Note that for any z ∈ Fm×1

2 , xz = 0 if
and only if x(z + eTi ) = 1, so exactly half of the z’s in Fm×1

2 satisfy xz = 1.
Hence wt(c(x) and d(WHm) = 2m−1.

In this case 2d−n = 1 and the Plotkin bound is that M ≤ 2d = 2m. So
WHm is optimal. □



CHAPTER 5

Constructing Codes from Other Codes

1. General Rules for Construction
Theorem 5.1. Suppose C is a linear [n, k, d]-code over Fq.
(1) Extension: for r ≥ 1, there exists an [n+ r, k, d]-code.
(2) Puncturing: for 1 ≤ r ≤ d− 1, there exists an [n− r, k, d− r]-code.
(3) For 1 ≤ r ≤ d− 1, there exists an [n, k, d− r]-code.
(4) Subcode: for 1 ≤ r ≤ k − 1, there exists an [n, k − r, d]-code;
(5) For 1 ≤ r ≤ k − 1, there exists an [n− r, k − r, d]-code.

Proof. (1) C ′ = {(c, 0r) | c ∈ C} is the code we want, where 0r is a
r-dimensional vector whose coordinates are all zero.

(2) Let c0 ∈ C be a codeword with wt(c0) = d. Let I0 = {i | c0,i 6= 0},
then |I0| = d. We fix I ⊂ I0 with |I| = r. For c ∈ C, let ĉ be the
codeword obtained by erasing coordinates of I of c. And we obtain a new
code Ĉ = {ĉ | c ∈ C}. Then:

(a) Ĉ is of length n− r;
(b) wt(ĉ0) = d − r and wt(ĉ) ≥ d − r for all ĉ, hence Ĉ is of distance

d− r;
(c) The linear map C → Ĉ, c 7→ ĉ is injective, as d(ĉ1, ĉ2) ≥ d(c1, c2)−

r > 0 for c1 6= c2.
Combining (a)-(c), Ĉ is an [n− r, k, d− r]-code.

(3) By (1) there exists an [n + r, k, d]-code, and by (2) we obtain an
[n, k, d− r]-code.

(4) Let c1 ∈ C such that wt(c1) = d. Expand {c1} We can find a set of
vectors {ci | 1 ≤ i ≤ k − r} in C which is linearly independent, the span of
these vectors is an [n, k − r, d]-code.

(5) If n = k, then d = 1 and Fn−r
q is the code we want. If n > k, we may

assume C has a parity check matrix H in the form H = (In−k | X). Erase
the last r columns of H, we get a legal parity check matrix H1 = (In−k | X1)
of size (n − k) × (n − r), which gives a linear [n − r, k − r]-code C ′. Since
every d − 1 columns in H1 are linearly independent, d(C ′) ≥ d. Apply (3),
we obtain an [n− r, k − r, d]-code. □

Proposition 5.1. Suppose Ci (i = 1, 2) is a linear [ni, ki, di]q code. The
direct sum of C1 and C2 is C1 ⊕ C2 := {(c1, c2) | c1 ∈ C1, c2 ∈ C2} has the
following properties:

• it is a linear [n1 + n2, k1 + k2,min(d1, d2)]q-code;
39
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• It has a generator matrix G = diag(G1, G2) and a parity check
matrix H = diag(H1,H2).

Theorem 5.2. Suppose Ci (i = 1, 2) is a linear [ni, ki, di]q code. Then
the code

C = {(u, u+ v) | u ∈ C1, v ∈ C2}

is a linear [2n, k1 + k2,min(2d1, d2)]-code.

Proof. We can construct a bijection from C1 ⊕ C2 to C, hence the
dimension of C is k1+k2. It suffices to prove the distance of C is min(2d1, d2).

Let 0 6= c = (u, u+ v) ∈ C, then wt(c) = wt(u) + wt(u+ v). Then
(a) if u = 0, then wt(c) = wt(v) ≥ d2 ≥ min(2d1, d2);
(b) if v = 0, then wt(c) = 2wt(u) ≥ 2d1 ≥ min(2d1, d2);
(c) if u 6= and v 6= 0, then wt(c) = wt(u)+wt(u+v) ≥ wt(u)+wt(v)−

wt(u) = wt(v) ≥ d2 ≥ min(2d1, d2).
Thus d(C) ≥ min(2d1, d2). Now let ci ∈ Ci (i = 1, 2) be the codeword with
wt(ci) = di. Then wt((c1, c1)) = 2d1 and wt((0, c2)) = d2, one of them has
weight min(2d1, d2). Hence d(C) = min(2d1, d2). □

For x ∈ Fn
2 , the bitwise complement of x is the vector

x̄ := x+ 1n = (x1 + 1, · · · , xn + 1) ∈ Fn
2 .

Corollary 5.1. If C is a binary [n, k, d]-code, then C̃ = {(c, c), (c, c̄) |
c ∈ C} is a binary [2n, k + 1,min(2d, n)]-code.

Proof. Let C1 = C, C2 = {0n, 1n} (which is a binary [n, 1, n]-code),
and apply the theorem above. □

Theorem 5.3. Suppose d ≥ 1 is odd.
(1) The existence of an (n,M, d)2-code is equivalent to the existence of

an (n+ 1,M, d+ 1)2-code.
(2) The existence of an [n, k, d]2-code is equivalent to the existence of an

[n+ 1, k, d+ 1]2-code.

Proof. (2) follows from the proof of (1).
On one hand suppose C is an (n,M, d)-binary code. Let C ′ = {c′ =

(c1, · · · , cn, c1 + · · ·+ cn) | c = (c1, · · · , cn) ∈ C}. Then d(x′, y′) ≥ d(x, y) ≥
d + 1 for any x 6= y ∈ C. Moreover, if d(x, y) = d, then x and y differ in
d positions, so the sum of all coordinates of x and y are not equal, hence
d(x′, y′) = d+ 1. Thus C ′ is an (n+ 1,M, d+ 1)2-code.

On the other hand, let C ′ be an (n+1,M, d+1)-code. Suppose x′, y′ ∈ C ′

and d(x′, y′) = d + 1. Suppose x′i 6= y′i. Deleting the i-th coordinate of all
codewords of C, the elements obtained form a new code C. It is easy to
check C is an (n,M, d)2 code. □
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2. Reed Muller Codes
2.1. Reed-Muller Code of first degree.
Definition 5.1. For m ≥ 1, the Reed-Muller Code R(1,m) of the first

degree is the binary linear code defined inductively as follows:
(1) R(1, 1) := F2

2 = {00, 01, 10, 11};
(2) once R(1,m) is defined, then R(1,m + 1) := {(c, c), (c, c̄) | c ∈

R(1,m)}.
Proposition 5.2. The Reed-Muller Code R(1,m) is a linear [2m,m +

1, 2m−1]2-code, in which every codeword except 0n and 1n has weight 2m−1.
Proof. For the parameters, we prove by induction on m. The case

m = 1 is trivial. The induction step just follows from Corollary 5.1.
For the weights of non-trivial codewords, we also use induction on m.

The case m = 1 is trivial. Now assume every codeword except 0n and 1n in
R(1,m) has weight 2m−1. Let c ∈ R(1,m+ 1), c 6= 02

m+1 or 12
m+1 . Then

(a) either c = (u, u) with u ∈ R(1,m). In this case, u 6= 0n or 1n, so
wt(u) = 2m−1 and wt(c) = 2wt(u) = 2m.

(b) or c = (u, ū) with u ∈ R(1,m). In this case, note that 0̄n = 1n,
then we always have wt(c) = wt(u) + wt(ū) = 2m.

This completes the proof. □
Proposition 5.3. The following facts hold:
(1) The matrix G1 = ( 1 1

0 1 ) is a generator matrix for R(1, 1).
(2) If Gm is a generator matrix for R(1,m), then Gm+1 =

(
Gm Gm
0n 1n

)
is

a generator matrix for R(1,m+ 1).
Proof. Easy, just use the fact x̄ = x+ 1n. □
2.2. Boolean functions of m variables.
Definition 5.2. Let m ≥ 1. A Boolean function is a map

f : Fm
2 → F2, (a1, · · · , am) 7→ f(a1, · · · , am).

Let Bm be the set of all Boolean functions of m-variables.
We know |Bm| = 22

m . Moreover,
Theorem 5.4. Every f ∈ Bm can be written uniquely as

(5.1) f(x1, · · · , xm) =
∑
I

cIxI ,

where I runs over all subsets of [m] = {1, · · · ,m}, cI ∈ F2, and

xI =

{
1, if I = ∅,∏

i∈I xi, if I 6= ∅.
This form is called the algebraic normal form of f . Equivalently Bm is an
F2-vector space with a basis {xI | I ⊆ [m]}.
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Proof. We first show that

(5.2) f(x1, · · · , xm) =
∑

(a1,··· ,am)∈Fm
2

f(a1, · · · , am)

m∏
i=1

(xi + ai + 1).

We know that
m∏
i=1

(xi + ai + 1) =

{
1, if xi = ai for all i;
0, if otherwise.

Hence the two Boolean functions in both sides of (5.2) take the same value
for any (a1, · · · , am) ∈ Fm

2 , hence they are the same function. Expand the
left hand side of (5.2), then f has the form of (5.1).

Since |Bm| = 22
m and the number of functions in the right hand side of

(5.1) is at most 22
m , the form in (5.1) must be unique. □

Definition 5.3. For a Boolean function f , its algebraic normal form
(ANF) is the representation given by (5.1), and its (algebraic) degree is the
number of variables in the longest item of the algebraic normal form, i.e.,

deg(f) := max{|I| | cI = 1}.

2.3. General Binary Reed-Muller Code RM(r,m). Fix m and let
n = 2m. For u = (u1, · · · , um)T ∈ Fm×1

2 and f ∈ Bm, we let f(u) =
f(u1, · · · , um). Then

(5.3)

x1(u)
...

xm(u)

 =

u1
...
um

 = u.

Write Fm×1
2 = {v1, · · · , vn}. For f ∈ Bm, set

cf := (f(v1), · · · , f(vn)) ∈ Fn
2 .

Lemma 5.1. The map Bm → Fn
2 , f 7→ cf is an isomorphism of F2-vector

spaces. Moreover, if we define the multiplication in Fn
2 as the component-wise

multiplication, then

cfg = (fg(v1), · · · , fg(vn)) = (f(v1)g(v1), · · · , f(vn)g(vn)) = cfcg.

Definition 5.4. The binary Reed-Muller Code of r-th degree is the
code

RM(r,m) := {cf ∈ Fn
2 | f ∈ Bm,deg f ≤ r}.

We first have some quick facts about RM(r,m):
• its size n = 2m;
• its dimension k(r,m) =

∑r
i=0

(
m
i

)
. In particular, k(1,m) = m+ 1.

For f ∈ Bm, a = 0 or 1, set

Nm(f = a) := #{u ∈ Fm×1
2 | f(u) = a}.
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Then we have
Nm(f = 0) +Nm(f = 1) = 2m = n,(5.4)
wt(cf ) = Nm(f = 1).(5.5)

Lemma 5.2. For deg f = r, then Nm(f = 1) ≥ 2m−r. And if r ≤ m− 1,
then Nm(f = 1) is even.

Proof. If |I| = r ≤ m− 1, then xI(u) = 1 for u = (u1, · · · , um)T if and
only if ui = 1 for all i ∈ I, thus Nm(xI = 1) = 2m−r = wt(cxI ) is even, i.e.,
the sum of all components of cxI is 0. By (5.1), then wt(cf ) = Nm(f = 1)
is even if deg f ≤ m− 1.

Now we show Nm(f = 1) ≥ 2m−r by induction on m. The base case
m = 1 is trivial. For the inductive step, suppose this is true for m− 1 and
m ≥ 2. We discuss the value Nm(f = 1) according to r:

(a) If r = 0, then f = 1, so Nm(f = 1) = 2m.
(b) If r = m, then f is not the zero polynomial, so Nm(f = 1) ≥ 1.
(c) If 1 ≤ r ≤ m− 1, then f can be uniquely written as:

f(x1, · · · , xm) = xmh(x1, · · · , xm−1) + g(x1, · · · , xm−1)

where g, h ∈ Bm−1, deg g ≤ r and deg h ≤ r − 1. By induction, if h = 0,
then

Nm(f = 1) = 2Nm−1(g = 1) ≥ 2m−1−r+1 = 2m−r;

if h 6= 0, then
Nm(f = 1) =Nm−1(h = 1) + 2Nm−1(g = 1)Nm−1(h = 0)

≥Nm−1(h = 1) ≥ 2(m−1)−(r−1) = 2m−r.

In conclusion, Nm(f = 1) ≥ 2m−r. □

Theorem 5.5. Let m ≥ 1 and 0 ≤ r ≤ m.
(1) RM(r,m) is a [2m, k(r,m), 2m−r]-code.
(2) If 0 ≤ r ≤ m− 1, then RM(r,m)⊥ = RM(m− r − 1,m).

Proof. (1): we have shown that n = 2m, k = k(r,m) and d ≥ 2m−r.
For f =

∏r
i=1 xi, wt(cf ) = 2m−r, hence d = 2m−r.

(2): we know RM(r,m) = {cf | f ∈ Bm, deg f ≤ r} and RM(m − r −
1,m) = {cg | g ∈ Bm, deg g ≤ m − r − 1}. If deg(f) ≤ r and deg(g) ≤
m − r − 1, then deg fg ≤ m − 1 and Nm(fg = 1) is even by the above
Lemma. Hence

(cf , cg) =
∑

a∈Fm×1
2

f(a)g(a) = Nm(fg = 1) = 0 ∈ F2 ⇒ cf⊥cg.

Hence RM(r,m)⊥RM(m− r − 1,m). Check the dimensions we have
k(r,m) + k(m− r − 1,m) = 2m = n.

So RM(r,m)⊥ = RM(m− r − 1,m). □
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Example 5.1. The Reed-Muller code RM(0,m) = {0n, 1n} is a [2m, 1, 2m]-
code with a generator matrix 1n = (1, · · · , 1), hence 1n is a parity check
matrix for the dual code RM(m− 1,m). That is,

RM(m− 1,m) = {(c1, · · · , cn) |
n∑

i=1

ci = 0 ∈ F2}

is a [2m, 2m − 1, 2]-code.

2.4. The code RM(1,m). We now study the case r = 1. By definition
and Theorem 5.5, RM(1,m) has a basis {c1, cxi | 1 ≤ i ≤ m} and is a
[2m,m+ 1, 2m−1]2-code. By (5.3), RM(1,m) has a generator matrix of size
(m+ 1)× n:

Gm =


c1
cx1

...
cxm

 =

(
1 1 · · · 1
v1 v2 · · · vn

)
.

Up to equivalence, the order of vi ∈ Fm×1
2 is not essential. For all m, we

take the lexicographic order for the vectors in Fm×1
2 . If 1 ≤ a ≤ 2m = n,

suppose the binary expansion of a− 1 is

a− 1 =

m∑
i=1

ai2
i−1, ai ∈ {0, 1} ⊆ Z.

Then let va = (a1, a2, · · · , am)T ∈ Fm×1
2 . In particular, v1 = (0, · · · , 0)T ,

vn = (1, · · · , 1)T and va+2m−1 − va = (0, · · · , 0, 1)T if 1 ≤ a ≤ 2m−1 = n
2 . By

abuse of notation, we let RM(1,m) be the code defined by this order for all
m. Then G1 = ( 1 1

0 1 ) and for m ≥ 2,

Gm =

(
Gm−1 Gm−1

0
n
2 1

n
2

)
.

Gm is also a generator matrix for R(1,m) by Proposition 5.3. Thus

Proposition 5.4. R(1,m) = RM(1,m).

Next, we divide Gm as follows:

Gm =

(
1 1n−1

(0n−1)T G′
m

)
.

Then G′
m = (v2, · · · vn) is an m × (2m − 1) matrix and Fm×1

2 \ {0} =
{v2, · · · vn}. Thus G′

m is a generator matrix for the linear code
RM(1,m)′ = {(c2, · · · , cn) ∈ Fn−1

2 | (0, c2, · · · , cn) ∈ RM(1,m)}.
But it is also a generator matrix for the Walsh-Hadamard Code WHm =
H(2,m)⊥, hence

Proposition 5.5. RM(1,m)′ = WHm = H(2,m)⊥ is a linear [2m −
1,m, 2m−1]-code over F2 whose nonzero codewords are all of weight 2m−1..
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We can also compute the distance of RM(1,m)′ directly. For any code-
word cf ∈ RM(1,m), f =

∑m
i=0 bixi. If f = 0, then wt(cf ) = 0; if f = 1,

then wt(cf ) = 2m. Otherwise suppose bi = 1, then f(v) + f(v + ei) = 1 for
any v ∈ Fm×1

2 , this implies that wt(cf ) = 2m−1. Now cf = (0, c2, · · · , cn)
if and only if b0 = 0. For this cf , if not 0, then wt(cf ) = 2m−1 and
wt(c2, · · · , cn) = 2m−1. Hence RM(1,m)′ is a [2m − 1,m, 2m−1]-code whose
nonzero codewords are all of weight 2m−1.





CHAPTER 6

Weight Enumerators and the MacWilliams
Theorem

1. MacWilliams Identity
Definition 6.1. For a linear [n, k, d]-code C over Fq, if 0 ≤ i ≤ n, let

Ai = Ai(C) := #{c ∈ C | wt(c) = i}.

The weight enumerator of C is the polynomial

WC(x, y) :=
∑
c∈C

xn−wt(c)ywt(c) =

n∑
i=0

Aix
n−iyi ∈ Z[x, y].

Lemma 6.1. We have the following facts:
(1) A0 = 1, Ai = 0 if 0 < i < d and Ad > 0, i.e., d = min{i | i >

0, Ai > 0}.
(2)

∑n
i=0Ai = |C| = qk.

(3) WC(x, y) is homogeneous of degree n, WC(1, 0) = A0 = 1 and
WC(1, 1) = qk.

As a consequence, the weight enumerator determines the parameters of a
linear code.

By definition, equivalent codes have the same weight enumerator.

Theorem 6.1 (MacWilliams Identity). Let C be a linear [n, k, d]q-code
and C⊥ be its dual. Then

(6.1) WC⊥(x, y) = q−kWC(x+ (q − 1)y, x− y).

Lemma 6.2. For q = pm, Tr is the trace map

Tr = Trq/p : Fq → Fp, a 7→ a+ ap + · · ·+ ap
m−1

is an Fp-linear surjective map such that

∑
x∈Fq

ζTr(ax) =

{
q if a = 0;

0 if a ∈ F×
q ,

where ζ = ζp = exp(2πip ) is a primitive p-th root of unity. Note that ζb is
well-defined if b ∈ Fp.

47
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Proof. The linearity is clear. Now if Tr is not surjective, it must be
the zero map, but the equation x+ xp + · · ·+ xp

m−1
= 0 has at most pm−1

roots, contradiction. Thus the kernel of Tr is (m − 1)-dimensional, and for
each b ∈ Fp, the number of x ∈ Fq such that Tr(x) = b is pm−1.

For the last identity, the case a = 0 is trivial. If a 6= 0, one can replace
a by 1, and the left hand side of the identity is pm−1

∑
b∈Fp

ζb = 0. □

Proof. Let A⊥
i = Ai(C

⊥) = |{c ∈ C⊥ | wt(c) = i}|. Then WC(x, y) =∑n
i=0Aix

n−iyi and WC⊥(x, y) =
∑n

i=0A
⊥
i x

n−iyi.
For u = (u1, · · · , un) ∈ Fn

q , set

gu(z) :=
∑

(v1,··· ,vn)∈Fq

ζTr(u1v1+···+unvn)zwt(v1)+···+wt(vn)

=

n∏
i=1

∑
vi∈Fq

ζTr(uivi)zwt(vi).

We compute
∑

u∈C gu(z) in two ways. On one hand, if ui = 0, i.e.
wt(ui) = 0, then ∑

vi∈Fq

ζTr(uivi)zwt(vi) = 1 + (q − 1)z;

if ui 6= 0, i.e. wt(ui) = 1, then∑
vi∈Fq

ζTr(uivi)zwt(vi) = 1− z.

Hence
gu(z) = (1− z)wt(u)(1 + (q − 1)z)n−wt(u)

and ∑
u∈C

gu(z) =
∑
u∈C

(1− z)wt(u)(1 + (q − 1)z)n−wt(u)

=

n∑
i=0

Ai(1 + (q − 1)z)n−i(1− z)i.
(6.2)

On the other hand, u · v = u1v1 + · · · + unvn is the inner product of u
and v. We have∑

u∈C
gu(z) =

∑
u∈C

∑
v∈Fn

q

ζTr(u·v)zwt(v) =
∑
v∈Fn

q

zwt(v)
∑
u∈C

ζTr(u·v).

We claim that: ∑
u∈C

ζTr(u·v) =

{
qk if v ∈ C⊥;

0 otherwise.

For v ∈ C⊥, this is clear. If v /∈ C⊥, there exists u′ ∈ C such that u′ · v =
α 6= 0. Let β ∈ Fq such that Tr(β) = 1. Then ũ = α−1βu′ ∈ C satisfies
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ũ · v = β. Hence∑
u∈C

ζTr(u·v) =
∑
u∈C

ζTr((u+ũ)·v) = ζ
∑
u∈C

ζTr(u·v),

sand
∑

u∈C ζ
Tr(u·v) = 0. The claim is proved. Thus

(6.3)
∑
u∈C

gu(z) = qk
n∑

i=0

A⊥
i z

i.

By (6.2) and (6.3),

(6.4)
n∑

i=0

Ai(1 + (q − 1)z)n−i(1− z)i = qk
n∑

i=0

A⊥
i z

i.

Take z = y
x in (6.4), we get the MacWilliams Identity. □

1.1. Application of the MacWilliams Identity.

Example 6.1. The repetition code C = {(c, c, · · · , c) | c ∈ Fq} is an
[n, 1, n]q-code, its weight enumerator Wc(x, y) = xn + (q − 1)yn.

The dual code C⊥ = {c = (c1, · · · , cn) | c1 + · · · + cn = 0}, a code
of dimension n − 1, as it has a parity check matrix (1, · · · , 1) = 1n. By
MacWilliams Identity,

WC⊥(x, y) =
1

q
[(x+ (q − 1)y)n + (q − 1)(x− y)n].

Since A⊥
1 = 0 and A⊥

2 = (q − 1)
(
n
2

)
6= 0, C⊥ is [n, n− 1, 2]q-code.

Example 6.2. The Reed-Muller Code RM(1,m) is [2m,m + 1, 2m−1]q-
code, in which every codeword except 02

m and 12
m has weight 2m−1. Let

n = 2m. Then

WC(x, y) = xn + (2m+1 − 2)xn/2yn/2 + yn.

Then the weight enumerator of its dual code C⊥ = RM(m− 2,m) is

WC⊥(x, y) =
1

2m+1
(x+ y)n + (2m+1 − 2)(x2 − y2)n/2 + (x− y)n.

For m ≥ 2, we again obtain the fact that RM(m−2,m) is [2m, 2m−m−1, 4]2-
code.

Example 6.3. We know the code C ′ = RM(1,m)′ = WHm = H(2,m)⊥

is a linear [2m−1,m, 2m−1]2-code whose nonzero codewords are all of weight
2m−1. Let n = 2m. Then

WC′(x, y) = xn−1 + (2m − 1)xn/2−1yn/2.

Thus for the binary Hamming Code H = H(2,m), we have:

WH(x, y) = 2−m[(x+ y)n−1 + (2m − 1)(x2 − y2)n/2−1(x− y)].
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By computation, A1(H) = A2(H) = 0 and A3(H) = 1
6(n− 1)(n− 2), hence

d(H) = 3 and we recover the fact that H(2,m) is a linear [2m − 1, 2m − 1−
m, 3]2-code.

Theorem 6.2. Suppose C is a linear MDS [n, k, d]q-code, i.e. d =
n− k + 1. Then for all w that d ≤ w ≤ n,

(6.5) Aw =

(
n

w

)
(q − 1)

w−1∑
j=0

(−1)j
(
w − 1

j

)
qw−1−j .

Thus the weight enumerator of an MDS code is uniquely determined by its
parameters n, k and q.

Proof. Note that C⊥ is [n, n − k, k + 1]-code. Let y = 1 in the
MacWilliams Identity, then WC(x, 1) = qk−nWC⊥(x+ q − 1, x− 1) and

(6.6)
n∑

i=0

Aix
n−i = qk−n

n∑
i=0

A⊥
i (x+ q − 1)n−i(x− 1)i.

The left hand side of (6.6) equals
n∑

i=0

Ai((x− 1) + 1)n−i =

n∑
i=0

Ai

n−i∑
r=0

(x− 1)r
(
n− i
r

)

=
n∑

r=0

(x− 1)r
n−r∑
i=0

Ai

(
n− i
r

)
.

The right hand side of (6.6) equals

1

qn−k

n∑
i=0

A⊥
i

n−i∑
ℓ=0

(
n− i
ℓ

)
(x− 1)ℓ+iqn−ℓ−i

=
1

qn−k

n∑
i=0

A⊥
i

n∑
r=i

(
n− i
r − i

)
(x− 1)rqn−r

=

n∑
r=0

(x− 1)rqn−r
r∑

i=0

(
n− i
r − i

)
A⊥

i .

Then for 0 ≤ r ≤ n, we have

(6.7) 1

qk

n−r∑
i=0

(
n− i
r

)
Ai =

1

qr

r∑
i=0

(
n− i
r − i

)
A⊥

i .

Note that Ai = 0 if 1 ≤ i ≤ n− k and A⊥
i = 0 if 1 ≤ i ≤ k, so if r ≤ k, (6.7)

becomes

(6.8) 1

qk

(
n

r

)
+

1

qk

n−r∑
i=n−k+1

(
n− i
r

)
Ai = q−r

(
n

r

)
.
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Take r = k−1 in (6.8), we have Ad = An−k+1 =
(
n
d

)
(q−1), (6.5) is satisfied

in this case. Let w = d+ ℓ, this means that the theorem is true for ℓ = 0.
For general ℓ, take r = k−ℓ−2 in (6.8) where w = d+ℓ. For w ≥ n−k+1,

we have

Aw = (qk+w−n − 1)

(
n

w

)
−

w−1∑
i=n−k+1

(
n− i
w − i

)
Ai.

Then the general case follows by induction. □





CHAPTER 7

Sequences over finite fields

1. Sequences and Power Series over Finite Fields
1.1. Periodic sequences. In this section we shall study sequences and

power series over finite fields. First observe that a sequence a = (a0, a1, · · · )
over Fq decides and is determined by a power series a(x) =

∑
n≥0 anx

n. By
abuse of notations we regard them as the same object.

Let Fq[[x]] be the set of power series over Fq. It is a commutative ring: if
a(x) =

∑
n≥0 anx

n and b(x) =
∑

n≥0 bnx
n, then a(x)+b(x) =

∑
n(an+bn)x

n

and a(x) · b(x) =
∑

nmnx
n where mn =

∑
i+j=n aibj .

Lemma 7.1. A power series a(x) ∈ Fq[[x]] is invertible if and only if
a0 ∈ F×

q , i.e., a0 is invertible.

Proof. If a(x)b(x) = 1, then a0b0 = 1 and hence a0 ∈ F×
q . On the

other hand, supoose a(x) =
∑

n≥0 anx
n and a0 is invertible. Set b0 = a−1

0 ,
and for n ≥ 1, set bn inductively by

bn = −a−1
0 (a1bn−1 + · · ·+ anb0).

Then b(x) =
∑

n bnx
n is the inverse of a(x). □

Definition 7.1. A sequence a = (a0, a1, · · · , an, · · · ) is called periodic
(resp. purely periodic) if there exists an integer T > 0 such that ai+T = ai
for i ≥ N for some N ≥ 0 (resp. for all i ≥ 0), and T is call a period of a.
In this case, we also write a = (a0, · · · , aN−1, ȧN , · · · , ȧN+T−1).

The smallest period of a periodic sequence a is denoted as per(a).
Clearly every period of a periodic sequence a is a multiple of per(a).
Definition 7.2. For a non-constant polynomial f(x) ∈ Fq[x] such that

f(0) 6= 0, if there exists k > 0 such that f(x) | xk− 1, then per(f) is defined
to be the smallest such k.

Of course if f(0) = 0, then x | f(x) and gcd(x, xn − 1) = 1, so there
exists no k such that f(x) | xk − 1.

Lemma 7.2. Suppose m,n > 0 are integers. Suppose F is a field. Then
in the ring F [x], one has

gcd(xm − 1, xn − 1) = xgcd(m,n) − 1.

In particular, for f(x) ∈ Fq[x], if per(f) exists, then for any n > 0 that
f(x) | xn − 1, one must have per(f) | n.

53
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Proof. Suppose m > n and m = qn+ r such that 0 ≤ r < n. Then

xm − 1 = xqn+r − xr + xr − 1 = xr(xqn − 1) + (xr − 1).

Then if d(x) | xm−1 and d(x) | xn−1 | xqn−1, one must have d(x) | xr−1.
This implies d(x) | xgcd(m,n) − 1. On the other hand, xgcd(m,n) − 1 is clearly
a common divisor of xm − 1 and xn − 1. □

Proposition 7.1. Suppose f(x) ∈ Fq[x] is non-constant and f(0) 6= 0.
(1) If f(x) = p(x) 6= x is irreducible of degree n and α is a root of

p(x), then per(p(x)) is the order of α in the group F×
qn and hence

is a factor of qn − 1. In particular, per(p(x)) = qn − 1 if and only
if p(x) is a primitive polynomial.

(2) If f(x) = p(x)m with pt−1 < m ≤ pt, then per(f(x)) = ptper(p(x)).
(3) If f(x) = f1(x)f2(x) and gcd(f1(x), f2(x)) = 1, then per(f) =

[per(f1),per(f2)].
In all, per(f) is well defined.

Proof. (1) In this case, p(x) | xk − 1 if and only if αk = 1, hence
per(p(x)) is nothing but the order of α.

(2) Let per(p(x)) = s. Then p(x)‖ xs − 1 as s | qn − 1 and xs − 1 is
separable. Then p(x)pt‖ (xs− 1)p

t
= xp

ts− 1 for every integer t ≥ 0. Hence
p(x)m ∤ xpt−1s − 1 if pt−1 < m ≤ pt.

We now prove the statement by induction on t. If pt−1 < m ≤ pt, then
p(x)m | p(x)pt | (xs−1)pt = xp

st−1 and per(p(x)m) | pts. On the other hand,
by induction pt−1s = per(p(x)p

t−1
) | per(p(x)m). But per(p(x)m) 6= pt−1s

by the argument in the last paragraph, hence per(p(x)m) = pts.
(3) Let N1 = per(f1), N2 = per(f2) and N = [N1, N2]. Then fi(x) |

xNi − 1 | xN − 1 and hence f(x) | xN − 1. Then per(f) exists and is a factor
of N . On the other hand, fi(x) | f(x) | xper(f) − 1, hence Ni | per(f) by
Lemma 7.2 and N | per(f). Hence N = per(f). □

Theorem 7.1. A sequence a is purely periodic if and only if the power
series a(x) is a proper fraction, that is,

a(x) =
∑
n

anx
n =

g(x)

f(x)
, f(x), g(x) ∈ Fq[x], deg g < deg f, f(0) 6= 0.

If moreover, g(x)
f(x) is a reduced form, i.e. gcd(f(x), g(x)) = 1, then per(a) =

per(f).

Proof. On one hand, if a is a purely periodic sequence such that
per(a) = ℓ, then

a(x) = (
ℓ−1∑
i=0

aix
i)(

∞∑
n=0

xnℓ) =

∑ℓ−1
i=0 aix

i

1− xℓ
.
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On the other hand, let ℓ = per(f), then there exists h(x) such that f(x)h(x) =
1− xℓ. Let g(x)h(x) =

∑ℓ−1
i=0 aix

i. Then

g(x)

f(x)
=
g(x)h(x)

1− xℓ
=

∞∑
n=0

anx
n

satisfying an+ℓ = an for n ≥ 0. Hence a = (an) is purely periodic.
We now prove the second statement. If per(a) = ℓ, then

g(x)

f(x)
=

∑ℓ−1
i=0 aix

i

1− xℓ
=⇒ f(x)

ℓ−1∑
i=0

aix
i = g(x)(1− xℓ).

Since gcd(f(x), g(x)) = 1, f(x) | 1 − xℓ. Hence per(f) | ℓ. On the other
hand, let per(f) = k. Then a(x) = g(x)

f(x) = α(x)
1−xk . Write α(x) =

∑k−1
i=0 αix

i,
then a = (α̇0, · · · , α̇k−1) and hence ℓ ≤ k. That is, per(f) = per(a). □

1.2. Decomposing rational fractions.

Lemma 7.3. Let f(x) = f1(x) · · · fs(x) where the fi’s are pairwise co-
prime. Then every proper fraction g(x)

f(x) can be written uniquely as a sum of
proper fractions

g(x)

f(x)
=

s∑
i=1

gi(x)

fi(x)
, deg(gi) < deg(fi), i = 1, · · · , s.

Proof. For i = 1, · · · , s, let Fi(x) = f(x)
fi(x)

. Then gcd(Fi) = 1. By
Bezout’s Theorem, there exists ui(x) ∈ Fq[x] such that

∑s
i=1 uiFi = 1.

Then we have
g(x)

f(x)
=

s∑
i=1

ui(x)g(x)

fi(x)
.

Let ui(x)g(x) = gi(x) + qi(x)fi(x) such that deg gi < deg fi, then

g(x)

f(x)
=

s∑
i=1

gi(x)

fi(x)
+

s∑
i=1

qi(x).

Multiplying f(x) to both sides and comparing their degrees, we get
∑s

i=1 qi(x) =

0 and g(x)
f(x) =

∑s
i=1

gi(x)
fi(x)

. This proves the existence.
For the uniqueness, if g(x)

f(x) =
∑s

i=1
gi(x)
fi(x)

=
∑s

i=1
g′i(x)
fi(x)

, then
∑s

i=1
gi(x)−g′i(x)

fi(x)
=

0. Multiplying f(x) to both sides, we get:
s∑

i=1

(gi − g′i)Fi = 0.

Since f1 | Fi for i ≥ 2 and gcd(f1, F1) = 1, we have f1 | (g1 − g′1). Then
g1 − g′1 = 0. Similarly we have gi − g′i = 0 for any i. □
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Lemma 7.4. If f(x) = p(x)r, where p(x) is irreducible, then every proper
fraction g(x)

f(x) can be written uniquely as

g(x)

f(x)
=

r−1∑
i=0

gi(x)

p(x)i

with deg gi < deg p for all i.

Proof. g(x) has a unique p(x)-adic expansion

g(x) =
r−1∑
i=0

gi(x)p(x)
r−i, deg gi < deg p.

Dividing f(x) on both sides, we get

g(x)

f(x)
=

r−1∑
i=0

gi(x)

p(x)i
.

The uniqueness follows from the uniqueness of the p(x)-adic expansion. □

1.3. Sequences and trace.

Theorem 7.2. Suppose pi(x) (i = 1, · · · , s) are distinct irreducible poly-
nomials over Fq[x] and pi(0) 6= 0, deg(pi(x)) = di and αi is a root of pi(x).
Let Tdi be the trace map Trqdi/q : Fqdi → Fq. Let f(x) = p1(x) · · · ps(x).
For any proper fraction g(x)

f(x) , let a = (an) be the associated purely periodic
sequence. then there exists a unique βi ∈ Fqdi for 1 ≤ i ≤ s such that

an =

s∑
i=1

Tdi(βiα
−n
i ).

Proof. By Lemma 7.3, we may assume s = 1 and f(x) = p(x). Suppose
deg(p(x)) = d and α is a root of p(x). We may also assume p(0) = 1. Then
αqi(0 ≤ i ≤ d− 1) are all the roots of p(x). and we have a decomposition

p(x) = (1− α−1x) · · · (1− α−qk−1
x)

in Fqd . By Lemma 7.3, a proper fraction g(x)
p(x) has a unique decomposition

g(x)

p(x)
=

d−1∑
i=0

βi

1− α−qix
, βi ∈ Fqd .

So
g(x)q

p(x)q
=

d−1∑
i=0

βqi
1− α−qi+1xq

=
g(xq)

p(xq)
=

d−1∑
i=0

βi

1− α−qixq
.
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Let β = β0. By the uniqueness in Lemma 7.3 again, we have βi = βq
i for

0 ≤ i ≤ d− 1 and
g(x)

p(x)
=

d−1∑
i=0

βq
i

1− α−qix
.

Comparing the coefficients we get an = Td(βα
−n) for n ≥ 0. The uniqueness

follows from the fact that the number of β ∈ Fqd and the number of proper
fractions of the form g(x)

p(x) are both qk. □

2. Linear Feedback Shift Registers(LFSR)
In practice, a linear feedback shift register (LFSR) is a register of bits

that performs discrete step operations that shift all the bits one position to
the left and replace the vacated bit by a linear function of its previous state.
Over F2, the only linear function of single bits is the exclusive-or (xor), thus
it is a shift register whose input bit is driven by xor of some bits of the
overall shift register value.

This concept of LFSR can be generalized to an arbitrary finite field.
Mathematically, we have the following definition.

Definition 7.3. Let k ∈ Z+ and f(x) = 1− a1x− · · ·− akxk ∈ Fq[x] be
a polynomial such that f(0) = 1 and deg(f) ≤ k. The linear feedback shift
register lsr(f, k) is the map

Fk
q 7→ Fk

q , (x0, x1, · · · , xk−1) 7→ (x1, · · · , xk−1, xk =
k∑

i=1

ajxk−i),

of which f is called the connecting polynomial or feedback polynomial.
Given ck = (c0, · · · , ck−1), performing lsr(f, k) recursively, the infinite

sequence c = (c0, c1, · · · ) obtained, i.e.,

cn =
k∑

i=1

aicn−i for n ≥ k,

is called the LFSR sequence generated by LSR(f, k) from ck. We denote

c = LSR(f, k)(ck) = lsr(f, k)(c0, · · · , ck−1),

and call ck the seed or the initial state and (ci, ci+1, · · · , ci+k−1) an inter-
mediate state of c.

If deg(f) = k, i.e. ak 6= 0, we write lsr(f) and LSR(f) for lsr(f, k) and
LSR(f, k).

We note that an LFSR sequence c = (ci) is determined by its initial state
ck = (c0, · · · , ck−1), so there are qk LFSR sequences generated by LSR(f, k)
in total. Moreover, at least two intermediate states of c must be equal, say
(ci, ci+1, · · · , ci+k−1) = (cj , cj+1, · · · , cj+k−1) and j > i, then cn = cn+j−i

for all n ≥ i, hence c is periodic with period j − i.
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Lemma 7.5. Suppose deg(f) = j < k. Let (c0, c1, · · · , ck−1) be a seed of
LSR(f, k). Then

LSR(f, k)(c0, · · · , ck−1) = (c0, · · · , ck−j−1,LSR(f)(ck−j , · · · , ck−1)).

Proof. Clear. □
By the above lemma, to study LFSR sequences generated by LSR(f, k),

it suffices to study LFSR sequences generated by LSR(f).

Definition 7.4. Let V (f, k) be the set of LFSR sequences generated
by LSR(f, k), and let V (f) := V (f, deg(f)) be the set of LFSR sequences
generated by LSR(f).

Theorem 7.3. All sequences in V (f, k) are periodic and V (f) is the
k-dimensional vector space { g(x)f(x) | deg g < k}. In particular, if ak 6= 0, then
all sequences in V (f) are purely periodic.

Proof. Suppose c = (cn) is an LFSR sequence generated by LSR(f, k).
Then

f(x)c(x) = (1− a1x− · · · − akxk)(c0 + c1x+ · · · ) =
∞∑
ℓ=0

bℓx
ℓ

where

bℓ =


c0 if ℓ = 0,

cℓ −
∑ℓ

i=1 cℓ−iai if 1 ≤ ℓ ≤ k − 1,

0 if ℓ ≥ k.
Hence

c(x) =

∑k−1
ℓ=0 bℓx

ℓ

f(x)
.

Since there are only qk fractions of the form g(x)
f(x) such that deg(g) < k, and

V (f) is also of order qk, we must have V (f, k) = { g(x)f(x) | deg g < k}.
In the case k = deg(f), then g(x)

f(x) is a proper fraction and c is purely
periodic. □

Theorem 7.4. Suppose ak 6= 0. Let f̃(x) = −a−1
k f(x).

(1) Every sequence c(x) ∈ V (f) is of period at most qk−1; and if there
exists a sequence of period qk − 1, then f̃(x) is primitive.

(2) If f(x) is irreducible, then every nonzero sequence in V (f) is of
period per(f). Hence if f̃(x) is primitive, then every non-zero
sequence in V (f) is of maximal length qk − 1.

Proof. (1) Note that if xk = x0ak+ · · ·+xk−1a1, then x0 = −a−1
k (xk−

xk−1a1 − · · · − x1ak−1). Thus (x0, · · · , xk−1) = 0 ⇔ (x1, x2, · · · , xk) = 0.
Let c ∈ V (f). If c = 0, then per(c) = 1 ≤ qk − 1. Otherwise, the seed

ck = (c0, c1, · · · , ck−1) 6= 0, hence the state (cd, cd+1, · · · , cd+k−1) 6= 0 for all
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d. There are only qk − 1 possible nonzero states, two of the first qk states
must be equal, hence per(c) ≤ qk − 1. Since c(x) = g(x)

f(x) , per(c) | per(f).
We know per(f) is at most qk − 1 and the equality holds if and only if f is
primitive. So if per(c) = qk − 1, then f is primitive.

(2) If f is irreducible, then c(x) = g(x)
f(x) is of reduced form. Hence

per(c) = per(f). □

Definition 7.5. If f̃(x) is primitive, then every non-zero sequence in
V (f) is called a q-ary level-k m-sequence (maximal length sequence, pseudo
random sequence or PN sequence).

Theorem 7.5. Suppose f̃(x) = −a−1
k f(x) is primitive and α−1 is a root

of f(x).
(1) For any c = (c0, c1, · · · ) ∈ V (f), there exists an unique element

β ∈ Fqk such that cn = Tk(βα
n) for n ≥ 0, where Tk = Trqk/q is

the trace map Fqk → Fq, x 7→ xq + xq
2
+ · · ·+ xq

k−1.
(2) Suppose 1 ≤ ℓ ≤ k. If c is an m-sequence, in the multiset Mℓ :=
{(ci, ci+1, · · · , ci+ℓ−1) | 0 ≤ i ≤ qk − 2}, any v = (v1, · · · , vℓ) ∈
Fℓ
q \ {⃗0} appears qk−ℓ times, and (0, · · · , 0) appears qk−ℓ− 1 times.

In particular, take ℓ = 1, then

|{i | ci = b, 0 ≤ i ≤ qk − 2}| =

{
qk−1 − 1, if b = 0;

qk−1, if b ∈ F×
q .

(3) For any two m-sequences a = (a0, a1, · · · , an, · · · ) and b = (b0, · · · , bn, · · · )
in V (f), there exists t such that bn = an+t for all n ≥ 0. As a con-
sequence, for any m-sequence c generated by lsr(f),

V (f) = {0} ∪ {(ċi, ci+1, · · · , ċi+qk−2) | 0 ≤ i ≤ qk − 2}.

Proof. (1): This is just Theorem 7.2. In particular, β = 0 corresponds
to the zero sequence.

(3): Suppose a corresponds to β = αs and b corresponds to β = αr.
Assume r > s, then bn = T (αn+r) = T (αn+s+t) = an+t for t = r − s.

(2): A non-zero vector in Fk
q is the seed of some m-sequence, by (3), it

must be an intermediate state of the sequence c, hence is contained in Mk

at least once. But |Mk| = qk − 1, so Mk = Fk
q \ {⃗0} is actually a set, and (2)

is true for the case ℓ = k.
The case ℓ < k follows from the fact that there are qk−ℓ vectors in Fk

q \{⃗0}
whose first ℓ terms are fixed and not all zero, and qk−ℓ − 1 vectors whose
first ℓ terms are all 0. □

Remark 7.1. The above fact is the reason why an m-sequence is also
called a pseudo-random sequence (PN sequence).
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3. Berlekamp-Massey Algorithm
Definition 7.6. For a sequence cN = (c0, c1, · · · , cN−1) of length N ∈

Z+∪{∞}, we let cn = (c0, · · · , cn−1) be the finite sequence consisting of the
first n terms of c.

Definition 7.7. A sequence cn = (c0, · · · , cn−1) is said to be generated
by the linear feedback shift register LSR(f, k) if it is the first n-terms of
LSR(f, k)(c0, · · · , ck−1), i.e., (LSR(f, k)(c0, · · · , ck−1))

n = cn.

Lemma 7.6. Let cn(x) =
∑n−1

i=0 cix
i. Then LSR(f, k) generates cn if

and only if there exists a polynomial g(x) of degree < k such that cn(x) ≡
g(x)
f(x) mod xn (as power series).

Proof. Clear. □
Problem 7.1. Suppose an N -sequence cN = (c0, · · · , cN−1) is received.

Find an algorithm to determine the minimal integer ℓN and a connecting
polynomial fN (x) such that (LSR(fN , ℓN ) generated cN .

Remark 7.2. Certainly,
(1) ℓN ≤ N exists.
(2) fN must satisfy the conditions fN (0) = 1 and deg(fN ) ≤ ℓN .

The answer is the Berlekamp-Massey Algorithm (1969).
Algerithm 7.1 (Berlekamp-Massey Algorithm).

Input cN = (c0, · · · , cN−1).
Output For 1 ≤ n ≤ N , find the minimal integer ℓn and a connecting

polynomial fn such that LSR(fn, ℓn) generates cn = (c0, · · · , cn−1).
Step 1 Suppose cn0 6= 0 and ci = 0 for all i < n0. Then we set

(a) fi = 1 and ℓi = 0 for i ≤ n0;
(b) di = 0 for i < n0 and dn0 = cn0;
(c) fn0+1(x) = 1− dn0x

n0+1 and ℓn0+1 = n0 + 1.
Step 2 Suppose we have already known (fi, ℓi) and di for 0 ≤ i ≤ n where

n ≥ n0+1. Write fn(x) =
∑ℓn

j=0 an,jx
j and set dn =

∑n
j=0 an,jcn−j.

(a) If dn = 0, let fn+! = fn and ℓn+1 = ℓn.
(b) If dn 6= 0, then there exists m with n0 ≤ m ≤ n such that ℓm <

ℓm+1 = · · · = ℓn. Set fn+1(x) = fn(x)−dnd−1
m xn−mfm(x) and

ℓn+1 = max{ℓn, n+ 1− ℓn}.
Then (fN , ℓN ) is good for our problem.

Lemma 7.7. Let (a0, · · · , an) be a sequence over Fq.
(1) Suppose ℓ and f satisfy that LSR(f, ℓ) generates (a0, · · · , an−1) but

not (a0, · · · , an). Then if LSR(f ′, ℓ′) generates (a0, · · · , an), one
must have ℓ′ ≥ n− 1− ℓ.

(2) Let ℓi (i ≤ n) be the minimal integer such that there exists some
fi such that LSR(fi, ℓi) generates (a0, · · · , ai−1). Then ℓ1 ≤ ℓ2 ≤
· · · ≤ ℓn and ℓi ≤ i. Moreover, if there exists fi such that LSR(fi, ℓi)
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generates (a0, · · · , ai−1) but not (a0, · · · , ai), then ℓi+1 ≥ max{ℓi, ℓ+
1− ℓi}.

Proof. (1) Let a(x) = a0 + a1x + · · · + an−1x
n−1. By Lemma 7.6,

LSR(f, ℓ) generates (a0, · · · , an−1) but not (a0, · · · , an) if and only if there
exists a polynomial g(x) such that deg g ≤ ℓ−1 and g(x)

f(x) = a(x)+(b+an)x
n

mod xn+1 for some b ∈ F×
q . Now if LSR(f ′, ℓ′) generates (a0, · · · , an), then

there exists a polynomial g′(x) with deg g′ ≤ ℓ′− 1 such that g′(x)
f ′(x) = a(x) +

anx
n mod xn+1. So we have g′(x)

f ′(x) −
g(x)
f(x) = bxn mod xn+1 with b 6= 0. So

g(x)f ′(x)− g′(x)f(x) = bf(x)f ′(x)xn = bxn mod xn+1. If ℓ′ ≤ n− ℓ, then
deg(gf ′) ≤ ℓ− 1+ ℓ′ < n and deg(g′f) ≤ ℓ′− 1+ ℓ < n, which is impossible.

(2) By definition we have ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓn and ℓi ≤ i. If there exists
fi such that LSR(fi, ℓi) generates (a0, · · · , ai−1) but not (a0, · · · , ai), by (1)
we have ℓi+1 ≥ max{ℓi, ℓ+ 1− ℓi}. □

Theorem 7.6.

(1) The Berlekamp-Massey Algorithm produces (fn(x), ℓn) with ℓn min-
imal for 1 ≤ n ≤ N ;

(2) If LSR(fn−1, ℓn−1) generates (c0, · · · , cn−1), then ℓn = ℓn−1, other-
wise ℓn = max{ℓn−1, n− ℓn−1} for n ≥ 2.

Proof. We prove both (1) and (2) by induction on n.
Base case: By Step 1 in the Berlekamp-Massey Algorithm, (1) is true

for n ≤ n0 and (2) is true for n ≤ n0 + 1, and LSR(fn0+1, n0 + 1) generates
(0, · · · , 0, cn0). But cn0 6= 0, no LSR(f, ℓ) for any f and ℓ ≤ n0 can generate
(0, · · · , 0, cn0), thus ℓn0+1 = n0+1 and (1) is true for n = n0+1. Hence (1)
and (2) are both true for n ≤ n0 + 1.

Induction step: Now we suppose (1) and (2) are true for n ≥ n0 + 1.
(a) If dn = 0, then LSR(fn, ℓn) generates (a0, · · · , an), hence ℓn+1 ≤ ℓn.

But we also have ℓn ≤ ℓn+1, hence ℓn+1 = ℓn.
(b) If dn 6= 0, let ℓm < ℓm+1 = · · · = ℓn, m < n. Then dm 6= 0, which

implies that ℓm+1 = max{ℓm,m+1− ℓm} > ℓm, so ℓn = ℓm+1 = m+1− ℓm.
We have deg fn+1 ≤ max{ℓn, n −m + ℓm} = max{ℓn, n + 1 − ℓn} := ℓ′n+1.
Then we have:

fn+1(x) =

ℓ′n+1∑
i=0

an+1,jx
j =

ℓn∑
i=0

an,jx
j + dnd

−1
m

ℓm∑
j=0

am,jx
i+n−m.

Hence for ℓ′n+1 ≤ k ≤ n, we have:

ℓm+1∑
j=0

an+1,jck−j =

ℓn∑
j=0

an,jck−j + dnd
−1
m

ℓm∑
j=0

am,jck−j+m−n.
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If ℓ′n+1 ≤ k ≤ n− 1, this expression is of value 0; if k = n, then
ℓn∑
j=0

an,jck−j + dnd
−1
m

ℓm∑
j=0

am,jck−j+m−n = dn − dnd−1
m dm = 0.

So (fn+1, ℓ
′
n+1) generates (c0, · · · , cn). By lemma, we have ℓn+1 ≥ max{ℓn, n+

1 − ℓn} = ℓ′n+1. Hence the ℓn+1 = max{ℓn, n + 1 − ℓn} is minimal, and (1)
and (2) are proved fo n+ 1. □

Theorem 7.7. Suppose 2ℓ and 2ℓ′ ≤ N . Let (c0, · · · , c2N−1) be given.
Suppose the polynomials f, f, f ′, g′ satisfy that f(0) = f ′(0) = 1, gcd(f, g) =
gcd(f ′, g′) = 1, deg f ≤ ℓ, deg f ′ ≤ ℓ′, deg g ≤ ℓ− 1, deg g′ ≤ ℓ′ − 1 and

g(x)

f(x)
≡ g′(x)

f ′(x)
≡ c(x) =

N−1∑
i=0

cix
i mod xN .

Then f = f ′ and g = g′.
In particular, if 2ℓN ≤ N , then fN is unique.

Proof. The identity implies f ′(x)g(x)−f(x)g′(x) ≡ 0 mod xN . Com-
paring the degrees, we must have fg′ − f ′g = 0. By the fact gcd(f, g) =
gcd(f ′, g′) = 1, then f | f ′ and f ′ | f , and f = cf ′ for some c 6= 0. But
f(0) = f ′(0) = 1, hence f(x) = f ′(x). □



CHAPTER 8

Cyclic codes and BCH codes

1. Cyclic codes
1.1. The chain ring Rn and its ideals. For n ≥ 1, let

Rn := Fq[x]/(x
n − 1)

be the quotient ring of Fq[x] modulo xn − 1, i.e., the polynomials f(x) and
g(x) represent the same element in Rn if and only if f(x) ≡ g(x) mod xn − 1.
For r(x) ∈ Fq[x], by the division algorithm, r(x) = q(x)(xn − 1) + r′(x) for
a unique r′(x) ∈ Fq[x] such that deg(r′) < n. Then the quotient element
r̄(x) = r(x)+ (xn− 1)Fq[x] ∈ R is represented by a unique polynomial r′(x)
such that deg(r′) < n. We identify r̄(x) and r′(x) and hence

Rn = {r(x) | r(x) ∈ Fq[x], deg(r) < n}.

However, keep in mind that the sum r1 + r2 and product r1 · r2 in Rn

are the unique remainders of the sum and product in Fq[x] by division of
xn−1. We also note that for f(x) ∈ Fq[x] and r(x) ∈ Rn, the multiplication
f(x)r(x) ∈ Rn is well defined. In fact, Rn is an Fq[x]-module via the quotient
map. In particular, one sees that

x
n−1∑
i=0

rix
i = rn−1 +

n−1∑
i=1

ri−1x
i.

Note thatRn is an Fq-vector space of dimension n. For r(x) =
∑n−1

i=0 rix
i ∈

Rn, set wt(r(x)) := #{0 ≤ i < n | ri 6= 0} and define d(r1, r2) := wt(r1−r2).
Then Rn becomes a metric space. The map

ϕ : Fn
q → Rn, α = (a1, · · · , an) 7→ α(x) =

n∑
i=1

aix
i−1

is an isomorphism of Fq-vector spaces and preserves the distance, we may
identify Rn and Fn

q .

Proposition 8.1. Let I be a nonempty subset of Fn
q and hence of Rn

under the identification map ϕ. Then the followings are equivalent:
(1) For any r = (r1, r2, · · · , rn) ∈ I, (r2, · · · , rn, r1) ∈ I.
(2) For every codeword r = r(x) ∈ I, xr(x) ∈ I.
(3) For all function f(x) ∈ Fq[x], f(x)r(x) ∈ C.
(4) I is an ideal of Rn.

63
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Lemma 8.1. If I is an ideal of Rn, then there exists a unique monic
factor g(x) of xn − 1, such that I = g(x)Rn.

Proof. Since Fq[x] is a PID, for an ideal I ⊆ Rn, its inverse image J ⊆
Fq[x] is a principal ideal, i.e. J = (g(x)) for some g(x) ∈ Fq[x]. Moreover,
(xn−1) ⊆ J , g(x) must be a factor of xn−1. We have I = (g(x)) = g(x)Rn.
Note that two ideals β1(x)Fq[x] = β2(x)Fq[x] if and only if β2(x) = λβ1(x)
for some λ ∈ F×

q , so g(x) is unique if it is assumed to be monic. □

1.2. Definition and basic properties. Let C be a linear code of
length n over Fq. Via the isomorphism ϕ we may and will identify C with

ϕ(C) = {c(x) :=
n∑

i=1

cix
i−1 | c = (c1, · · · , cn) ∈ C}.

Definition 8.1. A linear code C is called cyclic if for a codeword
(c1, · · · , cn) ∈ C, (c2, · · · , cn, c1) ∈ C.

Definition 8.2. The reflexive polynomial of 0 6= f(x) ∈ Fq[x] is the
polynomial f∗(x) := xdeg(f)f( 1x).

Lemma 8.2. Let f(x) ∈ Fq[x] be of degree n. Then deg(f∗) ≤ deg(f),
and the equality holds if and only if f(0) 6= 0. Moreover,

(1) if f(0) 6= 0, then the reflexive polynomial f∗∗ of f∗ is f ;
(2) (fg)∗ = f∗g∗;
(3) f is irreducible if only if f∗ is.

Theorem 8.1. Let C be a cyclic [n, k]q-code with (q, n) = 1.
(1) C is an ideal of Rn = Fq[x]/(x

n − 1) generated by a unique monic
factor g(x) of xn − 1 whose degree is n− k. Moreover, let

h(x) =
xn − 1

g(x)
.

Then C = {c(x) ∈ Rn | c(x)h(x) = 0} is annihilated by h(x).
(2) C⊥ is a cyclic code of dimension n − k generated by h∗(x) and

annihilated by g∗(x):

C⊥ = {h∗(x)a(x) | a(x) ∈ Rn} = {c(x) ∈ Rn | c(x)g∗(x) = 0}.

Proof. (1) We have already known C = (g(x)) = {g(x)a(x) | a(x) ∈
Rn} with g(x) a unique monic factor of xn−1. Moreover, for a(x) ∈ Fq[x], let
a(x) = q(x)h(x)+r(x), deg r < n−deg(g). Then g(x)a(x) = g(x)r(x) ∈ Rn,
hence C is generated by {xig(x) | 0 ≤ i < n−deg(g)} as an Fq-vector space,
but {xig(x) | 0 ≤ i < n− deg(g)} is linearly independent in Rn, hence C is
an Fq-vector space of dimension n− deg(g), which means deg(g) = n− k.

For the second statement, the inclusion {g(x)a(x) | a(x) ∈ Rn} ⊆
{c(x) ∈ Rn | c(x)h(x) = 0} is clear since g(x)h(x) = 0 ∈ Rn. On the
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other hand, if c(x)h(x) = 0 ∈ Rn, then c(x)h(x) = α(x)(xn−1) in Fq[x]. So
c(x) = α(x)x

n−1
h(x) = α(x)g(x) ∈ Rn. Hence

C = {g(x)a(x) | a(x) ∈ Rn} = {c(x) ∈ Rn | c(x)h(x) = 0}.

(2) Note that dimC⊥ = n − k. Since g(0) 6= 0, g∗ is also a factor
of xn − 1, deg(g∗) = deg(g) = n − k and g∗(x)h∗(x) = xn − 1. By (1),
{c(x) ∈ Rn | c(x) = h∗(x)a(x)} = {c(x) ∈ Rn | c(x)g∗(x) = 0} is of
dimension n− k. We only need to show c(x)g∗(x) = 0 for c ∈ C⊥.

Write g(x) =
∑n−k

i=0 gix
i with gn−k = 1, then g∗(x) =

∑n−k
i=0 gn−k−ix

i.
Let gi = 0 for i > n−k, then g(x) corresponds to (g0, · · · , gn−1) ∈ C. For any
c = (c1, · · · , cn) ∈ C⊥, then c · g = 0, i.e. c1g0+ · · ·+ cngn−1 = 0. Moreover,
since C is a cyclic code, for 0 ≤ i ≤ n − 1, (gi, · · · , gn−1, g0, · · · , gi−1) ∈ C
and

c1gi + · · ·+ cn−ign−1 + cn−i+1g0 + · · ·+ cngi−1 = 0.

In other words, let g∗i = gn−i, then for 0 ≤ i ≤ n,∑
k+ℓ=n+1−i

ckg
∗
ℓ = 0

and hence c(x)g∗(x) = 0. □

Definition 8.3. Let C be a cyclic code and let g(x) and h(x) be as in
Theorem 8.1. Then g(x) is called the generator polynomial of C and h(x)
is called the parity check polynomial of C.

Proposition 8.2. Suppose C is a cyclic [n, k]q-code, g(x) is its generator
polynomial. Then

(1) Write g(x) =
∑n−k

i=0 x
i (gn−k = 1). Corresponding to the basis

{xig(x) | 0 ≤ i < k}, C has a generator matrix

G =


g0 · · · gn−k 0 · · · 0

0 g0 · · · gn−k
. . . 0

0
. . .

. . .
. . . 0

0 · · · 0 g0 · · · gn−k


k×n

.

(2) Write h(x) = xn−1
g(x) =

∑k
i=0 x

i (hk = 1). Then C has a parity check
matrix

H =


hk · · · h0 0 · · · 0

0 hk · · · h0
. . . 0

0
. . .

. . .
. . . 0

0 · · · 0 hk · · · h0


(n−k)×n

.

(3) Let g⊥(x) = h−1
0 h∗(x) and h⊥(x) = g−1

0 g∗(x). Then h⊥ is the
generator polynomial and g⊥ is the parity check polynomial of C⊥.
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Proposition 8.3. Assume gcd(q, n) = 1. Suppose {p1(x), p2(x), · · · , pe(x)}
is the set of monic irreducible factors of xn − 1 in Fq[x]. Then the factor-
ization of xn − 1 over Fq[x] is

xn − 1 = p1(x) · · · pe(x),

and there are 2e different cyclic codes of length n over Fq.

Proof. Since gcd(q, n) = 1, xn − 1 is separable over Fq[x] and has no
multiple roots, hence the factorization. Now a cyclic code of length n is
uniquely determined by its generator polynomial which is a monic factor of
xn−1. There are 2e monic factors of xn−1 by the factorization of xn−1. □

Example 8.1. Let q = 3 and n = 10. Over F3[x], the factorization of
x10 − 1 is

x10 − 1 = (x+ 1)(x− 1)(x4 + x3 + x2 + x+ 1)(x4 − x3 + x2 − x+ 1).

Then the number of cyclic codes of length 10 over F3 is 24 = 16.
Take g(x) = x4 − x3 + x2 − x + 1, and let C = (g(x)) be the cyclic

code generated by g(x). For its parameters: [n, k, d], then n = 10 and
k = n− deg g = 6. C has a generator matrix

G =


1 2 1 2 1 0 0 0 0 0
0 1 2 1 2 1 0 0 0 0
0 0 1 2 1 2 1 0 0 0
0 0 0 1 2 1 2 1 0 0
0 0 0 0 1 2 1 2 1 0
0 0 0 0 0 1 2 1 2 1

 .

Since h(x) = x10−1
g(x) = x6 + x5 − x− 1, C has a parity check matrix

H =


1 1 0 0 0 2 2 0 0 0
0 1 1 0 0 0 2 2 0 0
0 0 1 1 0 0 0 2 2 0
0 0 0 1 1 0 0 0 2 2

 ,

which implies d = 2. So C is a linear [10, 6, 2]3-code.
For C⊥, it is a [10, 4, d⊥]3-code. The generator polynomial of C⊥ is h(x)

and the parity check polynomial is g(x). So C⊥ = {(c1, 2c1) | c1 ∈ C1}
where C1 is the code generated by:

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 .

Since d(C1) = 2, we have d⊥ = 4. Hence C⊥ is [10, 4, 4]3-code.
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1.3. Binary Hamming Code is cyclic. Let m ≥ 2, g(x) ∈ F2[x] be
a primitive polynomial of degree m. Note that this is equivalent to one of
the following two conditions:

(1) any root α of g(x) generates F×
2m , i.e., 〈α〉 = F×

2m ;
(2) m is the minimal positive integer d such that g(x) | (x2d − x).

Let n = 2m− 1, then g(x) | xn− 1 and h(x) = xn−1
g(x) is of degree 2m− 1−m.

Let C be the cyclic code generated by g(x), then C is a [2m − 1, 2m −
m− 1]2-code. In Rn, only xℓ with 0 ≤ ℓ ≤ n and xℓ(1 + xi) are of weight at
most 2, and they are not in C. Hence d(C) ≥ 3. By the Hamming bound
we have d(C) = 3. So C is [2m − 1, 2m − 1−m, 3]-code.

Let H be a parity check matrix of C, then H ∈ Fm×(2m−1)
2 . Note that:

• every column of H belongs to Fm×1
2 ;

• any 2 columns of H are linearly independent (because d(C) = 3),
hence different.

So the set of column vectors of H is the set of all nonzero vectors in Fm×1
2 ,

hence C = H(2,m), the binary Hamming code. This means the Hamming
code H(2,m) and its dual WHm = R(1,m)′ are cyclic codes.

Example 8.2. Take m = 3. The polynomial g(x) = x3 + x + 1 is a
primitive polynomial over F2[x]. Then the cyclic code C generated by g(x)
is the Hamming code H(2, 3), which is a linear [7, 4, 3]-code over F2. It has
the parity check polynomial h(x) = x7−1

g(x) = x4 + x2 + x + 1, a generator
matrix

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 ,

and a parity check matrix

H =

 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

2. Trace Expression of Cyclic codes
Suppose C is a cyclic code of length n over Fq with (q, n) = 1. Let g(x) be

the generator polynomial of C and h(x) be the parity check polynomial of C.
Since xn− 1 has no multiple root, we can assume h(x) has a decomposition

h(x) = p1(x) · · · ps(x)

where pi is a monic irreducible polynomial over Fq of degree di. Let αi be a
root of pi(x). Then Fq(αi) = Fqdi . Set Tdi = Trqdi/q : Fqdi → Fq.
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Theorem 8.2. For every codeword c = (c0, · · · , cn−1) ∈ C, there exists
a unique βi ∈ Fq(αi) = Fdi

q for each i ≤ s such that for any 0 ≤ λ ≤ n− 1,

cλ =

s∑
i=1

Tdi(βiα
−λ
i ).

Proof. For c = (c0, · · · , cn−1), let ĉ = (ċ0, · · · , ˙cn−1). Let c(x) = c0 +

c1x + · · · + cn−1x
n−1 and ĉ(x) =

∑
λ≥0 ĉλx

λ. Then ĉ(x) = c(x)
1−xn = − a(x)

h(x)

for some unique a(x) of degree < deg(h). By Theorem 7.2, there exists a
unique βi ∈ Fq(αi) = Fqdi for i ≤ s such that:

ĉλ =
s∑

i=1

Ti(βiα
−λ
i ) for all λ ∈ N.

So cλ = ĉλ =
∑s

i=1 Ti(βiα
−λ
i ) for 0 ≤ λ ≤ n− 1. □

Example 8.3. Suppose m ≥ 2, h(x) is a primitive polynomial of degree
m over Fq. Then per(h) = n = qm − 1. Let xn − 1 = g(x)h(x) and let C be
the cyclic code with the parity check polynomial h(x). Then C is generated
by g(x) and [n, k] = [qm−1,m]. Let α be a root of h(x) and γ = α−1. Then
γ is also a primitive root of Fqn . i.e.,

F×
qn = 〈γ〉 = {γi | 0 ≤ i ≤ qm − 2}.

By Theorem 8.2, for a nonzero codeword c ∈ C, there exists a unique
β ∈ F×

qm such that ci = Tm(βγi), 0 ≤ i ≤ qm − 2. Since {βγi | 0 ≤ i ≤
qm−2} = F×

qm and the trace map Tm is a qm−1-to-1 map, we know |{i | ci =
0}| = qm−1−1 and wt(c) = qm−1(q−1). Hence C is [qm−1,m, qm−1(q−1)]-
code over Fq whose nonzero codewords are all of weight qm−1(q − 1). So its
weight enumerator is

WC(x, y) = xq
m−1 + (qm − 1)xq

m−1yq
m−qm−1

.

For c = (c0, · · · , cn−1), write c(1) = (c0, c1, · · · , c qm−1
q−1

−1
). Note that

γ
qm−1
q−1 ∈ Fq, then for 0 ≤ j ≤ qm−1

q−1 − 1,

c
k qm−1

q−1
+j

= Tm(βγk(γ
qm−1
q−1 )k) = (γ

qm−1
q−1 )kcj

Thus c = (c(1), γ
qm−1
q−1 c(1), · · · , (γ

qm−1
q−1 )q−2c(1)) is uniquely determined by

c(1).
Let C ′ = {c(1) | c ∈ C}. Then C ′ is [ q

m−1
q−1 ,m]-linear code over Fq.

Moreover, if c(1) 6= 0, then wt(c(1)) = 1
q−1wt(c) = qm−1. Hence d(C ′) =

qm−1 and
WC′(x, y) = x

qm−1
q−1 + (qm − 1)x

qm−1
q−1 yq

m−1
.

By MacWilliams Identity, we get d(C ′⊥) = 3 and C ′⊥ is a [ q
m−1
q−1 ,

qm−1
q−1 −

m, 3]-code over Fq. Then a parity check matrix of C ′⊥ is an m× qm−1
q−1 matrix
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over Fq such that every 2 rows are linearly independent, hence it must be
a parity check matrix of H(q,m) too. So C ′⊥ is nothing but the Hamming
code H(q,m).

If q = 2, then C = C ′ and C⊥ = C ′⊥, both are cyclic codes.
If q > 2, then C ′ and C ′⊥ may not be cyclic. For C ′, let n′ = qm−1

q−1 , note
that C is cyclic, so (c0, · · · , cn−1) ∈ C ⇒ (cn−1, c0, · · · , cn−2) ∈ C. Hence
(c′0, · · · , cn′−1) ∈ C ′ ⇒ (γ−n′

, c′0, · · · , c′n′−2) ∈ C ′.

Example 8.4. Suppose gcd(m, q− 1) = 1 and let n = qm−1
q−1 . Let α be a

root of a primitive polynomial of degree m over Fq and β = αq−1. Then β

if of order n and β, βq, · · · , βqm−1 are all distinct.
The polynomial

g(x) =

m−1∏
i=0

(x− βqi)

is a factor of xn−1, and invariant under the Frobenius map σq : a 7→ aq and
hence belongs to Fq[x]. Since gcd(n, q− 1) = gcd(m, q− 1) = 1, there exists
t such that (q − 1)t ≡ 1 mod n. Then (α/βt)q−1 = 1 and α = λβt for some
λ ∈ F×

q . This implies that Fq(α) = Fq(β) = Fqm and g(x) is irreducible.
Let C be the cyclic code of length n generated by g(x), then [n, k] =

[ q
m−1
q−1 ,

qm−1
q−1 −m]. Moreover, note that the only elements in Rn = Fq[x]/(x

n−
1) of weight at most 2 are of the form cix

i and cix
i + cjx

j .
• cixi ∈ C ⇔ ciβ

i = 0 ⇔ ci = 0, i.e., cixi = 0.
• cixi + cjx

j ∈ C ⇔ βi−j ∈ F×
q . Assume i > j, then 1 ≤ s :=

i− j < qm−1
q−1 . Hence βs ∈ F×

q ⇔ βs(q−1) = 1 ⇔ n | (q−1)s. Since
gcd(n, q− 1) = 1, the equivalence is that n | s, which is impossible.

In conclusion, all nonzero codewords in C are of weight at least 3, that is,
d(C) ≥ 3. By Hamming bound we have d = d(C) = 3. Consider the parity
check matrix of C like the previous example, we have C = H(q,m). Thus if
m is coprime to q − 1, the Hamming code H(q,m) is a cyclic code.

3. The BCH codes
We fix an algebraic closure Fp =

⋃
n≥1 Fpn of the prime field Fp.

3.1. Roots of cyclic codes.

Definition 8.4. The roots of a cyclic code C are the roots of its gener-
ator polynomial in Fp.

Assume (n, q) = 1, g(x)h(x) = xn − 1, deg h = k, and C is the cyclic
code of length n with g(x) the generator polynomial. Then the set of roots
of C is

R := {γ ∈ Fp | g(γ) = 0}.
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Then
(8.1)
C = {a(x)g(x) | deg a < k} = {c(x) ∈ Fq[x] | deg c < n, c(γ) = 0 for γ ∈ R}.
Moreover, note that g(x) has no multiple root, if g(x) = p1(x) · · · pg(x) with
pi distinct, monic and irreducible. Let γi ∈ Fq be a root of pi(x) = 0. Then
(8.2) C = {c(x) ∈ Fq[x] | deg c < n, c(γi) = 0 for all 1 ≤ i ≤ g}.
Let
(8.3) H̃ := (h̃ij), h̃ij = γj−1

i ∈ Fq(γ1, · · · , γg), 1 ≤ i ≤ g, 1 ≤ j ≤ n.
Then we have
(8.4) c = (c0, · · · , cn−1) ∈ C ⇔ cH̃T = 0.

In this sense, H̃ is also a parity check matrix for C, which has a much smaller
row size g than the row size n − k of a usual parity check matrix, but the
coefficients are in a bigger field.

One can also recover the usual parity check matrix from H̃. Suppose
deg(pi) = di, then

Fq(γi) = Fqdi and
g∑

i=1

di = n− k.

Let {v(i)1 , · · · , v(i)di
} be a basis of Fq(γi) over Fq, then

γji =

di∑
k=1

a
(i)
k,jv

(i)
k , where a(i)k,j ∈ Fq,

and

c(γi) =

di∑
k=1

(

n−1∑
j=0

cia
(i)
k,j)v

(i)
k .

Let
Hi = (a

(i)
k,j) ∈ Fdi×n

q , 1 ≤ k ≤ di, 0 ≤ j ≤ n− 1.

Then c(γi) = 0⇔ cTHi = 0. Let

H :=

H1
...
Hg

 .

Then H ∈ F(n−k)×n
q and c(x) ∈ C if and only if cTH = 0, hence H is a

parity check matrix for C in the usual sense.
Example 8.5. We set q = 3 and n = 13, g(x) = (x−1)(x3+x2+x+2).

The code C is a [13, 9]-code over F3. Let γ be a root of x3+x2+x+2, then
{1, γ, γ2} is an F3-basis of F3(γ) = F27 over F3, and:

H̃ =

(
1 1 · · · 1
1 γ · · · γ12

)
.
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Under the basis {1, γ, γ2}, the coordinates of γj can be determined, hence
we can write H as follows:

H =


1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 2 0 2 0 1 1 1 2 1
0 1 0 2 2 2 1 2 2 0 0 2 1
0 0 1 2 0 2 0 1 1 1 2 1 1

 .

3.2. BCH Codes. The Bose-Chaudhuri-Hocquenghen code, or BCH
code in short, is a special type of cyclic code constructed by R. C. Bose-D.
K. Ray-Chaudhuri in 1960 and A. Hocquenghen in 1959 independently.

Definition 8.5. Suppose (n, q) = 1, β is an element in Fp of order n, ℓ
and δ are positive integers and 2 ≤ δ ≤ n− 1. Then the cyclic code

C = {c(x) =
n−1∑
i=0

cix
i ∈ Fq[x] | c(βi) = 0, ℓ ≤ i ≤ ℓ+ δ − 2}

is called a BCH code of design distance δ.

By definition, the generator polynomial of C is the least common mul-
tiple of the minimal polynomials of βi for ℓ ≤ i ≤ ℓ+ δ − 2.

Theorem 8.3. The minimum distance d of a BCH code is at least the
design distance δ of it.

Proof. Let
H = (hij)(δ−1)×n, hij = β(ℓ+i−1)(j−1) ∈ Fq(β), 1 ≤ i ≤ δ − 1, 1 ≤ j ≤ n.

Then for c(x) =
∑n−1

i=0 cix
i ∈ Fq[x], c(x) ∈ C if and only cHT = 0. To show

d ≥ δ or equivalently wt(c) ≥ δ for any nonzero codeword c, it suffices to
show any δ − 1 columns of H are Fq-linear independent.

Let H ′ be the square matrix of size δ − 1 formed by some arbitrarily
chosen δ − 1 columns of H. Then det(H ′) is a non-zero multiple of a Van-
dermonde determinant, hence det(H ′) 6= 0 and H ′ is invertible. Then the
columns of H ′ are actually Fq(β)-linear independent. □

3.3. An example. Suppose q = 2, m ≥ 3 and α is a primitive element
of F2m . Then n = 2m− 1 is the order of α. Let C be a binary cyclic code of
length n with roots α and α3. Then

c(α) = 0⇒ c(α2) = c(α)2 = 0⇒ c(α4) = 0.

Hence α, α2, α3, α4 are roots of C, and C is a BCH code of design distance
δ = 5, which implies that d(C) ≥ 5.

Let g1(x) and g3(x) be the minimal polynomial of α and α3 respectively.
Then g1(x) is primitive of degree m with root set {α2i | 0 ≤ i ≤ m − 1},
and g3(x) has roots α3·2i for 0 ≤ i ≤ m − 1. If m ≥ 3, these roots are
all distinct: in fact if m ≥ 3, 3 × 2ℓ = 3 mod 2m − 1 and ℓ minimal, then
ℓ = m. Hence g3(x) is irreducible of degree m, and the generator polynomial
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g(x) = g1(x)g3(x) of C is of degree 2m. Thus C is [2m− 1, 2m− 1− 2m, d]2-
code with d ≥ 5.

We now try to decode this code to correct at most 2 errors.

Problem 8.1. Suppose c(x) =
∑n−1

i=0 cix
i ∈ C was sent and u(x) =

c(x) + ε(x) =
∑n−1

i=0 uix
i is received. Suppose the error ε(x) =

∑n−1
i=0 εix

i

has weight wt(ε) ≤ 2. Recover c from u.

We know c ∈ C if and only if cHT = 0, where the parity check matrix

H =

(
1 α · · · αn−1

1 α3 · · · α3(n−1)

)
.

The syndrome of u = (u0, · · · , un−1) is
SH(u) = uHT = (u(α), u(α3)) = (ε(α), ε(α3)).

Let A1 = u(α) and A3 = u(α3).
(1) If ε(x) = 0, then A1 = A3 = 0;
(2) If ε(x) = xi for some 0 ≤ i ≤ n− 1, then A3

1 = A3 6= 0;
(3) If ε(x) = xi+xj for some 0 ≤ i 6= j ≤ n−1, then A1 = αi+αj 6= 0

and A3 = α3i+α3j 6= 0. Also we have A3
1−A3+α

i+j(αi+αj) 6= A3.
Let x1 = αi, x2 = αj . Then

x1 + x2 = A1, x1x2 = A2
1 +

A2

A1
,

and

σ(z) = (1− x1z)(1− x2z) = 1 +A1z +
A2 +A3

1

A1
z2 ∈ F2m [z].

This leads to the following algorithm:

Algerithm 8.1. We decode C as follows:
(1) Compute A1 = u(α) and A3 = u(α)3.
(2) If A1 = A3 = 0, then c(x) = u(x).
(3) If A3

1 = A3 6= 0, then write A1 = αi, 0 ≤ i ≤ n − 1, we have
ε(x) = xi and c(x) = u(x) + xi.

(4) If A1 6= 0, A3 6= 0 and A3
1 6= A3, then the equation

σ(z) = 1 +A1z +
A2 +A3

1

A1
z2 ∈ F2m [z]

has 2 roots α−i and α−j in F2m. Then ε(x) = xi + xj and c(x) =
u(x) + ε(x).

3.4. Decoding algorithm for BCH codes. Let C be a BCH code of
length n over Fq whose design distance δ = 2t + 1. Suppose Fq(β) = Fqm

and βi | (1 ≤ i ≤ 2t) are roots of C. Let c =
∑n−1

i=0 cix
i ∈ C be the

codeword sent, v(x) = c(x) + ε(x) =
∑n−1

i=0 vix
i be the polynomial received,

and ε(x) =
∑n−1

i=0 εix
i be the error polynomial whose weight wt(ε) ≤ t.
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Definition 8.6. Let ε be the error. Then the error set M , the error
locator polynomial σ(x) and the error evaluator polynomial ω(x) are defined
as follows:

M := {i | εi 6= 0}, whose order |M | := ℓ ≤ t;(8.5)

σ(x) :=
∏
i∈M

(1− βix) ∈ Fqm [x];(8.6)

ω(x) := σ(x) ·
∑
i∈M

εiβ
ix

1− βix
.(8.7)

The aim of decoding is to recover c or ε from v. Then a decoding
algorithm is to determine M and the exact value εi for each i ∈ M . Note
that i ∈M if and only if σ(β−i) = 0. Note also that if we can find σ(x) and
ω(x), then εi =

ω(β−i)βi

σ(β−i)
. Hence to decode C, it suffices to determine σ(x)

(and its roots) and ω(x).
For λ ≥ 1, set

sλ := ε(βλ).

If 1 ≤ λ ≤ 2t, then c(βλ) = 0, and sλ = ε(βλ) = v(βλ) ∈ Fqm is known. Let
a(x) :=

∑t−1
λ=0 sλ+1x

λ. Then

ω(x)

σ(x)
=

∑
i∈M

εiβ
ix

1− βix
=

∑
i∈M

εi

∞∑
λ=1

(βix)λ =

∞∑
λ=1

sλx
λ.

Note that σ(0) = 1, deg(σ(x)) = ℓ ≤ t, ω(0) = 0 and deg(ω(x)) ≤ ℓ. Note
also that gcd(σ(x), ω(x)) = 1. Let ω(x) = zb(x). Then b(x

σ(x) is a proper
fraction in reduced form and

b(x)

σ(x)
=

∞∑
λ=0

sλ+1x
λ ≡ a(x) mod x2t.

Thus the linear feedback shift generator LSR(σ(x), ℓ) generates the sequence
(s1, · · · , s2t).

On the other hand, by the Berlekamp-Massey Algorithm we can find the
minimal integer ℓ2t and a connecting polynomial f such that LSR(f(x), ℓ2t)
generates the sequence (s1, · · · , s2t). Since ℓ2t ≤ ℓ ≤ 2t

2 , σ(x) = f(x) must
be unique by Theorem 7.7. Once σ(x) is found, b(x) is nothing but the sum
of degree < ℓ terms of the polynomial σ(x)a(x) and ω(x) = xb(x).

The above analysis leads to the following algorithm.

Algerithm 8.2. Given v(x).
(1) Compute sλ = v(βλ) for 1 ≤ λ ≤ 2t.
(2) Apply the Berlekamp-Massey Algorithm and find the shortest LSR(σ(x), ℓ)

generating a(x) =
∑2t−1

λ=0 sλ+1x
λ, let b(x) = (σ(x)a(x))deg<ℓ and

ω(x) = xb(x).
(3) Find all roots of σ(x), hence obtain M .
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(4) Compute εi = ω(β−i)βi

σ(β−i)
, ε(x) and c(x).

Remark 8.1. Two key points for the effectiveness of this algorithm: (1)
B-M Algorithm and (2) finding roots of σ(z) in Fqm .

3.5. More examples of BCH Codes. We first show that the Reed-
Solomon Code RS(q − 1, q − d) is a BCH Code.

Theorem 8.4. Let n = q − 1 and α be a primitive element in Fq,
then the BCH code C with roots α, · · · , αd−1 has parameters [q− 1, q− d, d]
and is isomorphic to the Reed-Solomon code RS(q − 1, q − d) = {cf =
(f(1), · · · , f(αq−2)) | f(x) ∈ Fq[x],deg f < q − d}.

Proof. The generating polynomial of C is g(x) =
∏d−1

i=0 (x − αi). So
k = n − deg g = q − d and d(C) ≥ δ(C) = d. By Singleton bound we have
d(C) = d.

Now RS(q − 1, q − d) has dimension k = q − d, length n = q − 1, and a
generator matrix G ∈ Fk×n

q whose (i, j)-th entry is α(i−1)(j−1). Let

H =


1 α · · · αn−1

1 α2 · · · α2(n−1)

...
...

...

1 αn−k · · · α(n−k)(n−1)

 .

Then one can easily check that GHT = 0 and rank(H) = n−k = d−1. So H
is a parity check matrix of RS(q−1, q−d). This means that RS(q−1, q−d)
is a cyclic code with roots α, · · · , αd−1, i.e., RS(q − 1, q − d) = C. □

Example 8.6. Let α ∈ F2 satisfying α23 = 1. Then F2(α) = F211 since
211 = 1 mod 23. Let g1(x) be the minimal polynomial of α, then deg(g1) =
11, and the roots of g1(x) are α, α2, α4, α8, α16, α9, α18, α13, α3, α6, α12. The
minimal polynomial g2(x) of α−1 = α22 is the reflexive polynomial g∗1(x) of
g(x), which is also of degree 11, and

x23 − 1 = g1(x)g2(x)(x− 1), g1(x)g2(x) =
22∑
i=0

xi.

Let C be the cyclic code of length 23 whose generator polynomial is g1(x).
Then k = 23 − 11 = 12. Since αi (1 ≤ i ≤ 4) are roots of C, the design
distance δ = 5 and hence d ≥ 5.

Let c(x) ∈ F2[x] be a codeword in C, then its reflexive polynomial
c∗(x) =

∑23
i=0 cix

23−i and

c(x)c∗(x) =
23∑

i,j=0

cicjx
i−j+23 ≡

23∑
i=0

ci+
∑

0≤i<j≤23

cicj(x
23+i−j)+xj−i) mod x23−1.
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Since g1(x) | c(x) and g2(x) | c∗(x), we have g1(x)g2(x) | c(x)c∗(x). Thus

A(x) :=

23∑
i=0

ci +
∑

0≤i<j≤23

cicj(x
23+i−j + xj−i) = 0 or g1(x)g2(x) ∈ F2[x].

Suppose c 6= 0 and wt(c) = ℓ. Then #{i | ci = 1} = ℓ and note that
cicj = 1⇔ ci = cj = 1, #{(i, j) | i < j, cicj = 1} = ℓ(ℓ− 1)/2.

If ℓ is even, the constant term of A(x) is ℓ = 0 ∈ F2, so A(x) = 0. Note
that 23 + i − j and j − i have different parity, to get A(x) = 0, ℓ(ℓ − 1)/2
must be even, hence 4 | ℓ and in particular ℓ 6= 6.

If ℓ = 5, the constant term of A(x) is 1 and hence A(x) =
∑22

i=0 x
i.

However, there are at most 52−5 = 20 nonzero terms in A(x)−1, but there
are 22 nonzero terms in x+· · ·+x22, so they cannot be the same polynomial.
So d ≥ 7.

By Hamming bound we have d = 7, thus C is [23, 12, 7]-code over F2.
Actually, C is the binary Golay code G23.

Example 8.7. Let α ∈ F3 such that α11 = 1. Then F3(α) = F35 . Its
minimal polynomial g1(x) has roots α, α3, α9, α5, α4, and deg(g1) = 5. The
minimal polynomial g2(x) of α−1 is also of degree 5, and

x11 − 1 = (x− 1)g1(x)g2(x).

Let C be the cyclic code of length 11 with the generator polynomial g1(x).
Then [n, k] = [11, 6]. Moreover, C is a BCH code with roots α3, α4, α5, so
d(C) ≥ δ = 4.

If c(x) = a1x
n1 + · · ·+ a4x

n4 ∈ C is of weight 4, then c(x)c∗(x) = a(1 +
· · ·+x10) mod x11−1 for some a ∈ F3. Note the constant term of c(x)c∗(x)
is 1 + 1 + 1 + 1 = 1, so a = 1. Hence (a1 + a2 + a3 + a4)

2 = 11 = 2 ∈ F3,
which is not possible. So d(C) ≥ 5.

By Hamming Bound, then d(C) = 5 and C is a [11, 6, 5]-code over F3.
Actually C is the ternary Golay code G11.

4. Goppa Code

Recall the G-V bound: Bq(n, d) ≥ qn−1

V n−1
q (d−1)

.

Definition 8.7. Let r = 1− q−1, define Hq(x) as follows:
(1) Hq(0) = 0;
(2) for 0 < x ≤ r, Hq(x) = x logq(q−1)−x logq(x)−(1−x) logq(1−x).

We know that

Lemma 8.3. lim
δ→r

Hq(δ) = 1.

Lemma 8.4. For 0 ≤ δ ≤ r, we have
lim

n→+∞
logq(V

n
q ([δn])) = Hq(δ)
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Proof. If n → +∞, then V n
q ([δn]) is dominated by the last term, we

have (
n

[δn]

)
(q − 1)[δn] ≤ V n

q ([δn]) ≤ (1 + [δn])

(
n

[δn]

)
.

Then apply Sterling’s formula and we get the result. □

We take another look at BCH code: Suppse (n, q) = 1, β is of order
n and Fq(β) = Fqm . Suppose C is the BCH code of length n with roots
{βj | 1 ≤ j ≤ d− 1} (hence the design distance δ = d). We know that

c(x) ∈ C ⇔ c(βj) = 0 for all 1 ≤ j ≤ d− 1.

For ci ∈ Fq (0 ≤ i ≤ n− 1), we have

(zn − 1)

n−1∑
i=0

ci
z − β−i

=
n−1∑
i=0

ci
(zn − 1)

z − β−i

=
n−1∑
i=0

ci

n−1∑
k=0

(β−i)n−1−kzk

=

n−1∑
k=0

zk
n−1∑
i=0

ciβ
i(k+1).

Hence

(c0, · · · , cn−1) ∈ C ⇔
n−1∑
i=0

ci
z − β−i

= 0 mod zd−1.

Goppa code is obtained by replacing zd−1 by g(z) ∈ Fqm [z] and βj (1 ≤ j ≤
n− 1) by other elements.

Definition 8.8. Let g(z) ∈ Fqm [z] be a monic polynomial of degree t.
Let L = {γi | 0 ≤ i ≤ n− 1} ⊂ Fqm such that g(γ) 6= 0 for γ ∈ L. Then the
Goppa code is the code

G(L, g) = {c = (c0, · · · , cn−1) ∈ Fn
q |

n−1∑
i=0

ci
z − γi

= 0 mod g(z)}.

Theorem 8.5. For the code G(L, g), k ≥ n−mt and d ≥ t+ 1.

Proof. Write g(z) =
∑t

j=0 gjz
j and gt = 1. Then

g̃(z, x) :=
g(z)− g(x)
z − x

=
∑
j,k≥0

j+k≤t−1

gj+k+1x
kzj .

For γ ∈ Fqm such that g(γ) 6= 0,
1

z − γ
=

1

g(γ)
g̃(z, γ) mod g(z).
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Write hi = g(γi)
−1. Then

c ∈ G(L, g)⇔
n−1∑
i=0

cihig̃(z, γi) ≡ 0 mod g(z).

Since deg g̃(z, γi) = t− 1 for every i, we must have

c ∈ G(L, g)⇔
n−1∑
i=0

cihig̃(z, γi) = 0.

This means that
c ∈ G(L, g)⇔ cHT = 0,

where H is the t× n matrix over Fqm given by

H =


h0gt · · · hn−1gt

h0(gt−1 + gtγ0) · · · hn−1(gt−1 + gtγn−1)
...

...
h0(g1 + g2γ0 + · · ·+ gtγ

t−1
0 ) · · · hn−1(g1 + g2γn−1 + · · ·+ gtγ

t−1
n−1)

 .

By elementary row transformations, we obtain a new matrix H ′ from H:

H ′ =


h0 · · · hn−1

h0γ0 · · · hn−1γn−1
...

...
h0γ

t−1
0 · · · hn−1γ

t−1
n−1

 .

Note that any t columns of H ′ form an invertible matrix, then rank(H ′) = t.
Let {e1, · · · , em} be a basis of Fqm over Fq. Then we can write

H ′ = H1e1 + · · ·+Hmem

where H1, · · · ,Hm are t× n matrices over Fq. Let

H̃ =

H1
...
Hm

 ,

Then H̃ is an mt× n matrix over Fq and

c ∈ G(L, g)⇔ cH̃T = 0.

Thus k = dimFq G(L, g) = n− rank(H̃) ≥ n−mt. By the fact rank(H ′) = t,
then any t columns of H̃ are linearly independent, so d ≥ t+ 1. □

Take m = 1 in the above Theorem, then k ≥ n − t and d ≥ t + 1, so
k+ d ≥ n+1. But by the Singleton bound, k+ d ≤ n+1. So k = n− t and
d = t+ 1.

Theorem 8.6. Suppose 0 ≤ t ≤ n − 1. Let g ∈ Fq[z] be monic of
deg g = t, and L = {γi | 0 ≤ i ≤ n − 1} ⊂ Fq such that g(γi) 6= 0. Then
G(L, g) has parameters [n, n− t, t+ 1], which is an MDS code.
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For q = 2, one has a stronger result about the distance:

Theorem 8.7. If q = 2 and g(z) has no multiple root, then d ≥ 2t+ 1.

Proof. For c = (c0, · · · , cn−1) 6= 0, write f(z) =
∏n−1

i=0 (z − γi)ci , where
ci = 0 or 1. Then f ′(z)

f(z) =
∑n−1

i=0
ci

z−γi
, so c ∈ G(L, g)⇔ f ′(z)

f(z) = 0 mod g(z).
Since f has no multiple root, we have gcd(f, f ′) = 1 and g(z) | f ′(z).

For any f(z) ∈ F2m [z], f ′(z) = h(z2) = h(z)2. So g(z) | f ′(z) ⇔ g(z) |
h(z)2. Since g(z) has no multiple roots, this is equivalent to g(z) | h(z).
Hence c ∈ G(L, g) if and only if g(z)2 | f ′(z). This means

wt(c) = deg f = deg f ′ + 1 ≥ 2 deg g + 1 = 2t+ 1.

Hence d ≥ 2t+ 1. □



CHAPTER 9

Generalized GRS codes

1. Generalized GRS codes
1.1. Basic properties.

Definition 9.1. Let α1, · · · , αn ∈ F×
q be distinct and v1, · · · , vn ∈ F×

q

not necessarily distinct.
A Generalized Reed-Solomon code (GRS code) is a linear code defined

by the following parity check matrix:

HGRS =


v1 v2 · · · vn
v1α1 v2α2 · · · vnαn
...

...
...

v1α
n−k−1
1 v2α

n−k−1
2 · · · vnα

n−k−1
n


where α1, · · · , αn are called the code locators and v1, · · · , vn ∈ F∗

q are called
the column multipliers.

Lemma 9.1. The Vandermonde determinant

∆(α1, · · · , αn) := det


1 2 · · · 1
α1 α2 · · · αn
...

...
...

αn−1
1 αn−1

2 · · · αn−1
n

 =
∏

1≤i<j≤n

(αj − αi)

which is not zero if αi are pairwise distinct.

Proposition 9.1. HGRS is a legal parity check matrix, and a GRS code
is an MDS code, i.e. d = n− k + 1.

Proof. Let H[n− k] be the first n− k columns of HGRS. Then
det(H[n− k]) = v1v · · · vn−k∆(α1, · · · , αn−k) 6= 0.

Hence n−k ≥ rankHGRS ≥ rank(H[n−k]) = n−k and rank(HGRS) = n−k.
This means: (i) HGRS is legal and (ii) every n − k columns of HGRS are
linearly independent. (ii) implies that d ≥ n−k+1 and by Singleton bound
the equality must hold. □

Example 9.1. Here are some examples of GRS code:
(1) primitive GRS code: n = q − 1, {α1, · · · , αn} = F×

q .
(2) normalized GRS: v1 = · · · = vn = 1.
(3) narrow sense GRS: for all i, αi = vi.

79
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Theorem 9.1. Let C be a GRS code, then C⊥ is also a GRS code which
can be defined by the same code locators.

Proof. Let

GGRS =


v′1 v′2 · · · v′n
v′1α1 v′2α2 · · · v′nαn
...

...
...

v′1α
k−1
1 v′2α

k−1
2 · · · v′nα

k−1
n


k×n

.

Then the (i, ℓ)-th entry of GGRSH
T
GRS is

(GGRSH
T
GRS)i,ℓ =

n∑
j=1

v′jvjα
ℓ+i
j .

So GGRSH
T
GRS = 0 if and only if (v′1, · · · , v′n)A = 0, where A = (aij) is

an n × (n − 1) matrix whose (i, j)-th entry is aij = viα
j−1
i . By the same

argument of computing rank(HGRS), we know rankA = n − 1. Thus there
exists a nonzero vector v′ = (v′1, · · · , v′n) such that v′A = 0.

Moreover, let Aj be the matrix obtained by deleting the j-th row of
A, then rankAj = n − 1 for any 1 ≤ j ≤ n. If v′j = 0 for some j,
then (v′1, · · · , v′j−1, v

′
j+1, · · · , v′n)Aj = 0 and (v′1, · · · , v′j−1, v

′
j+1, · · · , v′n) = 0.

Hence v′ = 0 not possible. Hence there exists a v′ = (v′1, · · · , v′n) ∈ (F×
q )

n

such that v′A = 0. This corresponding matrix GGRS is a generator matrix
of C and a parity check matrix of C⊥. □

1.2. Polynomial Representation of GRS codes. Suppose the gen-
eralized Reed-Solomon Code CGRS has a generator matrix

GGRS =


v′1 v′2 · · · v′n
v′1α1 v′2α2 · · · v′nαn
...

...
...

v′1α
k−1
1 v′2α

k−1
2 · · · v′nα

k−1
n

 .

Then we have a bijection

Fq[x]<k → GGRS , f(x) 7→ (v′1f(α1), · · · , v′nf(αn)).

The Classical Reed-Solomon code is the case v′1 = · · · = v′n = 1.

2. Decoding GRS codes
Let GGRS be an [n, k, n−k+1]q GRS code with the code locator αi(1 ≤

i ≤ n) and the column multipliers vi (1 ≤ i ≤ n). LetH = HGRS = (viα
j−1
i ).

Suppose c = (c1, · · · , cn) is the codeword sent, r = (r1, · · · , rn) = r = c+ ε
is the vector received and ε = (ε1, · · · , εn) is error whose weight wt(ε) :=
ℓ ≤ d−1

2 = n−k
2 . Let e := [d−1

2 ].
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For 0 ≤ λ ≥ d− 2, we let

sλ =
n∑

j=1

rjvjα
λ
j =

n∑
j=1

εjvjα
λ
j .

Then the syndrome vector and polynomial of r is

SH(r) = rHT = (s0, · · · , sd−2), S(x) :=

d−2∑
λ=0

sλx
λ.

Definition 9.2. The error set M , the error locator polynomial σ(x)
and the error evaluator polynomial ω(x) are defined as follows:

M :={j | εj 6= 0};(9.1)

σ(x) :=
∏
j∈M

(1− αjx);(9.2)

ω(x) :=
∑
j∈M

εjvjσ(x)

1− αjx
=

∑
j∈M

εjαj

∏
k∈M\{j}

(1− αkx).(9.3)

Clearly |M | = wt(ε) = ℓ ≤ e. As shown in the decoding of BCH codes,
the decoding for GRS codes is equivalent to finding σ(x) and ω(x). We note
that

• (ω(x), σ(x)) = 1 since for all j ∈M , ω(α−1
j ) 6= 0;

• σ(0) = 1 and degω < deg σ = ℓ ≤ e.
For λ ≥ 0, we let

sλ =

n∑
j=1

εjvjα
λ
j .

By definition, we have
ω(x)

σ(x)
=

∑
j∈M

εjvj
1− αjx

=
∑
j∈M

∑
λ≥0

εjvj(αjx)
λ

=
∑
λ≥0

(
∑
j∈M

εjvjα
λ
j )x

λ

=
∑
λ≥0

sλx
λ ≡ s(x) mod xd−1.

This means LSR(σ(x), ℓ) generates the sequence S(r) = (s0, · · · , sd−2).
Moreover, since 2ℓ ≤ d− 1, σ(x) is the unique polynomial produced by the
Berlekamp-Massey Algorithm and ω(x) = (σ(x)S(x))deg<ℓ. The algorithm
is similar to the BCH case and we leave it as an exercise.

We now give another algorithm by applying the key congruent equation

(9.4) σ(x)S(x) ≡ ω(x) mod xd−1.
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Suppose

0 6= λ(x) =

e∑
m=0

λmx
m and γ(x) =

e−1∑
m=0

γmx
m.

Then λ(x)S(x) ≡ γ(x) mod xd−1 if and only if {λm}em=0 and {γm}e−1
m=0

satisfy the linear equations
(9.5) A(λ0, · · · , λe)T = (γ0, · · · , γe−1, 0, · · · , 0)T

where A = (aij) is an (d−1)× (e+1) matrix with the (i, j)-entry aij = si−j

which is 0 if i < j. Write A =
(

A1
A2

)
where A1 is an (e+1)× (e+1) matrix,

λ⃗ = (λ1, · · · , λe)T and γ⃗ = (γ0, · · · , γe−1)
T . Then (9.5) becomes

(9.6)
{
A1λ⃗ = γ⃗,

A2λ⃗ = 0.

The homogeneous linear equations A2λ⃗ = 0 has d−e−2 equations and e+1

variables, and e+1 > d− e− 2, so it has a nonzero solution λ⃗. The identity
A1λ⃗ = γ⃗ then gives γ⃗. We get polynomials λ(x) 6= 0 and γ(x) satisfying

deg(γ) < e, deg(γ(x)) ≤ e and λ(x)S(x) ≡ γ(x) mod xd−1.

Certainly σ(x) and ω(x) also satisfy the above conditions.
Theorem 9.2. Suppose λ(x) and γ(x) ∈ Fq[x] such that deg γ < e and

deg λ ≤ e.
(1) λ(x)S(x) = γ(x) mod xd−1 if and only if there exist c(x) ∈ Fq[x]

such that γ(x) = c(x)w(x) and λ(x) = c(x)σ(x);
(2) If λ(x)S(x) = γ(x) mod xd−1, λ(x) 6= 0 and λ(x) is of the smallest

possible degree, then γ(x) = cω(x) and λ(x) = cσ(x) where c =
λ(0) ∈ F×

q .
(3) If λ(x)S(x) = γ(x) mod xd−1, gcd(λ(x), γ(x)) = 1 and λ(0) = 1,

then γ(x) = ω(x) and λ(x) = σ(x).
Proof. (2) and (3) can be easily derived from (1), so we only prove (1).

Note that λ(x)ω(x) ≡ γ(x)σ(x) mod xd−1. The two polynomials on both
sides of the equation are of degree < 2e ≤ d − 1, so they must be equal.
However, gcd(ω(x), σ(x)) = 1, so γ(x) = c(x)w(x) and λ(x) = c(x)σ(x). □

Algerithm 9.1 (Peterson-Gorenstein-Zievler GRS decoding algorithm).
A GRS code can be decoded as follows:

(1) Compute s0, · · · , sd−1 and S(x).
(2) Solve the equation A2λ⃗ = 0 and find λ(x) 6= 0, then compute γ⃗ =

A1λ⃗ and get γ(x).
(3) Compute σ(x) = λ(x)

gcd(λ(x),γ(x)) and ω(x) = (σ(x)S(x))deg<deg(σ).
(4) Compute M by finding the roots of σ(x).
(5) Compute εj = −

ω(α−1
j )

vjσ′(α−1
j )

where σ′ is the formal derive of σ.
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CHAPTER 10

History and Basic knowledge about Cryptography

Cryptography is a method of storing and transmitting data in a partic-
ular form.

• At sender side, using an encryption algorithm, the message (plain-
text) is converted into an unreadable form. The message in un-
readable form is called as ciphertext.
• The ciphertext is sent to the receiver over the communication chan-

nel. Since the message is encrypted, the attackers can not read the
message.
• At receiver side, Using a decryption algorithm, the message is again

converted into the readable form. Then, receiver can read the mes-
sage.

Cryptography techniques can be classified into Symmetric Key Cryptography
and Asymmetric Key Cryptography.

1. Cryptography from early age
1.1. Caesar Cipher. The Caesar cipher, named after Julius Caesar(100BC-

44BC) who apparently used it to communicate with his generals, is one of
the earliest known and simplest ciphers. It is an example of a simple sub-
stitution cipher, which moves the alphabet table forward or backward by n
positions. For example, with a shift of 3, the letters

A,B,C,D,E, F,G,H, · · ·

are replaced by
D,E, F,G,H, I, J,K, · · ·

respectively.
To pass an encrypted message from one person to another, it is first

necessary that both parties have the ‘key’ for the cipher, so that the sender
may encrypt it and the receiver may decrypt it. For the Caesar cipher, the
key is the number of characters to shift the cipher alphabet. Here is a quick
example of the encryption and decryption steps involved with the Caesar
cipher. The text we will encrypt is ‘go to the east side of the village’, with
a shift key of 5. Then we get

• plaintext: go to the east side of the village
• ciphertext: lt yt ymj jfxy xnij tk ymj anqqflj
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Obviously, if the encryption is a shift of n, the decryption is a shift of −n; if
a different key is used, the cipher alphabet will be shifted a different amount.

The Caesar cipher offers essentially no security and is easy to break. For
one thing, if you know the ciphertext was encrypted by the Caesar cipher,
you can just try by brute force to shift the text in all possible ways (which
is just the size of the alphabet, not a big number). Even if you don’t know
the way how the text was encrypted, you can still decrypt it by frequency
analysis. However, during Caesar’s time, not many people was educated.

Let us give a mathematical description of the Caesar cipher. First we
translate all of our characters to numbers, a=0, b=1, c=2, ... , z=25. Now
suppose k is the key. Then the encryption function of the Caesar cipher
is Ek(x) = x + k mod 26 and the decryption function is Dk(x) = x − k
mod 26.

Example 10.1 (ROT13). The widely known ROT13 encryption is sim-
ply a Caesar cipher with an offset of 13, for which the encryption and de-
cryption are the same, i.e., E(x) = D(x) ≡ x + 13 mod 26. For example,
if the plaintext ‘go to the east side of the village’, then the ciphertext is ‘tb
gb gur rnfg fvqr bs gur ivyyntr’; if the plaintext ‘tb gb gur rnfg fvqr bs gur
ivyyntr’, then the ciphertext is ‘go to the east side of the village’.

ROT13 was originally devised to be used with newsgroup postings that
contained offensive material so the more sensitive among us wouldn’t be
inadvertently exposed to them. The idea was that you had to take an
action to decode the posting as a way of indicating that you understood
that you might find the contents offensive. It was also used by the first
generation web browser Netscape to store users’ passwords by some strange
unexplained reason.

1.2. Vigenère Cipher. The Vigenère Cipher is a polyalphabetic sub-
stitution cipher. The method was originally described by the Italian cryp-
tologist Giovan Battista Bellaso (5105-?) in his 1553 book La cifra del. Sig.
However, the scheme was later misattributed to the French diplomat and
cryptographer Blaise de Vigenère (1523-1596) in the 19th century, and is
now widely known as the Vigenère cipher. Blaise de Vigenère actually the
inventor of the stronger Autokey cipher in 1586.

Vigenère Cipher is a variant of Caesar cipher. The key K is a word
or phrase that is repeated as many times as required to generate the key
stream Ki, then

• Encryption: Ci ≡ Pi +Ki mod 26;
• Decryption: Pi ≡ Ci −Ki mod 26.

Example 10.2. For example, suppose the key is “lemon”. Then
• Plaintext: gototheeastsideofthevillage
• Keystream: lemonlemonlemonlemonlemonle
• Ciphertext: rsfcgsiqofewurrzjfvrgmxznri
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Example 10.3. During the USA Civil war (1861-1865), the Vigenère
Cipher used by the South army has three keys: Manchester Bluff; Complete
victory; Come retribution. The North broke all three keys, partly the reason
for its victory in the battlefield.

The Vigenère Cipher was known as le chiffre indéchiffrable ( literally “the
unbreakable cipher” in French) for 300 years, until in 1863 a former German
army officer and cryptanalyst Friedrich Kasiski published a successful attack
on the Vigenère cipher. Charles Babbage had, however, already developed
the same test in 1854. Gilbert Vernam worked on the Vigenère cipher in
the early 1900s, and his work eventually led to the one-time pad, which is a
provably unbreakable cipher.

So how to break the Vigenère cipher? The key point is that the key
is repeated, once we known the length of the key, then it is easy to break.
Kasiski developed a way (Kasiski Examination) to find the length of the
key. Let κ be the length of the key. If one sequence in the plaintext was
repeated at the same position (after modulo κ), then it would appear in the
ciphertext repeatedly. Therefore the positions apart of repeated sequences in
the ciphertext are highly likely a multiple of κ. For example, suppose we have
the ciphertext: dyduxrmntvdvnqdqnwdyduxrmhartjgwndq. The sequence
“dyduxr” was repeated 20 letters apart in the ciphertext, so probably the
length of the key is a factor of 20; the sequence “ndq” was repeated 18 letters
apart, so probably the length of the key is a factor of 18. One then can try
to exam if gcd(18, 20) = 2 is really the length of the key.

William Friedman (1891-1969) then developed the index coincidence
method (Friedman Test) to find the length of the key. Let kp be the proba-
bility of which any two letters are equal in a language, kr be the probability
of which any two letters are equal in an alphabet table, let k0 =

∑
i=1 ni(ni−1)
N(N−1)

where N is the length of ciphertext and ni is the number of letter i in the
ciphertext, then

(10.1) κ ∼ kp − kr
k0 − kr

.

The Autokey Cipher, the code which was actually invented by Vigenère
in 1586, is identical to the Vigenère cipher with the exception that instead
of creating a keyword by repeating one word over and over, the keyword
is constructed by appending the keyword to the beginning of the actual
plaintext message. For example, if the plaintext is

This is a secret message;
and the keyword was “zebra”, then the actual key stream would be

zebrathisisasecretmessage
Enciphering and deciphering the message is performed using the exact same
method as the Vigenère cipher. In general, Autokey cipher is more secure
than the Vigenère cipher.
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1.3. Cryptography Techniques.

1.4. Symmetric Key Cryptography. In this technique, both sender
and receiver uses a common key to encrypt and decrypt the message. This
secret key (the symmetric key) is known only to the sender and to the
receiver. The key must not be known to anyone else other than sender and
receiver. If the secret key is known to any intruder, he could decrypt the
message. It is also called as secret key cryptography, since the key has to be
kept secret between the sender and receiver.

Before starting the communication, sender and receiver shares the secret
key. This secret key is shared through some external means. At sender side,
sender encrypts the message using his copy of the key. The ciphertext is
then sent to the receiver over the communication channel. At receiver side,
receiver decrypts the ciphertext using his copy of the key. After decryption,
the message converts back into readable format.

Comparing to the asymmetric key algorithm, the symmetric key algo-
rithms are more efficient and they take less time to encrypt and decrypt the
message.

However, it has two disadvantages. First, in symmetric key cryptogra-
phy, each pair of users require a unique secret key. Thus if n people in the
world wants to use this technique, then n(n−1)/2 secret keys are needed. It
is a huge number even n is just 1 million. Secondly, sharing the secret key
between the sender and receiver is an important issue. While sharing the
key, attackers might intrude. This led to a very difficult key management
problem.

The most common used symmetric key encryption algorithms are
• Advanced Encryption Standard (AES);
• Data Encryption Standard (DES).

1.5. Asymmetric Key Cryptography. The asymmetric key cryp-
tography is more commonly known as Public Key Cryptography (PKC). To
use public key cryptography, each individual requires two keys, one public
key which is publicly available and known to everyone and one private key
which is known only to himself. Using the public key, it is not possible for
anyone to determine the receiver’s private key.

Sender encrypts the message using receiver’s public key. Encryption
converts the message into a ciphertext, which can be decrypted only using
the receiver’s The ciphertext is sent to the receiver over the communication
channel. Receiver then decrypts the ciphertext using his private key to
convert it back into a readable format.

Public Key Cryptography is more robust and less susceptible to third-
party security breach attempts than Symmetric Key Cryptography. It is
widely used in the age of internet, for example, E-commence. But it in-
volves high computational requirements and is slower than symmetric key
cryptography.
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The famous asymmetric encryption algorithms are based on hard com-
putational problems:

• RSA Algorithm, based on RSA problem;
• Diffie-Hellman Key Exchange, based on discrete logarithm problem.





CHAPTER 11

Hard Computational Problems

1. Trapdoor function and One-way function
In Public Key Cryptography, it is required that it is not possible for

anyone to determine the receiver’s private key using the public key only.
This makes trapdoor functions important in cryptography.

A trapdoor function is a function that is easy to compute in one direc-
tion, and difficult to compute without extra information and easy with some
special information (called the trapdoor) in the opposite direction. Mathe-
matically, a function f : X → Y is a trapdoor function if x 7→ f(x) is easy
to compute and finding x given f(x) ∈ Y is hard without extra information
but easy with a trapdoor.

Trapdoor functions rose to fame in cryptography in the mid-1970s with
the publication of the groundbreaking paper New Directions in Cryptography
of Diffie and Hellman in 1976. However, no example of trapdoor functions
was presented in their paper. The RSA problem proposed by Rivest, Shamir
and Adleman in 1977 gave the first practical example of trapdoor functions.
Since then, several function classes have been proposed, and it soon became
obvious that trapdoor functions are harder to find than was initially thought.
As of now, the best known trapdoor function (family) candidates are still
the RSA and Rabin families of functions.

Functions related to the hardness of the discrete logarithm problem are
not known to be trapdoor functions, because there is no known “trapdoor”
information about the group that enables the efficient computation of dis-
crete logs. However, the discrete logarithm problem can be used as the
basis for a trapdoor when the related computational Diffie–Hellman prob-
lem (CDHP) and/or its decisional variant(DDP) are used.

A trapdoor and a backdoor are not the same concepts in cryptography,
though nowadays many people incorrectly use these two interchangeably. A
backdoor is a mechanism added deliberately to a cryptographic algorithm or
operating system, for example, that permits unauthorized parties to bypass
or subvert the security of the system in some fashion.

Another related notion is one-way function. A function f is called a
one-way function if f is easy to compute but f−1 is hard even with extra
information.

91
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2. Factoring and RSA
Suppose p and q are prime, N = pq. We have the following four compu-

tational problems:
(1) Factoring: Given N , find p and q.
(2) RSA: Given e and c, find m such that me ≡ c mod N .
(3) Quadres: Given a, determine if a is a square module N or not.
(4) Squaroot: Given a, find x such that a ≡ x2 mod N .

Lemma 11.1. Factoring⇔ Squaroot⇒ Quadres.
Proof. Squaroot ⇒ Quadres is trivial by definition. Now we show

Factoring ⇔ Squaroot.
⇒: If we know the factorization N = pq, then a ≡ x2 mod N ⇔ a ≡ x2

mod p and a ≡ x2 mod q by the Chinese Remainder Theorem. But it easy
to find the value of the Legendre symbol (ap ) = ±1. If (ap ) = 1, By Shanks
algorithm or Pocklington algorithm, we can find x such that x2 ≡ a mod p
as follows:

• If p = 4m+ 3, then x = ±am+1.
• If p = 8m+ 5, if a2m+1 = 1, then x = ±am+1; if a2m+1 = −1, then
(4a)2m+1 = 1, let y = (4a)m+1, then x = ±y

2 or ±p+y
2 .

• If p = 8m+ 1, the situation is a little bit more complicated.
⇐: Suppose we know how to find the square root. Take any x, compute

z = x2 mod N , use Squaroot, we can find y such that y2 = z mod N .
There are 4 solutions satisfying y2 = z mod N , two of them are ±x. Thus
there are 1

2 chance that y 6= ±x mod N . Repeat this procedure until we
find x and y satisfying y 6= x mod N and y2 = x2 mod N . Then x2−y2 =
(x− y)(x+ y) = 0 mod N , and gcd(x+ y,N) = p or q. □

Lemma 11.2. Factoring ⇒ RSA.
Proof. If we know the factorization N = pq, then φ(N) = (p−1)(q−1)

is known. By the Euclidean Algorithm, we compute d = e−1 mod φ(N).
Then (cd)e = cde = c mod N by Euler’s Theorem. Then m = cd is a
solution of the RSA problem. □

The RSA problem is a trapdoor function which laid the foundation in
the RSA cryptosystem, the first and maybe most successful cryptosystem
in the era of Public Key Cryptography:

Algerithm 11.1 (RSA cryptosystem). Let N = pq, choose e such that
gcd(e, φ(N)) = 1, find d ≡ e−1 mod φ(N). Then (N, e) is the public key
which is available to everyone in the network, (d, p, q) is the private key just
for the person himself.

If m is the plaintext, Bob want to send m to Alice, he found Alice’s
public key N(, e), computed me ≡ c mod N and then sent the ciphertext c
to Alice. Alice uses her private key d to recover the original message m = cd

mod N .
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Example 11.1. Let p = 7 and q = 11, then N = 77 and φ(N) = 60.
Let e = 37, by Euclidean algorithm, d = 37−1 = 13 mod 77. Suppose Alice
got c = 51 from Bod, then m = 5131 ≡ 2 mod 77, i.e. m = 2 is the original
message.

Remark 11.1. By Factoring ⇒ RSA, thus once Factoring is solved,
the RSA cryptosystem is broken. However, at present nobody knows if
RSA ⇒ Factoring is true or not.

RSA is also used for Signature and Authentication.

Algerithm 11.2 (RSA Authentication). Bob sends m to Alice, Alice
computes md = s, and sends s back to Bob, Bob checks whether se ≡ m
mod N or not to verify the authenticity of Alice.

Lemma 11.3. If N, e and d are all known, then Factoring is solved.

Proof. Pick any x 6= 0, we may assume gcd(x,N) = 1. Note that ed =
1 mod φ(N), by Euler’s theorem, xed−1 ≡ 1 mod N . Suppose 2t‖(ed− 1).
Since 4 | (p− 1)(q − 1) = φ(N), we know t ≥ 2.

(1) Let y1 = x
ed−1

2 mod N , then y21 = 1 mod N . If y1 6= ±1 mod N ,
then compute gcd(y1±1, N). Otherwise, either (i) y1 = −1 mod N , choose
another x and start again; or (ii) y1 = 1 mod N , then go to next step.

(2) If y1 = 1 mod N , let y2 = x
ed−1

4 mod N . If y2 6= ±1 mod N , then
compute gcd(y2±1, N). Otherwise, either (i) y2 = −1 mod N or t = 2 and
y2 = 1 mod N , choose another x and start again; or (ii) t > 2 and y2 = 1
mod N , then go to next step.

(3) In general, if yk = 1 mod N and t < k, then compute yk+1 = x
ed−1

2k+1

mod N and repeat the above procedure. □
Example 11.2. Supose we know N = 1441499, e = 17 and d = 507905.

Let m1 = ed−1
2 = 4317192. Let x = 2. Then y1 = 2m1 ≡ 1 mod N ;

m2 = t1
2 = 2158596, y2 = 2m2 ≡ 1 mod N ; m3 = t2

2 = 1079298, y3 =
2m3 ≡ 119533 mod N . Then we compute gcd(y3 − 1, N) = 1423 and get
N = 1441499 = 1423× 1013.

Lemma 11.4. If we know N and φ(N), then Factoring is solvable.

Proof. Since φ(N) = pq−p− q+1, the sum p+ q = N +1−φ(N) = s
and the product pq = N are all known. This means that p, q are the roots
of x2 − sx+N , i.e., p, q = s±

√
s2−4N
2 . □

Example 11.3. If N = 18923, φ(N) = 18648, then s = N +1−φ(N) =
276. Hence p, q are roots of x2 − 276x+ 18923, which are 149 and 127.





CHAPTER 12

Primality Testing and Factoring

1. Primality Test
Generating prime numbers is needed for almost all public key algorithms,

for example:
(1) In the RSA system, we need to find primes p and q to compute the

public key N = pq.
(2) In the ElGamal encryption we need to find primes p and q with q

dividing p− 1.
The Prime Number Theorem tells us the distribution of primes among

all positive integers:

Theorem 12.1 (Prime Number Theorem). Let π(X) be the function
counting the number of primes less than X. Then

π(X) ∼ X

logX
.

Corollary 12.1. Choose randomly a number n, then the probability
that n is a prime is 1

logn ,

Example 12.1. Let X = 2512, then π(X) ∼ 2503.
Thus a random number of 512 bits in length is a prime with probability

∼ 1
log 2512

∼ 1
355 .

Pick randomly an integer n > 0, the primality test is to decide if n is a
prime or not.

1.1. Trivial division. Take all numbers between 2 and
√
n and see if

they divide n, if not then n is prime. This algorithm is simple and easy
to implement, but it is usually a bad algorithm since when n is a prime,
the algorithm requires

√
n steps to run, which is an exponential function in

terms of the size of input log n.
Despite its drawbacks trivial division is however the method of choice

for numbers which are very small. It is useful for eliminating composite
numbers with small prime factors. Partial trivial division, up to a bound
Y , is able to eliminate all but a proportion of

∏
p<Y (1−

1
p). Take Y = 100,

then
∏

p<Y (1−
1
p) ≈ 0.12.
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1.2. Fermat’s primality test. By Fermat’s Little Theorem, if p is a
prime, then ap−1 ≡ 1 mod p for all 0 < a < p. Thus if there exists a such
that ap−1 6= 1 mod p, then n is not a prime.

Fermat’s primality test is then the following algorithm: pick randomly
k (about 50) numbers a between 0 and pn, check if an−1 ≡ 1 mod n or not.
If not, then n is a composite number; if yes for all a, then n is highly likely
a prime, called a pseudom-prime.

Passing Fermat’s primality test is a necessary but not sufficient condition
for a number to be prime. This is because the existence of Carmichael
numbers. By Euler’s Theorem, aφ(N) ≡ 1 mod N if gcd(a,N) = 1. If n is
a composite number and φ(n) | (n− 1), then for any a prime to n, an−1 ≡ 1
mod n. Numbers of this type are called Carmichael numbers. Unfortunately
there are infinitely many Carmichael numbers.

Example 12.2. The first three Carmichael numbers are 561, 1105 and
1729.

Take X = 1016, the number of primes ≤ X is about 2.7× 1014 and the
number of Carmichaes numbers ≤ X is about 2.4× 105.

1.3. Miller-Rabin Test. This is a modification of Fermat’s test. Write
n−1 = 2sm withm odd. For a ∈ {2, · · · , n−2}, if n is a prime, then an−1 = 1

mod n, thus either am = a2m = · · · = a2
sm = 1 or one of a2is = −1 mod n

for 0 ≤ i < s. This leads to the Miller-Rabin Test:

Algerithm 12.1 (Miller-Rabin Test). Aim: to determine n is either a
composite number or highly likely a prime number.

(1) Pick a ∈ {2, · · · , n− 2}.
• If am = 1 mod n, then n passes.
• Otherwise, for i = 0, · · · , s − 1, see if a2im = −1 mod n. If yes,

then n passes.
• Otherwise n is composite, stop and exit the algorithm.

(2) If n passes Round 1, choose another a and repeat.
(3) If n passes k rounds for some fixed k ≥ 20, stop and output that n

passes the Miller-Rabin test.

Again, this test is not deterministic. If n passes the Miller-Rabin Test,
n is a pseudo-prime, more likely a prime than those who pass Fermat’s test.

1.4. Primality Proofs. The most successful primality proving algo-
rithm in practical use is the Elliptic Curve Primality Prover (ECPP) based
on elliptic curves, due to Goldwasser and Kilian, using ideas from an older
primality proving algorithm based on finite fields due to Pocklington and
Lehmer.

In August 2002, Agrawal, Kayal and Saxena from Indian Institute of
Technology Kanpur discovered a polynomial time deterministic algorithm
to test if an input number is prime or not (see Agrawal, M.; Kayal, N.; and
Saxena, N. “Primes is in P.” Ann. Math. 160, 781-793, 2004.). This test is



2. FACTORING ALGORITHMS 97

now known as the Agrawal-Kayal-Saxena primality test or AKS primality
test. This is the first explicit polynomial time deterministic algorithm for
primality, though this had long believed possible.

2. Factoring Algorithms
2.1. Overview of factoring algorithms. The factoring algorithms

are the central piece of computation number theory. Modern factoring al-
gorithms lie somewhere between polynomial and exponential time, in an area
called sub-exponential time. These algorithms have complexity measured by
the function LN (α, β).

Definition 12.1. For 0 ≤ α ≤ 1 and β > 0, let
(12.1) LN (α, β) = exp((β + o(1))(logN)α(log logN)1−α).

If the running time of an algorithm is LN (α, β) where N is the input, then
(1) If α = 0, i.e., the running time LN (0, β) = (logN)β+o(1), the algo-

rithm is called a polynomial time algorithm.
(2) If α = 0, i.e., the running time LN (1, β) = Nβ+o(1), the algorithm is

called an exponential time algorithm.
(3) If 0 < α < 1, the algorithm is called a sub-exponential time algo-

rithm.

We list the factoring methods here, details can be found in Chapters
8-10 of H. Cohen’s book A course in computational algebraic number theory
(GTM 138, Springer, 1993):
(1) Dark Age methods:

(A) Trivial division: Try every prime number up to
√
N and see if it is a

factor of N . This has complexity LN (1, 12), and is therefore an exponential
algorithm.

(B) p−1 method: This was invented by Pollard in 1974, good for finding
a prime factor p of N when p−1 has a decomposition in small prime factors.
We shall study it in next subsection.

(C) p + 1 method. This is a variant of the p − 1 method invented by
Williams in 1982, which uses Lucas sequences to achieve rapid factorization
if some factor p of N has a decomposition of p+ 1 in small prime factors.

(D) Pollard ρ method. This is also an algorithm for discrete logarithm
problem. We shall talk this more there.
(2) Modern methods:

(E) Continued Fraction Method (CFRAC): This is the first sub-exponential
time algorithm with complexity LN (12 ,

√
3). It was first described in 1931

by Lehmer and Powers and later in 1975 were developed into a computer
algorithm by Morrison and Brillhart.

(F) Elliptic Curve Method (ECM): This is a very good method if p < 250,
its complexity is Lp(

1
2 , c), which is sub-exponential. We shall talk about it

more when we study elliptic curves.
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(G) Quadratic Sieve (QS): This is probably the fastest method for fac-
toring integers of between 80 and 100 decimal digits. It has complexity
LN (12 , 1).

(H) Number Field Sieve (NFS): This is currently the most successful
method for numbers with more than 100 decimal digits. It can factor num-
bers of the size of 10155 ≈ 2512 and has complexity LN (13 , 1.923).

Smoothness characterizes numbers with only small prime factors:

Definition 12.2 (Smooth Numbers). Let B be an integer, an integer
N is called B-smooth if every prime factor of N is less than B.

Example 12.3. The number N = 1999996 = 231 · 31 · 1272, so N is
128-smooth.

We shall need the Dickman-de Bruijn function ρ, which is the solution
of the following differential delay equation

µρ′(µ) + ρ(µ− 1) = 0

for µ > 1. In practice we approximate ρ(µ) via the expression ρ(µ) ≈ µ−µ.
Then the function
(12.2) ψ(x, y) = #{n ≤ x, n is y-smooth}
is approximated by ψ(x, y) ≈ xρ(µ) ≈ xµ−µ where µ = log x

log y . This means

Theorem 12.2. The proportion of integers less than x, which are x
1
µ -

smooth, is asymptotically equal to µ−µ.

Now if we set x = N and y = LN (α, β), then µ = logN
log y = 1

β (
logN

log logN )1−α.
Hence we have

Corollary 12.2. The proportion of LN (α, β)-smooth integers ≤ N is
approximately 1

LN (1−α,γ) .

Definition 12.3. A number N is called B-power smooth if every prime
power dividing N is less than B.

Example 12.4. N = 25 · 33 is 33-power smooth.

2.2. Pollard p − 1 method. Suppose the number we wish to factor
is given by N = pq, in addition suppose we know (by some pure guess)
an integer B such that p − 1 is B-power smooth, but q − 1 is not B-power
smooth. We can then hope that p−1 divides B!, but q−1 is unlikely dividing
B!. This means the number b = 2B! = 1 mod p but unlikely b = 1 mod q.
Hence we can recover p by computing p = gcd(b − 1, N). This observation
leads to Pollard’s p− 1 method.

Algerithm 12.2 (Pollard p− 1 method). Choose a test cap B.
(1) Use a simple method (such as the sieve of Eratosthenes) to find

primes p < B, or even probable primes.
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(2) Choose an integer a coprime to N , for example a = 2 if N is odd.
(3) Find the exponent e such that pe ≤ B. Then for each p < B,

compute b = ap
e

mod N and see if 1 < gcd(b,N − 1) < N . If
that’s the case, return those results of the greatest common divisor
function, exit.

(4) If the GCD function consistently returned 1s, one could try a higher
test cap and try again from step 1.

(5) If the GCD function consistently returned n itself, this could indi-
cate that a is in fact not coprime to N , in which case N is already
factored.

(6) Throw a failure exception.

As of version 5.2, Pollard’s p − 1 algorithm is one of the methods used
by Mathematica’s FactorInteger function after eliminating small factors
by trial division.

Example 12.5. For N = 15770708441, take B = 180 and a = 2. Then
b = 2180! = 1162022425 mod N . Then p = gcd(b − 1, N) = 135979 and
N = 135979× 115979.

Note in this case p− 1 = 135978 = 2 · 3 · 131 · 173 and q− 1 = 115978 =
2 · 103 · 563, hence p− 1 is B-power smooth and q − 1 is not.

Due to the p− 1 method, it is often recommended that RSA primes are
chosen to satisfy p − 1 = 2p1 and q − 1 = 2q1, where p1 and q1 are both
primes. However, this is not really needed, because the probability that for
a random 512-bit prime p, the number p− 1 is B-power smooth for a small
value of B is vary small.

Pollard’s p − 1 method also indicates the key point of factorization:
produce two numbers x and y, of around the same size as N , such that
x2 = y2 mod N and x 6= ±y, then compute gcd(x± y,N) to factorize N .

2.3. Strategy of Modern Factoring Methods. Most modern fac-
toring methods have the following strategy based on the difference of two
squares method described at the end of the last section.

(1) Take a smoothness bound B.
(2) Compute a factor base F of all prime numbers p less than B.
(3) Find a large number of values of x and y, such that x and y are

B-smooth and x = y mod N . These are called relations on the
factor base.

(4) Use linear algebra modulo 2 (i.e., linear algebra over F2), find a
combination of the relations to give an X and Y with X2 = Y 2

mod N .
(5) Attempt to factor N by computing gcd(X − Y,N).

Let J be the set of all relations. For j ∈ J , the relation xj = yj mod N

is equivalent to xjy
−1
j = 1 mod N . As xj and yj are both B-smooth,

xjy
−1
j =

∏
p<B p

npj . Let cj = (npj)
T
p<B. To find X2 = Y 2 mod N is
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equivalent to find zj ∈ Z for j ∈ J such that
∑

j∈J zjcj = 0 mod 2. In
other words, regard A = (npj)p<B,j∈J as a matrix over F2 of #F rows
and #J columns. Then to find a combination that X2 = Y 2 mod N is
equivalent to find a non-zero binary vector z = (zj)j∈J mod 2 such that
zA = 0 over F2. By linear algebra, if the number of relations #J > #F ,
then the homogeneous equation zA = 0 is guaranteed to have a non-zero
solution. The key for any modern factoring method is to gather ≥ |F | + 1
relations and then solve the linear equation.

Example 12.6. Suppose F = {p, q, r} and the relations are
p2q5r2 = p3q4r3 mod N, /

pq3r5 = pqr2 mod N,

p3q5r3 = pq3r2 mod N.

Dividing one side by the other in each of our relations we obtain
p−1qr−1 = 1 mod N,

q2r3 = 1 mod N,

p2q2r = 1 mod N.

Multiplying the last two equations together we obtain
p2q4r4 = 1 mod N

Hence if X = pq2r2 and Y = 1, then we obtain X2 = Y 2 mod N .
In this example, the matrix

A =

−1 1 1
0 2 3
2 2 1

 =

1 1 1
0 0 1
0 0 1

 mod 2.

Take z = (0, 1, 1) then gives X = pq2r2 and Y = 1.

2.4. Linear Sieve. We let F denote a set of small prime numbers which
form the factor base: F = {p : p ≤ B}. A number with all its factors in F
is therefore B-smooth. The idea of the linear sieve is to find two integers a
and λ such that a and b = a+Nλ are both B-smooth.

We could write a =
∏

p∈F p
ap and b = a + Nλ =

∏
p∈F p

bp . We could
have a relation: ∏

p∈F
pap ≡

∏
p∈F

pbp mod N.

So the main question is how to find the values of a and λ? This is done as
follows:

(1) Fix a value of λ to consider.
(2) Initialize an array of length A+ 1 indexed by 0 to A with zeros.
(3) For each prime p ∈ F , add log2 p to every array location whose

position is congruent to −λN mod p.
(4) Choose the a to be the position of those elements which exceed

some threshold bound.
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Example 12.7. Suppose we take N = 1159, F = {2, 3, 5, 7, 11}, B = 12,
λ = −2 and A = 9, we wish to find a smooth value of b = a− 2N .
We initialize the sieving array as follows:

0 1 2 3 4 5 6 7 8 9
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

We now take the first prime in F , namely p = 2, we compute −λN mod p =
0. We add log2 2 = 1 to every array location with index equal to 0 modulo
2. Our sieve array becomes:

0 1 2 3 4 5 6 7 8 9
1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

We now take the next prime in F , namely p = 3, we compute −λN mod p =
2. We add log2 3 = 1.6 to every array location with index equal to 2 modulo
3. This results in our sieve array becoming:

0 1 2 3 4 5 6 7 8 9
1.0 0.0 2.6 0.0 1.0 1.6 1.0 0.0 2.6 0.0

Continuing in this way with p = 5, 7 and 11, eventually the sieve array
becomes:

0 1 2 3 4 5 6 7 8 9
1.0 2.8 2.6 2.3 1.0 1.6 1.0 0.0 11.2 0.0

Hence, the value a = 8 looks like it should correspond to a smooth value,
and indeed it does, since we find:

a− λN = 8− 2 · 1159 = −2310 = −2 · 3 · 5 · 7 · 11.

To have the linear sieve successful, we need to have at least |F | + 1
such relations. Unfortunately, the basic linear sieve produces a very small
number of relations.

2.5. Number Field Sieve. First we construct two monic, irreducible
polynomials with integer coefficients f1 and f2, of degree d1 and d2 re-
spectively, such that f1(m) ≡ f2(m) ≡ 0 mod N for some m ∈ Z. The
number field sieve will make use of arithmetic in the number fields K1 and
K2 given by K1 = Q(θ1) and K2 = Q(θ2), where θ1 and θ2 are defined by
f1(θ1) = f2(θ2) = 0. For i = 1, 2, we have [Ki : Q] = di, and have two
homomorphisms ϕ(i) given by:

ϕ(i) :

{
Z[θi] −→ Z/NZ,
θi −→ m.

We aim to use a sieve, just as in the linear sieve, to find a set
S ⊆ {(a, b) ∈ Z2 | gcd(a, b) = 1}

such that ∏
S

(a− bθ1) = β2,
∏
S

(a− bθ2) = γ2
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where β ∈ K1 and γ ∈ K2. If we found two such values of β and γ, then we
would have

ϕ1(β)
2 ≡ ϕ2(γ)2 mod N

then gcd(ϕ1(β)− ϕ2(γ), N) would be a factor of N .
This leads to three obvious problems:
(1) How do we find the set S?
(2) Given β2 ∈ Q[θ1], how do we compute β?
(3) How do we find the polynomials f1 and f2 in the first place?

Nowadays the modern method of factorization of N is as follows:
(1) For any p < 100, check whether (p,N) = 1 or not.
(2) Find some f1 and f2, try if one can find many relations, otherwise

change f1 and f2.
We give an example.

Example 12.8. Suppose N = 2902 +1 = 84101, we take f1(x) = x2 +1
and f2(x) = x − 290 with m = 290. We have f1(m) ≡ f2(m) ≡ mod N .
Then K1 = Q(i), K2 = Q, d1 = 2, d2 = 1, θ1 = i and θ2 = m.

We need to find x, y, such that x− iy is smooth(algebraic smooth) and
x−my is also smooth. This leads to the following table:

x y N(x− iy) Factors x−my Factors
-38 -1 1445 (5)(172) 252 (22)(32)(7)
-22 -19 845 (5)(132) 5488 (24)(73)

Then we obtain:
−38 + i = −(2 + i)(4− i)2, −22 + 19i = −(2 + i)(3− 2i)2.

(−38 + i)(−22 + 19i) = (2 + i)2(3− 2i)2(4− i)2 = (31− 12i)2.

(−38 +m)(−22 + 19m) = 263274 = 11762.

we apply the map ϕ1 to 31− 12i to obtain
ϕ1(31− 12i) = −3449.

Then we have
(−3449)2 =ϕ1(31− 12i)2 = ϕ1((−38 + i)(−22 + 19i))

≡(−38 +m)(−22 + 19m) = 11762 mod N.

We compute gcd(N,−3449 ± 1176), hence 37 and 227 are factors of N =
84101.



CHAPTER 13

Public Key Encryption Algorithms

1. Public Key Cryptography
Recall that in symmetric key cryptography each communicating party

needed to have a copy of the same secret key. This led to a very difficult
key management problem. This was overcomed by Diffie-Hellman Key Ex-
change Algorithm, a center piece of Public Key Cryptography invented by
Diffie and Hellman in their masterpiece New Directions in Cryptography in
1976. Although Diffie and Hellman invented the concept of public key cryp-
tography it was not until a year or so later that the first system, namely
RSA, was invented.

We recall public key cryptography here: the use of identical keys was
replaced with two keys: one public and one private. As is custom we call
the two parties exchanging messages Alice and Bob, and the intruder Eve.

• Bob: encrypts the message with Alice’s public key to get ciphertext
and sends it to Alice.
• Alice: uses her private key to decrypts the ciphertext to get the

original message.
• Eve: intercepts the ciphertext but can not recover the message

without Alice’s private key.
In public key cryptography, the use of trapdoor functions/one-way func-

tions is vital. The most important one-way function used in public key cryp-
tography is that of factoring integers. Another important class of problems
are those based on the discrete logarithm problem or its variants.

2. Factoring and RSA-based algorithms
2.1. RSA Algorithm. This algorithm is based on the trapdoor func-

tion RSA.
Suppose Alice wishes to enable anyone to send her secret messages, which

only she can decrypt. This is achieved by the following algorithm:

Algerithm 13.1 (RSA Algorithm).
(1) Pick two primes p and q, compute N = pq.
(2) Choose e, such that gcd(e, (p− 1)(q − 1)) = 1.
(3) Compute d = e−1 mod φ(N).

Then the private key of Alice is (d, p, q), the public key is (N, e).
103
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Suppose Bob wishes to encrypt a message “m” to Alice. He computes
c = me mod N , c is the ciphertext, then he sends c to Alice. Alice computes
m = cd mod N to recover m.

Lemma 13.1. If the RSA problem is hard, then the RSA system is secure
under a chosen plaintext attack, i.e. an attacker is unable to recover the
whole plaintext from the ciphertext.

Proof. We wish to give an algorithm which solves the RSA problem
using an algorithm to break the RSA system as an oracle. If we can show
this, then we can conclude that breaking the RSA system is no easier than
solving the RSA problem. Recall that the RSA problem is given N = pq, e
and y ∈ (Z/NZ)×, find x such that xe = y mod N . We use our oracle to
break the RSA encryption algorithm to decrypt the message corresponding
to the ciphertext c = y, this oracle will return the plaintext messagem. Then
our RSA problem is solved by setting x = m, since me = y mod N . So if
we can break the RSA algorithm, then we can solve the RSA problem. □

To build a secure RSA system, we shall avoid the following:
(I) Use of a shared modulus N .
(1) Internal person: the factorization N = pq is know, then it is easy

to get any other people’s private keys.
(2) External person: Suppose Alice send message m to two users Bi

(i = 1, 2), who has public key (N, ei). Eve can see ci = mei mod N
for i = 1, 2. Let t1 = e−1

1 mod e2 and t2 = t1e1−1
e2

. Then Eve can
get m = ct11 c

−t2
2 .

(II) Use of small public e. Suppose m is sent to three different users with
modulus N1, N2, N3 and same exponent e = 3. Let the ciphertext ci ≡ m3

mod Ni, for i = 1, 2, 3. By Chinese Remainder Theorem, one can find X
such that X ≡ m3 mod N1N2N3 and X < N1N2N3. Note that m < Ni

and hence m3 < N1N2N3, then X = m3 and m = 3
√
X (as real number) is

the original message.

Example 13.1. Let the modulus be N1 = 33, N2 = 299 and N3 = 341,
and e = 3. Suppose the ciphertext c1 = 50, c2 = 268 and c3 = 1. Then X =

300763 mod N1N2N3 and the original message m = X
1
3 = 300763

1
3 = 67.

From the above analysis, to get a secure encryption algorithms, we
should:

(1) Avoid small e, now usually e = 65537 = 212 + 1.
(2) “Same message” should never be encrypted to two different people.
(3) Plaintext should be randomly packed before transmission.

2.2. Rabin Encryption. We first choose prime numbers of the form
p ≡ q ≡ 3 mod 4 (so that it is easy to find square roots mod p and
mod q). The private key is the pair (p, q), the public key is (N,B), where
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N = pq and B is chosen randomly from {0, · · · , N − 1}. Rabin Algorithm
is as follows:

(1) Encryption: c = m(m+B) mod N (this is very fast).
(2) Decryption: m =

√
B2

4 + c− B
2 mod N .

At first sight this uses no private information, but a moment’s thought
reveals that you need the factorization of N to be able to find the square
root. There are however four possible square roots modulo N , since N is
the product of two primes. Hence on decryption you obtain four possible
plaintexts. This means that we need to add redundancy to the plaintext
before encryption in order to decide which of the four possible plaintexts
corresponds to the intended one.

Example 13.2. Choose p = 127 and q = 131. Then N = 16637. Choose
B = 12345. The message m = 4410 is Encrypted to c = 4633 = m(m+ B)

mod N . For decryption, let t = B2

4 + c = 1500 mod N . Then
√
t ≡ ±22

mod p and
√
t ≡ ±7 mod q, hence

√
t ≡ ±3705 or ±14373 mod N . Then

m = 4410, 5851, 15078 or 16519.

2.3. Paillier Encryption. We first pick an RSA modulo N = pq, but
instead of working with the multiplicative group (Z/NZ)× we work with
(Z/N2Z)×. The private key is defined to be an integer d such that d ≡ 1
mod N and d ≡ 0 mod (p − 1)(q − 1). Such a value of d can be found by
the Chinese Remainder Theorem. The public key is just the integer N .

(1) Encryption: c = (1 + N)mrN mod N2, r ∈ (Z/N2Z)×, m is the
plaintext.

(2) Decryption: Let t ≡ cd mod N2 and t < N2. Note that

t ≡ (1 +N)mdrdN

≡ (1 +N)md (since d ≡ 0 mod (p− 1)(q − 1))

≡ 1 +mdN ≡ 1 +mN mod N2 (since d ≡ 1 mod N),

to recover the message, just compute m = t−1
N .

3. Discrete Logarithm Problem based algorithms
3.1. Discrete Logarithm Problem. Let G be a finite abelian group,

the discrete logarithm problem, or DLP in short, in G is: given g, h ∈ G,
find an integer x (if it exists) such that gx = h, i.e. x = logg h.

For the multiplicative group of a finite field the best known algorithm
for this task is the Number Field Sieve. The complexity of determining
discrete logarithms in this case is given by LN (13 , c), for some constant c,
depending on the type of the finite field, e.g. whether it is a large prime
field or an extension field of characteristic two. For other groups, such as
the group of rational points of an elliptic curve over a finite field, the best
known algorithm for finding discrete logarithm on a general elliptic curve



106 13. PUBLIC KEY ENCRYPTION ALGORITHMS

defined over a finite field Fq is Pollard’s Rho method which has complexity√
q = Lq(1,

1
2).

There are a number of related problems associated to discrete loga-
rithms, suppose we are given a finite abelian group (G, ·) and g ∈ G.

(1) DLP (Discrete Logarithm Problem): Given g, h ∈ G such that
h = gx, find x.

(2) DHP (Diffie-Hellman Problem): Given g ∈ G, a = gx and b = gy,
find c, such that c = gxy.

(3) DDH (Decision Diffie-Hellman): Given g ∈ G, a = gx, b = gy and
c = gz, determine if z = x · y.

Lemma 13.2. DLP⇒ DHP⇒ DDH.

Proof. Easy. □
Remark 13.1. However, it is not known if DHP is easier than DLP or

not, even for G = F×
q or E(Fq). Probably these two are as easy as each

other.

3.2. ElGamal Encryption (Finite field version). Unlike the RSA
algorithm, in ElGamal encryption there are some public parameters which
can be shared by a number of users. These are called the domain parameters
and are given by:

(1) p is a large prime, by which we mean one with around 1024 bits,
such that p − 1 is divisible by another medium prime q of around
160 bits.

(2) g is an element of F×
p of prime order q, i.e. g = γ

p−1
q 6= 1 mod p

for some γ ∈ F×
p .

Once these domain parameters have been fixed, the public and private
keys can then be determined. The private key is chosen to be an integer x,
the public key is given by h = gx mod p. To encrypt a message m ∈ F∗

p, we
(1) Generate a random ephemeral key k.
(2) Set c1 = gk, c2 = mhk.
(3) Output the ciphertext as c = (c1, c2).

To decrypt a ciphertext c = (c1, c2) we compute m = c−x
1 c2 = g−kx(mhk).

Lemma 13.3. Assume DHP is hard, then ElGamal is secure under a
chosen plaintext attack.

Proof. Suppose there is an oracle to break ElGamal, i.e., given c =
(c1, c2), one can find the original message m without knowing the private
key x. Now in DHP, suppose gx and gy are given. Let h = gx (even though
don’t know x), c = (c1, c2) = (gy, random element in F∗

p). The oracle for
ElGamal gives m = c2

cx1
. Then c2

m = cx1 = gxy and DHP is solved. □



CHAPTER 14

Discrete Logarithms

In this chapter we survey the methods known for solving the discrete
logarithm problem in various abelian groups G. Keep in mind that two
cases are used most common in practice: G = F×

q or E(Fq) where E is an
elliptic curve over Fq.

1. Pohlig-Hellman Algorithm
1.1. Reduction to cyclic groups. Suppose G is a group of order N

and g ∈ G. Let G′ = 〈g〉 be the cyclic subgroup generated by g, which is of
order N ′. Then N ′ | N . Moreover, if pe ‖ N , then pe

′ ‖ N ′ where e′ is the
first integer between 0 and e such that gN/pe−e′

= 1. In this way, once the
prime decomposition of N is known, it is easy to find the order N ′. Now to
find x such that h = gx, it suffices to solve the related DLP in G′.

1.2. Reduction to groups of prime order. Suppose we have a finite
cyclic abelian group G = 〈g〉 whose order is given by N = #G =

s∏
i=1

peii . For

prime p | N , we let pe ‖ N . Now suppose h ∈ G, find x such that gx = h,
we just need to find x mod N since gN = 1. By the Chinese Remainder
Theorem, to find x mod N , it is equivalent to find x mod peii for 1 ≤ i ≤ t.

Let Cpe = 〈g
N
pe 〉, then Cpe is cyclic of order pe and h

N
pe = (g

N
pe )x. Hence

DLP for G ⇐⇒ DLP for Cpe for all pe ‖ N.
Now suppose Cpe = 〈g〉 and h = gx ∈ Cpe . We may assume 0 ≤ x < pe.

Write x = x0 + x1p+ · · ·+ xe−1p
e−1 such that 0 ≤ xi < p. Then

(1) Let g1 = gp
e−1 , then 〈g1〉 = Cp, which is a cyclic group of order p.

(2) Let h1 = hp
e−1 , then h1 ∈ Cp and h1 = gx1 = gx0

1 . Solving the DLP
for Cp, one can get the value of x0.

(3) Suppose by induction we knew the values x0, · · · , xt−1, t ≤ e − 1.
Let x′t−1 = x0 + x1p + · · · + xt−1p

t−1. Then x − x′t−1 = pt(xt +
pxt+1 + · · · ) and

ht = (hg−x′
t−1)p

e−t−1
= (gx−x′

t−1)p
e−t−1

= gxt
1 .

Once again solving the DLP for Cp to get te value of xt, and the
value x is recovered by induction.

In conclusion, we have
107
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Lemma 14.1. Suppose G = 〈g〉 is cyclic of order N . For pe ‖ N , let
Cpe = 〈g

N
pe 〉 and Cp = 〈g

N
p 〉, which are cyclic of order pe and p respectively.

Then
DLP for G ⇐⇒ DLP for Cpe for pe ‖ N ⇐⇒ DLP for Cp for p | N,

i.e. DLP for G is as hard as DLP for the largest subgroup of G of prime
order.

Algerithm 14.1 (Pahlig-Hellman Algorithm).
(1) For p | N , find e such that pe ‖ N .
(2) Let g′ = g

N
pe , h′ = h

N
pe , g1 = g

N
p = (g′)p

e−1. Solve DLP in Cp for
h1 = h

N
p = gx0

1 , 0 ≤ x0 ≤ p− 1.
(3) For 1 ≤ t ≤ e− 1, suppose x0, · · · , xt−1 is known, let

x′t−1 = x0 + x1p+ · · ·+ xt−1p
t−1,

solve DLP in Cp for

ht = (h′g′−x′
t−1)p

e−t−1
= gxt

1 , 0 ≤ xt < p− 1,

then
x ≡ x0 + x1p+ · · ·+ xe−1p

e−1 mod pe.

(4) Use the Chinese Remainder Theorem to find x mod N .

Example 14.1. Let G = F×
397 = 〈5〉 and g = 5. Then N = 396 =

22 · 32 · 11. Suppose h = 298. To find x such that h = 298 = 5x mod 397 is
equivalent to find x4, x9 and x11 such that

h
396
4 = 334 ≡ 334x4 ≡ (g

396
4 )x4 mod 397,

h
396
9 = 286 ≡ 79x9 ≡ (g

396
9 )x9 mod 397,

h
396
11 = 273 ≡ 290x11 ≡ (g

396
11 )x11 mod 397.

Need to determine 
x4 ≡ x mod 4

x9 ≡ x mod 9

x11 ≡ x mod 11

let x9 = x9,0 + x9,1 · 3, 0 ≤ x9,i ≤ 2. Then g1 = 3343 = 362 and h1 = 2863 =
34, then{

h1 = g
x9,0

1 mod 337⇒ x9,0 = 2

1 ≡ 286
3342
≡ 362x9,1 mod 397⇒ x9,1 = 0

=⇒ x9 = 2.

Similarly we get 
x4 ≡ x ≡ 1 mod 4,

x9 ≡ x ≡ 2 mod 9,

x11 ≡ x ≡ 6 mod 11.

By the Chinese Remainder Theorem we get x = 281.
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2. Baby-Step/Giant-Step Method
Algerithm 14.2 (Baby-Step/Giant-Step). Suppose G = 〈g〉 is cyclic

group of order p, h ∈ G, find x such that h = gx. Suppose it is easy to store,
sort and search a list of elements in G. We first write

x = x0 + x1d
√
pe, 0 ≤ x0, x1 < d

√
pe.

(1) Baby step: Compute gi = gi for 0 ≤ i < d√pe and store (gi, i). To
compute and store the Baby-Steps clearly requires O(

√
p) time, and

a similar amount of storage.
(2) Giant step: Compute hj = hg−j⌈√p⌉ for 0 ≤ j < d√pe. If hi = gi,

then x = i+jd√pe. Notice that the time to compute the Giant-Steps
is at most O(d√pe).

Hence, the overall time and space complexity of the Baby-Step/Giant-Step
method is O(

√
p).

Example 14.2. Take the subgroup of order 101 in the multiplicative
group of the finite field F607, generated by g = 64. Suppose we are given the
discrete problem

h = 182 = 64x mod 607.

We first compute the Baby-Steps:
gi = 64i mod 607, for 0 ≤ i < d

√
101e = 11.

We get
i 0 1 2 3 4 5 6 7 8 9 10
gi 1 64 454 527 343 100 330 482 498 308 288

Now we compute the Giant-Steps:
hj = 182 · 64−11j mod 607 for 0 ≤ j < 11,

and check when we obtain a Giant-Step which occurs in our table of Baby-
Steps:

j 0 1 2 3 4 5 6 7 8 9 10
gj 182 143 69 271 343 573 60 394 483 76 580

So we obtain a match when i = 4 and j = 4, which means that x = i+j ·11 =
4+ 4 · 11 = 48, which we can verify to be the correct answer to the discrete
logarithm problem by computing 6448 = 182 mod 607.

3. Pollard Type Methods
3.1. Birthday Paradox. Suppose there are n birthdays (for example,

n = 365 in a solar year) in a calendar. We compute the probability that there
exists at least 2 people among k people with the same birthday. Suppose this
probability is p, then the probability of every people have distinct birthday
is q = 1− p. Let bi be the birthday of the i-th people,

E = {(b1, · · · , bk) | b1, · · · , bk are all different} ⊆ {1, · · · , n}k.
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then
#E = n(n− 1) · · · (n− k − 1) =

n!

(n− k)!
,

q =
#E

nk
=

k−1∏
i=1

(1− i

n
).

By 1 + x < ex, then

(14.1) q ≤ e
−k(k−1)

2n and p ≥ 1− e
−k(k−1)

2n .

Proposition 14.1. In a calendar which has n days in a year. if

(14.2) k ≥ 1 +
√
8n log 2

2
,

then the probability that 2 of k people shares the same birthday is ≥ 1
2 . In

particular, for n = 365, if k ≥ 23, then p > 1
2 .

3.2. Deterministic Random Walk. Suppose f : S → S is a random
map between a set S of size n and itself. Pick a random value x0 ∈ S and
compute recursively

xi+1 = f(xi) for i ≥ 0.

The sequence s x0, x1, x2, · · · is called a deterministic random walk deter-
mined by the initial value x0. Since S is finite, we must eventually obtain
xi = xj for some i 6= j. This is called a collision. Then

xi+1 = f(xi) = f(xj) = xj+1

and xi+n = xj+n for all n ≥ 0. Hence the sequence x0, x1, x2, · · · , will
eventually become cyclic. If we draw this sequence in the board, then it
looks like the Greek letter ρ. In other words it has a cyclic part and an
initial tail.

By the Birthday Paradox, one has

Proposition 14.2. Let α > 0, l = 1 + [
√
2αn], then

#{(f, x0) : x0, · · · , xl are distinct }
#{(f, x0)}

< e−α.

Proof. The denominator is equal to #f ·#x0 = nn ·n = nn+1. Now we
compute the numerator. Note that x0 has n choices, f(x0) = x1 has n − 1
choices, · · · , f(xl−1) = xl has n − l choices, and f(xi) can take arbitrary
elements for i ≥ l. Then the numerator is n(n− 1) · · · (n− l)nn−l. Then by
1 + x < ex,

#{(f, x0) : x0, · · · , xl are distinct }
#{(f, x0)}

=
l∏

j=1

(1− j

n
) < e−α

if l = 1 + [
√
2αn]. □
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From this proposition, one can show that for a random mapping the tail
has expected length (i.e. the number of elements in the tail)

√
πn
8 , and the

cycle has expected length (i.e. the number of elements in the cycle)
√

πn
8

as well. The goal of many of Pollard’s algorithms is to find a collision in a
random map like the one above.

The collision is actually obtained by the following Floyd’s cycle finding
algorithm. Given (x1, x2), we compute (x2, x4) and then (x3, x6) and so on,
i.e. given the pair (xi, x2i), we compute

(xi+1, x2i+2) = (f(xi), f(f(x2i))).

We stop when we find xm = x2m. If the tail of the sequence x0, x1, x2, · · ·
has length λ and the cycle has length µ, then one can show that xm = x2m
for m = µ(1 + bλµc). Since λ < m ≤ λ+ µ we see that m = O(

√
n).

3.3. Pollard ρ-Method. We now work on Pollard ρ-method in the
discrete logarithm problem case. Let G denote a cyclic group of order n and
let the discrete logarithm problem be given by h = gx. We partition the
group into three sets S1, S2 and S3, and assume 1 /∈ S2. Then we define the
following random walk on the group G:

xi+1 = f(xi) =


hxi, xi ∈ S1;
x2i , xi ∈ S2;
gxi, xi ∈ S3.

In practice we actually keep track of three pieces of information (xi, ai, bi),
where

ai+1 =


ai, xi ∈ S1;
2ai mod n, xi ∈ S2,
ai + 1 mod n. xi ∈ S3.

bi+1 =


bi + 1 mod n, xi ∈ S1;
2bi mod n, xi ∈ S2;
bi, xi ∈ S3.

If we start with the triple (x0, a0, b0) = (1, 0, 0), then for all i,
logg(xi) = ai + bi logg(h) = ai + bix.

Applying Floyd’s cycle finding algorithm we obtain a collision, and so find
a value of m such that xm = x2m. This leads us to deduce the following
equality of discrete logarithms

am + bmx = am + bm logg h

= logg(xm) = logg(x2m)

= a2m + b2m logg h = a2m + b2mx.

Rearranging, we see that
(bm − b2m)x = a2m − am,

if bm 6= b2m, then
x =

a2m − am
bm − b2m

mod n.
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Pollard’s ρ method for factorization works in the same way. Suppose
n = pq is the number to be factorized. Let f(x) be any polynomial of
degree ≥ 2 (except x2 − 2) and the random walk be xi+1 = f(xi) mod n.
Now just check gcd(|x2m − xm|, n) for each m ≥ 1. Stop when the gcd is
inside (1, n). The expected time complexity is O(

√
p) where p is the smaller

prime factor of n.

3.4. Pollard’s λ Method. The λ method is particularly tuned to the
situation where one knows that the discrete logarithm x lies in a certain
interval [a, · · · , b]. Let ω = b−a denote the length of the interval in which the
discrete logarithm x is known to lie. Take S = {s0, · · · , sk−1} of integers in
non-decreasing order, such that the mean m of S should be around N =

√
ω.

It is common to choose

si = 2i for 0 ≤ i < k,

which implies that the mean of the set is 2k

k , and so we choose k ≈ 1
2 log2(ω).

In Pollard’s Λ method, two deterministic random walks are computed.
Once a collision can be found between the two walks, then the discrete
logarithm can be solved. The algorithm is as follows:

(1) Partition the group into k sets Si, for i = 0, · · · , k − 1 and define
the following deterministic random walk:

xi+1 = f(xi) = xig
sj if xi ∈ Sj .

(2) Compute the first deterministic random walk, starting from g0 =
gb, by setting gi = f(gi−1) for i = 1, · · · , N . In the mean time set
c0 = b and compute ci+1 = ci + sj mod n, so that ci logg(gi) for
each i. Store (gN , cN ).

(3) Compute the second deterministic random walk starting from h0 =

h = gx by setting hi+1 = f(hi) = hig
s′j . Set d0 = 0 and compute

di+1 = di + s′j mod n. Note that

logg(hi) = x+ di mod n.

If the path of the hi’s meets that of the path of the gi’s, then the
hi’s will carry on the path of the gi and we will be able to find a
value M where hM equals our stored point gN . At this point we
have

cN = logg(gN ) = logg(hM ) = x+ dM ,

and so the solution to our discrete logarithm problem is given by

x = cN − dM mod q.

If a collision is not obtained, then increase N and continue both
walks in a similar manner until a collision does occur.
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3.5. Parallel Pollard’s ρ Method. Suppose we are given the discrete
logarithm problem h = gx in a group G of prime order n. We first decide
on an easily computable function

H : G→ {1, · · · , k},

where k is usually around 20 (i.e. partition G into k subsets). Then we
define a set of multipliers mi for i ≤ k, who are produced by generating
random integers ai, bi ∈ {0, · · · , n− 1} and then setting

mi = gaihbi .

To start a deterministic random walk we pick randomly s0, t0 ∈ {0, · · · , n−
1} and compute

g0 = gs0ht0 ,

the deterministic random walk is then defined on the triples (gi, si, ti) where
gi+1 = gi ·mH(gi);

si+1 = si + aH(gi) mod n;

ti+1 = ti + bH(gi) mod n.

Hence for every triple (gi, si, ti), gi = gsihti .
Suppose there are m processors, each processor starts a different de-

terministic random walk from a different starting position using the same
algorithm to determine the next element in the walk. When two processors,
or even the same processor, meet an element of the group that has been seen
before, then gsihti = gs

′
jht

′
j and one can solve for the discrete logarithm x.

Hence we expect that after O(
√
πn/2/m) iterations of these parallel walks

we will find a collision.
However as described above, each processor needs to return every ele-

ment in its computed deterministic random walk to a central server which
then stores all the computed element, so the storage requirement isO(

√
πn/2),

very large and highly inefficient. The storage can be reduced as follows.
Define a function d : G→ {0, 1} such that d(g) = 1 around 1

2t of the time,
for example setting d(g) = 1 if a certain subset of t of the bits representing
g are zero and d(g) = 0 if otherwise. Now only those triples such that
d(gi) = 1 will be stored and hence the storage becomes O(

√
πn/2/2t).

On the other hand, one expects to continue another 2t steps before a
collision is detected between two deterministic random walks. Hence, the
computing time becomes O(

√
πn/2/m + 2t). This allows the storage to

be reduced to any manageable amount, at the expense of a little extra
computation.

4. Modern Method for DLP over Finite Fields
We need a definition
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Definition 14.1. Let Fq be a finite field of characteristic p. Write

p = e(c+o(1))(log q)lp (log log q)1−lp
= Lq(lp, c).

Then

Fq is of


high characteristic if lp > 2

3 ,

medium characteristic if 1
3 ≤ lp ≤

2
3 ,

small characteristic if lp < 1
3 .

The case lp = 1
3 or 2

3 is called the boundary case.

Definition 14.2. A polynomial f over a field F is called B-smooth if
every irreducible factor of f is of degree < B.

Proposition 14.3. One has
(1) The probability Pr(x ≤ n, x is B-smooth) =

( log n

logB

)− logn
logB

(1+o(1))
.

(2) The probability Pr(f : deg f ≤ n, f is B-smooth) =
( n
B

)− n
B
(1+o(1))

.
(3) The probability Pr(x ≤ LN (α1, c1) is LN (α2, c2)-smooth) is equal to

LN (α1 − α2,− c1
c2
(α1 − α2)).

4.1. Adleman Index Calculus Method. This method is to solve
DLP for F×

p where p is a prime.

Algerithm 14.3 (Adleman’s Algorithm for DLP over F×
p ). Set B =

Lp(
1
2 , c) with c to be determined. The factor base F is the set of primes

≤ B, i.e., F = {π ∈ Z | π is prime, π ≤ B}.
(1) Relation Collection Phase: Randomly pick i ∈ {0, · · · , p−2}, compute gi
mod p ∈ {0, · · · , p− 1}. Determine if gi mod p is B-smooth, if yes, then

gi =
∏
π∈F

πeπ mod p.

Then we get a relation

i ≡
∑
π

eπ logg π mod (p− 1).

Repeat until the linear system of the relations has rank |F|.
(2) Linear Algebra Phase: Solve the linear system, then compute logg π for
all π ∈ F .
(3) Individual Algorithm: Randomly pick k ∈ {0, · · · , p − 2}, compute hgk
mod p until it is B-smooth, then

hgk ≡
∏
π∈F

πcπ mod p,

and hence
logg h =

∑
π∈F

cπ logg π − k mod (p− 1).
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We now give Complexity Analysis of Adelman’s Algorithm. Let T1 be
the time to produce the linear system, T2 be the time to solve the linear
system, and T3 be the time to compute logg h.

We know T3 ≤ T1 and T2 = O(|F|3) = Lp(
1
2 , 3c). By Prime Number

Theorem, |F| ≈ B
logB , then Step 1 needs to collect |F| ≈ B

logB relations, so
the time cost T1 is

|F| · 1

Pr(gi is B-smooth) = |F| · Lp(
1

2
,− 1

2c
) = Lp(

1

2
, c+

1

2c
).

If T1 ≈ T2, then 3c = c + 1
2c and c = 1

2 . The overall running time is then
Lp(

1
2 ,

3
2).

4.2. Number Field Sieve. This is the best method up to now to solve
DLP of F×

q . For medium and high characteristic, the complexity applying
Number Field Sieve is Lpn(

1
3). We give a sketch of this method here.

Suppose q = pn. Pick f1, f2 ∈ Z[x], two monic and irreducible polyno-
mials of degree n. Then

Fq = Fn
p = Z[x]/(f1) = Z[x]/(f2).

Let θi be a root of fi, Ki = Q(θi), then [Ki : Q] = n. Let the conductor fθi =
[OKi : Z[Qi]], where OKi is the ring of integers of Ki. Let B = Lpn(

1
3 , c

′)
with c′ to be determined. The factor base F is

F = {p : is prime in OKi , NKi/Q(p) ≤ B or p | (fθi)}.

The pair (a, b) ∈ Z2 is called B-smooth if NKi/Q(a+ bθi) ∈ Z is B-smooth.
The idea of Number Field Sieve is to find a lot of relations just like Adleman’s
Algorithm so that the linear system is solvable and in turn DLP is solved.
The best result we know so far is:

(1) High characteristic: Lpn

(
1
3 ,

3

√
64
9

)
;

(2) Medium characteristic: Lpn

(
1
3 ,

3

√
96
9

)
;

(3) Boundary lp = 2
3 case: Lpn

(
1
3 ,

3

√
48
9

)
.





CHAPTER 15

Hash Functions

Hash functions represent a third cryptography type alongside symmetric
and asymmetric cryptography. It provides a number quantity that repre-
sents the input data, just like a finger print to a person. A cryptographic
hash function is easy to generate a hash value from the input, but very dif-
ficult to reproduce the input by performing calculations on the generated
hash. This property makes hash functions very useful in cryptography, in
particular, the integrity and authenticity of messages.

1. Hash Functions
1.1. Definition and basic properties.

Definition 15.1. A cryptographic hash function h is a function which
takes arbitrary length bit strings as input (often called a message) and pro-
duces a fixed length bit string as output (often called a hash code or hash
value or the hash of the message), i.e.

h :
⋃
i≥1

Fi
2 → Fn

2 , m 7→ h(m)

satisfying the following three properties:
(1) Preimage Resistance: Given a hash value y, it is hard to find a

message m such tat h(m) = y.
(2) Collision Resistance: It is hard to find two messages with the same

hash value.
(3) Second Preimage Resistance: Given one message, it is hard to find

another message with the same hash value.

Lemma 15.1. Second Preimage Resistance implies Preimage Resistance,
Collision Resistance implies Second Preimage Resistance and hence Preim-
age Resistance.

Proof. We prove Second Preimage Resistance implies Preimage Resis-
tance. Given a message m, compute y = h(m). If finding the preimage is
easy, we can find a message m′ such that y = h(m′). Then m and m′ have
the same hash value. □

From definition, a Hash function is not reversible: there exist two mes-
sages sharing the same hash value, but the collision resistance property
makes it very difficult to find a collision. Thus a hash function does create

117
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a largely unique and fixed-length hash value based on the original message.
Any slight change to the message will change the hash. Hashes cannot be
used to discover the contents of the original message, or any of its other char-
acteristics, but can be used to determine whether the message has changed.
In this way, hashes provide confidentiality, but not integrity. Sending a
message along with its hash value, the receiver can verify its integrity by
simply hashing the message again using the same algorithm and comparing
the two hashes: if they agree, the message is not changed; if they do not
match, the message has been altered.

1.2. Designing Hash Functions. The most common way of con-
structing a hash function is to iterate a compression function on the in-
put message. The compression function is usually designed from scratch
or made out of a block cipher. Once the compression function is given,
Merkle-Damgärd find the following algorithm to construct Hash functions.

Algerithm 15.1 (Merkle-Damgärd Construction Algorithm). Suppose
f : Fs

2 → Fn
2 is a compression function with s > n, which is believed to be

collision resistant. Let l = s− n.
(1) For a message m, add zeros to m so that the number of bits of m

is a multiple of l bits in length.
(2) Add a final block of l bits which encodes the original length of m,

(thus the original message m has < 2l bits).
(3) Divide the message m into t blocks of l bits long, m1, · · · ,mt, i.e.

m = (m1|m2| · · · |mt), set

H0 ∈ Fn
2 and Hi = f(Hi−1|mi), i = 1, · · · , t.

Output Ht = H(m), the hash value of m.

1.3. Families of Hash functions. The following families of hash func-
tions have been used:

• MD4: This has 3 rounds of 16 steps and an output bitlength of 128
bits.
• MD5: This has 4 rounds of 16 steps and an output bitlength of 128

bits.
• SHA-1: This has 4 rounds of 20 steps and an output bitlength of

160 bits.
• RIPEMD-160: This has 5 rounds of 16 steps and an output bitlength

of 160 bits.
• SHA-256: This has 64 rounds of single steps and an output bitlength

of 256 bits.
• SHA-384: This is identical to SHA-512 except the output is trun-

cated to 384 bits.
• SHA-512: This has 80 rounds of single steps and an output bitlength

of 512 bits.
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In recent years a number of weaknesses have been found in almost all of the
early hash functions in the MD4 family, for example MD4, MD5 and SHA-1.
Hence, it is wise to move all applications to use the SHA-2 algorithms.

2. Message Authentication Codes (MAC)
Given a message and its hash code, as output by a cryptographic hash

function, the integrity of data is persevered by recomputing the hash and
comparing the two hash values. However, using a hash function in this way
requires the hash code itself to be protected in some way, by for example a
digital signature, as otherwise the hash code itself could be tampered with.
To avoid this problem one can use a form of keyed hash function called a
message authentication code, or MAC.

Suppose two parties, who share a secret key, wish to ensure that data
transmitted between them has not been tampered with. The sender uses
the shared secret key and a keyed algorithm to produce a check-value, or
MAC, which is sent with the data, i.e. he transmits

m ‖ MACk(m)

where MAC is the check function, k is the secret key and m is the message.
If moreover the users wants the message to remain confidential, the

sender should encrypt it before applying the MAC, i.e. the sender should
transmit

ek1(m) ‖ MACk2(ek1(m)).

To produce a secure MAC from a hash function one needs to be a little
more clever. A MAC, called HMAC, occurring in a number of standards
documents works as follows:

HMAC = h(k ‖ p1 ‖ h(k ‖ p2 ‖ m)),

where p1 and p2 are strings used to pad out the input to be hash function
to a full block.





CHAPTER 16

Key Exchange and Signature Schemes

1. Diffie-Hellman Key Exchange
The Diffie-Hellman Key Exchange (DHKE) is a method that allows two

parties that have no previous knowledge of each other to securely estab-
lish a shared secret key over a public channel. This key can then be used
to encrypt communications using a symmetric key cipher. This was the
first widely-used method of safely developing and exchanging keys over an
insecure channel.

Diffie Hellman Key Exchange Algorithms was made public by Diffie and
Hellman (again in their 1976 paper) to overcome the problem of key agree-
ment and exchange of symmetric key cryptography. It was said that the
scheme was created by Ralph Merkle in 1976. This development was ex-
tremely valuable among public key cryptography and is still implemented in
today’s security protocols.

Algerithm 16.1 (Diffie-Hellman Key Exchange, DHKE). Suppose G
is a abelian group generated by g. The basic message flows for the Diffie-
Hellman protocol are given in the following diagram:

Alice Bob
a ga −→ ga

gb ←− gb b

The two parties each have their own ephemeral secrets a and b. From these
secrets both parties can agree on the same secret session key:

(1) Alice can compute K = (gb)a, since she knows a and received gb

from Bob.
(2) Bob can also compute K = (ga)b, since he knows b and received ga

from Alice.

The safeness of Diffie-Hellman key exchange is based on the hardness of
the the Diffie-Hellman problem (DHP) for G. Eve, the attacker, can see the
messages ga and gb. For her to recover the secret key K = gab, what she
needs to do is exactly solving DHP.

Example 16.1. Take p = 2147483659, G = F×
p = 〈2〉 and g = 2.

Alice Bob
a = 12345 b = 654323
A = ga = 428647416 ←→ B = gb = 450904856
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The shared secret key is then computed via

K = Ba = Ab = 2ab = 1333327162.

It seems that the key distribution problem is solved by DHKE, but there
is an important issue: you need to be careful who you are agreeing a key
with. Alice has no assurance that she is agreeing a key with Bob, which can
lead to the following person in the middle attack:

Alice Eve Bob
a −→ ga, gb ←− b
gm ←− m,n −→ gn

k1 = gma k2 = gnb

Hence, Eve can be the middle person between Alice and Bob (both not
knowing this). Then, we need to know the person you are agreeing with is
really the one you are intending to communicate with!

2. Digital Signature Schemes
2.1. Requirement for public key siganture. The basic idea behind

public key signatures is as follows:
(1)

Message+Alice’s private key=Signature,

Message+Signature+Alice’s public key=YES/NO.

(2)
Message+Alice’s private key=Signature,

Signature+Alice’s public key=YES/NO+Message.

The main idea is that only Alice can sign a message, which could only from
her since only Alice has access to the private key(Signing Process). On
the other hand anyone can verify Alice’s signature, since everyone can have
access to her public key (Verification).

The main problem is how are the public keys to be trusted? How do you
know a certain public key is associated to a given entity? You may think
a public key belongs to Alice, but it may belong to Eve. Eve can therefore
sign checks etc., and you would think they come from Alice. Thus if the
signature is valid, the recipient gets a guarantee of three important security
properties:

(1) Message Integrity: The message has not been altered in transit.
(2) Message Origin: The message was really sent by Alice.
(3) Non-Repudiation: Alice can not claim she did not send the message.
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2.2. RSA signature algorithm. The RSA encryption algorithm is
particularly interesting since it can be used directly as a signature algo-
rithm with message recovery. Suppose N = pq ≈ 2n, (N, e) is the public
key, (p, q, d) is the private key, m is the message and h : F∞

2 → Fn
2 is

the cryptographic hash function. Alice applies private key d to generate a
signature s:

s ≡ h(m)d mod N

Bob applies Alice’s public key e to check if
se ≡ h(m) mod N

.
Note that the three security guarantee suggest that a hash function needs

to have the three properties in its definition:
(1) Preimage Resistance: If not, for some random r, Eve can com-

pute h′ = re mod N and m = h−1(h′), then she now has Alice’s
signature (m, r) on the message m.

(2) Collision Resistance: If not, then the signature can be attacked by
a legitimate signer. Choose two message m and m′ with h(m) =
h(m′). He signs m and outputs the signature (m, s). Later he can
repudiate this signature, saying it was really a signature on the
message m′.

(3) Second Preimage Resistance: If not, an attacker obtains your sig-
nature (m, s) on a message m. The attacker finds another message
m′ with h(m′) = h(m). Now the attacker has the signature (m′, s).

3. Digital Signature Algorithm
We have already presented the RSA digital signature scheme. You may

ask why we need another one?
(1) What if someone breaks the RSA algorithm or finds that factoring

is actually easy?
(2) RSA is not suited to some applications since its signature genera-

tion is a very costly operation.
(3) RSA signatures are very large (1024 bits or longer), some applica-

tions require smaller signature footprints.
One algorithm which addresses all of these concerns is the Digital Signature
Algorithm, or DSA. One sometimes sees this referred to as the DSS, or
Digital Signature Standard. Although originally designed to work in the
group F×

p , where p is a large prime, it is now common to see it used using
elliptic curves, in which case it is called EC-DSA. The elliptic curve variants
of DSA run very fast and have smaller footprints and key sizes than almost
all other signature algorithms.

The DSA domain parameters are all public information and are much
like those found in the ElGamal encryption algorithm:

(1) p is a large prime number between 512 and 2048 bits;
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(2) q is a 160 bit prime number such that q | p− 1;
(3) Random choose an integer x less than p and compute g = x

p−1
q , if

g = 1 then we pick a new value of x until we obtain g 6= 1, this
ensures that g is an element of order q in the group F×

p , i.e. gq = 1
mod p.

Then the domain parameters are (p, q, g).
Alice generates her own private signing key x such that 0 < x < q. The

associated public key is y = gx mod p. To sign a message m the Alice
performs the following steps:

(S1) Compute the hash value h = H(m).
(S2) Choose a random ephemeral key, 0 < k < q.
(S3) Compute r = (gk mod p) mod q.
(S4) Compute s = (h+ xr)/k mod q.

The signature on m is then the pair (r, s). Notice this signature is therefore
around 320 bits long.

To verify the signature (r, s) on the message m, the verifier performs the
following steps:

(V1) Compute the hash value h = H(m).
(V2) Compute a = h/s mod q.
(V3) Compute b = r/s mod q.
(V4) Compute v = (gayb mod p) mod q.
(V5) Accept the signature if and only if v = r.

Example 16.2. Let q = 13, p = 4q + 1 = 53 and g = 16. The private
key x = 3, the public key y = g3 mod p = 15. To sign a message which has
hash value h = 5, we first generate the ephemeral secret key k = 2 and then
compute

r = (gk mod p) mod q = 5, s = (h+ xr)/k mod q = 10.

To verify this signature the recipient computes
a = h/s mod q = 7, b = r/s mod q = 7.

v = (gayb mod p) mod q = 5.

Remark 16.1. For security reason, the primes p and q should satisfy:
(1) p > 2512, although p > 21024 may be more prudent, to avoid attacks

via the Number Field Sieve.
(2) q > 2160 to avoid attacks via the Baby-Step/Giant-Step method.

3.1. DSA for arbitrary groups. DSA can be generalized to an arbi-
trary finite abelian group in which the discrete logarithm problem is hard.
We write G = 〈g〉 for a group generated by g. Assume that

(1) g has prime order q > 2160.
(2) The discrete logarithm problem with respect to g is hard.
(3) There is a public function f such that f : G −→ Z/qZ.
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(4) A secret key x is chosen, and the public key y is again given by
y = gx.

Signatures are computed via the steps:
(S1) Compute the hash value h = H(m).
(S2) Choose a random ephemeral key, 0 < k < q.
(S3) Compute r = f(gk).
(S4) Compute s = (h+ xr)/k mod q.

The signature on m is then the pair (r, s). To verify the signature (r, s) on
the message m the verifier performs the following steps:

(V1) Compute the hash value h = H(m).
(V2) Compute a = h/s mod q.
(V3) Compute b = r/s mod q.
(V4) Compute v = f(gayb).
(V5) Accept the signature if and only if v = r.

4. Schnorr Signatures
Suppose G is a public finite abelian group generated by an element g of

prime order q. The public/private key pairs are just the same as in DSA,
namely the private key is an integer x in the range 0 < x < q and the public
key is the element y = gx. To sign a message m using the Schnorr signature
algorithm:

(1) Choose an ephemeral key k in the range 0 < k < q.
(2) Choose the associated ephemeral public key r = gk.
(3) Compute e = h(m ‖ r), notice how the hash function depends both

on the message and the ephemeral public key.
(4) Compute s = k + xe mod q.

The signature is given by the pair (e, s). The verification step is simple, we
first compute r = gsy−e, the signature is accepted if and only if e = h(m ‖ r).

The Schnorr signature is often used in a challenge response situation. To
see this, we give the following scenario. A smart card wishes to authenticate
you to a building or an ATM machine. The card reader has a copy of your
public key y = gx, while the card has a copy of your private key x:

Card Card reader
x (private key) y = gx (public key)

k, r = gk −→ r
e ←− e

s = (k + xe) mod q −→ s

Then the reader verifies the signature by checking if gs = rye.

5. Authenticated Key Agreement
Recall that the man in the middle attack worked because each end did

not know who he/she was talking to. We can now authenticate each end
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by requiring the parties to digitally sign their messages. We will still obtain
forward secrecy, since the long-term signing key is only used to provide
authentication and is not used to perform a key transport operation.

The protocol invented by Menezes, Qu and Vanstone, now called the
MQV protocol, offers another way to share a key:

Alice Bob
(A = ga, b) (long term) (B = gb, b) (long term)

(c, C = gc) −→ C
D ←− (d,D = gd)

In this way Alice knows A,B,C,D, a and c, and Bob knows A,B,C,D, b
and d.

Let l denote half the bit size of the order of the group G. To determine
the session key, Alice now computes

(A1) Convert C to an integer i.
(A2) Put sA = i mod (2l) + 2l.
(A3) Convert D to an integer j.
(A4) Put tA = j mod (2l) + 2l.
(A5) Put hA = c+ sAa.
(A6) Put PA = (DBtA)hA .

Bob runs the same protocol but with the public and private keys swapped
around in the obvious manner, namely

(B1) Convert D to an integer i.
(B2) Put sB = i mod (2l) + 2l.
(B3) Convert C to an integer j.
(B4) Put tB = j mod (2l) + 2l.
(B5) Put hB = d+ sBb.
(B6) Put PB = (CAtB )hB .

Then PA = PB is the shared secret.
To see why the PA computed by Alice and the PB computed by Bob are

the same, we notice that the sA and tA seen by Alice, are swapped when
seen by Bob, i.e. sA = tB and sB = tA. Setting log(P ) to be the discrete
logarithm of P to the base g, we see that

log(PA) = log((DBtA)hA)

= (d+ btA)hA

= d(c+ sAa) + btA(c+ sAa)

= d(c+ tBa) + bsB(c+ tBa)

= c(d+ sBb) + atB(d+ sBb)

= (c+ atB)hB

= log((CAtB )hB )

= log(PB).



CHAPTER 17

Elliptic Curves

1. Elliptic Curves over general fields
1.1. Definition. Let K be a field. Let K be a fixed algebraic closure

of K.

Definition 17.1. An elliptic curve E is a non-singular cure of genus 1
with a point O. If moreover the curve is defined over K and the point O is
a K-rational point, then E is called an elliptic cure over K.

In the set K3−{(0, 0, 0)}, we say (X,Y, Z) ∼ (λX, λY, λZ) for λ ∈ K×.
This defines an equivalence relation on this set. The projective plane P2(K)
is the set of equivalent classes, if letting (X : Y : Z) be the equivalent class
of (X,Y, Z), then

P2(K) = {(X : Y : Z) | (0, 0, 0) 6= (X,Y, Z) ∈ K3}.

The affine plane A2(K) = K2 is a subset of P2(K) via the embedding
(x, y) 7→ (x : y : 1).

A point (X : Y : Z) ∈ P2(K) is called K-rational if there exists λ ∈ K×

such that (λX, λY, λZ) ∈ K3. Then P2(K) is just the set of K-rational
points of P2(K).

We now have a more explicit definition of elliptic curves:

Definition 17.2. An elliptic curve E over K is the locus

E = {(X : Y : Z) | F (X,Y, Z) = 0} ⊂ P2(K)

of a non-singular homogeneous polynomial F (X,Y, Z) of degree 3 given by
(17.1)
F (X,Y, Z) = Y 2Z + a1XY Z + a3Y Z

2 − (X3 + a2X
2Z + a4XZ

2 + a6Z
3),

with a1, a2, a3, a4, a6 ∈ K, where the non-singular condition means that the
system of equations

(17.2) F (X,Y, Z) =
∂F

∂X
=
∂F

∂Y
=
∂F

∂Y
= 0

has no solutions in K.
The set E(K) is the set of K-rational points of E. The point (0 : 1 :

0) ∈ E(K) is called the point at infinity and denoted by O. The equation
F (X,Y, Z) = 0 is called the projective Weierstrass equation of E.
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Suppose (X : Y : Z) is a point in E. If Z = 0, then X = 0 by the
defining equation and (X : Y : Z) = (0 : 1 : 0) = O. If Z 6= 0, then
(X : Y : Z) = (x : y : 1) where x = X

Z and y = Y
Z , and (x, y) is a solution of

f(x, y) = 0 where
(17.3) f(x, y) = F (x, y, 1) = y2 + a1xy + a3y − x3 − a2x2 − a4x− a6.
By the identification of (x, y) and (x : y : 1), then

E = {(x, y) | f(x, y) = 0} ∪ {O}.
The equation f(x, y) = 0 is called the affine Weierstrass equation of E. Often
we just say E is the elliptic curve f(x, y) = 0. For a point P = (x, y) =
(X : Y : Z) in E, we call (x, y) the affine coordinate and (X : Y : Z) the
projective or homogeneous coordinate of P .

Remark 17.1. Note that the projective equation can also be obtained
from the affine equation:

F (X,Y, Z) = Z3f(
X

Z
,
Y

Z
).

The defining polynomial F (X,Y, Z) is determined by ai ∈ K for i =
1, 2, 3, 4, 6. Set 

b2 = a21 + 4a2

b4 = a1a3 + 2a4

b6 = a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

c4 = b22 − 24b4, c6 = −b32 + 3b2b4 − 216b6.

Then the number
∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 = (c34 − c26)/1728

where the latter equality requires char(K) 6= 2, 3 characterizes the singular-
ity condition:

F is non-singular if and only if ∆ 6= 0.

Definition 17.3. The discriminant ∆(E) of E is the number ∆, and
the j-invariant j(E) of E is the number j(E) =

c34
∆ .

Proposition 17.1. Two elliptic curves E and E′ are isomorphic over
K if they are related by a linear change of variables of the form

x′ = µ2x+ r, y′ = µ3y + sµ2x+ t

with µ ∈ K× and r, s, t ∈ K.

Through change of variables, one can simplify the Weierstrass equation
of E (up to isomorphism) as follows:

(1) If charK 6= 2, changing (x, y to (x′, y′) = (x, 12(y− a1x− a3)), then
the equation becomes y′2 = 4x′3 + b2x

′2 + b4x
′ + b6.



1. ELLIPTIC CURVES OVER GENERAL FIELDS 129

(2) If moreover charK 6= 3, changing (x, y) to (x′, y′) = (x−3b2
36 , y

108),
then the equation becomes y′2 = x′3 − 27c4x

′ − 54c6. This means
that if charK 6= 2, 3, one can always assume E is defined by

E : y2 = x3 + ax+ b, a, b ∈ K.
In this case

∆ = −16(4a3 + 27b2), j = −1728(4a)3/∆.
(3) If charK = 2, then E is defined by (i) the equation y2 + xy =

x3+a2x
2++a6 with a6 6= 0 or (ii) y2+a3y = x3+a2x+a6, where

the latter if and only if j(E) = 0 or equivalently a1 = 0.

Theorem 17.1. Two elliptic curves E and E′ are isomorphic over K if
and only if their j-invariants j(E) = j(E′).

Example 17.1. Let E : y2 = x3+x+5, E′ : y′2+4x′y′+3y′ = x′3+x′+1,
and E′′ : y′′2 = x′′3 + 4x′′ + 4 are elliptic curves defined over K = F7. Then
j(E) = j(E′) = j(E′′) = 5.

E ∼= E′ :

{
x = 4x′ + 3,

y = y′ + 2x′ + 5.
and E ≇ E′′ over F7.

1.2. Group Law. The following theorem tells us for an elliptic curve
E over a field K, E(K) is an abelian group.

Theorem 17.2. There exist an operation “+”, such that E is an abelian
group with O the identity under this operation. This means

(1) (Associativity): for points P , Q, R of E, (P+Q)+R = P+(Q+R).
(2) (Commutativity): for points P and Q of E, P +Q = Q+ P .
(3) (Identity element): for any point P of E, P +O = O + P = P .
(4) (Inverse) for any point P of E, there exists a unique point −P such

that (−P ) + P = O.

The group law can be described as follows. Let P : (x1, y1) and Q :
(x2, y2) be two different points on the elliptic curve E, we start by drawing
the line PQ through P and Q. The line intersects E at three points, namely
P ,Q and one other point R = (x3,−y3). We take that point R and reflect it
across the x-axis to get a new point R′ = (x3, y3), the point R′ is then the
“sum of P and Q”, we write P + Q = R′. If P = Q, then use the tangent
line at P to replace the line PQ.

For simplicity, suppose E : y2 = x3 + ax + b and the coordinates of P
and Q are (x1, y1) and (x2, y2). Then the line PQ has equation y = λx+ µ
with λ and µ explicitly determined by xi and yi. Now x1 and x2 are roots
of the cubic equation

(λx+ µ)2 = x3 + ax+ b.

Viète’s Theorem then tells us the third root x3 = λ2− x1− x2. By this way
we can write down the group law explicitly.
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Proposition 17.2. Let E be defined by y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6. Suppose P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3) = P1 + P2.
Then

(1) The inverse of P is −P1 = (x1,−y1 − a1x− a3)
(2) If Q 6= ±P (hence x1 6= x2), let

λ =
y2 − y1
x2 − x1

, µ =
y1x2 − y2x1
x2 − x1

;

if Q = P , let

λ =
3x21 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
, µ =

−x31 + a4x1 + 2a6 − a3y1
2y1 + a1x1 + a3

.

Then {
x3 = λ2 + a1λ− a2 − x1 − x2,
y3 = −(λ+ a1)x3 − µ− a3.

Corollary 17.1. Let P1 = (x1, y1), P2 = (x2, y2) and P3 = P1 + P2 =
(x3, y3).

(1) If charK 6= 2, 3, assume E/K : y2 = x3 + ax + b. Then −P1 =
(x1,−y1) and

(17.4) x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1
where

λ =


y2 − y1
x2 − x1

, if P 6= ±Q,
3x21 + a

2y1
, if P = Q, y1 6= 0.

(2) If charK = 2, and assume j(E) 6= 0 and E : y2+xy = x3+a2x
2+a6

with a6 6= 0, then −P = (x1, x1 + y1) and

(17.5) x3 = λ2 + λ+ a2 + x1 + x2, y3 = λ(x1 + x3) + x3 + y1

where

λ =


y2 − y1
x2 − x1

, if P 6= ±Q,
x21 + y1
x1

, if P = Q, x1 6= 0.

1.3. Multiplication by n. For n ∈ Z, if n > 0, we let [n]P = P +
· · ·+P (n times), and [−n]P = −[n]P . Then [n] is a group homomorphism
of E.

2. Elliptic Curves over Finite Fields
2.1. Basic properties. Let K = Fq be a finite field, q = pf and

char Fq = p > 0. Then E(Fq) is a finite abelian group determined by

E(Fq) = {(x, y) | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}.
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Note that if (x, y) is a point of E, then f(xq, yq) = f(x, y)q = 0 and hence
(xq, yq) is also a point of E.

Definition 17.4. For E/Fq, the q-Frobenius of E is the homomorphism
φ = φq : (x, y) 7→ (xq, yq) and O 7→ O.

One easily checks that φ(P +Q) = φ(P )+φ(Q) and φ is indeed a group
homomorphism.

Theorem 17.3. Let t = q+1−#E(Fq). Then φ2− [t]φ+[q] = O, which
means for every point (x, y) of E, (xq2 , yq2)− [t](xq, yq) + [q](x, y) = O.

The number t is actually the trace of φq acting on the Tate module of
E. Let αq, βq be two roots of x2 − tx+ q = 0, then

αq + βq = t, αq · βq = q.

Theorem 17.4 (Hasse). One has |αq| = |βq| =
√
q, and for all n ≥ 1,

#E(Fqn) = qn + 1− αn
q − βnq . In particular,
|t| = |q + 1−#E(Fq)| ≤ 2

√
q.

Definition 17.5. E is called anomalous if t = 1, i.e. #E(Fq) = q. E is
called supersingular if p | t.

We note that the elliptic curve discrete logarithm problem (ECDLP) is
then: given points P and Q on the elliptic curve E over a finite field Fq,
find n, such that [n]P = Q.

In application, elliptic curves over Fq for either q = p a large prime or
q = 2p with p prime are more important than other cases, as the associated
ECDLP is harder to crack. Supersingular elliptic curves are now used in
Post-quantum cryptography.

2.2. Addition using projective coordinates. As we know, division
operation is needed for addition of points of an elliptic curve. This is ex-
pensive even for finite fields. To avoid this problem, in practice people often
use the homogeneous coordinates instead of the affine coordinates.

2.3. Point Compression. To store a point (x, y) ∈ E in a computer,
one can use the point compression via a bijection: (x, y) ∈ E ←→ (x, b1)
where b1 is just one bit.

(1) For large prime characteristic q = p. Suppose E : x3 + ax + b. For
P = (x, y), then

y = ±
√
x3 + ax+ b = either

√
x3 + ax+ b or p−

√
x3 + ax+ b ∈ Fp.

Identifying Fp and {0, · · · , p − 1}, then their parities are different. Let b1
be the parity of y, i.e., b1 = 1 if y is odd and 0 if y is even. Conversely, to
recover (x, y) from (x, b1), let β =

√
x3 + ax+ b, then y = β if the parity

of β is b1 and y = p − β if the parity of β is not b1. This establishes the
bijection.
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(2) For even characteristic, let q = 2n. Suppose E : y2+xy = x3+a2x+
a6. For P = (x, y), let b1 = 0 if y = 0 and be the least significant bit of
z = y

x if y 6= 0.
To recover (x, y) given (x, b1): If x 6= 0, let α = x + a2 +

a6
x2 and β be

a solution of z2 + z = α. If the least significant bit of β is b1, set y = xβ,
otherwise set y = x(β + 1). This works since y/x and 1 + y/x are the two
roots of z2 + z = α for (x, y) a point of E : y2 + xy = x3 + a2x+ a6.



CHAPTER 18

Applications of Elliptic Curves

1. ECDLP-based algorithms
Analogue to DLP of finite fields, based on ECDLP, we have the elliptic

curve variants of the cryptographic algorithms mentioned before.

1.1. EC-ElGamal Encryption. The public parameter: E is a given
elliptic curve over a finite field F, P ∈ E(F) is of prime order q. The private
key: x, the public key: Y = [x]P .

(1) Encryption: to encrypt G ∈ E(F), generate some random key k,
compute c1 = [k]P and c2 = G+ [k]Y . Then (c1, c2) is the ciphertext of G.

(2) Decryption: G = c2 − [x]c1.

1.2. EC-DH (EC Diffie-Hellman). Given (E,G) with E an elliptic
curve over a finite field F and G ∈ E(F).

Alice Bob
a b

A = [a]G B = [b]G

Then [b]A = [a]B = [ab]G. The shared key K = x([ab]G) is the x-coordinate
of [ab]G.

1.3. EC-DSA. The public parameter is (E/F, P ) with P ∈ E(F) a
point of prime order q. The private key is x, the public key is Y = [x]P , the
message is m, the hash value of m is H(m) = h.

(1) Signature: Choose a random k, r = x([k]P ), s = (h+ xr)/k mod q.
The signature is (r, s).

(2) Verification: a = h
s mod q, b = r

s mod q, Z = [a]P + [b]Y , check if
r = x(z).

Example 18.1. Suppose E : Y 2 = X3 +X + 3 is an elliptic curve over
F199. Then #E(F199) = 197 = q is prime and P = (1, 76) is of order q.
Let x = 29 be the private key, then the public key Y = [x]P = (113, 91).
Suppose H = H(m) = 68.

• Choose a random k = 153, then [k]P = [153](1, 76) = (185, 35).
Hence r = 185 and s = 68+29·185

153 = 78 mod 197. The signature
(r, s) = (185, 78).
• a = 68

78 = 112, b = 185
78 = 15, Z = [112](1, 76) = [15](113, 191) =

(185, 35), hence r = x(Z).
133
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1.4. Development of attacks on ECDLP. The attack on EC-DLP:
• Menezes-Okamato-Vanstone attack (MOV attack,1993): Using Weil-

pairing to reduce it to DLP for finite field.
• Frey-Miiller-Riick (1999): Using Tate pairing.
• Diem (2011): Using Index calculus and summation polynomial

based on Algebraic Geometry, this is the first sub-exponential al-
gorithm

2. Elliptic curve primality test
The following is the Pocklington primality test which can prove a given

number n is a prime or not.

Proposition 18.1 (Pocklington Primality Test). Suppose there exist a
prime q such that q | n− 1. If there exists a such that

(1) an−1 ≡ 1 mod n,
(2) gcd(an−1/q, n) = 1.

Then n is a prime.

Proof. If n is not a prime, then there exists a prime p that p | n and
p ≤
√
n. Since q > p− 1, gcd(q, p− 1) = 1, there exists µ such that µ = q−1

mod (p− 1). Then

a(n−1)/q ≡ aµq(n−1)/q ≡ aµ(n−1) ≡ 1 mod p.

This contradicts to (2). □

The elliptic curve primality test, due to Goldwasser-Lilian and in another
variant by Atkin, is an analog of Pocklington’s test.

Suppose n is a pseudo-prime which had already passed the Miller-Rabin
primality test. We shall work on elliptic curves over the ring Z/nZ. Suppose
E : y2 = x3 + ax + b mod n and P = (x1, y1) and P2 = (x2, y2). We want
to add P1 and P2. This is done by the formula in Corollary 17.1(1). There
are three cases: (i) if x1 = x2 and y2 = −y1, then P1 + P2 = O; (ii) if the
denominator x1−x2 or y1 is invertible in Z/nZ, just apply (17.4); (iii) if the
denominator is not invertible, then n must be composite and the gcd of the
denominator and n is a factor of n. Hence we may assume (iii) will never
happen.

Proposition 18.2. Let E : y2 = x3 + ax + b mod n. Let m ∈ Z such
that it has a prime factor q ≥ (n

1
4 + 1)2. If there exists a point P ∈ E such

that
mP = O and (mq )P 6= O,

then n is a prime.

Proof. If n is not a prime, there exists a prime factor p of n such that
p ≤

√
n. Let Ep : y2 = x3 + ax + b mod p, m′ = #E(Fp). By Hasse’s

Theorem, m′ ≤ p+ 1 + 2
√
p ≤ (n

1
4 + 1)2 < q, hence gcd(q,m′) = 1.
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Let µ = q−1 mod m′ and P ′ be the image of P in Ep, then

(
m

q
)P ′ = µq(

m

q
)P ′ = O.

However, kP ′ in Ep is calculated using the same addition formula like in E,
then (mq )P 6= O implies that (mq )P

′ 6= O in Ep. □

Algerithm 18.1 (Elliptic curve Primality Test). Suppose n is a pseudo-
prime.

(1) Randomly choose a, x, y mod n, let b = y2 − x3 − ax mod n, P =
(x, y) and E : y2 = x3 + ax+ b mod n.

(2) Use Schoof’s algorithm, assuming n is a prime, compute m = #E(Fn)
which is roughly n:

(A) If m can not be written as m = kq with k small and q is a pseudo-
prime, choose new a, x, y, and start again.

(B) Now m = kq, k is small, and q is a pseudo-prime, then q >

(n
1
4 + 1)2. Compute mP and kP .
• If mP 6= O, then n is composite.
• If mP is undefined, then n is composite and can be factorized.
• If kP = O, start again.
• If mp = O and kP 6= O, then by proposition, n is a prime if q

is a prime.
(3) Prove the primality of q < n

2 .

3. Factorization Using Elliptic Curve
This method is due to H. W. Lenstra.
Suppose n is the number to be factorized and all its prime factors > 100.

Proposition 18.3. Let E : y2 = x3+ax+b, a, b ∈ Z such that gcd(4a3+
27b2, n) = 1. Let P1 and P2 6= −P1 be two point in E whose coordinates
have denominators prime to n, then P1 + P2 ∈ E has coordinates with
denominators prime to n if and only if there exists no prime p | n such that
the sum pf their images P̄1 and P̄2 in the elliptic curve Ē = E mod p over
Fp is not the infinity point O.

Proof. The condition gcd(4a3 + 27b2, n) = 1 is nothing but the poly-
nomial x3 + ax + b mod p has no multiple roots for p | n, or equivalently
gcd(x3 + ax+ b mod p, 3x2 + a mod p) = 1.

Let p | n. Let x̄i and ȳi be the images of xi and yi in Fp, which are
well-defined since the coordinates of P1 and P2 have denominators prime to
n.

Suppose P1 + P2 ∈ E has coordinates with denominators prime to n.
By (17.4), if x̄1 6= x̄2, then P̄1 + P̄2 6= O. If x̄1 = x̄2, then P̄1 = ±P̄2. If
P̄1 = P̄2 and if ȳ1 6= 0, then P̄1 + P̄2 6= O. If P̄1 = P̄2 and if ȳ1 = 0, then
3x̄21+a = 0 since P1+P2 ∈ E has coordinates with denominators prime to n,
this means x3+ax+ b mod p has multiple roots, not possible. If P̄1 = −P̄2
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and P2 6= ±P1, then x̄1 = x̄2 and ȳ1 = −ȳ2. But in this case x2 6= x1. Let
x2 = x1 + prx with p ∤ x, The condition and (17.4) imply that pr | y2 − y1.
Then ȳ1 = ȳ2 = 0 and pr+1 | (y22−y21). But y22−y21 = prx(3x21+a) mod pr+1,
then p | 3x21 + a and again not possible. Thus for all p | n, P̄1 + P̄2 6= O.

Conversely suppose P̄1 + P̄2 6= O for all p | n. If x̄1 6= x̄2, (17.4) implies
that the coordinates of P1 + P2 have no denominators divisible by p. If
x̄1 = x̄2, then ȳ2 = ±ȳ1, but since P̄1 + P̄2 6= O, ȳ2 = ȳ1 6= 0. If P1 = P2,
(17.4) implies that the coordinates of P1+P2 have no denominators divisible
by p. If P1 6= ±P2, write x2 = x1 + prx with p ∤ x, then

y2 − y1
x2 − x1

=
y22 − y21

(y2 + y1)(x2 − x1)
≡ 3x21 + a

y2 + y1
mod p

and P1 + P2 has no coordinates with denominators divisible by p. □
Algerithm 18.2 (Elliptic curve Factorization). Suppose n is a number

to be factorized and all its prime factors > 100.
(1) Choose a, x, y ∈ Z, b = y2−x3−ax such that gcd(4a3+27b2, n) = 1.

Let E : y2 = x3 + ax+ b and P = (x, y) ∈ E(Q).
(2) Let B=smooth bound, C=a given bound,

k =
∏

l prime
l≤B

lαl ≤ C.

Compute successively kP = (xk, yk) and (xk mod n, yk mod n). If at some
point, xk and yk have no inverse mod n, then the denominators and n are
not prime to each other. Note that

p ≤
√
n, C ∼ #E(Fp) ≤ p+ 1 + 2

√
p.
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Stream Cipher

Suppose the encryption system of a symmetric cipher is c = ek(m), and
the decryption system is m = dk(c), where m is the plaintext, e is the
encryption function, d is the decryption function, k is secret key, and c is
ciphertext.

1. Principles of Symmetric Ciphers
Kerokoff’s principle is the guideline to design a symmetric cipher: e and

d are public knowledge and the secrecy of the message given the ciphertext
depends totally on the secrecy of the secret key k. Thus the number of
possible keys must be large! Nowadays the size of the key space should be
around 280.

The best scheme of symmetric ciphers should satisfy:
(1) It must have been studied extensively.
(2) Worked for a long time.
(3) This is no known way to break it.

Note that this is not the case for a commercial secret.
The stream cipher is secure if the key is different for every message and

the key is as long as message. For the practical reason, we use short key for
long message and reuse keys.

Passive attack: The Attacker is only allowed to listen to encrypted mes-
sages.

Active attack: The adversary is allowed to insert, delete or reply mes-
sages between the two communication parties.

2. Stream Cipher basic
A Stream Cipher is an encryption method and is part of symmetric

cryptography. It encrypts an arbitrary length of plain text, one bit at a
time, with an algorithm that uses a key. This method is not much used now
in modern cryptography.

For a stream cipher, the key stream generator generates the key stream
(ki) by the secret key, then the plaintextmi is encrypted eith the key ki to the
ciphertext ci = mi⊕ki. For example, ifmi = (110010101), ki = (101001110),
then ci = (011011011). Certainly the decryption is nothing but mi = ci⊕ki

137
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For a stream cipher to be secure, the key should never be used more
than once. Otherwise,

c1 ⊕ c2 = (m1 ⊕ k)⊕ (m2 ⊕ k) = m1 ⊕m2.

This means that one needs to change keys frequently, either on a per message
or a per session basis. There are two ways to generate keys:

• Public key cryptography, which can generate session key and mes-
sage key.
• Stream cipher/block cipher, which is based on actual data.

Moreover, the key stream should be unpredictable, i.e. it should satisfy
the following properties:

(1) Long period: if there exists N such that ki = ki + N , N must be
large.

(2) Pseudo-random properties: The generator should produce a se-
quence with appears to be random. In other words, it should pass
a number of statistical random tests.

(3) Large linear complexity: Determining more of the sequence from a
part should be computationally infeasible.

Stream ciphers have two primary advantages. The keystream can be pre-
calculated and buffered, which increases the speed. The second advantage
is that if there is a bit error in the ciphertext, only one bit in the plaintext
is effected. Stream ciphers also have two disadvantages. First the effort
for initialization is quite high, thus high speed can only be achieved with
longer plain texts. The second disadvantage is that the entire ciphertext
must always decrypt together. One can not decrypt the ciphertext by parts.

3. Linear feedback shift register
A stream cipher needs to generate a key stream which is a (pesudo)-

random sequence generated through a number of random seed values that
use digital shift registers. The Linear feedback shift register is often used to
fulfill this purpose.

Recall for an initial internal state: [sL−1, · · · , s0], let sj = c1sj−1+ · · ·+
cLsj−L for j ≥ L, then we get an infinite periodic sequence: (s0, s1, s2, · · · )
which is called a linear feedback shift register sequence generated by LSR(f)
where the connecting polynomial f(x) = 1− c1x− · · · − clxL. Let

M =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
cL cL−1 . . . c1

 .

then (sj−L+1, . . . , sj) = (sj−L, . . . , sj−1) ·M and f(x) = det(xM − IL). We
also note that:

• If cL 6= 0, the sequence is purely periodic.
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• If cL = 0: the sequence is not purely periodic, but periodic after
some terms.

The following theorem about linear feedback shift register is pivotal for
pseudo-randomness:

Theorem 19.1. Let f(x) = 1 − c1x − · · · − clxL ∈ Fq[x] and f̂(x) =

−c−1
L f(x), (cL 6= 0). If f̂(x) is a primitive polynomial over Fq[x], then any

sequence generated by LSR(f) is an m-sequence, which means that:
(1) Its smallest period is qL − 1.
(2) It is a pseudo-random sequence: #{i | si = 0} = qL−1 − 1 and

#{i | si = b} = qL−1 for all b 6= 0.
(3) Every non-zero sequence generated by LSR(f) is obtained by trans-

lation from any given non-zero sequence.

Definition 19.1 (Linear complexity). For an infinite sequence s =
(s0, s1, . . . ), the linear complexity of s, denoted by L(s) = LC(s), is de-
fined as:

(1) L(s) = 0 if s = 0,
(2) L(s) =∞ if no LFSR generates s,
(3) otherwise L(s) is the length of the shortest LFSR generates s.

Note that L(s) ≤ N if s is periodic of period N .

Example 19.1. Let sn = (s0, . . . , sn−1). Then
(1) 0 ≤ L(sn) ≤ n,
(2) L(sn) = ln where ln is given in Berlekamp-Massey’s Algorithm.

Theorem 19.2. If 2ln ≤ n and LSR(fn) generates (s0, . . . , sn−1) from
(s0, . . . , sln−1), then fn is unique.

To generate key streams for a stream cipher, we need the case that q = 2

and f̂(x) is primitive over F2[x]. We now assume this is the case.
If we use LFSR of size L to generate a key stream for a stream cipher, and

the aggressor obtains at 2L bits of the key stream, then they can determine
LFSR by Berlekamp-Massey’s Algorithm. Then we need to use LFSR in
a non-linear way (high non-linearity, producing sequences with high linear
complexity).

4. Combining LFSRs
In practice, one needs to non-linearly combine LFSRs to achieve high

linear complexity and low correlation.

Example 19.2 (Gefle Generator). Three LFSRs of periods L1, L2, L3

respectively. Let
z = f(x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x3.

The linear complexity is L1L2 + L2L3 + L3, the period is (2L1 − 1)(2L2 −
1)(2L3 − 1), but Pr(z = x1) = Pr(z = x3) =

3
4 .
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Example 19.3 (Filler Generator). One single primitive LFSR, z =

F (s1, . . . , sL) with F of non-linearity order m. Then L(z) =
∑m

i=1

(
L
i

)
.

Example 19.4 (Alternating step generator). Three LFSR of size L1, L2, L3,
which are pairwise coprime of roughly the same size.

If x1 = 1

{
LFSR-2(x2) = x2

x3 = x3
If x1 = 0

{
x2 = x2

x3 = LFSR-3(x3)

Then the period is 2L1(2L2 − 1)(2L3 − 1) and the linear complexity is (L2 +
L3)2

L1 .

Example 19.5 (Shrinking generator).{
LFSR-1 −→
LFSR-2 −→ If x1 = 1,output x2, otherwise output nothing −→ .

Period: (2L2 − 1)2L1−1, linear complexity: L2 · 2L1 .

Example 19.6 (As over 1 generator for GSM mobile phone).

LFSR:


x18 + x5 + x2 + x+ 1, L1 = 19

x21 + x+ 1, L2 = 22

x22 + x15 + x2 + x+ 1, L3 = 23

For the three LFSRs
c1 = the 10-th position in LFSR-1,
c2 = the 11-th position in LFSR-2,
c3 = the 12-th position in LFSR-3,
m = c1c2 + c2c3 + c3c1.

If m = ci, compute LFSR-i, output exclusive-or of the three sequences.



CHAPTER 20

Block Cipher

The block cipher is also a symmetric cpher, just like the stream cipher,
in which a key and algorithm are applied to blocks of data rather than
individual bits in a stream. Block cipher prefers in the DES and AES crypto
standards and can also be resource-saving and fast, which makes it more
widely used than stream cipher.

In a block cipher: block, the plaintext is a block m, the secret key is k,
The cipher function is e, the ciphertext is c, i.e. e(m, k) = c.

The most famous block ciphers are
• DES: Data Encryption standard (mid-1970s). (NSA: national se-

curity agency. NIST: national institute of standards)
• AES: Advanced Encryption Standard (2000, NIST, invented by

Rijndael)

1. Feistel Cipher and DES
1.1. Feistel Cipher. This was invented by H. Feistel at IBM in 1970’s.
Suppose the alphabet is F2 = 0, 1, t is the block length. For a key k, the

encryption function f is the function f(k,R) = fk(R) with both R and the
values of f in Ft

2. Feistel cipher is a 2t length block cipher as follows. Let
K be the key space and r be the rounds.

(1) Take K ∈ K, generate round keys: K1,K2, . . . ,Kr.
(2) (Encryption) For P = (L0, R0) the plaintext of length 2t with L0

and R0 both t bits, for 1 ≤ i ≤ r, compute (Li, Ri) = (Ri−1, Li−1⊕
fKi(Ri−1)). Then Ek(P ) = Ek(L0, R0) = (Rr, Lr).

(3) (Decryption) For 1 ≤ i ≤ r, (Ri−1, Li−1) = (Li, Ri ⊕ fKi(Li)),
repeat this and get (L0, R0).

We see that Feistel Cipher has very nice properties:
• f can be chosen arbitrarily.
• Encryption and decryption are the same, just using the round keys

in the reverse order for decryption.
This leaves the following problems:

(1) How to generate K1, · · · ,Kr from K ∈ K?
(2) How many rounds to take?
(3) How to choose f?

141
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1.2. DES. This is a variant of Feistel cipher.
In DES, the rounds r = 16, the block length n = 64, the key length is 56

bits. Then K = F56
2 and |K| = 256. The round key length is 48 bits. Since

the key space is small (|K| = 280 is required), for safety reason, now 3-DES
(use DES for three times and use different keys K) is used.

To describe the encryption of DES, we first define:
(1) Initial permutation IP : F64

2 −→ F64
2 is given by the table

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

whose inverse IP−1 is

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

(2) Expansion permutation E : F32
2 −→ F48

2 is given by

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

(3) S-boxes: there are 8 DES S-boxes: for 1 ≤ i ≤ 8, Si = (sis,t)0≤s≤3,0≤t≤15,
with sis,t ∈ F4

2 = {0, 1, · · · , 15}, see Figure 1.
For (a1, a2, a3, a4, a5, a6) ∈ F6

2, let s = a1a6 = a1 + a6 · 2 and t =
a2a3a4a5 = a2 + a3 · 2 + a4 · 4 + a5 · 8, then Si gives the map

Si : F6
2 → F4

2, (a1, a2, a3, a4, a5, a6) 7→ sis,t.
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Table 1. DES S-Boxes

S-Box 1
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S-Box 2
15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S-Box 3
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S-Box 4
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S-Box 5
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S-Box 6
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S-Box 7
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S-Box 8
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
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(4) P-box: (F4
2)

8 −→ F32
2 is given by

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

Now the Encryption is as follows. Suppose P is the plaintext block.
(1) Compute IP(P ) = (L0, R0).
(2) Compute 16 DES rounds to get (R16, L16).
(3) The ciphertext block is C = IP−1(R16, L16).

For each round, the function fKi(R) is defined as follows:
• For R ∈ F32

2 , by expansion get E(R) ∈ F48
2 ;

• Compute and write E(R)⊕Ki = B1B2 · · ·B8 ∈ F48
2 , Bi ∈ F6

2;
• fKi(R) = (C1C2 · · ·C8) with Ci = Si(Bi).

The DES key schedule is as follows. First note that the 56-bit key is actually
input as a bitstring of 64 bits comprising of the key and eight parity bits in
bit positions 8, 16, · · · , 64 for error detection, which ensure that each byte
of the key contains an odd number of bits.

(1) PC− 1 is the permutation of the key K given by

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

hence no parity bits are left and a 56 bits is produced.
(2) Now suppose K = (C0, D0) with C0 and D0 both 28 bits. For

1 ≤ i ≤ 16, let

Ci = Ci−1 ≪ Pi, Di = Di−1 ≪ Pi

where ≪ means shift to the left by Pi positions, where

Pi =

{
1, if i = 1, 2, 9, 16,

2, if otherwise.
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Now the map PC− 2 : F56
2 → F48

2 given by
14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

produces the i-th round key Ki = PC− 2(Ci, Di).

2. AES (Rijndael)
AES, originally named Rijndal, is invented by Belgian cryptographers

Daemen and Rijnmen.
Before we start, first note that the polynomial m(x) = x8+x4+x3+x+1

is an irreducible polynomial in F2[x], then we identify F28 = F2[x]/m(x) with
F8
2 via

F28 ←→ F8
2

a(x) = a0 + a1x+ · · ·+ a7x
7 ←→ (a7, a6, · · · , a0).

i.e., a byte is identified with an element in F256. Note that a byte (a7, a6, · · · , a0)
is also identified with the hexadecimal string {a, b} if

∑
ai2

i = a × 16 + b.
A string of 32 bits is called a word, consisting 4 bytes via the following
identification:

32 bits ∈ F32
2 ←→ F4

28 = F28 [X]/(X4 + 1)

(a0 ‖ a1 ‖ a2 ‖ a3) ←→ a3X
3 + a2X

2 + a1X + a0.

For Rijndael, blocks are of size 128, 192 or 256 bits (then number of
words Nb = 4, 6, 8), and keys are of size 128, 192 or 256 bits (then number of
words Nk = 4, 6, 8). The number of rounds Nr = 10, 12 or 14 if Nk = 4, 6, 8
respectively.

For simplicity, we consider the block size and the key size are both 128
and the number of rounds is 10. In this case, blocks and keys are regarded
as 4× 4 matrices of bytes, and if each word represents a column of 4 bytes,
then and they can also be viewed as row vectors of four words.

The following four operations are used in Rijndael.
(1) SubBytes: There are two types of S-Boxes used in Rijndael: One for the
encryption rounds and one for the decryption rounds, each one being the
inverse of the other. We shall describe the encryption S-Box, the decryption
one will follow immediately. This S-Box is performed in 2 steps:

• The inverse of s = [s7, · · · , s0] ∈ F28 is computed to produce a new
byte x = [x7, · · · , x0] (assume 0 7→ 0).
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• A new byte y is obtained via the linear transform:

y0
y1
y2
y3
y4
y5
y6
y7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


·



x0
x1
x2
x3
x4
x5
x6
x7


+



1
1
0
0
0
1
1
0


.

(2) ShiftRows: This is the transform
s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33

 −→

s00 s01 s02 s03
s11 s12 s13 s10
s22 s23 s20 s21
s33 s30 s31 s32

 .

In general, the i-th row shift to the left for ci positions with ci given by the
table:

Nb c0 c1 c2 c3
4 0 1 2 3
5 0 1 2 3
6 0 1 2 3
7 0 1 2 4
8 0 1 3 4

(3) MixColumns: A word a, i.e. a column of 4 bytes is regarded as a
polynomial a0 + a1X + a2X

2 + a3X
3 ∈ F28 [X], then the new word b =

b0 + b1X + b2X
2 + b3X

3 is just given by
(a0+a1X+a2X

2+a3X
3)({0, 2}+{0, 1}X+{0, 1}X2+{0, 3}X3) mod (X4+1).

This correspondence can be written as matrix multiplication.
(4) AddRoundKey: this is the map sending S to S ⊕Ki (byte by byte).

Algerithm 20.1 (Rijndael Encryption). Suppose S is the plaintext
block. Then S is encrypted as follows:

(1) AddRoundKey(S,K0),
(2) For i = 1 to 9, SubBytes(S), ShiftRows(S), MixColumns(S),

AddRoundKey(S,Ki).
(3) SubBytes(S), ShiftRows(S), AddRoundKey(S,K10).

Algerithm 20.2 (Rijndael Decryption). Suppose S is the ciphertext
block. Then S is decrypted as follows:

(1) AddRoundKey(S,K10), InverseShiftRows(S), InverseSubBytes(S)
(2) For i = 9 to 1, AddRoundKey(S,Ki), InverseMixColumns(S),

InverseShiftRows(S), InverseSubBytes(S).
(3) AddRoundKey(S,K0).
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We are left to describe the Key schedule.

Algerithm 20.3 (Rijndael Key Schedule). Suppose the main key K =
128 bits is written as (k0, k1, k2, k3) of 4 words. The round keys Ki =
(W4i,W4i+1,W4i+2,W4i+3) are produced by the following way:

(1) W0 = k0,W1 = k1,W2 = k2,W3 = k3.
(2) For i = 1 to 10, T = RotbBytes(W4i−1) where RotbBytes is the

map rotating a word to the left by one byte, T = SubBytes(T ),
T = T ⊕ RCi where RCi = xi in F28. Then

W4i =W4i−1 ⊕ T,
W4i+1 =W4i−3 ⊕W4i,

W4i+2 =W4i−2 ⊕W4i+1,

W4i+3 =W4i−1 ⊕W4i+2.


