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Chapter 0

Introduction

0.1 Modular Curves

Let H= {z € C;z = z + iy, y = Im(z) > 0} be the Poincaré upper half
plane, and let SLy(R) = {(2}%)€ Mz(R),ad — bc = 1}, then SLy(R) acts

transitively on the upper plane H by Z)z = ?jis .

Definition 0.1. Let N € N, SLy(Z) = { (CCL Z) € My(Z),ad — be = 1}.
Define the subgroups

(2 ) s (¢ )= s )
Fl(N):{(Z )ESL2 ( Z)E((l) ’1‘) mod N |
FO(N):{(a Z) ESLQ(Z);CEOmOdN}.

Then I'(N) C I'1(N) C T'g(IV) C SLy(Z) are some fundamental examples
of congruence subgroups of Sly(Z). By definition, a subgroup I' of SLy(Z)
is said to be a congruence subgroup if there exist N € N, such that
['(N) C T C SLy(Z).

A congruence subgroup I is a discrete subgroup of SLy(R).Such a sub-
group acts properly discontinuously on H: for any K, Ky compact sub-
sets of H|, the set {y € T',y - K1 N Ky # 0} is a finite set.

We will show that Y (I') = I"'\H is endowed with the structure of Riemann
surface. It is possible to add a finite set of points {ci,...,¢,} called cusps
of T such that X(I') = Y(I') U {c¢1,...,¢,} has a structure of a compact
Riemann surface.



CHAPTER 0. INTRODUCTION

The upper half plane H is endowed with a SLy(R)-invariant measure
dpy = d‘;'fy: for all @ € SLy(Z), a* - dug = dpg. For any congruence subgroup
I, we'll show Volg,, (M\H) = [r\ 5 dpo is finite.

We say that I' is a lattice in H.

0.2 Elliptic Curves

Over C, there are three equivalent ways of defining elliptic curves.

1. A couple (E,O), consisting of a compact Riemann surface E of genus
1, and a point O of E(C). (The point O is the origin of E(C).)

2. Let I' be a lattice of C , then £ = C/T" , is endowed with the structure
of a Riemann Surface of genus 1 with origin I'O.

3. An algebraic curve with an equation of the form
v =2+ Ax+ B
in C?s.t. A =—(4A3+27B%) #0.

There is an abelian group structure on E(C) (clear from the 2nd defini-
tion). “Modular curves”=“Hyperbolic analogue of elliptic curves”. The 3rd
definition extends to more general fields, such as Q, R, Q,,F,,.

Fundamental links between Modular Forms and Elliptic curves:

Proposition 0.2.1. SLy(Z)\H is a “moduli space” for elliptic curves over
C. For any 7 € H, we define the lattice I, = Z®7Z1 C C, and the associated
elliptic curve E, = C/T,.

(a) Any elliptic curve over C is isomorphic to E, for some T € H

(b) The two elliptic curves E, and E.. are isomorphic if and only if there
exists 7 € SLo(Z) s.t. 7' =~ -1

More generally, if I' is a congruence lattice (ex. I' = T'(N), I'1 (V) , To (N)),
then Y(I') = I'\H is a moduli space for “elliptic curves endowed with some
extra structures”.

Example 0.1. We saw that F(C) has the structure of an abelian group. A
point P € E(C) is said to be a torsion point of E(C) , if there is N s.t.
[N] P=0 (< Pe+I')Tif E=C/T.)

2



0.3. ZETA FUNCTION AND L-FUNCTION

We'll show that Y;(N) = I'1(IV)\H is a moduli space for couples (E, P)
where E is elliptic curve over C and P € E(C) is a torsion point of order N.

The purpose of the course is to give a more arithmetic link between mod-
ular curves and elliptic curves.

0.3 Zeta Function and L-function

The fundamental example is the Riemann Zeta function

1 1
C<S):Z$: H 1_p—s'

n>1 p prime

The Dirichlet Series Y7, = is convergent for Re(s) > 1. We have an
analytic continuation of ((s) to C (with a simple pole at s = 1). There is a
functional equation: let

As) == 7D(s/2)((s) ,

then
Al —s)=A(s) .

If F is an elliptic curve over Q, we will define an associated L-function
L(E,s) = Zann_s = HLP(E ,S) .
n=1 p

We will also define the L-function of a modular form f on I'\H for a
congruence subgroup I' of SLy(Z). A modular form f will be interpreted as
an holomorphic differential form on I'\H .

The goal of the course is to give a precise meaning to the following
statement :

Conjecture 0.1 (Taniyama-Weil conjecture, Wiles’ theorem). For

any elliptic curve E over Q, there exist an integer N = Ng(called the con-
ductor of E) and a modular form f for I'o(N) such that L(E ,s) = L(f,s).

0.4 The L-function of an Elliptic Curve over
Q

We start with an elliptic curve over Q defined by an equation

v =2 +ax+b;a,be QA =—(4a® +270*) £ 0 .

3
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For almost all prime numbers p, a,b € Z,, and the curve in IF?, with
equation
v =23 +axr+b. (0.1)
where a@,b € [F, are mod p reduction of @ and b, is an elliptic curve over F,,.
(A = —(4a® + 27b?) £ 0)
Let #(E(F,)) be the number of solutions of the equation (0.1) in F, x IF,,.
We will show the following proposition:

Proposition 0.4.1. If we write a, = p — #(E(F,)), then |a,| < 2,/p.

We then define )

1 — app—s + p1—2$
for all “good primes”. We will also give a definition of L,(E,s) for the
remaining “bad primes”.

By definition,

L,(E,s)=

L(E,s) = [] Ly(E.s).

p prime

0.5 The L-function L(f,s) of Modular Form f

Let I' be a congruence subgroup of SLy(Z) (ex. I' =T'(NV), 'y (N), o (N)).
A modular form of weight 2k for I' is a holomorphic function f on H
such that

1. Vv = (‘;3)6 IVzeH, f(v-2) :f(%is) = (cz+d)** f(2).

2. A holomorphic condition at the cusps {cy,...,c,} of I.

We remark that there exists r € N | s.t. 79 = ((1J 71”)6 . If fis a weight
2k modular form, then f(vy-2) = f(2+7r) = f(2), so f is r-periodic. Assume
r = 1 for simplicity, then the theory of Fourier series tells us that

f(Z) _ Zane2i7mz - Zanqn

neZ neZ
where g = €27,
The holomorphic condition in 2. implies in fact that

f(z) = Z ang" = Zan(f)qn
n>0 n>0
i.e, a, =0, for n < 0. We then define

L(f,s) = an(f)n".

n>1



0.6. CENTRAL RESULTS OF THE COURSE

0.6 Central Results of the Course

e The space Mo(I") of weight 2k-modular forms for I' is finite dimen-
sional. The dimension of My (I") will be computed using the Riemann-
Roch theorem on the compact Riemann surface X (I') = I\HU{¢y ......, ¢, }.

e There is a basis Z = {f1, f2,..., fr} of (almost all) My (") s.t. for
any i € {1,...,r},

L(fi,s) = H : H Ly(firs) -

— N\p—S 2k—1,—2s
p good primes 1 ap(fl )p +p y4

p bad primes

(There are only finitely many bad primes.) And it is not too difficult
to prove that L(f;, s) admits an analytic continuation relating L(f;, s)
and L(f;, 2k — s).

e The existence of such an Euler product is given by the existence of
Hecke operators acting on Mop(T'). The f; € A are eigenfunctions
of Hecke operators. The existence of the Hecke operators comes from
the fact that I' is an arithmetic lattice (< [Commgr,mw)(I') : I'] = oo,
where Commgy,®)(I') := {& € GLo(R) ;I and al’a™! are commensurable }.
Two subgroups I' and I" are said to be commensurable if and only
if ' NI is of finite index in I" and I").

Conjecture 0.2. For any elliptic curve E over Q, there is an N = Ng,
and a weight 2 modular form f for T'o(N) such that for all prime p,

Ly(E,5) = Ly(f,s).

By the definitions of L,(E,s) and L,(f,s), this means that a,(E) =
ap(f)-

Moreover, we'll see that there is a natural model Xy(N)g of Xo(N)c
over Q, i.e, a curve C over Q such that

C®yC=Ty(N)\HU -  cusps of I'y(N) }.

Then the Taniyama-Weil conjecture is equivalent to the following state-
ment.

Conjecture 0.3. There exists a non-constant morphism of algebraic
curves over Q
¢+ Xo(N)g — Eg.-

5
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If a is a holomorphic differential form on E/Q, then ¢*a = c- f where
c € V=1mQ and f is a modular form on Xo(N) such that L(f,s) =
L(E,s).

Remark 0.1. (a) Using the relation a,(E) = a,(f), we get |a,(f)] < 2/ (a
deep result conjectured by Ramanujan and proved by Deligne) as |a,(F)| <
2,/p is an easy result.

(b) It’s easy to prove that L(f,s) has an analytic continuation to C and
a functional equation relating L(f,s) and L(f,2 — s). Using the Taniyama-
Weil conjecture we get an analytic continuation and a functional equation
for L(E, s).

Note that (b) is very important in the formulation of the Birch and
Swinnerton-Dyer conjecture.

Conjecture 0.4. Let E/Q be an elliptic curve over Q. By the Mordell-Weil
theorem E(Q)/E(Q)iors = Z" for some integer r = rank(E/Q)(the rank of
E/Q). Thenr =ords—1 L(E,s).



Chapter 1

Modular Functions and
Modular Forms

1.1 The Modular Group

Let G = SLy(R) and H = { z € C| Im(2z) > 0 }. We have an action of SLy(R)
on H: (24)z= %IZ.

Exercise 1.1. Verify that this is indeed an action.

Lemma 1.1.1. The action of SLy(R) is not free as —1d acts trivially but
G = G/{£1d} acts freely.

Proof. For g = (2%)e SLy(R),

b
g.Z:&Z+ =z, VeeEH<=c2+(d—a)z+b=0,Vz € H
cz+d
<< b=c=0,d=a
This is also equivalent to g = £ 1Id since 1 = ad — bc = a?. ]

Lemma 1.1.2. SLy(R) acts transitively on H.

Proof. Any z € H is in the orbit of i = v/—1 because we have

12 g0 —1/2\ .
(yO yy1/2)1:1'—|—1y.
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Lemma 1.1.3. The stabilizer of i = v/—1 is

Stabst,m) (1) = S0(2) = {( " Z) L+ = 1.}

Proof. For g = (2%)e SLy(R),

ai+b
a—+d

g-i= =i<= —c—-b+i(d—a)=0,

= c=-b,d=a,1=ad—bc=da*>+1°.

Corollary 1.1.4. We have a homeomorphism:
SLy(R)/SO(2) — H
950(2) — g -i

yl/2 xy—1/2)

whose tnverse is given by z = x + iy ( 0 412

Remark 1.1. One can show that SO(2) is a compact subgroup of SLy(R),
maximal among compact subgroups of SLy(R). Then Corollary 1.1.4 is the
description of H as a symmetric space.

Corollary 1.1.5. We have SLy(R) = B - SO(2) where

B={(2)]acR" beR}.

0at

Proof. Let g € SLy(R). By Corollary 1.1.4, there exists b € B such that
g -i=0b-1 which is equivalent to

b lg €S0(2) <= g=0b-k, withbe B,k SO(2).
[
Definition 1.1. The group I'(1) = SLy(Z) is called the modular group.

Definition 1.2. A subgroup I' C SLy(Q) is said to be arithmetic if I’
and SLy(Z) are commensurable, i.e, if I' N SLy(Z) is of finite index in " and
SLo(Z).

Definition 1.3. A subgroup I' of SLy(Z) is said to be a congruence group
if 3N € N such that I'(V) C I



1.1. THE MODULAR GROUP

Example 1.1. I'(N) C T'y(N) C To(N).

Proposition 1.1.6. The action of SLy(Z) on H is properly discontinuous,
i.e, for any K, , Ko compact subsets of H, {v € T ;yK, N Ky # 0} is a finite
set.

Lemma 1.1.7. Let g = (2%)€ SLo(R) and z = z + iy € H. Then

Im(z)

—= > 0.
lcz + d|?

In(gz) =

Proof. Just check it by computation. O

Proof of Prop.1.1.6. Let K;, Ky be two compact subsets of H. Let ¢ > 0
such that Vw € K; U Ky, Im(w) > e.
Let v = (ﬁ Z)E SLy(Z), z = x + iy € K such that - z € K,. Then

Im(2) max,er, Im(w) M
(cx +d)2+c2y? = (cx+d)2+ 22 (cr+d)?+ 22
(1.1)

Thus, ¢ < €M3 There are therefore finitely many choices for c. As ¢ is
bounded and x is bounded, (1.1) implies there are only finitely many choices
for d.

We need to show that given a pair (¢, d) (with ged(c,d) = 1), there exist
at most finitely many (a,b)’s such that (24)K; N K, # 0.

Lemma 1.1.8. Let v = (24), v = (% Y). Then 'yt ==£({1) for some
n € Z.

e<Im(y-z)=

Proof of Lemma.1.1.8. Check it! [
Then for all z € H,
Re(7'z) = Re((§%1)72) = Re(y2) + n.

Fix v = (2 4)€ SLy(Z) such that yK;NKy # 0. Let 7' = (¢ Y )€ SLy(Z)
such that v K, N K, # 0. Fix w € K; with yYw € Ky, we have

H}l{in Re(z) < Re(y'w) = Re(yw) +n < max Re(z)
2 2

which yields

1 — <n< — mi .
min Re(z) max Re(yz) <n < max Re(z2) min Re(vyz)

One then obtains the result from the boundedness of n. O]
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Corollary 1.1.9. SLy(Z)\H is separated for the quotient topology.
Exercise 1.2. Prove Corollary.1.1.9.

Definition 1.4 (Fundamental domain). Let I' C SLy(R) be a subgroup
acting properly discontinuously on H. A fundamental domain % for I'
is an open set such that:

(i) Yz € H, 3y € T such that vz € .Z;

(i) Let 21,20 € F# and v € I'. If y2; = 25, then z; = 2z and v = £ 1d.

Example 1.2. % = {z::c—i-iy;—% <r< %,y>0,\z| > 1} is a funda-
mental domain for I' = SLy(Z).

Lemma 1.1.10. Let T be a discrete subgroup of SLa(R) and D a fundamental
domain for T'. Let I" C T be a subgroup of finite index. WriteI' = | ||_, "«
as a disjoint union of cosets, for some a; € I'. Then D' = Ul_,a;D is a
fundamental domain for I".

Proof. (a) Let z € H. There exists v € I" such that z = v-2’ with 2/ € D and
there exists ¢ € {1,2,...,7} such that v = 7/a; with o/ € T". Therefore,
z=7'(y?') €D

(b) If D' N~yD’ # (), for some v € I, there exists (i,,5) € {1,2,...,r}?
such that ya; D N «;D # (. This implies ozj_lyaiD N D # (0, and hence
a; = (£7)o;. Then we must have i = j and v = £1d. O

Exercise 1.3. Prove that it’s possible to choose the «; in such a way D’ is
connected.

Exercise 1.4. Let p be a prime number. Prove

SLz(Z):}I;_lFo(p) G DU (7 ).

Proposition 1.1.11. Let T = (§1), S = (% 7'). Then SLy(Z) is generated
by T, S.

Proof. Let T” be the subgroup of SLy(Z) generated by T and S. Then S? =
—1Id € I". Let .# be a fundamental domain for SLy(Z).

(a) Vv € SLy(Z), v - Z is also a fundamental domain.

(b) The fundamental domains v.% such that dimg(# N~7.#) = 1 are
TF,T'Z and SZ.

10



1.1. THE MODULAR GROUP

(c) Let v € SLo(Z) and let .#.,, = v.%. Then thereexist v =Id, v, ..., 7 =
v such that dimg (v # N1 F) =1, forall k=1,...,n— 1. Since

dimR(vk_l%Hﬁﬂ?) =1 7,;17“1 =45, 4T, or £T77,
v is a product of S, T, T~! and —Id = S? € I''. Hence v € I O

Definition 1.5. An element o € SLy(R) is said to be
(a) parabolic, if Tr(a) = £2 (ex. = ({1));
(b) elliptic, if | Tr(a)| < 2;
(c) hyperbolic, if | Tr(a)| > 2.

The characteristic polynomial of a is xo(X) = X? — Tr(a)X + 1 and
A =Tr(a)? — 4.
We remark that SLy(R) acts also on P'(R) = R U {oo} via the same

formula:
ac+b .
<a b)a: catd %fca+d7é0’ Va € R
c d 00, ifca+d=0
and

(a b) % , ifc#0
o0 =

c d oo, ife=0

Therefore, SLy(R) acts on HU P'(R).

Lemma 1.1.12. Let o € SLy(R) acting on HUP!(R).
(a) if a is parabolic, then a has a unique fized point z and z € P*(R);
(b) if a is elliptic, then « has a unique fized point z and z € H;
(c) if a is hyperbolic, then o has two fixed points z1 ,zy and z1 , zy are in

P(R).
Proof. Exercise, using xq(X). O

Definition 1.6. Let I' be a discrete subgroup of SLy(R). A point z € H is
said to be elliptic if 3y € ', v # +1d such that v-2z = 2. A point P € P*(R)
is said to be a cusp for I' if there exists v € I', v # £1d and ~ parabolic
such that v- P = P.

Lemma 1.1.13. If z € H is elliptic for I'(or is a cusp ), then Vy € ', vz is
elliptic (or a cusp).

Proof. If a € T', then Tr(a) = Tr(yay™!). Therefore « is elliptic or parabolic
if and only if yay~! is elliptic or parabolic. Then the result follows from the
fact that az = 2z <= yay ' (y2) = 2. O

11



CHAPTER 1. MODULAR FUNCTIONS AND MODULAR FORMS

Lemma 1.1.14. Let z € H be an elliptic point, then its fizactor Fixp(z) =
{~v €T |vz ==z} is a finite cyclic subgroup of T.

Proof. Fix o € SLy(R) such that ai = z and let ¢, : SLy(R) — SLy(R) be
the map v — a~'va. Then

FiXF<Z) = olea N FiXSLg(R) (1) = oleoz N SOQ(R)

Then Fixp(z) is a discrete subgroup of the compact group SO2(R) and hence
is finite.

Exercise 1.5. Using U' := {2 € C||z| =1} 2 SO3(R) & R/Z given by

omi0 ( cos2mh  sin 27r0) 7.

€ —sin 270  cos 27wl

prove that any finite subgroup of SO»(R) is cyclic.
[l

Lemma 1.1.15. Let 0 € PY(R) = RU{ 0o } be a cusp of I'. Then { +1d }\Fixp(0) =
Z.

Proof. Let oo € SLy(R) such that aoco = 6.
Fixp(0) 2 o 'Ta N Fixsy, g)(o0) |

and
T

Fixgp,®)(00) = { (0 xzil) |z e R,y € R} = B.

Let U:={({%)|z € R} C B. Then U = (R, +) and UNa T is discrete
and nontrivial in (R, +).

Exercise 1.6. The discrete subgroups of (R, +) are of the form Za with
a € R.

Let (g ,-1)€ BNa 'Ta with |y| < 1, then

x 1 a - 1 ay? _
656G )= 1) evnerra

But |y?| < 1 leads to a contradiction. Therefore, we get B N a 'Ta =
Una'Ta. [l

12



1.2. COMPLEX STRUCTURE ON I'\H*

Proposition 1.1.16. Let .# be the usual fundamental domain of SLa(Z).
Then the elliptic points for SLy(Z) in F are i = /—1, p = %g and
P = # Moreover,

(a) Stabr(i) = £(S) is of order 2 in SLo(Z)/{ £1d };

(b) Stabr(p) = £(T'S) is of order 3 in SLy(Z)/{ £1d };

(¢) Stabr(p®) = £(ST) is of order 3 in SLy(Z)/{ £ 1d }.

Remark 1.2. Note that p = Tp?. Therefore, the elliptic points for SLy(Z)
are SLy(Z)i U SLy(Z)p.

Proposition 1.1.17. The set of cusps of SLy(Z) is SLa(Z)oo and it is equal
to QU {0} =PHQ).

Proof. oo is fixed by T = ({ 1)€ SLy(Z) and T is parabolic. Therefore oo is
a cusp of SLy(Z).
Let ™ € Q with ged(m ,n) = 1. There exist r, s € Z such that rm —ns =
1. This gives v = (Z} i)e SLy(Z) and (’Z} i)oo = 2 ¢ Q. Therefore,
PY(Q) C SLy(Z)oo. As SLy(Z)oo C PH(Q), we find that P'(Q) = SLy(Z)o0.
Let ¢t € R such that ¢ is fixed by o = (¢4)€ SLy(Z) with Tr(a) = 2.
Then we have

ct? + (d—a)t —b=0.

Since A = (d — a)? — 4bc = (d + a)? — 4(ad — bc) = Tr(a) — 4 = 0, we have
t= —% € Q. This finishes the proof. O

1.2 Complex Structure on I'\H*

Definition 1.7. Let X be a topological space, then a “complex structure”
(of dimension 1) is a covering X = J,c; Us by open subsets and some ho-
momorphism ¢, : U, — W, where W, is a connected open subsets of C
such that if U, N Uz # 0, then tgot' : t,(Uy NUs) — t5(U, NUp) is a
biholomorphic isomorphism. Then (U,, t,) is called a “local chart”.

Definition 1.8. Two complex structures are said to be equivalent if their
union is also a “complex structure”. An equivalence class of “complex struc-

tures” is a complex structure.

Definition 1.9. A Riemann surface X is a topology space X endowed
with a complex structure of dimension 1.

13
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Example 1.3. P(C) = C? — {(0,0)}/ ~ is a Riemann surface with the
complex structure:

T

Ulz{[.%',y],y?éO}L(C, pl:[xay]'_)g

UQZ{[’I.?ny?éO}ﬁ)C; pgz[x,y]H%

It is easy to see that pi, p, are biholomorphisms as p;'(2) = [z, 1], py ' (2) =

1, z], and

proprt : pi(UiNUs) =C — po(U1 NT) =C* 5 21— =
is biholomorphic.

Example 1.4. Let D = {z € C; || < 1}, ¢, = e and let A, be the
subgroup of the holomorphic automorphisms of D generated by z = (, - z
(Therefore, A, = Z/nZ.) The function ¢,, : D — D ;z + 2" is invariant
by A,, so we get a map p,, from the diagram:

A\D —2 D

i

Then B, is an homoeomorphism from A, \ D to D, defining a complex struc-
ture of dimension 1 on A,\D.

Example 1.5. X, = {z € C;Im(z) > ¢}. Let h € Nand A = (d,) C
Autpoo(X.) generated by z — z+h. (A = Z viathe map (6, : z — z+nh) —
n.) Let X, = X.U{oo} endowed with the topology such that a fundamental
system of neighborhoods of 0o is X,, = {z € C, Im(z) > n} U {cc} for
n >> 0. Then the action of A on X, can be extended continuously to X, by
writing 6,00 = 0o, Vn € N. The function

() e%, if 2z # oo
Z) =

1 0, if 2z =00
27mc

is a homeomorphism from A\X, onto B(0,e~» ) := {z € C; 2| < e Y}
Therefore, ¢ defines a “complex structure” of dimension 1 on A\X,.

14



1.2. COMPLEX STRUCTURE ON I'\H*

1.2.1 The Case of I' = S1»(Z)

Let # : H — SLy(Z)\H, Q@ — P = 7(Q). As the action of SLy(Z) on
H is properly discontinuous, there exists a neighborhood V' of @) such that
Vy e T,V NV # 0 < ~vQ = Q. If QQ is not an elliptic point, then
V — (V) is a homeomorphism and (7(V),7~1) is a local chart at P. If Q is
an elliptic point, then P =T"-por P =T'-i. If P = SLy(Z)-i, we may assume
that @ = i. There exists a neighborhood V' of @ such that if v € SLy(Z) and
YV NV # () then v = &S or &=1d. By replacing V by VNS -V, we may
assume V' is invariant by S. Thus we have a homeomorphism induced by

7 (S)\V — w(V). Let ¢ be the holomorphic map H — B(0,1) ; z ;—:

Lemma 1.2.1. We have a commutative diagram

V—=p(V)
Sl \in—»—z
V—"0(V)
1 .
~ . i U T
Proof. By direct computation, TR T The T e

Exercise 1.7. Prove Lemma.1.2.1 by using the Schwarz Lemma.

]

z—i

The function (Z—Jrl)2 is an holomorphic function in the neighborhood of i
invariant by .S, therefore defines a function vy near P = 7(i) which gives a
local chart.

Local Chart at T'i Local Chart at Tp?
<51\V —{+ Id}i\w(V) (STJ\U — Ag\lb(U)
(V) > B(0,1) ©(U) » B(0,1)

In the same way, if Q = p*, P =T - p?, let ¢ be the map 2z — j:gz and
Az be the subgroup of holomorphic automorphisms generated by z — e 2.
Since p? is fixed by ST, we can choose a neighborhood U of p? invariant by
ST (just replacing U by U N ST - U N (ST)?*- U if necessary). The function
(%)3 is ST-invariant and therefore defines a local chart at P = m(p?).

Now we consider the complex structure at oco.

15
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We write H* = H U P!}(Q) with the following topology: a basis of neigh-
borhoods of 0o is given by Uy = {z € H; Im(z) > N}U{oo}. More generally
if c=0-00 € P}Q), then o - Uy is a fundamental system of neighborhoods
of c.

Note that

SLa(Z)\H" = SLy(Z)\H U P/(Q) = SLx(Q)\H U {oc}.

There exists a neighborhood U of oo in H*, (ex. Uygo = {z| Im(2) > 100} U
{o0}), such that Vy € SLy(Z), v-UNU # 0 <= v =+({ %) for some n € Z.
Let m : H* — SLo(Z)\H* be the natural map, under which oo — SLy(Z)oc.
We have the homeomorphisms

m(U) = ((§1)\U — B(0,e7*")

PN Q(Z) _ 627riz

and (U ,q) is a local chart at co.
The union of all local charts defines a complex structure on SLg(Z)\H*.

1.2.2 Complex Structure on I'\H* for I' C SLy(Z)

Let I" be a subgroup of finite index in SLy(Z). Then oo is a cusp for I'. There
exists n € N, such that 7" = (7)€ T (as [SL2(Z) : T] < 00). T"oo = o0
and T" is parabolic. We find that oo is a cusp for I'.

On I'\H the complex structure is defined as in the case of SLy(Z)\H. It
is possible that there exists no elliptic points for I' (if I" contains no elliptic
elements).

Exercise 1.8. If N > 3, I'(/V) contains no elliptic elements.

We have T\P(Q) = {c1,¢co,...,¢.}, 7 = [SLa(Z) : T]. Let h be the
smallest integer larger than 0 such that 7 € I'. We have the map

m(Un) = {(§1)\Ux — B(0,e7™)

PN Qh(z) _ 627riz/h

and the function ¢, defines a local chart at oo.
If ¢ = 0 - 0o with some o € SLy(Z), then o(Uy) is a neighborhood of c.
Then it is easy to see that

o~ 'Fixr(c)o = Fix,~1r,(00) = £{(} ") ; n € Z}.

16



1.3. REVIEW OF THE THEORY OF COMPACT RIEMANN SURFACES

Let q.(z) = e’fe , then o(Uy) — C ;2 — q.(0c7" - 2) defines a local
chart near c¢. The number h, is called the width of ¢, and we will write

) X(D(N)) = X(N)
B
X(T1(N) = Xi(N) .

1.3 Review of the Theory of Compact Rie-
mann Surfaces

1.3.1 Holomorphic and Meromorphic Functions

Let X be a compact Riemann Surface and V = (U;, z;)ie; be a complex
structure on X. A function f: U C X — C is said to be holomorphic (or
meromorphic) if for any i € I, foz ' : 2(UNU;) — C is holomorphic
(or meromorphic).

A map f: X — X’ between two Riemann surfaces is said to be holo-
morphic (or meromorphic) if for all P € X, there exists a local chart
(U,z) at P and a local chart (U’,z') at f(P) such that f(U) C U’ and
2o foz7l:2(U) — 2/(U’) is holomorphic (or meromorphic).

Remark 1.3. A meromorphic map f : X — C can be extended to a
holomorphic map of compact Riemann surfaces: f : X — P!(C) sending
the poles to occ.

Lemma 1.3.1. Any holomorphic map f : X — C is constant.

1.3.2 Differential Forms

A holomorphic (or meromorphic) differential form on an open set U
of C is an expression of the form f(z)dz with f holomorphic (or meromor-
phic).

Let f : U — C be a holomorphic map. Then df := %dz is called the
associated differential form to f.

Let w : U — U’ be a holomorphic map 2’ = w(z) and let a = f(2)dz’
be a differential form on U’. We denote by w*(«) the differential form on U
defined by w*(a) = f(w(z))%dz.

Let X be a compact Riemann Surface and (U; , z;);er a complex structure.
A holomorphic differential form on X is given by a family («;)es of
differential forms o; = fi(z;)dz; on z;(U;) ,Vi € I such that if w;; = z o

1

z; 1 zj(UiNUj) — 2(U; N Uj) denote the holomorphic maps given by

17
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the definition of a complex structure. Then wj;(a;) = «; (or equivalently,
fi(z5)dz; = fi(wij(25))wi;(25)dz;).

1.3.3 Some Definitions and Notations

a. M(X) will denote the field of meromorphic functions on X.
b. The abelian group

Div(X) := { Z np - [P]|np € Z and np = 0 for almost all P}

pPeX

is called the group of divisors of X.

c. A divisor D =} .y np - [P] € Div(X) is said to be effective (or non-
negative) if np > 0 for every P € X. We write D > 0 in this case. If
D,D'" e Div(X), we write D > D"if D — D" > 0.

d. The degree map

deg : (Div(X),+) — (Z,+)

Z np[P] — Z np

pPeX pPeX

is a morphism of abelian groups. We write

m; if f has a zero of order m at P

Ordp(f) = {

—-m; if f has a pole of order m at P

Let 2 : U — z(U) be a local chart at P, then foz7': 2(U) — C is
meromorphic and Ordp(f) is defined as Ord,p)(f o z71).

e. Let f € M(X), then the divisor of f, div(f) is defined as div(f) =
Y pex Ordp(f)[P] € Div(X). As div(fg) = div(f) + div(g), we find that

Divpyine(X) == {div(f) | f € M(X)}
is a subgroup of Div(X), called the group of principal divisors.
Proposition 1.3.2. For any f € M(X), deg(div(f)) = 0.

Idea of proof. Let f : X — P! be the corresponding holomorphic function.
(See Remark.1.3), then if f is not constant, f~'(a) = {ay,...,q, } is finite,
and if we count with the right “multiplicities” n;, then f*a ="' n;a;] is
defined in such a way that d = Y, n; is independent of a. Such a d is called

the degree of f. Therefore, deg(div(f)) = deg(f*0) — deg(f*oc0) = 0. O

18
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f. Two divisors are said to be linearly equivalent if there exists an f €
M(X) such that D; = Dy + div(f). If D € Div(X), we denote by |D| the
set of divisors D’ € Div(X) that are linearly equivalent to D.

g. Divisor of a differential form. Let w be a differential form on X. Let
P e X and (U, z) be a local chart at P. Then w := f(2)dz on U.

Lemma 1.3.3. The order at P of f: Ord,p)(foz") is independent of local
charts.

Proof. Let (Uy, z1), (Us, z3) be two local charts at P. Write wy = f1(z1)dz
on Uy and w = fy(29)dze on Us. The map

Wy 2 =210 Z;l . 22(U1 N U2> — 21<U1 N UQ)
is a biholomorphic isomorphism. Therefore, w; , does not vanish. As f(2y)dz, =
Silwy 2(z2))wy o(21)dz1, Ordsy(p) fo(22) = Ordy, p) fi(21)- O

We therefore define Ordp(w) = Ordp(f). The divisor of a differential
form w is div(w) := Y pox Ordp(w) - [P].

By the definitions of meromorphic functions and differential forms on X,
we see that for any holomorphic differential forms wy, wy on X, there exists
f € M(X) such that we = f-wq. As div(fw) = div(f) + div(w), we see that
the linearly equivalence class |div(w)| of w is independent of the choice of w.
We write K = div(w), and we say the K is a canonical divisor.

1.3.4 The Riemann-Roch Theorem

Let X be a compact Riemann surface, D € Div(X). We define £ (D) =
{feMX)|div(f)+ D >0} U{0}. Then £ (D) is a C-vector space and
we have the following

Theorem 1.3.4. The dimension of £ (D) is finite for all D € Div(X).
If g € M(X) and D' = D + div(g). Then the map
Z(D) — Z(D); frfg

is an isomorphism between (D) and Z(D’). Therefore, dim.Z (D) =
dim Z(D"). We write ¢(|D]) = ¢(D) = dim £ (D).

Theorem 1.3.5 (Riemann-Roch). There ezists g = gx € N such that for
any D € Div(X),

UD)—UK—-D)=degD+1—g
where (D) = dim £ (D), K is the canonical divisor, i.e, K = div(w) where

w 18 a differential form on X.

19



CHAPTER 1. MODULAR FUNCTIONS AND MODULAR FORMS

Remark 1.4. Z(0) = C = { constant functions f : X — C} as any holo-
morphic map on a compact Riemann surface is constant. Therefore, £(0) = 1.

Corollary 1.3.6. (a) degK = 2g — 2;
(b) {(K) = g. This means, the space of holomorphic differential forms on
X is of dimension g. In fact,

ZL(K)={feM(X)|div(f) +div(w) >0}
={/ e MX)|div(fw) =20}
= { holomorphic differential forms on X }

Proof. For (b), use the Riemann-Roch formula for D = 0:
1 —4(K)=100)—¢K)=1—g+0.

Therefore, ((K) = g.
(a) Use the Riemann-Roch formula for D = K

g—1=0K)—{0)=1—-g+degKk .
Therefore, degK = 2g — 2. ]
Remark 1.5. If degD < 0, then ¢(D) = 0.

Proof. Let f € £(D)—{0}, then div(f)+D > 0. This implies deg(div(f)+
D) =degD > 0.

U

Remark 1.6. If degD = 0 and |D| # |0], then £ (D) ={0}.

Proof. Let f € Z(D) — {0}, then div(f) + D > 0 and deg(div(f) + D)
degD = 0. At the same time, div(f) + D > 0. This implies D + div(f) =
and hence D = —div(f) = div(1/f). Therefore, |D| = |0].

ol

Remark 1.7. If ¢ > 1 and D = P — @, then |D| # |0|.

Proof. It D = P — Q = div(f), for some f € M(X), then f : X — P} is
such that f~1(0) = P and f~'(c0) = Q. Therefore degf = 1, and f is an
isomorphism of compact Riemann surfaces. So the genus g(X) = g(P¢) =
0. [l

Corollary 1.3.7. If degD > 2g — 2, then {(D) =1 — g+ degD.

Proof. deg(K —D) < 0= {(K — D) = 0. Then the Riemann-Roch formula
gives the result. O
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Example 1.6 (Equation for elliptic curves). Let (E', Og) be an elliptic curve.
E is a Riemann surface of genus ¢ = 1 and O € E(C). Thus deg(K) =
29 — 2 =0.

For any r e N— {0}, {(rOg) — (K —rOg) = 1 — g + deg(rOp). Note
that deg(K — rOg) < 0 and hence /(K — rOg) = 0. Therefore ((rOg) =
1 —1+r =r. Thus we have the following:

Z(0p) = C = { constant functions }.

There exists © € Z(20g) — £ (Og) (z is a meromorphic function with a
pole of order 2 at O and no other poles) such that £ (20g) = C & Cx.

There exists y € Z(30g) — Z(20g) (y is meromorphic function with a
pole of order 3 at O and no other poles) such that £ (30g) = C® Ca & Cy.

Z(40g) = C @ Cz & Cy @ Ca?.

Z((B0g) =C@®Cx @ Cy® Ca? ® Cuy.

Z(60g) = C + Cx + Cy + Ca? 4+ Czy + Cy? + Cax®. The seven elements
1,z,y,2%, 2y ,y*, 23 € Z(60g) must be linearly dependent over C. There-
fore we have an equation (changing = to ax + [ if necessary) of the form

92 +a1xy +asz = >+ a4a:2 + agx .

1.3.5 The Riemann-Hurwitz Formula

Let f : Y — X be a holomorphic function of compact Riemann surfaces.
Suppose that f is non-constant. Let d = deg(f). Then for almost all P € X,
[ (P) =d.

Let Q@ € Y, P = f(Q) € X. One may choose local charts (Ug,2g) —
D := B(0,1) such that @ — 0 and (Up,zp) — D = B(0,1) such that
P +— 0. Then

g=zpofozy : 2q(Uqg) — zp(Up)

is holomorphic and ¢(0) = 0.

By definition, the ramification index e, p is the order at 0 of g. (This
is independent of the choice of the local charts.) That is,

g(z) = az®@/? + (higher order terms), with a # 0.

If f75(P) ={Q1,...,Q; }, then >/ eg,/p = d. A point P € X such
that | f~1(P)| < d is called a ramification point of f. A point Q € Y such
that eg/p > 1 is also called a ramification point.

Theorem 1.3.8 (Riemann-Hurwitz Formula).

29y —2=d(2gx —2)+ 3 3 (eqip — 1).

PeEX Q—P
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Proof. Let w be a meromorphic differential form on X without poles or zeroes
at the ramification points.

Exercise 1.9. Prove the existence of such w.

Let Q € Y be a point such that f(Q) = P € X. If P is a point at which
w has no pole or zero and eg/p = 1, then f*w has no pole or zero at Q. If w
has a pole or a zero of order r at P (therefore eg = 1, by hypothesis), then
f*w has a pole or zero of order r at Q). If eg > 1, g = ZPOfOZél has a zero of
order eq/p at 0. If w = 0(zp)dzp on zp(Up), then g*w = 0(g(2¢))g' (2q)dzq
has a zero of order eg,p — 1 at (), as ¢ has no zero or pole at P.

Putting all these together, we reach the conclusion

2gy — 2 = deg(f'w) =r-deg(w) + > _ > (eqp —1).
P Q—P

[]

Example 1.7. Let I' C SLy(Z) be a subgroup of finite index and X (I') =
MNH* =T\HU{c¢,....c. }. Let ¢ : X(I') — X (1) = SLo(Z)\H* be the
natural map, then

C[[SLy@z) 1) i —1eT
degp = {%[SLQ(Z) T] if—1¢T

That is,
degp = d := | SLy(Z)/ £ T'| = |PSL(Z)/T|
where PSLy(Z) = SLy(Z)/{#+1d} and T is the image of I' in PSLy(Z).

Theorem 1.3.9. Let ¢ : X(I') — X (1) be the natural map and d = degep.
Let vy be the number of I'-orbits of elliptic points of order 2 for I', vz be the
number of I'-orbits of elliptic points of order 3 for ', and vy be the number
of I'-orbits of cusps. Then

(ez. g(SLa(Z)\H") =0, as d = vy = v = veo = 1.)

Proof. We'll give later a proof of the fact that ¢g(SLy(Z)\H*) = 0. This
will be a consequence of the existence of the j-map: SLy(Z)\H* — P(C),
having only a simple pole at oo and deg(j) = 1.
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We have a factorization

* T SLy(Z)\H

N T

I'\H*

Let @ € T'\H* be the image of a point R € H* and P = ¢(Q) = 7(R).

Exercise 1.10. When the ramification indices are finite, we have egr/p =
€R/Q " €Q/P-
If P=mn(i) i=+—-1), then eg/p = 2 and

either @ is of type I : carr or () is of type I : carp
€ER/Q = 2 €ER/Q = 1

In the first case, @) is elliptic of order 2 and ¢ is unramified at ). In the
second case, @ is ramified of order 2 at ). So 1 is the number of the points
of type I. Let k be the number of points of type II. Then vy 4+ 2k = d, hence
k=922 and

2

If P=m(p) then

either Q is of type I’ : ca/r or Q is of type II' : ce/r
€R/Q = 1 €R/Q = 3

Let [ be the number of elements of the type II'. Then v3 + 3] = d and
therefore [ = d_—3”3,

2d — 21/3
5 (o~ =2=2=2
Q—7(p)
If P =m(00), there are v, points of X (I') above P and
Z (GQ/p—l): Z €Q — Z 1:d—l/oo.
Q—(0) Q—m(o0) Q—(0)
By the Riemann-Hurwitz Formula, we have, using —2 = 2¢(SLy(Z)\H*) — 2,

d—vy 2
2 S(d—vs) +d— v

29 —2=d- (=2
g (—2) + 5 3
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from which it follows

d Vg U3 Vs
g =142 _ B e
9= =t Ty T3 T

]

Exercise 1.11. (1) Let Ay : SLy(Z) — SLo(Z/NZ) be the natural map.
Prove that Ay is a surjective map with kernel I'(N) which is a normal sub-
group of SLy(Z).

(2) If N =T, p, then SLo(Z/NZ) =[], SL2(Z/p**Z).

(3) [SLa(Z/NZ)| = N* T, y(1 = 32).

(4) Let 7y : X(N) = X(I'(N)) be the natural map, then

T v — ) if N >3

de =< 2 )
8(m) {6, it N = 2

(5) 2
Ve = 1L v =) N =3
2, if N =2

(6) If N > 2, I'(N) has no elliptic points (i.e, vy = v5 = 0).
2
(1) 9(X(N)) =g =1+ 57 (N =6)[[, y(1 - ) for N> 2.

1.4 Modular Functions and Modular Forms

1.4.1 Definitions
Let H* = HUPY(Q) and let T be a subgroup of finite index in SLy(Z).

Definition 1.10. A modular function for I' is a meromorphic function
on the compact Riemann surface X (I') = I'\H*. A modular function is given
by a function f on H* such that

(a) Vy €I, Vz e HY, f(v-2) = f(2);

(b) f(2) is meromorphic on H;

(c) f(2) is “meromorphic” at the cusps of I

At the cusp c =T 00 = o0,

Fixp(00) = i{ (é “1h) ‘n € Z}.
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As f((§%)2) = f(h+z) = f(z), [ defines a function f on Fixp(co)\Uy
which is a neighborhood of co, and we have a Fourier expansion in the local
parameter ¢ = >™*/" We write f*(q) = Y nez @nq" for this expansion. Then
by definition, “f is meromorphic at co” means f is meromorphic at oo, which
is equivalent to f*(q) = >_, >y, @ng" for some Ny € Z. And by definition, “f
is holomorphic at co” means f*(q) = >, o anq"™

At a cusp ¢ = 0 - 00, for some o € SLy(Z),

Fixe(c) = Fix,-1r0(00) = %] (é ”f) ez}

The function f, = f(oz) is invariant by o~ 'T'c and therefore has a Fourier
expansion in the parameter ¢ = e?™#/*_ The condition “f is holomorphic or
meromorphic at ¢” is checked using this Fourier expansion.

Example 1.8. As I' = SLy(Z) is generated by S = ( % §) and T = (§ 1),

the condition (a) in definition.1.10 for I' is equivalent to
(&) f(=1) = f(z) = f(z+ 1), Vz € H".

Definition 1.11. A weight 2k modular form for I' is a function f on H
such that

(a) if v = (24)€e T, then f(yz) = (cz + d)* f(z), Yz € H;

(b) f(z) is holomorphic in H;

(¢) “f(2) is holomorphic at the cusps of X(I")”.

Explanation for (c): Once more taking v = (§%)€ I' (as for modular
functions) we see that f(v-z) = f(2 + h) = f(z). Therefore f defines a
function f on Fixp(0o)\Uy. We say that “f is holomorphic or meromorphic
at 0o” if f is holomorphic or meromorphic at co. We just write the Fourier
expansion f*(q) =, ., anq" to check (c).

Definition 1.12. A modular form is said to be cuspidal if its value at all
cusps is 0.

Definition 1.13. A meromorphic function on H* verifying (a) of definition.1.11
is said to be a meromorphic modular form.

With this terminology, “modular function” is equivalent to “weight 0
meromorphic form”.

Lemma 1.4.1. Let w = f(2)dz be a meromorphic differential form on H.
v=(2%)eT. Then vw =w < f(y-2) = (cz+ d)*f(z) and hence w is
[-invariant <= f is a meromorphic weight 2 modular form.

In this situation, let mp : H* — T\H* be the natural map, then there
exists a meromorphic differential form « on T\H* such that w = 7}«
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Proof.
az+b, al(cz+d) —claz+b) dz
d(y-z)=d = dz = .
(v-2) (cz + d) (cz+ d)? : (cz+ d)?
Therefore, v*w = f(y-2)d(y - 2) = (fz(jrzgg dz. O

Exercise 1.12. Prove that f is holomorphic in H if and only if « is holo-
morphic on I"'\H. (Caution: Be careful with elliptic points of T".)

Lemma 1.4.2. f is holomorphic at a cusp c if and only if o has a pole of
order at most 1 at ¢, and f(c) = 0 if and only if o is holomorphic at c.

Proof. Assume ¢ = 00, w = f(2)dz. For ¢ = e*™#/h dq = %qdz.

f holomorphic at co <= f*(q) = Zanqq
n>0

We therefore get the following proposition.
Proposition 1.4.3.

My (1) := { weight 2 modular forms for '}
= {meromorphic differential forms on X (T') which are holomorphic

in T\H with at most simple poles at cusps of T'}.

So(T) := { weight 2 cuspidal modular forms for T'} = {holomorphic differential
forms on X (I")}.

Theorem 1.4.4. (a) dim Sy(TI") = g where g = g(X(I")) is the genus of X(T');
(b) dim My(T") = g — 1 + vy, where vy is the number of cusps for T

Proof. (a) dim Sy(I") = ¢(K) = g by Riemann-Roch theorem.
(b)

dim My (") = (K + Z c)=1—-g+2g—24+veo=9g—1+vy.

¢ cusps
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1.4.2 The Dimensions of My (I") and Sy (T)

More generally, we can interpret weight 2k modular forms in terms of k-
differential forms on X (I').

A k-differential form is written locally w = f(2)dz®* with f meromorphic
with the rule

0" (w) = f(0(2))(d0(2))*" = [(0(2))0 (2)"d=*.

Lemma 1.4.5. The space of weight 2k meromorphic forms for ' is isomor-
phic to the space of meromorphic k-differential forms on I'\H*.

Proof. Just use d(~ - z)®k% to do the computation. O

Let f(2)dz®* = 7}, we need to discuss the relation between the holo-
morphy of f and the holomorphy of a.

Remark 1.8.
My (T") = {holomorphic functions on T'\H*} = C.
So(I") = {holomorphic functions on I'\H* such that f =0 at all cusps } = {0}.
Theorem 1.4.6. Let k > 1.
(a)

dim My(T) = @k —D(g— 1D+ 3 (1= )]+ b -

P elliptic on T\H
(0)

7. ifk=1
dmSn(T) = 2k~ 1)(g-1)+ T k(1= )]+ vk —1), ifk>1

P elliptic on T\H

with Vs the number of cusps of X(I'), ep the ramification index at P(so

ep = #{ Stabr(P)/{ £1d } }) and [a] =the integer part of c.
The proof of this theorem is an application of the Riemann-Roch formula.

Lemma 1.4.7. Let ¢ : Dy = D — Dy = D be the map: z — z°, with
D = {zeCl|z|<1}. Let f be a meromorphic function on Dy and let
w = f(21)(dz1)®* and w* = ¢*w. Then

(a) Ordy(¢*f) = eOrdy(f);

(b) Ordg(¢p*w) = eOrdg(w) + k(e — 1).
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Proof. If f(z1) = az{(1 4+ o(1)) with a # 0, then ¢*(f)(2) = f(p(z)) =
f(z%) = az{™(1 + o(1)). This proves (a).

(b) p*w = f(2°)(e2¢1)kdz®*. Therefore Ordy(p*w) = eOrdy(w) + k(e —
1). O

Lemma 1.4.8. Let f be a modular form of weight 2k onH. Letw = f(z)dz®*
the associated k-differential form on H*. Suppose the map 7 : H* — T'\H*
sends a point Q@ € H* to P € I'\H*. Write w = mfa with « a k-differential
form on X (T').

(a) If P is an elliptic point of order e, then

Ordg(f) = Ordg(w) = eOrdp(a) + k(e — 1).
(b) If Q is a cusp then Ordg(f) = Ordp(a) + k.

Proof. (a) follows from Lemma.1.4.7 and the description of the complex
structure on X (I') near an elliptic point.
(b) Consider the function

g=e"mM (30 )\{2€ClIm(z) >N} — D = B(0,e ")

Since dz = 2% o = f*(q)(52)*dg®* and hence Ord..(a) = Ordu(f) —

2imq

k. ]

Proof of Thm.1.4.6. Let f € My ('), w = f(2)dz®* = 7f:(e). Then f is
holomorphic in H* if and only if

Ordg(f) = epOrdp(a) + k(ep —1) > 0, if P is in I'\H*
Ord.(f) = Ord.(cx) + k>0, if ¢ is a cusp of '

We fix a k-differential form o, and we write a = hayg for some k € M(X).
Then oo € My (I") if and only if

Ordp(h) + Ordp(ag) + k(1 — =) > 0, if P is in T'\H*
Ord.(h) + Ord.(ag) + k>0, if cis a cusp of '

and hence if and only if h € £ (D) where

D =div(ag) + > k-[d+ > [k(1—i)}.[P].

e
c cusps P elliptic P
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We have deg(D) = k(29 — 2) + Veok + 3 p aniptic F(1 — é)] and by Riemann-
Roch formula

(D) =1—g+deg(D)
1

=(g- D@2k — D) +vek+ Y [k(1——)]"

e
P elliptic P

Finally, for the case of So (), a = hay € So(I') <= h € Z(D) with

1
D = di -1)- - —)|- :
ivao) + 30 (k=1)-[d+ > k(1= —))- [P
c cusps P elliptic
Just apply Riemann-Roch formula once more, one gets the result. O

Proposition 1.4.9 (Location of zeroes). Let f be a weight 2k modular form
for T'. Then

Z (Ord_Q(f) — k(1 - i)) = (29 — 2)k + kveo

Q—Pel\H* €Q €Q

where the sum is on points of T\H*, @ is an arbitrary point above P and
eq = eqp s the ramification index if P € T'\H and eq = 1 if P is a cusp.

Proof. We write w = f(2)d2®* = nja. By lemma.1.4.8,

€Q

Ordo(f) _ (1 — L if P is not a cus
Orp():{ (1=, P

Ordg(f) — k, if P is a cusp
Therefore,
1
> Ordp(a) = k(29 — 2) = Z(Ord—Q(f) — k(1 — —)) — k.
3 T €Q

Example 1.9. Let I' = SLy(Z), f € Mg (I'). Then

Ordi(f)  Ord,(f) ok
St > ompU)—E.

Pel\H,P¢{Ti TI'p,[co}

Ordo(f) +
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Corollary 1.4.10. Let I' = SLy(Z).
(1)

dim Mo,(T) = {1 —k+ [E]+[%], k>0

or equivalently,

5], ifk=1 (mod 6)

1+ %], ifk#1 (mod 6)

dim M%(F) = {

(i) dim My(T") = 1. Therefore, if f € My(T') —{0} then

2 3 :
PeT\H,P¢{Ti,I'p,Too}

This means f has a simple zero at p and no other zeros.

(iii) dim Mg(I") = 1. Therefore, if f € Mg(I')—{0} then f has a simple
zero at i and no other zeros.

(iv) dim S1o(T") = 1. Therefore, if f € S12(I') — {0} then f has only one
simple zero at some non-elliptic point.

1.5 Examples of Modular Forms

1.5.1 SLy(Z)\H as a Moduli space for Lattices and El-
liptic Curves

A lattice T" in C is a discrete subgroup of C such that C/T" is compact. There
exists wy,ws € C — {0} such that I' = Zw; ® Zwy with 2’7; ¢ R. Changing w;
by —w; if necessary, we may assume that Im(Z—;) > 0.
Let A4 = {(wi,wn); 2t ¢ R, Im(2) > 0} and let % be the space of
lattices of C. The map ¢ : A — X; (w1, ws) — ' = Zw; & Zw, is surjective.
C* acts on Z by multiplicity and we have an isomorphism

C\# =H
(Wi ,wa) =z = Y
]
We therefore get a surjective morphism H — % /C* := space of lattices
modulo homotheties. There is also an action of SLy(R) on .# given by
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a b)
d
is the usual action.

If o € SLiy(Z) and if (wy,ws) is a basis of I, then « - (wy,ws) is a basis of
[ such that Im(22t2) > ()

cw~+dws
If (w1, w2) and (wj,ws) are two basis of I' with Im(%!) > 0, Im(:j—i) > 0,
then there exists an a € SLy(Z) such that (w],wh) = a - (w1, ws).
So we have the isomorphisms SLy(Z)\H ~{lattices of C}/ {homotheties}
= % /C* and the following diagram

(w1,wq) = (awy + bwsy, cwy + dwsy). The induced action on H = C*\.#Z

M X, M S N X

l l l

H=C\A —— H=C\A —— C\Z ~ SLy(Z)\H
where v € SLy(Z).
Link with the theory of elliptic curves

e For any lattice ' € C, E = C/I' is a Riemann surface of genus 1,
endowed with the structure of an abelian group with origin O.

e Two lattices I" and I'" define isomorphic elliptic curves E = C/T' ~ E' =
C/T" if and only if there exists an o € SLy(Z) such that I' = a - V.

e Any elliptic curve (a compact Riemann surface with a fixed origin) is
obtained in this way.

Conclusion: SLy(Z)\H ~ {isomorphism classes of elliptic curves over C} ~
{lattices of C module homotheties} = C*\#Z. That is, SLy(Z)\H is the mod-
uli space for lattices and elliptic curves.

Definition 1.14. A function F': Z — C is said to be a “lattice function
of weight 2k” (or homogeneous of weight —2k) if for any I' € # and any
A € C*, we have F(A') = A2 F(T).

Let F' be a lattice function of weight 2k and F); the associated function
on A . Fy((w1,we)) := Fp(wy,ws)) = F(Zwy ®Zwy). Then Fp((wy,ws)) =
Fy(we(2)) = w;%FM((‘;’—;, 1)). Let f be the assoicated function on H de-

fined by f(2) = Fam((z,1)).

Remark 1.9. For any v = (2%)€ SLy(Z) , f(£E2) = (cz + d)** f(2).
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Proof.

FU(e8) = Faur(((28). 1) = (cz + d)* Far((az + b, ¢z + d))
= (cz+d)* Fp(y - (2,1))
= (cz +d)* Fy((2,1)) as F' is invariant by SLy(Z)
= (cz + d)* f(2)

]

If f is a function on H such that f(%) (cz + d)?* f(2), then there
exist a unique weight 2k lattice funciton F' : #Z — C such that f(z) =
Fu((z,1)) = F(Z ® Z=2).

Remark 1.10. It’s not easy to check the holomorphy condition on the defi-
nition of lattice functions.

Example 1.10. Let ' be a lattice and k£ > 1, we define
1
Gu(D) = >
ver—{0} 7

Then Gox(I) is a weight 2k lattice function. The associated modular function
1s

ng(z) = ng(Z ) ZZ) = Z 1

2k
oz (F T

Exercise 1.13. Prove that the series

is convergent if o > 2.

Proposition 1.5.1. Vk > 1, Gy is a weight 2k-modular form for SLy(Z) (
i.e. it is holomorphic on H*) and G (i 00) = 2((2k).

Proof. An exercise. Prove that it is correct to write

lim Gox(z) = Z lim L Z % = 2¢(2k) .

- - o
e om0~ (P2 E M) S
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Definition 1.15. Let g4 = 60G4 and gg = 140Gs, then A = g3 — g2 is a
weight 12 cuspidal modular function for SLo(Z).

Theorem 1.5.2. (a) My (T) is of dimension 1 and is generated by Gay, for
k—2345

(b) the multiplication by A defines an isomorphism Moy (T') — Sor(T); f +—
f-A;

(c) @kzo Moy (T) = C[Gy, Gg].

Proof. (a) An easy consequence of Riemann-Roch theorem and previous dis-
cussions.

(b) We know that A € Sj5(I') and that A has a simple zero at oc.
Therefore, corollary 1.4.10 A has no other zeros. Then

S2k(F> — M2k712(r)
a— af/A

is the inverse to f +— f - A.

(c) We need to show that {G}Gg'|4n + 6m = 2k} is a basis for Mg (T).

It is easy to check that there exist n,m € N such that 4n 4+ 6m = 2k.
Therefore, g = GG € Mo(T) and g(ioo) # 0. If f € Mok(T), then
f— 58239 € Sor(I'). Hence f = gg;’jgg—i—Ah with h € Myi_12(I"). Using (a)
and by induction, we see that f € C[Gy, Gg].

We thus have a surjective morphism ¢ : C[Gy, Gg] — @, Max(T). If ¢
is not an isomorphism, then there exists R € C[X, Y] such that R(G4, Gg) =
0. Using a “weight argument” (this will be explained later), there exists

P € C[X] such that P(g—%) = 0. So % must be constant. This leads to a
6

a:
Go(p) = 0 # Ge(i)

Galp) = 0 # Gu(i)
Weight Argument: Fix my maximal such that 2ny + 3my = k. Then
for any n, m such that 2n +3m = k = 2ng+ 3mg one has =" = memO e N.

3
Thus,

Y oG =0e Y ni _je ¥ An(g_%)’if”.

Go—m
2n+3m=~k 2n+3m=~k 6 2n+3m=~k

contradiction as { in view of corollary 1.4.10.

Thus we find a P € C[X] with the property required. ]

Definition 1.16. Define
i 172892 B 1728gi’
A 93 —27g8
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The function j is a modular function (of weight 0) with a simple pole at co
and a triple zero at p. The induced meromorphic function j : SLy(Z)\H* —
P!(C) has a simple pole at 0o, a simple zero at I'p and no other poles or zeros.
Therefore, j gives an isomorphism SLy(Z)\H* — P*(C) and g( SL2(Z)\H*) =
9(P"(C)) = 0.

1.5.2 The Petersson Inner Product

Lemma 1.5.3. The differential form dug = dggij = dxfgdy is SLa(R)-invariant.

Proof. For any o = (¢4)€ SLy(R), we have

dz dz Im(2)

(cz+d)?’ (a2) (cz+d)?’ m{az) lcz + d|?

d(az) =
Therefore, a*(dpo) = dpp. O

Definition 1.17. The associated metric ds? = dxzytdyZ and the associated

volume form dyy = dxy/\dy are called the Poincaré metric and the Poincaré
measure.

Lemma 1.5.4. Let I' C SLy(Z) be a subgroup of finite index and F be a

fundamental domain for I'. Then fF ddy s independent of the choice of the
y

fundamental domain and fF d‘”‘jy = ﬂ where d = degp, ¢ is the natural map

[\H — SLy(Z)\H*.

Proof. Exercise. O]

Lemma 1.5.5. Let f be a weight 2k-cuspidal modular form for ', then Vv €
SLa(Z), there exists ¢ = ¢y > 0 such that |f(y-2)| << e ¥, z =z +1y.

Proof. We have a Fourier expansmn fly-2)=>", ane % for some h =
h, € N*. Let f(y-2) = anoe -(bounded function) with a,, # 0, then

27ing (z+iy)
é h

QWnOy

=e L e Y,

Hence |f(7y - 2)| < e™. O

Lemma 1.5.6. Let f, g € Moy (T'), then the differential form f(z)g(z)y**2dxdy
s I'-invariant.

Proof. An easy exercise. O
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Definition 1.18. Let F' be a fundamental domain for " and f, g € Sar(T),
then we define

fgk—/f G dady .

This is independent of F' and is well defined. (-,-) is a positive definite
hermitian scalar product on Sox(I'), called the Petersson inner product.

Remark 1.11. Actually, one can define (f, g)x for f € So(T') and g €
Mo (T).

1.5.3 Poincaré Series

We start with a function f on H and try Zvel“ f(v - z) which is formally
invariant by I'. But this is a never convergent process. However, if f is
always invariant by a subgroup Iy, then > verovr (v - 2) is well defined and
invariant by I'.

We want to do this for modular forms. Let I' be the image of I" in PSLy(Z)
and

fozfﬂ{( )‘nEZ} { }nEZ}

for some h € N.

Definition 1.19. The Poincaré series of weight 2k and character n for
I'is ”
B exp( 17rn7z>
Pn(z) = Z, (cz + d)?*
yelo\I'
where v = (2}4).

Observe that (a) (§%)(24)= (% ). Therefore, (¢, d) depends on 7 but
not on a choice of a representative of v in T.

(b) W30 € o, exp(*00%) = exp(*57%).

So ¢n(z) is well-defined.

Theorem 1.5.7. The Poincaré series @,(z) for n > 0 and 2k > 2 is ab-
solutely uniformly convergent on compact subsets of H and is a weight 2k-
modular form for T'. Moreover,

(a) wo(z) is zero at finite cusps of T and ¢o(ioco) = 1;

(b) Vn > 1, p,(z) € Sai(I) ;

(¢) The Poincaré series @, (z) for n > 1 generates Sor(T) .
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Proof. It 4y = (%), 72 = (2% )e T, then 3 =7, in ['\\I'. We therefore
obtains

1 1
|§0n(2)| < — < — < 400
(c,d;:om ez + dJ** (c,d)%%om ez + dJ**

s.t. El(‘é Z)EF

when 2k > 2 with a uniform and absolute convergence on any compact subset
of H.
Note that

2iTnyz
lexp (

2mn Y
; )

. <1.
h |ez+d* —

)| =exp (-

Lemma 1.5.8. Define j : T xH — C; j(v, 2) = (cz+d)?, then j(v, 2) is an
automorphy factor ((i.e. j(vY',z) = 3(v,72)5(¢, 2) ).

Proof. On the one hand, (y7')*(dz) = ~~%—. On the other hand,

J(vy',z) "
dz dz
/*dZ: 1% *dz :,y/* ‘ = — y .
()"(d=) = 77(7dz) (](%2)) J(2)i(, 2)

proof of (b). Let 4/ € T, by the above lemma,

2imnyy' z )

only -2 = 3 2D

- !~ \k
o gy, v'z)

($2:€
— i, Y 22

iy, 2)

( 2imn (h'yw’)z )

2imnyz

. exp(=35)

=30 ) =
i)

= j (7, 2) pn(2) = (cz + d)* pu(2) .
proof of (a). At K =i- 00, let R be a system of representatives in I" of

Fo\F We write R = R1 |_|R2 with Rl = {’}/ c R|C = 0}, RQ = {’}/ € R|C 7é
0}.

In fact R, is finite and [R;| = 1, as if ¢ = 0, then d = +1 (note that here
ad equals the determinant) and 4(c, d) determines the class modulo of Ty.
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We have

217rn77 z

| exp
—0
Z |02+d|2k Z |cz+d|2k

uniformly as z — ico (since Re(z) is bounded), and

| exp 2imnyy'z 3 exp 27rny) 0, ifn>0
_—_— = — E— .
Z lcz + d|?* P h 1 if n=0

YeRy

At a cusp K # i - 00, we fix v € SLy(Z) such that v - K = co. Let
—2k -1 -1 a
Gale) = G+ ) Pt 2) were o= ()
We study v, at icc.
2i7rn'y'sz)

. exp( A B exp
Unle) =D S e = 2

k
YER TERYK i, Z)

( 217rnTz )

One can check that a matrix in R - v is never of the form ().
The same proof gives ¢,(z) — 0 as z — ico.

Proposition 1.5.9. Let f € So (D), f*(q) = >_,,5; anq", then

D2 (2k — 2)Ini~2

<f7 Qon>k = (47”&)2]?71 Qp, -

This implies if f € Soi(I') and f L ¢, foralln > 1, thena, =0, Vn > 1
and hence f = 0. Therefore, (c) follows from the above proposition.

Proof of proposition.1.5.9. We have

f exp 217m'yz) 2k_2
dxd
Z / (cz 4 d)%* vy
Gro\F
B 2imnyz Y ok dxdy
= Z/f(yz)exp( h )<\cz—l—d\2) Y2
y€Lo\I'
dxdy
= > [ g9(v2) .
7eT\T
where oirns
imnz
9(z) = f(z) Im(2)* exp ( )
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As g is invariant by Ty and as | | veTo\FY - Flis a fundamental domain Fj
for Ty, we may suppose Fy = (0, ) x R%. Then

b oo o
(f, son>k=/ / f(z)e” " y*2dady
0 0

h : 00
= Za:/ exp (2m(l - n))dx/ Y2 exp (— T+ n)y)dy
0 h 0 h

1>1

< as f(z) = ale%>

<1

o0 —4
= anh / y* % exp( hmy)dy
0

Exercise: Finish the remaining computation and justify the convergence. [J
This finishes the proof of theorem.1.5.7. m

Remark 1.12. As dim Sy, (I') < 00 and ¢, | n € N is a system of generators
of Soi(I'), there exist a lot of relations between the ¢,,’s.
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Chapter 2

Hecke Operators and Hecke
Algebras

2.1 Introduction

Let I' = SLy(Z). We know that dimSi5(T') = 1 and that A = g} — 27¢2
generates S1o(I"). Let’s write

A=Y "r(n)g" = 2m g [J(1-g")*.

n>1

We have 7(1) = 1, 7(2) = —4, 7(3) = 252, 7(4) = —1472, 7(11) = 534612,
7(12) = —370944.

Conjecture 2.1 (Ramanujan’s Conjecture). (a) For any prime number p,
7(p)| < 2p"/2.

(b) If ged(m,n) =1, 7(mn) = 7(m)7(n).

(¢) For any prime number p and any n > 1, 7(p)7(p") = 7(p™)7(p) =
T(p") +ptr ("),

Definition 2.1. Let f = 2@1 a,q" be a Dirichlet series, the associated
L-series is defined as

L(f,s) = In s € C,Re(s) > 0.

s )
n>1

Example 2.1. L(A,s) =3} -, Tr(:j).
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Proposition 2.1.1. The conditions (b) 7(mn) = 7(m)7(n) if gcd(m,n) =1
and (c) T(p)T(p") = T(p"™) + p'lr(p"') are equivalent to the following

1
L(A,s) = H 1—7(p)p* + pli-2s’

p prime

This is the Eulerian product for L(A,s).
Proof. If we write L,(s) = 3. _o 270 then the condition (b) implies [, Lo(s) =

m>0 pms

LA s) =35 TT(ZZ). We need to prove that

1
L,(s) = .
) = T

We compute

L=7(pp~ +p"7)> ()™

=1—p~*(r(p) = 7(p)) + D (r(@"™) = T ()T (p™) = pHr(p" ) p

17T(p)pfls T This proves the =) part.

The <) part can be proved using the same computation. O

Lemma 2.1.2. Let’s write 1 —7(p) X +p" X% = (1—aX)(1—d'X). The Ra-
manugjan Conjecture (a) |7(p)| < 2p'/? is equivalent to each of the following:
(a') |a| = |a'| = p*'/? and (d") ' =a.

Using (c), we then get L,(s) =

Proof. The condition (a) is equivalent to A = 7(p)? —4p'! < 0, which implies
(a”). The condition (a”) implies (a') since aa’ = p** = |a| = |a’| = p'V/2. As
(p) = a+d = |r(p)| < 2p'2, (') = (a). O
(a) is proved by Deligne’s proof of the Weil conjecture.
Our next goal is to construct for all & € N some operators

Tk(n) = T(n) = Tn : Mgk(r) — M%(F)

with the following properties

(1) T(m) o T'(n) = T'(mn), if ged(m,n) = 1.

(2) T(p) o T(p") =T(p") o T(p) = T(p"*™") + p**'T(p" ).

(3) T'(n) leaves Sok(I') invariant and is a self-adjoint operator for the
Petersson scalar product:

VfgeSu), (Tuf g)k=(f Tag)s -
(4) Vm,n € N, T(m) o T(n) = T(n) o T'(m).
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Exercise 2.1. Let V be a C-vector space of finite dimension endowed with
a hermitian scalar product ( , ). Let («;)ie; be a family of self adjoint
endomorphisms of V' such that a; o a; = aj 0 cy; Vi, 5 € I. Then V admits
a basis of eigenforms of all the (o )e;-

Application: As dim(S;2(I')) =1, A is an eigenform of all the T'(n). If
we normalize A such that A = ¢+ > ., 7(n)¢"”, then T'(n)A = A\, A. We'll
show that \, = 7(n) and the relations (b) and (c) conjectured by Ramanujan
are consequences of the properties (1) and (2) of the operators T'(n).

2.2 Abstract Theory of Hecke Operators

We start by a definition of Hecke operators on the space Z of lattices of C.
We’ll have an induced action on lattice functions and therefore an action on
modular forms.

Let Z[Z] be the free abelian group with basis the elements of Z:

9 = L% = { ZnA[A] |na € Z, ny =0 for almost all A € 2 }.
AeZ

and 2 ® C = C[#]. (Caution: 2-[A] # [2- A].)
Definition 2.2. For all n € N, we define a Z-linear operator

Tn): 2 —2; Tm)(A)= ) [A]

[A:A]=n

where the sum is on all sublattices A" C A such that [A : A’] = n and extend
it by Z-linearity. For all A € C*, we define the Z-linear map

RN : D — 2 [A]— [M] .

Remark 2.1. T(n) is well defined: there are only finitely many lattices
N C Awith [A:A]=n.

Proof. If A" € A and [A : A'] = n then nA C A’, therefore nA\A" C nA\A ~
ZInZ & Z/nZ. O

Lemma 2.2.1. The sublattices \' C A such that [A : ') = n are in one-one
correspondence with the subgroups of index (or order) n in Z/nZ @& Z/nZ.
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Proof. Let ¥ be a subgroup of index n of nA\A and 7 : A — nA\A be
the canonical surjection, then 77'(¥) = Ay is a sublattice of A such that
[A : Ay] = n. Then the maps A’ — 7(A) and ¥ —— Ay are mutually
inverse and hence give the one-one correspondence. O

Lemma 2.2.2. Let ' = Zw, & Zwo and let S, be the set of integer matrices

d—
(a b) with “ " . Ifo €8S, we write I', the sublattice of
0 d 0<b<n,a>1

W] = awy + bwsy

I' with basis , then 0 —— T’y 1s a bijection between S,

wh = dws

and the set I'(n) of sublattices of T of index n.

Proof. (a) Vo € Sy, I'y € I'(n) as det(y, ,w,)(wi,wsy) =n = [I": T,].
(b) Let 0 = (24) € Sy, 0’ = (%’ Z’,) € S,. Suppose that I';, = I',s. Then
there exists (3 g) € SLy(Z) such that

a v\ [(a B\ (a b
(62)=C 362
This gives va = 0. It then follows easily that v = 0 and « = § = 1 and
/ /
0<b =b+3d < d. Sowehave 8 =0 and (6‘ Z) - (% Z)

(c) Let IV be in I'(n). Let d be the smallest positive integer such that
dws € 17, then W) = dwy is a primitive vector of [". Therefore there exists
Wi = aw; + bwy € A’ such that (W}, w})) is a basis of A’.

Then ad = n and we may replace wi by w| = wi —Awj. in such a way that
wi = aw; + bwy with 0 < b < d. Therefore I' =T, for o = (27) € S,. O

Matrix Interpretation. Let M, be the set of matrices in My(Z) with
determinant n.

Proposition 2.2.3.

W) M= || SL(@) (3 Z) . (2) M, = |d__|n SLa(2) (g 2) SLo(Z).

0<tdT s ald,a>1
We leave the proof as an exercise. Note that (2) is equivalent to the fol-
lowing condition, which can be proved using the elementary divisor theorem:
Va € M,, there exists a basis (01, 6;) of A and ad = n, ald, a > 1 such
that (afq,dfs) is a basis of A" = « - A.
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Proposition 2.2.4. (a) Let m, n be coprime integers, then T'(mn) =T (m)o
T(n).

(b) T(p™) o T(p) = T(p"™") + PR(P)T(P" ).

() T(n)R(A) = R(AN)T'(n).

Proof. (a) By definition,

T(mn)[Al= > [A]; and T(m)oT(n)[A] = > [A"].

[A:N)=nm A'CA'CA
[A:N]=n , [A:A"]=m

If A” C A is a sublattice of A of index mn, we must show that there exists

AN cNCA
a unique A’ C A such that cAC . By lemma.2.2.1,
A:AN]=n,[AN:AN]=m

A" corresponds to a subgroup L of order nm in

Z]/nmZ & Z/nmZ ~ (Z/nZ & Z/nZ) & (Z/mZ & Z/mZ)
L~ L1 D LQ

with |L1| = n and |Ls| = m. Then A’ is the sublattice of A corresponding to
the subgroup Ly of Z/nZ ® Z/nZ ~ nA\A.
(b) We have

T(p") o T(p) - [A] =) [A"] (2.1)

[A:N]=p

where the sum is on couples (A’, A”) with A” € A’ C A and {[A’ A "
A =p

On the other hand,

T [N = > A (2.2)
and
RPTEHAI= > [p-N] (2.3)
(AN =pn =1

In (2.3), we have [A : pA'] = [A: A][A : pAN] = p"~ ! - p? = pth
The sums (2.1), (2.2) and (2.3) concern sublattices of A with index p™*!
in A. Let A” C A be such a lattice. We write

a(A//)
b(AI/)

(2.4)

a := number of times A” appears in the sum (2.1)

number of times A” appears in the sum (2.3)
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Then we need to check a =1 + bp.

Case 1: suppose A” ¢ pA. In this case b(A”) = b = 0 because if A”
appears in (2.3), then [A”] = [pA’] for some A’ C A and A” = pA’ C pA.

In (2.1), we have pA C A’ and pA\A’ is a subgroup of order p in pA\A ~
Z/pZSL[pZ. But pA\A’ contains pANA"\A” and pANA" # A" (as A” € pA).
Therefore pANA"\A” = pA\A’ and A’ corresponds to the subgroup (of order
p) pA N A"\A" of pA\A which is determined by A”. So we have a(A”) = 1.

Case 2: suppose A” C pA. Let A’ C A such that [A : A'] = p, then
A c pA ¢ N C A, and a(A”) = a is the number of possible such A’
Therefore a is the number of subgroups of index (or order) p in Z/pZ & Z/
pZ. Thus,

a =number of sub [F-vector space of dimension 1 in F, ® F,

Z/pZ® L/pZ — {0}> p*—1
=Card = =p+ 1L
( (Z/pZ) p—1
If A/ C pA C A, then [pA : A”] = p"~1, [A”] appears once in T(p™~1)[pA].
Therefore b(A”) = 1. O
Exercise 2.2. More generally, prove that
T(p)oT(p )= > pPRE)TE);
0<i<min(r,s)
mn (2.5)
T(m)oT(n)=T(n)oT(m)= Y AR(d)T(—5) -

d| ged(m,n) ,d>0

Corollary 2.2.5. For all n € N, the T'(n)’s are some polynomials in the
T(p)’s and the R(p)’s. The algebra generated by the T(p)’s and the R(p)’s
with p prime is commutative and contains all the T'(n)’s.

2.3 Hecke Operators on Spaces of Modular
Forms

Let F' be a lattice function F' : Z — C. By linearity we may extend F' to
D, F(3 o pcannalA]) = D pcpnaF ([A]). We may define

T,-F(A)= Y F(A)= > F(A)) (2.6)
A ETH[A] [A:A]=n
AN CA
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and
R(n)F([A]) = F([AA]) - (2.7)
If F is a weight-2k lattice function,
R(n)F([A]) = F([nA]) = n™*F([A]). (2.8)

Proposition 2.3.1. If F' is a weight-2k lattice function, then T'(n)-F is also
a weight-2k lattice function, and

T(m)oT(n)-F= ) dl‘z’“T(?)F .
d| ged(m,n)
Proof. T, - F is of weight 2k as R(\) and T'(n) commute. O

Recall that we have an isomorphism

{ weight 2k lattice functions} —{functions on H verifying the modular identity
of weight 2k modular forms}
Fr—f(z)=F(Ze&:z7).
Definition 2.3. Let f(z) be a weight 2k modular form for SLy(Z) and F'

the associated lattice function. Then T, o f(2) is the function associated to
the lattice function n?*~'T, - F.

Explicitly,
T.f(z) = n* T, F(Z @ 2Z]) =n™ > F([(az +b)Z @ dZ))
ad=n,d>1
0<b<d (2 9)
o 2k-1 oz 02+ D T
= Y A ()
ad=n,d>1
0<b<d
Example 2.2.

T, 1) = (509 -0 3 1)

Proposition 2.3.2. Let ' = SLy(Z) and let f(2) € My (D), f =3, - c(m)q™.
Then T, f(2) = 3,50 V(m)q™ is a weight-2k modular form and
~y(m) = Z a2k710(@>.

a2
al ged(m,n)

In particular, ¥(1) = c(n), 7(0) = oop_1(n)c(0) = 324, d*c(0). If f €
Sgk(F), then T, f € 82k<r)
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Proof. We have

L) =n Y a (Y

ad=n,d>1

0<b<d
_ — i az+b
:an 1 E d 2k§ C(m)€217rm( =)
ad=n,d>1 m>0
0<b<d
— — i az+b
:an 12 E :d 2kc(m) 2 6217rm( 7 )
m2>0 ad=n

0<b<d
Note that

siztm {d if d|m
DR A
0Sied 0 if dfm

Therefore, writing m’ = %, we get

Tnf(z) _ n2k—l Z Z d_2k+16(m/d)621ﬂam/2.

m/'>0 ad=n

ad =n
: a=75
or equivalently

am' =t
The coefficient (t) of ¢* is obtained for the couples (a, m’) such that {
4
m'd= 1%

. So we get

]
Proposition 2.3.3. Let f = Y - c(m)q™ # 0, f € M (SLy(Z)). We
suppose that f is an eigenform of all the T, ’s. Let’s write T'(n)f = \(n)f.
Then

(i) ¢(1) # 0, so we may suppose that ¢(1) = 1. We then say that f is
normalized.

(i) If f is normalized, then Vn € N, A(n) = ¢(n)

Proof. The coefficient of ¢ in T,,f is ¢(n) but is also A(n)c(1). Therefore
c(n) = An)c(1).
If ¢(1) = 0, then ¢(n)

=0 for all n and f = 0.
If ¢(1) =1, then ¢(n) = A

(n) for all n € N.
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Corollary 2.3.4. Let f € Sor(I") be a normalized eigenform of all the T'(n)’s.
Then

(1) Ym,n such that gcd(m,n) =1, ¢(m)ec(n) = ¢(mn),
(2) ¥ prime p, ¥n € N, c(p)e(p") = c(p"*!) + p* le(p"™)

and these two conditions are equivalent to

_Ndn) 1
L(fa S) - Z ns - rp[ 1 — C(p)p‘s +p2k—1—25'

n>1

Proof. (1) and (2) are deduced from relations for T,, using that c¢(n) = A(n).
We made the proof of the last equivalence in the case 2k = 12. The proof is
exactly the same here. O

2.4 Hecke Operators and Petersson Scalar Prod-
uct

Let GL(R)T = {a € GLy(R); det(a) > 0}, and GLy(Q)T = GLy(Q) N
GLy(R)™.
Let f be a function on H and o € GLy(R)™, we define the function

az+b a b

(flra)(2) = (det a)*(cz + d)’%f(m), a= (c d> € GLy(R)™.

Remark 2.2. (a) If a = <8 2), flea=f. (b)If f € My('), and if y € T,

then fliy = £. (¢) fleaB = (flx)lif, Yo B € CLa(R)*. (d) I T = SLa(2)
and f € My (SLa(Z)),

T, f(z) = n?! Z d%f(aZT—i_b)

ad=n
0<b<d
T
=nF! Z f|koz:nk_12f|kai :
a€SLa Z\M (n) i=1

where

M(n)={M € My(Z); det(M) =n} = DSLZ(Z)%.
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Theorem 2.4.1. vf? g € 82k<SL2<Z))7 <Tnf7 g>k = <f7 Tng>k:7 i.@, Tn s a
self-adjoint operator on Sa(SLa(Z)).

Lemma 2.4.2. Va € GLy(Q)*, V[, g € Sox(SL2(Z)), (f|xc, glka)r = {f, 9)k-

Proof. We write Q(f,g9) = f(2)g(2)y**2dx A dy. Then Q(f|ra, glra) =
a*Q(f,g). If D is a fundamental domain for SLy(Z),

[ athagha)= [aatro = [ oo = [ 2.

We should remark that in the above computation the last “=" is not obvious
as «v is not necessary an element in SLy(Z). We will finish the proof later. [J

Remark 2.3. For all f, g € Sor(SLe(Z)), I' C SLy(Z) and any fundamental
domain Dr for T,

1
<f79>k;=m//pr9(ﬁg)

where T is the image of I' in PSLy(Z).
Remark 2.4. 1f o € GLy(Q)" and if ' and al'a~" are sublattices of SLy(Z),
then [PSLy(Z) : T') = [PSLy(Z) : al’'a™1].

dxdy
2

Proof. Use the metric duy = . The map ¢, : H — H ;2 +— a - z

induces an isomorphism I'\H ~ al'a ™ '\H. As 1, is an isometry, we get

[PSLy(Z) : T]Vol(SLy(Z)\H) = Vol(I'\H)
— Vol(al'a '\H) = [PSLy(Z) : al'a~1]Vol(I'\H)

This gives [PSLy(Z) : T'] = [PSLy(Z) : al'a™1]. O

Remark 2.5. Let o € GLy(Q)™, there exists I' C SLy(Z) (small enough)
such that al’'a™! C SLy(Z).

Proof. Changing a by () §)a we may assume that o € My(Z). If det(a) = n
(i.e, @ € M(n)), we may assume that a« = (&%) with ad =n,0 < b < d.
Then we can check that al'(n)a™! C SLy(Z). O

Remark 2.6. If .7 is a fundamental domain for I, then a-.% is a fundamental
domain for al'a™ .
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Proof of lemma 2.4.2. By remark.2.4,

1

(flra, glea) = W/GDF Qf,9)
1

~ L) oo / A9 = (o

as aDr is a fundamental domain for al'a~". O
Corollary 2.4.3. Yo € GLy(Q)*, V1 , g € Sux(SLa(Z)). (Flag) = (. gla~").
Proof. Note that (f|pa)|ra™ = flraa™ = f and apply lemma.2.4.2. O

As the T'(n)’s are polynomials in the T'(p)’s, we just need to prove theorem.2.4.1
for n = p a prime number.

Lemma 2.4.4. There exists a system of representatives {c;} for SLo(Z)\ M (p)
which is also a system of representatives for M(p)/SLo(Z). More generally
for all o € GLy(Q)", Ty, -+, . such that

Remark 2.7. M(p) = SLy(Z) (10’ 2) SLy(Z).

Proof of lemma.2.4.4. Let a, B such that SLy(Z)a SLy(Z) = SLo(Z) 5 SLo(Z).
Then there exists 7 such that

SLa(Z)aw = SLa(Z)y ()
BSLy(Z) = v SLs(Z)

By hypothesis, 3 u, v, v/, v € SLy(Z) such that uav = v/'fv’. Let v =
' lua = Bv'v~l. Then it is easy to check 7 satisfies the property (x). If
SLy(Z)aSLo(Z) = | |;_, SLa(Z)ey; = |];_, Bi SL2(Z), (note that we need to
explain why the number of left cosets is equal to the number of right cosets
later,) we may apply the last construction to all the couples (ay, ;) to produce
vi SLa(Z) = (; SLy(Z)

a v; with the property O

Lemma 2.4.5. Let T' C SLy(Z), a € GLy(Q)*. If Tal' = [|_,Ta; =
LIZ, 8L, then I =m.
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0 p
then “(Tal') =' Ta'T" = Tal’, where the superscript ¢ denotes the transpose
of matrices.

If Tal' = | ||_, Ty, then Tal' =" (Tal') = | |_, "o/T = ]_, ‘o O

=1

Proof. A general proof will be given later. If I' = SLy(Z) and a = (p O),

Proof of theorem 2.4.1. Let o = <Z 2) € M(p), then o/ = pa~! = (_dc _ab> €

M(p). Let oy, - -+ , o, € M(p) such that M(p) = | Ji_, SLa(Z)oy; = | |;_; i SLa(Z).
Then

M(p) =pM(p)~' = Upa{l SLy(Z) = |_| SLy(Z)pa; ™.

and
(T(p)f,g) =p** Z<f|k04i,9> =p"? Z<f>g|k04i_1>
=pt! Z(f, glea; ) =p*! Z(f, (glr (55)) o™
= (f,T(p)g)-

]

Theorem 2.4.6. There exists a basis {f1,---, fr} of Sox(SL2(Z)) such that
the f; are eigenvectors of all the Hecke operators T'(n). The associated eigen-
values are real numbers and the {f;} are orthogonal for the Petersson scalar
product. If we normalized the f; by the condition ai(f;) =1, then

Lfis) = 30 ) :

e ns o 1;[ 1— a[p(fi)p—s +p2k—1—28'

Proof. Let f; and fy be two eigenforms of all the 7'(n)’s. Then

(T'(n) f1, f2) = an(f1)(f1, fo) = (f1, T(n) f2) = an(f2)(f1, f2)-

and therefore

(an(f1) = an(f2)){f1, f2) =0, Vn € N=> (f1, fa) = 0 if f1 # fa.
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Proposition 2.4.7. Let f = }_ -, a.(f)q" € Sak(SLa(Z)) and L(f,s) =
D>t wl)  Then

ns

(a) |a,| < n¥;
(b) L(f,s) is convergent for Re(s) > k + 1.

Proof. We need only to prove(a). The function g(z) = y*|f(2)| is SLy(Z)-
invariant and g(z) — 0 as z — ioco (as |f(z)| < e”%¥, ¢ > 0). Therefore g(z)
is bounded in H and |f(z + iy)| << yik For all y > 0,

1 1
|CLn|€_2ﬂ'ny — ‘ / f(l» + iy)e—Qiﬂ’nze—Qﬂ'nde‘ — ‘ / f(x + iy>€—2i7r7w:dx
0 0

Py
Yk’

Take y = +, then we get |a,| < n*. O

Remark 2.8. The Ramanujan conjecture predicts that |a,| < 2pk’%. This
is a nontrivial bound.

2.5 The Mellin Transform and Functional Equa-
tions

Let f € S51(SLa(Z)). The Mellin transform of f is defined as

My(s) == /000 f(it)ts%.

As f is exponentially decreasing in 0 and in ico, My(s) is defined for all s € C
and is a holomorphic function of s.

Proposition 2.5.1.

e dt
M¢(s) = (2m)°L(f, s)I'(s) where T'(s) :/ e_tts? :
0
This gives an analytic definition for L(f,s) for all s € C.
Proof. Using the Fourier expansion f =Y o a,(f)g" = >, < ane*™=,
have - -

oo dt ee dt
Mf(S) _ Z/ ane—27rmfts7 _ Z an/ e—27rmfts7
0 0

n>1 n>1

we

n [ dt : :
=(2m)~° Z % / e_tts? (changing variables ' = 2mnt) .
0

n>1
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Proposition 2.5.2. We have the following functional equation
M;(s) = (~1)"M; (2k - s).

Proof. Make the change of variables ¢’ = % in the formula

M) = [ e

Then we get

Msls) = /0°° f<_l)ts% = /Ooof((_ol 0) - it)ts%

it
= / (it)%f(it)t_s% (by the modular equation for f € S (SLa(Z)) )
0
= (—1)"M;(2k — s) .
[

Theorem 2.5.3. The eigenvalues of the Hecke operators acting on Moy (SLa(Z))
are algebraic integers. In other words, if T,,f = A\, f, then there exists a num-
ber field K such that )\, € Ok.

Lemma 2.5.4. Gy is an eigenform of all the Hecke operators T(n) with
eigenvalues oap—1(n) = > 41, d*=1. Therefore

L(ﬁ?g;)) , s> _ ;21 "%7—1_1(”) = ((s)C(s—2k+1), where ((s) = 1;[ - _1p_5 .

Proof. Gy is associated to the lattice function

(M) =Y 13-

AEA
A£0

Low= 3 3

A:A)=p AeA’
[A:A] wh

So we have

If A € pA, then A € A’ for all A’ such that [A : A'] = p. If A & pA, there
exists a unique A’ such that [A: A’ =pand A € A'.
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Therefore,

1
AEPA
AF£0

= (14 p ") Gor(A).

The associated function Gax(z) on H is therefore an eigenform of 7'(p) with
eigenvalue p*~1(1 + p'=2%) = 1 4+ p?*1 = oy_1(p). Hence, T,,Gor(2) =
o9k—1(n)Gax(2) and

i ng_l(n) _ i Zd|n d2k—1 _ kofl
ns ns asds
n=1 n=1 a>1
d>1
_st—i-l QkZas 5+1_2k)<()

d>1 a>1

Note that the result means the L-function of é’“i()z)) is a product of L-

functions of degree 1. [

Remark 2.9. o9_1(p) ~ pl> 2pk—%'
Let

Moi(Z) = {f € My (SLa(Z)); Zanq, an € Z, Vn €N} .

n>0
Theorem 2.5.5. Mo (Z) is a free Z-module of rank dime(May(SLa(Z))).

Lemma 2.5.6.
217T
Gaon(2) = 2C(2k) + 3= 1) 'Za% . . (2.10)

Proof. We have proved that the first coefficient is 2¢(2k) and

Moy ) =2 ™

n=1

2(24m)2k

o This is left to the readers. [

The only missing point is a1 (G (2)) =
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Corollary 2.5.7.

- G4(Z>

GG(Z)
~ %) ©

b 2(6)

My(Z), Es=

€ Mg(Z) .

Proof. Use the facts that ((4) = g—g ,C(6) = 357;627 and the previous lemma.
[

Proof of theorem 2.5.5. For all k > 2, My,(Z) contains the free Z-module
with basis E{E with 4a+6b = 2k. Therefore Moy (Z) is a Z-module of rank
at least dimg (Mo (SLa(Z))).

If f € My(Z) and 2k < 12, then there exists A € C such that f =
AESEY = X+ ayq + --+ This implies A € Z and hence rankz (Mo (Z)) =
dlmC(MQk(SLQ(Z)))

Lemma 2.5.8. We have A = q[[02,(1—¢")* =q+---.

We omit the classical proof of the above lemma.

Thus we have A € §12(Z) C M12(Z).

Let f € My, (Z) with 2k > 12, then f = agE¢EL+ Ag for some 4a+ 6b =
2k and g € Mog_12(SLo(Z)). Suppose f = ag+ qa; + - -+, then ag € Z.

Let’s write A =) ., 7(n)¢" ; 7(n) € Zand g =), ~,c(n)q"; c(n) €

C. Then
n—1
Ag = Z Z c(r)yr(n —r)q" .
n>1 r=0
Thus,

7(1)c(0) = ¢(0) € Z
cn—1)+3"2e(r)r(n—r)€Z, ifn>2

By induction ¢(n) € Z for all n € N. Therefore g € Myi_12(Z). By induction
one can prove rankz Moy (Z) = dime(Mog(SLa(Z))) for all k. O

Sketch of a more advanced proof. SLa(Z))\H has a model X over Spec(Z)
and Moy (Z) can be interpreted as the section of a line bundle on X. Then a
classical theorem (base change) gives the statement of thm 2.5.5. O

Proof of thm 2.5.3. My (Z) is stabled by the T'(n)’s as

T)f(z) =Y m)g"  with v(m)= Y o* () ez
m=>0 al ged(m,n) a
n>1
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Let {fi,..., f.} be a Z-basis of My,(Z), then Matyy, .. 1,3(T) € M,(Z).
(Here M, (Z) denotes the set of square matrices of order r.) The characteristic
polynomial of T'(n) is normalized with integral coefficients. Therefore, the
eigenvalues of T'(n) are algebraic integers. ]

Remark 2.10. More generally if A is a ring such that Z € A C C, and
Mop(A) = {f € Mu(SLa(Z)) 5 f = Y .s00nq" an € A,V n}. Then
Mop(A) = Mop(Z) @7 A.

Proposition 2.5.9. The eigenvalues of T'(n) are totally real algebraic num-
bers.

Proof. The eigenvalues of T'(n) are real as T'(n) is a self adjoint operator for
the Petersson scalar product. ]

2.6 Hecke Algebras

Let Z C A C C, and let Hay 4 be the subalgebra of End 4(Sa,(A)) generated
by the Hecke operators.
We have Hop 4 = Horz @z A. We call By, = {f1,---, f+} the basis of

Sor(SLa(Z)) of normalized eigenfunctions of all the Hecke operators acting
on Sor(SLa(Z)).

Lemma 2.6.1. The map

¥i: He = Hope — C

where V;(T) is defined by T - f; = U;(T) f; is a morphism of algebra (so 1; is
a character of the Hecke algebra Hc ).

Proof. By definition,

(TT") fi = pi(TT") f; and T(Wi(T") fi) = a(T)T fi = s(T)0i(T) i -
Therefore s(TT") = obs(TYes(T"). 0
Lemma 2.6.2. The map

He — C”
T ((T), -+, (1))

15 an isomorphism of algebra.
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Proof. Clearly, Matg,, (T) = [ ............. . Therefore v is an injective

0 ¥(T)
morphism of algebra. (If ¢;(T") = 0, Vi then Matg,, () = 0 and T = 0.)
The surjectivity of 1 is a consequence of the following.

Lemma 2.6.3. Let (11, ,1,) be distinct characters of an algebra A over
a field k. Then the ;s are linearly independent.

We leave the classical proof of this lemma as an exercise. O

Corollary 2.6.4. S5,(C) := S3;(SL2(Z)) is a Hax,c-free module of rank 1
with basis f = f1+ -+ fr.

Proof. For any g = Y7, Aifi € Sax(C), there exists uniquely a T' € Hogc
such that T- f => N fi = g. ]

Theorem 2.6.5. The map
(, )1 Sak(C) X Hope — C
(f,T)— (f,T) :=ar(T- f) = the first coefficient of T f
is a perfect pairing of Hoy c-free modules of rank 1.

Proof. (a) If f € Sox(C) and (f,T,,) =0,V n € N, then a,(T,,f) = a,(f) =0
and therefore f = 0.
(b) If T € Hap ¢ is such that (f,T) =0,V f € Sy (C), then Matp,, (1) =
ar(T f1) 0
................. = 0 and therefore 7" = 0. O

Corollary 2.6.6.
SQk: (C) ; Homﬁgk,c (HZk,(Ca (C)
fr= (T (f,T) =a(Tf))

is an isomorphism of Hap c-modules of rank 1. Here C is viewed as a trivial
Hak c-module and the Hay c-module structure on Hom(Hay ¢, C) is given by

TOV(T) = V(TOT) ; fOT T ,T[) € HQMC and V € HOIH(HQWC? (C) .
Theorem 2.6.7. The pairing

Sgk(Z) X Hgk’z — 7
(fvT) — <f7T> = al(Tf)

is a perfect pairing, or equivalently, Sox(Z) ~ Hom(Hak 7z, Z) as Hax z-modules.

56



2.6. HECKE ALGEBRAS

Proof. Let v € Hom(Haxz,Z), then (by theorem 2.6.5) there exists an f €
S21,(C) such that V T' € Hom(Hakc, C), (1) = (f,T). Therefore,y)(T,) =
<faTn> :al(Tnf) :an(f) € Z and f GSQk(Z> o

Remark 2.11. Hopz C Endz(Sak(Z)) is a free Z-module of finite rank. We
may find T,,,,---, T, generating a free Z-submodule of Hyz of maximal
rank.

Let f be a normalized eigenform of all the Hecke operators 7T,. Let
Angs s A, such that T,,, f = A\, f. Let K = Q(\,,, -+, An,.). Then K is a
totally real number field and for all n € N, T,,f = A\, f for some \, € K.

Conclusion. Let f € Sy (C) be a normalized eigenform of all the Hecke

operators. f = > . a,¢". Then K = Q(a,- - ,a,,---) is a totally real
number field and a,, € Ok for all n € N.
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Chapter 3

Geometric Interpretation and
Double Cosets

3.1 Commensurability

Let T' € GLy(R)™ be a discrete subgroup. We say then T is a lattice of H if
Vol asgy (IH) < oo.

Two lattices I' and I” are said to be commensurable (and written as
F~T)ifI: TNV <ooand [I": T NI < co. It is easy to check that
commensurability is an equivalence relation.

Let T' = Commep,my+(T') := {7 € GLy(R)* [7Ty~! ~ T'}. Then

(a) if T ~ I’ then T = I".

(b) T is a subgroup of GLy(R)*.

Proposition 3.1.1. Let I' be a subgroup of finite index in SLo(Z), then
[ = R* x GLy(Q)*.

Proof. We may assume that I' = SLy(Z). If a = ¢ 3 with ¢ € R*, 3 €
GL2(Q)™, then al'a™ = BB~ and we may assume that 3 € Myo(Z). Let
m = det(f) € Z.

Lemma 3.1.2. We have T'(m) CT NATE™ C T = SLy(Z).
Proof. Let v € T'(m), then m3~! € My 5(Z) and (mfB~') -3 = mp~'p =
m o 0)_ (00}
0 m)—\o o) M
Therefore mB~'y3 = md for some § € My5(Z) and det(d) = 1. This

implies 7'T'(m)3 C T' = SLy(Z) and hence I'(m) C BT NT Cc T =
SLy(Z). O
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As a consequence, [[' : T'N BTB7Y] < +o0o0 and applying the same proof
with 87! instead of 3, we get

[BTB 3 NI =:TNBE'THE < +oo.

It then follows 3 € T. As al'a~! = T3, we have a € T.
b
d

a-0= g is also a cusp of al'a~!. Thus, : g are cusps of 'Nala~! and also
cusps of I'. Therefore, ¢,% € P(Q) = QU {oo}.

IfT' ~ ala™!, then 'T' =T =~ (*a) ' T"a. Hence 'a = (

a

Conversely, if o = (Z ) €T, then a- 0o = ¢ is a cusp of al'a™!, and

a ¢

b d)EF. We

can then get ¢, < € P'(Q) just by playing the same trick.

Write b = aby, ¢ = acq,d = ad; with by, ¢1,d; € Q, then o = a- (Cl 21) €
1 a1
R* X GLo(Q)™. This finishes the proof of proposition 3.1.1. O

Lemma 3.1.3. Let a € T = R* x GLy(Q)*. IfT = | [_, (T Nnala '8, for
some (3; € T, then Tal' = {\jads| A, A2 € T} = | |_, Taf;.

Proof. We have

a 'Tall = U a 'Ta(l Nala™)s;
i=1

® I_l((orlf‘ar) U (o 'Ta))3 = |i| a 'Taj;
i=1

=1

So I'al' = | |\_, T'af,;. For the proof of the identity (x), we leave to the
readers the following exercise.

Exercise 3.1. Prove that I"(I' N I[") = (I"'T") N I".

In fact, if & € I(I' N IV), then a € " and o = 4'v” with ' € I" and
~" € I'NI'. Therefore, « € I'I' N I'. The other direction is left to the
readers. O

3.2 Algebraic correspondence on a Riemann
surface

Let X be a Riemann surface.
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Definition 3.1. An algebraic correspondence on X is a curve C' —
X x X(possibly singular) such that the two projections 7y, m : C' — X are
surjective and proper.

Let di = degm,dy = degmy. We may define two maps 77 : X —
X)) Ty X — X(2) where X = X9/S; and Sy is the symmetric group
in d variables. Therefore X (@ is the set of unordered d-tuples of points of X.

For all z € X, we write mfz = (x1,--- ,x4,) for the set of points in
71 ({z}) counted with multiplicity. Then we define T} - © = momi{z} =
(71'2(.131),'-' ,ﬁg(xdl)). Ty - x = mumyx. We say that T, is the adjoint

correspondence of T;.

3.3 Modular correspondence

Let T be a lattice in Hand o € . We write ', = I'Na~ T and X, = [, \H.
As [I' : T,] < 400, we have a finite and surjective map m : T, \H —
MH, Iz — I'z.

Lemma 3.3.1. There is a well-defined surjective proper morphism of Rie-
mann surfaces

m : [Z\H—-T\H; Iy -z—T-az

Proof. Let v € Ty. m(ly-yx) =T -ayr =T - ayalar = T - azx as

ala ™ C T and @ € T Na'Ta. This implies my(Tyyz) = mo(Ty)z. All the
rest is clear. 0

Lemma 3.3.2. There is a commutative diagram

H —Y. HxH

! !

T \H —* I\H x T\H
where 1 : z +— (z,az) and 1 = (71, 73).
Proof. An easy exercise using lemma.3.3.1. [

Definition 3.2. Let X, = I',\H. Then Y, := ¢(X,) C T'\H x I'\H is an
algebraic correspondence. We say that Y, is a modular correspondence .
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Propqsition 3.3.3. The modular correspondence T , = T, associated with
Y, C ¥(X,) is
To(Tx) =[Tal] -z = |_| Caf;x
,@iER(Fa\F)

where R(T',\I') is a system of representatives in I' for T, \T.
Proof. We have clearly

1 (Fx) = |_| LGz

Bi€R(Ta\D)
and therefore
mo.m; (L) = |_| Fafix =[Tal] -z .
ﬂieR(Fa\F)

O

Proposition 3.3.4. Let I' = SLy(Z),a = (g (1)) ThenT, =TNala™! =

Lo(p), and the modular correspondence associated to ¢ (To(p)\H) is the cor-
respondence “T,".

Proof. Let v = (24)€ T'y. Then

C(pt 0\ [ar b\ (p 0\ [
TV o 1) \e @) \o 1) 7 \pe
aq bl
o d1>eSL2(Z).

Thus, v € To(p). A similar proof gives I'g(p) C T, so that T, = T'o(p).
The associated modular correspondence is

[r(fg ?)r}.w— | | r(g Z)-x—Tp-x

ad=p, 0<b<d

SR
N——

with (

as
p 0 - a b
F(O 1)F_ | | F(o d).
ad=p, 0<b<d
O
More generally , “ T, = L] [F a 0 F] is a finite union of
ad=n , d|a ,a>0 0 d

double cosets. (Here “ | ]” denotes sum of modular correspondences.)

62



3.4. THE RING R(I)

Remark 3.1. If " acts without fixed points on H, then m : I',\H — I'\H
and my : I',\H — ['\H are étale morphisms.

Exercise 3.2. Let C — T'\H x I'\H be such that m : C — T'\H and
7y : C'— I'\H are étale. Prove that C' is a modular correspondence.

Remark 3.2. When [Commgy,®)(I") : I'] = oo, we say that I' is an arith-
metic lattice of H. For example, when I' = SLy(Z), Commgy,r)(I") =
SLy(Q) x R*. So SLy(Z) is an arithmetic lattice.

By a theorem of Kasdham and Margulis, there exists a totally real number
field F' and a quaternion algebra B/F such that BQR = M,(R) x H~! with
r = [F : Q], such that T is commensurable with O%' := {z € O%|Nm(z) = 1}
where O3 is the group of units in a maximal order Op of B.

3.4 The Ring R(I)

Definition 3.3. Let R(I') be the free Z-module with basis the I'al”s with
a € I'. That is, R(I) is the set of finite sums ) cror[I'al’] with cpar € Z.

Let deg(I'al’) be the number of left I-cosets in 'al’. Therefore deg(I'al’) =
[ : Ta 'TanT]. We may extend by linearity to obtain a map deg : R(T") —
Z by

deg(z cror[lal’]) = Z crardeg([Tal’) .

We then define a multiplication R(I') x R(I') — R(I") in the following
way: If Tal' = [ |, Tay, T = |[;_, I'8; , then I'al'BT" = ||, ; T'a;f3; .
Therefore, Tal'T is a finite union of double cosets T with 6 € T.

Definition 3.4. We define
[Cal] - [[AT] = nrer[TOT] |

The sum is over the double cosets I'0" C TI'al'BI" and nryr is defined as
nror = #{(i,5)| T0 = T 3;}.

Proposition 3.4.1. The definition is independent of the choice of the o, B;
and 6.

Proof. It I'a;3; = T'0, then I'ay; = T'05; !, Therefore, if j is fixed there exists
at most one ¢ € {1,...,r} such that T'e; = FQBJ-_I, and there exists one if
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and only if 06;1 € I'al'. Thus,

#{(i,))[Tei; = T0} = #{j|Te; =TO5; '} = #{j|08; " € Tal'}
= #{j18;07" € Ta™'T} = #{j|; € Ta™'T0}
= number of left cosets I'e in TS NTa T4,

which is independent of «; and 3; .

If TOT = T9'T, then 6 = A6’ Ay with \; € I'. Then
[T NTa™'T0 =TAT NTa TN, =| |Tels .

If AT NTa™ T8 = | |Te, then nrgr = nrer. The proposition is thus proved.
]

Remark 3.3. We may extend by linearity this definition to obtain a multi-
plication R(I") x R(I") — R(I").

Lemma 3.4.2. If [[al] - [['8T] = >_ nper[I'0T, then
deg([[OT)) - npor = #{(¢,7)|Te; 3;T =T6I'} .

Proof. We write TOT" = | |/_, T6), . Then f = deg(I'T) and ;3,1 = T4T
if and only if there exists a unique k € {1,..., f} such that I'a;3; = I'6;, .
Therefore,

!
#{(i,4)|Ta; 3,7 =TOT} = > #{(i, j)|Ta;3; = T}
k=1

f
= Z nrg,r = f - nrg,r = deg(IOL) - npg,r -
=1

]
Proposition 3.4.3. For any z,y € R(T), deg(x - y) = deg(z) - deg(y).
Proof. In fact,
deg([Tal'] - [[AT]) =Y~ nrgr - deg(I'6T)
= #{(i,/)[Ta;3,T =F e;m
=7;6{F<z',j>} = deg(I'aT) - deg(IAT) .
]
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Proposition 3.4.4. The multiplication on R(I") is associative.
For the proof, the readers may refer to Shimura’s book [7].

Definition 3.5. Let A be a semi-group with I' ¢ A C T, let R(I", A) be
the Z-free module with basis {[I'al'] | « € A} . Then R(I', A) is endowed
with the structure of an associative unit ring with unit element [['1T].

Proposition 3.4.5. [ff’ has an antiautomorphism o — o* such that
(D (a-B) ' =p"-a"; 2I"=T; B)VaecA,(l'al)*=Tal’=Ta"T .
Then R(I', A) is a commutative ring.

Proof. We write Tal' = || Toy = ||, ' and TST = ||, I3 =
LJ5—, 3;T". Then

d e
Fol' =TT =| |Taj ; and T =THT =| |T8;.

i=1 j=1
If Tal'fT" = | |, 0T, then

Pal'T = T3 Ta'T = (Tal'BT)* = | |(T6r)* = | |T6'T .
(% 0

Suppose [['al'] - [I'BL] = > nper[T'0T] and AT - [Lal’] = > niyp[IOT]. We
have

nrardeg([TOT]) = #{(i, j) T, 3T = T6T}
—#{(i,)|TB;0iT = DO} = nfpgrdeg([T6L]) .

Hence, nrgr = npyp, and the commutivity is proved. O

Example 3.1. Let I' = SLy(Z), A = Ms5(Z)", and let R(I', A) be the free
abelian group with basis {T'(a,d) = [['(89)T'] ; a > 0,d > 0,d|a} .
In this description, T, = T'(p, 1) when p is prime and more generally, as

M(n) = {a € Mao(Z)|det(a) =n} = || T (8 2) r,
dla ad=n a>0

we find that

T,= Y [ (g g)r}.

d|a, ad=n ,a>0
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The map
Myo(Z)* — ngg(Z)jL Ca— ot =a

satisfies I' = IT'™*, (T'al)* = T'al” and (af)* = f*a*. So R(SLy(Z), Mao(Z)T)
is commutative.

If f € Mak(SLy(Z)), we have an induced action for o € My o(Z)". Write
Fal' = | |_, Tay, then

[Tall- f = det(a)"* i flawcu
i=1

where as usual

det(a)k

T = e am

fla-z) if a=(2Y).

3.5 Modular forms for congruence subgroups

3.5.1 Congruence Subgroups

Let N be a positive integer. We have defined the groups: I'(N) C I'1(V) C
Fo(N) C SLy(Z) = T'p(1) = I'1(1) = I'(1). By definition, a subgroup I' C
SLy(Z) is said to be a congruence subgroup, if AN € N such that I'(N) C
I' € SLy(Z).

Proposition 3.5.1. The map
¥ To(N) — (Z/NZ)* ; (%%)—d mod N
is well-defined and induces an isomorphism I'y(N)\I'o(N) ~ (Z/NZ)* .

Proof. From ad —bNc =1, we get ad =1 mod N and then d is invertible
in Z/nZ. 1f

Y= (mei)ETo(N), v = (4 %)eTo(N),

then vy = (% ey vaa ). Therefore ¥(yy') = ¥ (7)y(v'). This implies ) is a
homomorphism. It is clear that Kery) = 'y (V).

If ged(d, N) = 1, then there exist a,b € Z such that ad — bN = 1. Thus,
(8)eTo(N) and ¥((24)) =d mod N. This means ¢ is surjective. O

Let I" be a congruence subgroup. There exists N € N such that I'(N) C T
Thus, Mag(I") C Mok (I'(N)), and Soi(I') C Sax(I'(IV)). In principle, we just
need to study Moy (I'(V)).
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Lemma 3.5.2. Let f(z) € Mo(T'(N)) and g(z) = f(Nz), then g(z) €
Moy, (T1(N?)). If the Fourier expansion of f at 0o is f(z) = > " Oanem%,
then g(z) = > 07, ane®™?.

As a result, we need only to study Mog(I'1(N)) for all N.
Proof. We remark that
(%7?)1 ( ) {(25)eSLy(Z) |¢c=0 (mod N*), a=d=1 (modN) }.

Therefore, I'y ( c(¥9) 1F (N)(Y
LethF(Nz), :( %) oz(%f

9\2k7(2) k f’%(

7).
?)

for some a € I'(IV). We then have

—o OZ
\/

o

o

l\l

3.5.2 Dirichlet Characters

Let N € N*, ¥ be a character of (Z/NZ)*. We have an induced map x :
7, — C given by

(n) X(n mod N), if ged(n,N)=1
n)=
X 0, if ged(n,N)>1

with the properties

x(nm) = x(n)x(m)
x(m) = x(n) ifm=n mod N
x(n) #0 if and only if ged(n, N) =1

A map x : Z — C with the above properties is always given by a unique

character x : (Z/NZ)* — C*. We say that x is a Dirichlet character
modulo N.

If N|M, and if x is a Dirichlet character modulo N, then we may define
a Dirichlet character Y’ mod M by

X'(n) = x(n), if ged(n, M) =1
X'(n) =0, if ged(n, M) >1
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We then say that x’ is induced from x. If x is not induced from a character
of level N'|N, then we say that y is a préimitive Dirichlet character.
There exists a smallest integer n, |V such that x is induced from a primitive
character mod n,. We say that n, is the conductor of x.

For any Dirichlet character y mod n, we define a character of I'o(XV)
(also denoted by x) by the formula

X((#.5)) =x(d) .
Let f € Mar(I'1(N)), then for all & € I'1(N), floxax = f.
Lemma 3.5.3. ]fﬂ € Fo(N) andf € Mgk(rl(N)), then fgkﬁ € Mgk(rl(N)

Proof. Let o € T1(N). Then (flaf)lora = flafa = flafaf™ |l =
flawf3. 0

Thus, we have an action of I'y(N)\I'g(N) = (Z/NZ)* on My (T'1(N).
For any Dirichlet character x mod N, we write

Mo (T1(N), x) = {f € Mop(T1(N)) | flarB = x(B)f,¥ B €To(N)} .

Proposition 3.5.4. There is a decomposition

Mzk F1 @ M2k F0 )
x mod N
Sa(TUN) = €D Sa(To(N), x)
x mod N

Proof. This is just the decomposition of the representation of I'y (N)\I'o(NV)
(Z/NZ)* on May(I'1(N)) or Sor(I'1(N)).

LI

Proposition 3.5.5. Let x be a Dirichlet character mod N.

(2) Let wy = (5 ), then the map f — flaxwy induces an isomorphism

MQk(FO(N>7 X) = MQIC(FO(N>7 X)

Proof. (1) Let f € Ma(To(N),x). Then x(—=1)f = flax( " °; )= f. Thus,
F=0if y(=1) #£ 1.

(2) Let g = flawwn,y = (& 5)€ To(N), then wyywy' = (_%; )€
[o(N). In particular, wy normalizes T'y(N).

If f € Max(L'o(IN), x), then

(gl2x)7 = (flarwn)|ory = (flavwnywy'))|awwn = x(a) flarwy -
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Asad =1 mod N, we find x(a) = x(d), and therefore,
glawy = X(d) - g <= g € Mo (T'o(N), X) -
[

Other formulation.

For any d € (Z/NZ)*, we fix a 04 € To(N) such that o4 = (%)
mod N with dd = 1 mod N. We write (d)s for the action of (Z/NZ)*
on Mok(I'1(N)) given by (d)ax - f := flaxoa. One can show that it is a
well-defined action independent of the choice of the gy.

3.6 Modular Interpretation

We know that SLo(Z)\H is a moduli space for isomorphism classes £ of
elliptic curves over C:

SLy(Z)\H — & = { isomorphism classes of elliptic curves over C}
SLo(Z)-7+— E, 2C/Z®TZL .

3.6.1 Case of Y ()

Proposition 3.6.1. The modular curve Yi(N) = I'((N)\H parameterizes
the set E1(N) of isomorphism classes of couples (E,P) with E an elliptic
curve over C, and P a point of E(C) of order N.

Proof. Let I' =I'1(N) and z =T"- 7 € I'\H. We may associate to such an z
the elliptic curve E,. = C/Z & TZ.

Lemma 3.6.2. Fory = (2%)e SLy(Z), the map
C/lZetZ=E, - E,=C/Z&~TL
2
cT +d

is a well-defined isomorphic E. = FE. . of elliptic curves.

Proof. Define a linear map v, : C — C, 2 — ~Z5. Then

vy(ar +b) = 5 =97,
vy(er+d)=1.

As {at + b,cT + d} is a basis of Z & 7Z, v,(Z & 7Z) = Z & y7Z. Hence, 0,
is an isomorphisms F. = E., . O
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Observe that

(1) 1 1 I~
Vfl=)——==—=—> " —=="—-
"N’ N N(et+d) N  cr+d
and
—(“b)eF(N)@ieZ ueZ<:>v(—)—i6v(Z@TZ)
7= Rea)= 0 N-T TN TN TNED
Therefore 1 1

I'y(N —) == VA 7 .

v e Iy )<:>UT(N) N mod Z & YT

The conclusion is, the map
1
Di(N\H — &(N); Ty(N) -7+ (B, =C/Z®TL, P, = N)

is an isomorphism.
We leave it to the reader to check that if F is an elliptic curve over C and
P is a point of order N, then there exists 7 € H and a € SLy(Z) such that

(Bar,val(yy)) = (B, P). -

3.6.2 Case of Yy(N)

Proposition 3.6.3. Y(N) = Io(N)\H is a moduli space for the set & n of
isomorphism classes of couples (E, H) where E is an elliptic curve over C
and H is a cyclic subgroup of order N in E(C). More precisely, the map

Lo(N\H — &N
N -1

1
F()(N)TH (ET :C/Z@TZ, HT:{()’N,’T})

s an isomorphism.

Proof. Let v = (2%)€ I'o(N), then ged(d, N) =1 as ad —bc =1 and ¢ =0
mod N. If : = jd mod N, then

. . i—jd e

{ J N __JNT

L - AN N 7 7) .
/UV(N> N ct+d EUW( O 1Z)

We see also that T’ 0( ) is the set of matrices in SLy(Z) preserving the sub-
group H = {0, ., ..., %=} Moreover, for any v € SLy(Z), UW({O, a2t
is a cyclic subgroup of order N of F, and any such subgroup is obtained in

this way. O]
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Yo(N) = [o(N)\H is also a moduli space for isomorphic classes & , of
couples (E, E') for some ellliptic curves F and E’ over C such that there
exists a cyclic isogeny ¢ : E — E’ of order N. And we have

(C;O,N ;’ 5(/)7]\]
(E,H) v (E,E' = E/H ,E — E')
(E,Kerp) «—~ (E, F', ¢ : E— FE').
As &y CEXE, we get Yo(N) C SLy(Z)\H x SLy(Z)\H.
We can show also that I'(V)\H is a moduli space for isomorphism classes

of triples (E, Py, P,) with E an elliptic curve over C, P;, P, a basis of E[N]
such that ey (P, P,) is a fixed N-th root of unity, where

E[N]:={P € E(C)|[N]P =0} 2 Z/NZ & Z/NZ

and ey : E[N] x E[N] — puy is the Weil paring.
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Chapter 4

Hecke Algebras for I'{(N)

4.1 The Algebras R(N) and R*(N)

Let I' = To(N). We define two semigroups Ag(N) and A§(N) in GLy(Q)*
by

{(33)6 My(Z)|e=0 mod N ,ad —bec >0 ,ged(a, N) =1},

Ap(N)
AG(N)={(2%)e My(Z)|c=0 mod N ,ad —bc >0 ,ged(d,N) =1}.

Clearly To(N) C Ag(N) € To(N) and To(N) C ALN) C To(N). We
write R(N) = R([o(N),A¢(N)) and R*(N) = R(I'o(N),A§(N)) for the
corresponding Hecke algebras.

Lemma 4.1.1. For any o € Ng(N)(resp. o € Aj(N)), there exists positive

integers |, m determined by o such that
(1) I|m, ged(l,N) =1, Im = det a, and
(2) To(N)al'o(N) = To(N)(§ % )To(N) ( resp. To(N)alo(N) = To(N) (% §)To(N)).
Moreover, if ged(lm ,N) = 1, then

To(N) (6 5 )To(N) = To(N) (7§ §)To(N).
Proof. Exercise. Using the theorem of elementary divisors. O
Proposition 4.1.2. R(N) and R*(N) are commutative algebras.
Proof. We just need to find an antiautomorphism a +— a* of Ay(N) such
that (i) (af)* = *a; (i) [ =T (I' = I'o(N) here) and (iii) Vo € Ag(N),
(Tal)* =Tal.
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If a = (&%), we define a* = (% §). Then it’s easy to see I'* = T

For (i), just check by computation, verifying o* = wya ™!
(%) For (iii), we have, by lemma.4.1.1,

-1
wy where wy

(Fal)" = (C(§2)T)" =T"(60) T =T(E )T
O

Now our goal is to define an action of R(N) and R*(N) on the space
Son(N, x) = Sa(Lo(N) , x). Here x : (Z/NZ)* = T (N)\I'y(N) — C" is a
Dirichlet character.

Definition 4.1. Let y : To(N) — C* be the character a = (¢ })— x(a) :=
x(d) defined by a Dirichlet character y : (Z/NZ)* — C*. We define Y :
Ag(N) — C* by o= (24)— x(a) and x* : A§(N) — C* by a = (2})—
x(d).

X(af) = X(@)X(B)

We remark that X|r,v) = X = X" |rov) and .
" T (@B) = (@) (8)

Definition 4.2. Let f € Sor (N, x) and a € Ag(N). We write I'g(N)al'o(N) =
[I, To(N)a, and define

[Lo(N)alo(N)] - f = det(a)*1 Y~ X(aw) flaxcrs. (4.1)

Sometimes we write [Lo(N)al'o(N)] - f =Tn k() - f.

Remark 4.1. The formula (4.1) is independent of the choice of representa-
tives ay,.

Proof. Let o = B,a, with 3, € I'o(N). Then

;(Bv)§(av)f|2kﬁvav = ;(ﬁv>;<av>(f|2kﬁv>|2kav
= X(B)X(Bu)X () f o, = mﬂ%av

Remark 4.2. We must verify that g := [I'o(N)al'o(N)] - f € Sa (N, x).
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Proof. Let § € I'o(N). Then I'o(N)al'o(N) =1, To(N)a, = [, To(INV)ayS.
By remark.(4.1), we have

glar3 = det(a)"~ IZX aw)(flakow) |2k
X(8) det(a)*~ 1Zx @) flarewfB = X(B)g

This implies g € Sor (N, X). O

Remark 4.3. For a € Aj(N) with I'o(N)al'o(N) =[], [o(N)a, we define

[Co(N)alo(N)] - f = det(a)* 1ZX ) flakew. (4.2)

llm,l>0,m>0
ged(l, N) =1

Definition 4.3. For all couples (I, m) such that { , wWe

define T'(I,m) € R(N) and T'(n) € R(N) by

T(l,m) = [Lo(N)(§ $)To(N)], T(n) = > T(l,m).
We also define T*(I,m) € R*(N) and T*(n) € R*(N) by
T (m,1) = [Co(N) (5 §)To(N)], T*(n) = Y T"(m,1).

Im=n

If ged(n, N) = 1, then (§ 9)€ AF(N) N Ag(N) and To(N)( 2)o(N)
Lo(N)(%2). Therefore T(n,n)T(l,m) = T(nl,nm) and T*(n,n)T*(m, )
T*(nm,nl).

Theorem 4.1.3. (1) For all f € So(N, x),

1

{T*( m, 0 f = x(Im)T(,m)f if ged(lm,N)
T*(n)f = x(n)T(n) if ged(n,N)=1

(2) T(l,m) and T*(m,l) are mutual adjoint operators with respect to the
Petersson scalar product on Sop(N | x).

(3) Sox (N, x) has a basis of eigenfunctions for all the Hecke operators T(n)
with ged(n, N) =1 and T'(l,m) with gcd(lm ,N) = 1.
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Proof. (1) We have
AGN)NAG(N) = {(24)€ Ma(Z) | ¢ =0 (mod N) , ged(ad,N) =1, ad — be > 0}
Therefore, if v = (24)e AH(N) N Ag(N) then

X" (@) = x(d) = x(ad)x(a) = x(det(a))X(c).

If ged(Im, N) = 1, then FO(N)((Z) %)FO(N) = FO(N)(’E} ?)FO(N) =11, To(N)a,
for suitable a,.

T (m, 1) f = (ml)* ZF(%)ﬂszzu = (ml)*'x(Im) Z?(%)ﬂ%%

= X(Um)T(l,m)f

The result for T'(n) is a consequence of the result for T'(1,m).

(2) Let a = (24)€ GLy(R)*. Define o := det(a)a™' = (4 7). Then
a — ' is an anti-isomorphism from Ay(N) to A§(N).

We can find a coset decomposition To(N)({ 9 )To(N) = [T, To(N)aw, =
[I, @l'o(N). Then

Lo(N) (75 9)To(NV) = (To(N) (6 5)To(N)" = [T To(N)er,

v

We proved that for any f,g € Sar (N, x) and o € To(N) € T'o(N), (f|arcx, g) =
(f, glaral). Now we have

<T(lm)fa g> = ml ket Z; av f|2k‘ava > = (ml)k_1<fv Z%(O‘v)gbka;)
= (f, (ml)*~ 1ZX )glarc,) = (f, T*(m,1)g)

Note that in the above computation we have used the following

Lemma 4.1.4. x(a) = x*(¢/).

Proof.

X*(a') = x*(det(a))x*(a~t) = x*(det a)x* ()
= x*(det ) x(det a)x (@) = X(a).
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(3) As T*(m 1) and T'(I,m) commutes by (1), we see that T'(l,m) is a
normal operator (“normal” means it commutes with its adjoint operator).
As R(N) is a commutative algebra, we see that there is a basis of Sor (N, x)
of eigenfunctions of all the Hecke operators T'(I,m) with ged(lm,N) = 1
and T'(n) with ged(n, N) = 1. This is a consequence of the following lemma.

Lemma 4.1.5. If T is a normal operator, then there exists a basis of eigen-
functions of T.

]

Proposition 4.1.6. (1) R(N) = R(I'o(N),A¢(N)) is as a Z-algebra a poly-
nomial ring in the variables T(p) = T(1,p) for all prime number p and

T(p,p) for all ged(p,N) = 1.
(2) If ged(m,n) =1 or if m| N*° orn| N*°, then T'(m,n) =T (m)T(n).
(We sayn|, N® if n = leNp"P.)
(3) R(T'o(N), Ag(N)) is generated over Q by the Hecke operators T'(n) ,n €
N.

Remark 4.4. We have

TR = >irer [To(N (IgpM)FO(N)} if ged(p,N)=1
g T(1,p") = [Do(N) (5,0 )To(N)] if p| N

When we work at a level N, we sometimes write Tx(n) or Ty(a,b) €
R(To(N), Ag(N)).
For example, if N = 1, we find by (1) that R(T'o(N), Ao(N)) = Z[T1(p) , T1(p, p)]

and there is a surjective morphism:
R(1) — R(N)
Ti(p) — Tn(p)

T(p.p) Tn(p,p) if ged(p,N)=1
’ 0 if p| N

The relation in level 1

Ti(m)Ty(n) = > dTi(d,d)Ti( dg)

d| ged(m n)

induces the relation

Tn(m)Tw(n) = Y, dIv(d.dTv(Z) , (Tn(d.d)=0if ged(d,N) #1).
d| ged(m )
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Lemma 4.1.7. Let p be a prime number and ¢ > 1.

(1)

T(1,p")+(p+1)T(p,p) if ged(p,N)=1,0=1
T(p)T(1,p") =S T(L,p"*Y) +pT(p,p)T(1,p") if ged(p,N)=1,£>1
T(1,p") if p|N

TP +pT(p,p)T(1,p" ") if ged(p,N) =1
T(p**h) if p| N

(3) If ged(dm ,0'm') =1, then
T, m)TW ,m") =T, mm’).

Remark 4.5. For ged(p, N) = 1, the results are the same as in level 1 and
can be shown in the same way. So we may either adapt the proof or “think
adelically”. For p| N, there is only one formula to prove as T(p*) = T'(1, p").

We need to show
T(p)T(p) = T(p™") =T, p")T(1,p) = T(1,p").
By definition,
[PO(N)((lJ z?‘f )FO(N)] [FO(N)((l) 2)F0(N)} = Z ng [FO(N)HPO(N)]

with
To(N)(§ =| |To(N)0To(N

But then for such 6, we have det(@) = p"*t and 6 € Ay(N). Therefore,
To(N)OTo(N) = To(N) (g 1 )To(NV).

So we get T(p")T(p) = ¢ - T(p*™'). We must prove the constant ¢ = 1. By
the following lemma.4.1.8,

p' - p=deg(T,)deg(T},) = cdet(Tyes1) = cp™
So we get ¢ = 1.
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Lemma 4.1.8. If p| N, then

To(N) () To(N) = | ] To(N)(5 )

0<n<p?
In particular, deg(T,e) = p".
Proof. Let B = (4. 4)€ To(N)(g ¢ )To(N). As B € Ag(N), ged(a, N) = 1.
The relation ad = bnc = p’ implies that
ged(a,Ne) =p" with 0<r <.
Since p 1 N and ged(a,N) = 1, r = 0. Therefore, ged(a, Nc¢) = 1 and there
exists 71 € ['g(N) such that v = (,}‘VC 2) and
’71ﬁ = (—Ecé)(}\?c?I): (é;) :

If we write n = ep® + m with 0 < m < p, then

Yo = ((1]_16)6 [o(N) and v = ((1);})

This shows
To(N) (5 3 )To(N) = |J To(N)(§)-

This union is disjoint: if v € T'o(N) is such that 'y((l);’é): ((1)’;2,) with
0 <m,m < pf, then v = ((1) mplzm ). This implies m = m’ mod p and
hence m = m/. O

Proof of Prop.4.1.6. (1) It is a consequence of lemma.4.1.7 using induction
on /: the relation

(p+1)T(p,p) ifpt N, (=1

T(1,p) =T TK") - {pT(p,p)T(l ) ifpIN, 1

implies that if T'(1,p) € Z[T(1,p),T(p,p)], then T(1,p**1) € Z[T(1,p),T(p,p)].
(2) is a consequence of the adelic description if ged(m,n) and of the
relation T'(p®)T (p') = T (p=*7).
(3) is a consequence of (1) and the relation

T(p)? —T(p*) .

pT(p,p) =T(p)* —T(P*) < T(p,p) = p
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4.2 Adelic Interpretation

This section is devoted to the explanation of the principle “any relation for
T'(m) in level 1 induces a similar relation for Ty (m) if ged(m , N) = 1".

Let A = A; x R be the ring of adeles:

r €A & 1= (2,)p<00 With z, € Q, and for almost all p, z € Z,, .

We then define the topological groups GLg(A) and GLo(Af). Let 7 =
[1)<oc Zp , then GLy(Z) = [1,<o GL2(Z,) is a maximal open compact sub-
group of GLy(Ay).

Let K =[], K, C GLy(Z) be an open compact subgroup of GLy(Z).
For all p > 0, K, = GLy(Z,) and for all p, [GLy(Z,) : K,| < cc.

We suppose that for all p > 0, the map det : K, — Z; is surjective.
We write I' = K N GLy(Q)T C GLo(Z)" = SLy(Z), i.e,

I={geCGL@Q"|gek, Vp}.
Proposition 4.2.1. We have
M\H = GLy(Q)"\H x GLy(A;)/K
where GLy(Q)1 acts diagonally on H x GLy(Ay)/K.

Proof. The strong approximation theorem says that SL(Q) is dense in SLy(Ay).
As KNSLy(Ay) is an open compact subgroup of SLo(Af), SLo(Q)-KNSLy(Ay)
is open and dense. Therefore, SLy(Af) = SLo(Q) - (K N SLa(Ay)).

We know also that

Q*\A}/z* > the class group of Z = {1}
then by the exact sequence
1 — 1 =SLy(Q)\ SLa(As)/KNSLy(Af) — GLa(Q)\ GLa(Af)/K 5 Q*\AG/Z* =1

we get GLa(Ay) = GLy(Q) - K.

We write [z, gK] for an element of
& = GLy(Q)"\H x GL2(Af)/K .

Then g = gg - k with gg € GL2(Q) , k € K and [z, ¢9K] = [g@lz, 1-K]J.
Therefore, any element of . has a representative of the form [z,1 - K]. If
(21,1 K] =[22,1- K], then there exist k € K and gg € GL2(Q)" such that
29 = gopz1 and gg € K NGLy(Q)T =T. So we get . = I'\H. O
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If more generally, det(K) # Z*, then the connected components of .7 1=
GL2(Q)"\H x GLy(Af)/K are indexed by the finite set

GLy(Q)\ GLa(Af)/ K = Q"\A}/ det(K)

that is,

s =[] 1,\H

gER

where R is a system of representatives in GLy(Af) for GLy(Q)*\ GL2(Af)/ K
and I'y = g7 ' Kg N GLy(Q)*.

Example 4.1. Let N = [[p" and Ko(N) =[xy Ko(p") x [[ v GL2(Z,)
where

Ko(p™) = K, :={k € GLy(Z) |k = (§) mod p™} .
Then det(K)) = Z; and
GLy(Q)"\H x GLy(Af)/Ko(N) = To(N)\H .

We shall omit the proof of the following proposition, which uses the strong
approximation theorem.

Proposition 4.2.2. Let a € GLy(Q), I'al' = [[ Ty, KaK = [[3;K. Let
¢ T\H — GLy(Q)"\H x GLa(A;)/K
Iz (Iz2):=[z,1-K].
Then Y([Tal]-Tz) =(T'2) - [KaK] where
Tal] Tz=[]Taw and [z, 9K]- [KaK] =]z, 98,K]

As a conclusion, we find that for N prime to p, to compute 77 (p) or Ty (p)
we just need to write out the coset decomposition of GLa(Z,)( § 5 ) GL2(Z,)
and this is independent of N.

We saw in level 1 the relation

Ty(m)Ty(n) = > (1L, 0Ty

L] ged(m ,n)

mn
)

and this is formally equivalent to the existence of an Eulerian product

S rim)s =T (1 - Tup)p™ + Tulp, p)p' ) .

p
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In level N, we obtain the relation

mn

Tn(m)Tn(n) = > (TN (0, 0T (- e )
L] ged(m,n) ged(4,N)=1
which is formally equivalent to
ZTN(TL)S_S = H (1-Tn(p)p*+Tn(p,p)p' ™) 'x H (1-Tn(p -
n=1 pIN pIN

4.3 Eigenfunctions

Recall that if f € S, (To(N), x), & € Ag(N) and To(N)al'o(N) =[], To(N) o,
then

det(a)*

Ry

[Co(N)alo(N)] - f(2) = det(a)*~ 12)( ) flaraw(2) =

If ged(¢,N) =1, then

T, 0f =x(0f .

Theorem 4.3.1. (1) Let f € Sy (To(N),x). Write f = 37,5, cae®™?.
Suppose that ¢; = 1 and that f is an eigenfunction of all the Hecke operators
T(n) and T'(¢,0) for gecd(n,N) =ged(¢,N) = 1. Then

Z Cn H 1—Cpp +X( ) 26— 1723)—1 % H con”*

n>1 n| N

(2) There exists a basis of Sy, (FO(N) ,X) of eigenfunctions of the T'(n) ,T'(£)
with ged(n, N) = ged(¢, N) = 1.

(3) If f is an eigenfunction of all the operators T'(n), then ¢; # 0. If we
normalized f by ¢y = 1, then we have the Eulerian product

L(f,s):H(l—cpp*Sjo(p) R . H (1—cpp

ptN p| N>

Lemma 4.3.2. Let f(z) = 3 o, c,e®™ € Sor(To(N) , x) and T, f(z) =
anl b, €™ then by = cp,.
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Proof. 1If ged(m , N) = 1, the proof given for SLy(Z) will give
bn = Z X(d)ko_lcrrM'L/cl2 .
d| ged(m ,n)

In particular, by = c¢,,.
Using the fact T, = T,,,T,, for ged(m,n) = 1, we just need to study 7).
for p| N. From the decomposition

To(N) (32 )To(N) = ] ToN)(55)

o<m<p¢
we get
10 e(k—1) = p* L ztm
Tpef:[FO(N)(Ope)FO(N)]f_p ZPQekf( e )
m=0
pe—l ; zt+m
:p—e Cn( Z 6217rn o )
n>1 m=0
p°—1
:pfe Z Cn€217rnz/pe ( Z 62i7rnm/pe)
n>1 m=0
_ Z Cope p2imnz
n>1
which implies immediately b; = cpee. O

Proof of theorem.4.5.1. If c; =1 and T,,,f = A\, f, then by the above lemma
A = Cm. As T'(p,p)f = x(p)p**~2f, the relation

S vy =[] (1 =T + T, p)p" )" - T (1= Tn(p)p™)

ptN p|N

induces the relation

L(f ) 3) = H (1 — TN(p)p—s + X(p)ka—l_zs)fl.

pIN
HmN (1 — TN(p)p*S)*1 if f is an eigenfunction of T'(p),p| N
[L. yen™ if f is an eigenfunction of 7T'(n) and

T(p,p),ged(n,N)=ged(p,N) =1

If f is an eigenfunction of all the Ty (n), the for all n € N, ¢, = Ac¢; where
Ty(n)f = A\ f. Therefore, if ¢; = 0 then f = 0. O
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Main questions on this topic are concerning the existence of eigenfunctions
of all the T'(n), or at least that of eigenfunctions of all the T'(n) , ged(n, N) =
1 but with ¢; = 1.

4.4 Primitive Forms

To simplify the exposition, let’s work with S (FO(N)) = Sy (FO(N) ,IL)
where 1 is the trivial character.

Lemma 4.4.1. Let f € Sy, (T'o(N)) and ¢ € N*. Then

ge(z) = f(lz) € Sgk(Fo(Nf)) )
Proof. Write &, = (§9), g = flaxde so that g(z) = £*f(£z). Let v = (v })€
[o(NY), then vy, " € To(N). Thus,
glowy = (flarde)y = (flawdev8y ' )oe = flawde =g -
So we have g € Sa, (To(NY0)). O

For all M | N and all ¢| 2, we write
s nye: Soi(To(M)) — So(To(N)) 5 f(2) = f(£2) .
where we use the natural injections Soy (Fo(m)) C Sop (Fo(m’)) it m|m'.

Definition 4.4. Let 854 (Io(N)) be the subvectorspace of Sa,(Io(N)) gen-
erated by the \IJM7N,E(82;€(FO(M))) forall M| N ;M # N and /| % A form
in 8(To(N)) is called an old form.

Let 83V (Io(N)) be the orthogonal of S5i¢(I'g(N)) for the Petersson’s
scalar product. A form in Sp™ (Io(IN)) is called a new form or primitive
form.

We write Saj,(N) = Soi (T'o(N)) from here on.

Lemma 4.4.2. Let M | N, (|2 and n € N* such that ged(n,N) = 1. Then

the diagram
T (n

So(To(M)) 21 8, (To(M))

‘I’IM,N,ZJ( J/\I]JW,N,Z

Tn(n)

SQk(N) - SQk(N)

18 commutative.
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4.4. PRIMITIVE FORMS

Proof. This is clear for the adelic point of view. To compute Ty (n) or Tys(n),
we write these operators as a sum of double cosets which can be decom-
posed as products of double cosets of the form GLy(Z,) ("% 9 )GLy(Z,) with
ged(N ,pm'm) = 1 and m'm = n, and the right coset decomposition in level
M 1is the same as the decomposition in level N. O

We then get the following immediately.

Lemma 4.4.3. Let SG4(N) is stable by the Hecke operators T'(n) for all n
such that ged(n,N) = 1.

As T'(n) is a self-adjoint operator (7T%(n) = x(n)T'(n) = T(n)), we see
that SSe™(N) is also stable by the Hecke operators Ty (n) ,ged(n, N) =1
We state without proof the following theorem.

Theorem 4.4.4 (Multiplicity One Theorem). Let f € Sp™(Io(N)) and
g € So(To(N)) be some eigenfunctions of all the Hecke operators Ty(n) for

ged(n, N) = 1. Write f =3 o aa(f)q" ,9 = D51 an(9)q". If ¥V 1 such

that ged(n ,N) =1, T(n)f = M\uf ;T (n)g = \ng, then g = \f.

Theorem 4.4.5. Sy (Io(N)) admits a basis of eigenfunctions for R(Lo(N), Aog(N))
(i.e, for all the Hecke operators ).

Proof. As Sy (To(N)) is stable by the T'(n) ,ged(n, N) = 1, there exists a
basis of S5 (I'o(IN)) of eigenfunctions of all the Ty (n) , ged(n, N) = 1.

Let f € S5V (To(N)) be such an eigenfunction and let 7 € R(To(N), Ag(N)),
then g = T'f € So(I'o(IV)). For all n such that ged(n, N) =1,

T.g=T,Tf=TT,f =\.TFf.
Therefore, g is an eigenfunction of all the Hecke operators T'(n) , ged(n, N) =
1 with the same eigenvalues as f. By theorem.4.4.4, g = cpf = Tf. There-

fore, f is an eigenfunction of T ]

Lemma 4.4.6. The vector space Sg*(T'o(N)) can be generated by the

> TS (To(M)))

M|N, M<N ¢| &
Proof. Exercise. m
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CHAPTER 4. HECKE ALGEBRAS FOR I'1(N)

Theorem 4.4.7. Let By™ be the basis of Sy (To(N)) of normalized eigen-
function of R(To(N),Ao(N)). Then Sa(Lo(N)) admits the basis

B=T11 II 5}

¢| g7 FEBRT™
]ff E B?\?W7 f - anl an(f)qn = ZnZl anqn; then

L(f,s)= H (1—ayp® _‘_p2k*1725)_1 H (1- appfs)_l .

ptN pIN
Remark 4.6. If f € B™"™ and (| {7, f(2) = 3,5, ane®™, then
: . =0 if t1n
gZ — an6217rn€z — cn6217rnz Wlth Cn
J(62) ; n%:l Cn = Gpnye ifl|n

In particular, ¢; = 0 if £ # 1.

Remark 4.7. It’s not hard to prove that L(f,s) admits analytic continua-
tion and a functional equation relating L(f,2k — s) and L(f, s).
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Chapter 5

Modular Equation for Xj(V)

In this chapter, we would like to construct a natural curve C' over Q (defined
by an equation F'(X ,Y) = 0 for some Q[X , Y]) such that C®¢C is birational
equivalent to Xo(N)c = To(N)\H*.

5.1 The Modular Equation
5.2 The Curve Xy(N) over Q
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CHAPTER 6. ELLIPTIC CURVES

Chapter 6

Elliptic Curves

6.1 Review of Algebraic Varieties over a Field
K

6.1.1 Algebraic Varieties

6.1.2 The Case of Curves

6.1.3 Differential Forms

6.1.4 Local Ring on a Curve

6.1.5 The Riemann-Roch Theorem

6.2 Elliptic Curves

6.2.1 Weierstrass Equations and Singularities

6.2.2 Isogenies
6.3 Elliptic Curves over Finite Fields

6.3.1 Number of Rational Points
6.3.2 Dual Isogeny

6.4 The Weil Conjectures

6.4.1 The Statement
6.4.2 Tate Module and Wéil Paring
6.4.3 Construction of Weil Paring

6.5 Elliptic Curves over Local Fields
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Chapter 7

Eichler—Shimura’s Theorem
and L-functions

7.1 Eichler—Shimura’s Theorem

7.2 L-functions of Elliptic Curves and Mod-
ular Forms
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CHAPTER 7. EICHLER-SHIMURA’S THEOREM AND L-FUNCTIONS
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Appendix A
Final Exam (3 Hours)

Problem 1.

(I-1) Let p be a prime number. Show that the matrices (§9) and (% })
for j such that 1 < j < pis a system of representatives of I'g(p)\I'o(1).

(I-2) Compute the number p. of cusps of Xy(p) and the ramification
indexes of the canonical morphism Xy(p) — Xo(1) at these cusps.

We recall that the elliptic points of X(1) are the images of ¢ and p = #
in Xo(1) and that

FiXSLQ(Z)(i):j:<(_01 é)) and FiXSLQ(Z)(p)::I:<(_01 }))

(I-3) Prove that the set of elliptic points of order 2 of I'y(p) is in bijection
with the set of solutions in Z/pZ of the equation X2 = —1. Prove that the
set of elliptic points of order 3 of ['y(p) is in bijection with the set of solutions
in Z/pZ of the equation X? + X +1 = 0.

Let p; be the number of elliptic points of order ¢ of I'g(p). For an integer
a prime to p we write (%) the integer 1 (resp. —1) if a is (resp. is not) a
square modulo p . Show that us, = 1+ (%1) , s =1+ (’73) if p # 3 and
compute ug for p = 3.

(I-4) Give the formula for the genus g, of Xy(p) and determine the set of
prime numbers p such that g, = 0.

(IT) Let f be a function on the upper half plane H and v = (‘; Z)E
GLo(R)* . For all integer k£ we define the function f|zy(z) on H by the

formula
det(y)"

R

fly-2).
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APPENDIX A. FINAL EXAM (3 HOURS)

Let A be aring F' =) . a,q" a formal series with coefficients in A . Let
F|u be the formal series
Fly = Z apnq" .

n>0

(II-1) Show that for all v,~" in GLa(R)™ , (flxy)Y = flxy-

We suppose from now that f is a weight 2k cuspidal modular form for
Fo(p)-

(I1-2) Let W be the matrix W = (} ' ) . Show that f|,W € Mo (To(p)).

(II-3) Let 71, ,7p+1 be a system of representatives of I'g(p)\ SLo(Z)

and f € Moy, (To(p)) . Show that the function

pt+1

Te(f) =Y flews
j=1

is independent of choice of the ~; and is a weight 2k modular form for SLy(Z) .
(II-4) Let f = 3" soa.q" and fxW =3 -(bnq" be the Fourier expan-
sions of f and f|kW. Show that

Te(f) =D and" + P> bpud” = f + 0" F(f:W)u -

(II-5) Show that Tr(f|,W) = fl«W+p"* f|y and that f|; € Moy (To(p)).
(I1-6) We suppose in this question that f € My (Fo(l)) C My (Fg(p)).
Show that
T(fIV) = T f

(II-7) We assume that & = 1. Show that f|;W = —f|y. We write
T,.f = flu. Show that for all n not divisible by p and all f € My (Fo(p)) ,
T.T,.f = T,T,.f and T2.f = f. Deduce from this that My (T(p)) has a
basis of eigenforms for 7, and the Hecke operators 7;, with n prime to p .

(I1-8) Let {\,.} be a set of complex numbers indexed by the set of integers
n prime to p. Show that the space of weight 2 modular forms for I'y(p) which
are eigenforms for all the T}, with n prime to p with assoicated eigenvalues
A, is of dimension at most 1. Let f = )" _, a,¢" be such a non zero cuspidal
form. Show that a; # 0. We suppose that a; = 1, show that a, = £1 and
that for all n € N, a,, = apa,. Show that the L-function L(f,s) = > ., %=
has an Eulerian product and give an explicit form of this product. -

Problem 2.

(0) Recall the definition of a supersingular elliptic curve defined over a
field of characteristic p > 0. Show that up to isomorphism there are at most
finitely many such curves over the algebraic closure E of F,.
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If X is a finite set, the cardinality of X is written as |X|. Let K =F, be
a finite field of characteristic p > 3 and

X KF—{&£1}

the unique non trivial character of K* of order 2. We define x(0) by x(0) = 0.
Let E be an elliptic curve over K given by a Weierstrass equation of the form

y? =23 +ax® +bx +c= f(x)
for a polynomial f(z) without multiple roots.

(1) Show that
E(F)|=1+q+ Y x(f(x))

z€F,

and deduce that

D x(f@)| <2va.

z€lF,

(2) Compute for all k € N the sum » p a* .

(3) Let A, be the coefficient of 27! in f(x)q%l . Show the following
equality between elements of the field [, :

|E(F,)|=1-4,.
(4) Let ¢, be the Frobenius endomorphism of £. Show that
|E(IE‘q)| =14+q¢—a with a=1-—deg(l—¢,) +deg(ed,) -

(5) Show that E is supersingular if and only if A, =0 .

(6) Let A, be the coefficient of 27~ in f(x)% Show that E is supersin-
gular if and only if A, =0 .

(7) Let Eg be the elliptic curve over Q with equation y? = 2* 4+ x. Deter-
mine the set of prime numbers p > 5 such that Eg has good supersingular
reduction.

The End.
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Index

adjoint correspondence, 61
arithmetic groups, 8
arithmetic lattice, 63
associated differential form, 17

canonical divisor, 19
commensurable, 5

complex structure, 13
conductor, 3

conductor of a character, 68
congruence group, 8
congruence subgroup, 1, 66
cusp, 11

cuspidal, 25

degree, 18

degree (of a meromorphic function),

18
Dirichlet character, 67
divisors, 18

effective, 18
elliptic, 11

Fundamental domain, 10

holomorphic, 17
holomorphic differential form, 17
hyperbolic, 11

lattice function of weight 2k, 31
linearly equivalent, 19
local chart, 13

Mellin transform, 51

meromorphic, 17

meromorphic differential form, 17
meromorphic modular form, 25
modular correspondence, 61
modular form, 4

modular function, 24

modular group, 8

new form, 84
old form, 84

parabolic, 11

Petersson inner product, 35
Poincaré measure, 34

Poincaré metric, 34

Poincaré series, 35

primitive Dirichlet character, 68
primitive form, 84

principal divisors, 18

properly discontinuously, 1

ramification index, 21
ramification point, 21
Riemann surface, 13

Riemann Zeta function, 3
Riemann-Hurwitz Formula, 21

weight 2k modular form, 25
width, 17
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