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Abstract

Let p be a prime number. Kęstutis Česnavičius proved that for an abelian variety A over
a global field K, the p-Selmer group Selp(A/L) grows unboundedly when L ranges over
the (Z/pZ)-extensions of K. Moreover, he raised a further problem: is dimFp

X(A/L)[p]
also unbounded under the above conditions? In this paper, we give a positive answer
to this problem in the case p �= charK. As an application, this result enables us to
generalize the work of Clark, Sharif and Creutz on the growth of potential X in cyclic
extensions. We also answer a problem proposed by Lim and Murty concerning the growth
of the fine Tate–Shafarevich groups.

1. Introduction

Let p be a prime number and K be a number field. There is an important result in algebraic
number theory (see [Mad72, Theorem 3]):

The p-torsion subgroup of the ideal class group of L is unbounded as L varies over (Z/pZ)-
extensions of K.

The first result of such a kind is due to Gauss, who proved the case K = Q and p = 2. Since the
growth problems for ideal class groups and for Selmer groups of abelian varieties are closely related
(see [Čes15a]), it is naturally expected that similar results hold for p-Selmer groups of abelian
varieties. Based on his generalization of the Cassels–Poitou–Tate sequence, Kęstutis Česnavičius
successfully proved the following result.

Theorem 1.1 [Čes17, Theorem 1.2]. Let p be a prime number, and A be an abelian variety over
a global field K. If either A[p](K̄) �= 0 or A is supersingular, then

dimFp Selp(A/L)

is unbounded as L varies over (Z/pZ)-extensions of K.

For the Tate–Shafarevich groups, when L ranges over degree p extensions of K, Clark and
Sharif [CS10] proved that dimFp X(A/L)[p] is unbounded in the case dimA = 1 and p �= charK;
later Creutz [Cre11] showed the unboundedness of dimFp X(A/L)[p] when A is strongly prin-
cipally polarized over a number field K and the GK-action on the Néron–Severi group of A is
trivial. Note that the extensions L/K they constructed are not necessarily Galois. When fixing
a (Z/nZ)-extension K/Q, Matsuno [Mat09] proved that there exist elliptic curves E/Q with the
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n-rank of X(E/K)[n] being arbitrarily large. Based on these results, Česnavičius proposed the
following problem [Čes17, Problem 1.8].

Problem 1.2. Is dimFp X(A/L)[p] unbounded as L varies over (Z/pZ)-extensions of K?

To attack this problem, one may try to generalize the methods of Clark and Sharif and of
Creutz. However, we remark that these are based on the study of the period and index problem
in H1(K,A), whose generalization to general abelian varieties seems rather difficult.

In this paper we shall present another idea to treat Problem 1.2, which is a combination of the
machinery developed by Mazur and Rubin in [MR18] and the method invented by Česnavičius
in [Čes17]. Our main result is the following theorem.

Theorem 1.3. Let A be an abelian variety over a global field K. If p is a prime number not
equal to charK, then there exists a sequence of (Z/pZ)-extensions {Li/K}∞i=1 satisfying

rankZA(Li) ≤
{

rankZ(A(K)) + 3(r0 + 4g), if p = 2,
rankZ(A(K)) + (p− 1)(r0 + 4g), otherwise,

and

lim
i→∞

dimFp Selp(A/Li) = ∞,

where r0 := dimFp Selp(A/K) and g := dimA.

This result gives a positive answer to Problem 1.2 when p �= charK. Indeed, by the well-known
exact sequence

0 → A(L)/pA(L) → Selp(A/L) → X(A/L)[p] → 0 (1)

and the inequality dimFp A(L)/pA(L) ≤ rankZA(L) + 2 dim(A), we have the following result.

Theorem 1.4. If p �= charK, then

dimFp X(A/L)[p]

can be arbitrarily large as L ranges over (Z/pZ)-extensions of K.

Remark 1.5. See Theorems 4.10 and 4.11 for a more detailed description of our main results.

The idea behind the proof of the above results is in fact rather simple. In [Čes17], Česnavičius
found a method to construct a sequence of (Z/pZ)-extensions {Li}∞i=1 such that

lim
i→∞

dimFp Selp(A/Li) = ∞.

However, he did not bound rankZA(Li). We will use the tools developed by Mazur and Rubin in
[MR18] to bound the Mordell–Weil ranks.

1.1 Layout of this paper
Section 2 is devoted to introducing the machinery of Mazur and Rubin. In § 3 we generalize
Česnavičius’s idea to construct (Z/nZ)-extensions L/K with large n-rank of Seln(A/L). We
prove our main result, Theorem 4.10, in § 4 and then give applications of this result in the rest
of this paper. In § 5 we obtain a result on the growth of the potential X in cyclic extensions,
which generalizes the work of Clark, Sharif and Creutz in [CS10, Cre11]. In § 6 we solve a problem
raised by Lim and Murty in [LM16] concerning the growth of the fine Tate–Shafarevich groups.

2015

https://doi.org/10.1112/S0010437X22007734 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007734


Y. Ouyang and J. Xie

1.2 Notation and convention
• p will always be a prime number.
• A (Z/nZ)-extension is a Galois extension whose Galois group is cyclic of order n, that is,

isomorphic to Z/nZ.
• For a (Z/pkZ)-extension L/K and 0 ≤ i ≤ k, L(i) is the unique (Z/piZ)-subextension of K

inside L. Thus Gal(L/L(i)) ∼= Z/pk−iZ and Gal(L(i)/K) ∼= Z/piZ.
• For n ∈ Z≥2, the n-rank of an abelian group H, denoted by rn(H), is the largest r ∈ N such

that (Z/nZ)r can be viewed as a subgroup of H. In particular, rpk(H) = dimFp p
k−1H/pkH.

• If K is a global field, let P�K denote the set of places of K.
• For any place v of a global field K, we fix a K-embedding σ : K ↪→ Kv and let Lv = LKv for

any finite extension L of K, which is the completion of L with respect to the unique valuation
extending v corresponding to the embedding L

id
↪→ K

σ
↪→ Kv.

• If K is a local field, let Kur denote the maximal unramified extension of K.
• For an abelian variety A over a global field K, let Seln(A/K) denote the n-Selmer group of
A over K.

2. The machinery of Mazur and Rubin

SupposeK is a field and A is an abelian variety overK. In this section we introduce the machinery
developed by Mazur and Rubin in [MR18], which plays a key role in our proof of bounding the
Mordell–Weil ranks in (Z/pkZ)-extensions. However, in [MR18], this machinery requires A to be a
simple abelian variety and p be unramified in the center of the endomorphism ring EndK(A) (see
[MR18, § 5] for details). In order to deal with all prime numbers and arbitrary abelian varieties,
we revise this machinery slightly so that our revision is closer to the treatment in [MR07]. One
should keep in mind the small difference between our setting and that in [MR18]. The results in
this section are analogous to those in [MR18, §§ 6–8] and can be proved similarly.

2.1 Twists of abelian varieties
We recall some basic knowledge about twists of abelian varieties. This conception was first dis-
cussed by Milne in [Mil72], and later generalized by Mazur and Rubin to the case of commutative
algebraic groups in [MRS07].

Suppose k ≥ 1 and L/K is a (Z/pkZ)-extension. Recall that L(i) is the unique (Z/piZ)-
subextension of K inside L. Denote G := Gal(L/K). We have the following definition in the
sense of [MRS07, Definition 1.1].

Definition 2.1. The (L/K)-twist AL of A is the abelian variety

AL := Ker (Z[G] → Z[Gal(L(k−1)/K)]) ⊗A

over K. More concretely, by [MRS07, Theorem 5.8], AL = Ker (ResL
KA→ ResL(k−1)

K A). We also
set AK = A.

Remark 2.2. From now on in this paper, AL always means the (L/K)-twist of A, not to be
confused with A×K L, the base change of A to L.

Notation 2.3. Set

ZL := Z[G]/NZ[G], where N :=
∑

σ∈Gal(L/L(k−1))

σ ∈ Z[G],

which is a free Z-module of rank ϕ(pk) = pk−1(p− 1). Set ZK = Z.
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By fixing an isomorphism G ∼= μpk , we have ZL
∼= Z[μpk ] and we identify these two through

this isomorphism, which gives an inclusion ZL ↪→ Q(μpk). Let pL be the unique prime ideal of
ZL above p. Let pK = (p).

Theorem 2.4. There is an isomorphism of Z[GK ]-modules

A[p] ∼= AL[pL].

Proof. The case where A is an elliptic curve was proved in [MR07, Proposition 4.1]. The proof
for the general case is essentially the same. One can also deduce the isomorphism by a similar
argument to that in [MR18, Corollary 6.4]. �

2.2 Local conditions
In this subsection we suppose K is a local field whose residue field is Fq with p �= char Fq. Let A
be an abelian variety over K. Let L/K be a (Z/pkZ)-extension, k ≥ 0.

Notation 2.5. The group H(L/K) is the subgroup of H1(K,A[p]) given by

H(L/K) := Im (AL(K)/pLAL(K) ↪→ H1(K,AL[pL]) ∼= H1(K,A[p])),

where the first inclusion is the Kummer map and the second isomorphism is induced by the
isomorphism AL[pL] ∼= A[p] of GK-modules. In particular, H(K) = H(K/K) is the image of the
Kummer map

H(K) = H(K/K) := Im (A(K)/pA(K) ↪→ H1(K,A[p])).

Recall that if p �= char Fq and A/K has good reduction, the unramified subgroup of
H1(K,A[p]) is given by

H1
ur(K,A[p]) := ker(H1(K,A[p]) → H1(Kur, A[p])) = H1(Kur/K,A[p]).

We have the following basic facts about the subgroups H(L/K) and H1
ur(K,A[p]) of H1(K,A[p]).

Lemma 2.6. Suppose p �= char Fq. Then the following assertions hold.

(1) dimFp H(L/K) = dimFp A(K)[p].
(2) If A/K has good reduction, and φ ∈ GK is an element whose restriction in Gal(Kur/K) is

the Frobenius, then
dimFp H(L/K) = dimFp A[p]/(φ− 1)A[p].

Proof. See [MR18, Lemma 7.2]. �
Lemma 2.7. Suppose p �= char Fq, L/K is unramified, and A/K has good reduction.

(1) If φ ∈ GK is an element that restricts to Frobenius in Gal(Kur/K), then evaluation of
cocycles at φ gives an isomorphism

H1
ur(K,A[p]) 
 A[p]/(φ− 1)A[p].

(2) The twist AL has good reduction over K, and

H(L/K) = H1
ur(K,A[p]).

Thus under these assumptions H(L/K) is independent of L.

Proof. See [MR18, Lemma 7.3]. �
Proposition 2.8. Suppose p �= char Fq, L/K is nontrivial and totally ramified, and A/K has
good reduction. Recall that L(1) is the unique (Z/pZ)-extension of K contained in L.
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(1) The map
AL(K)/pLAL(K) → AL(L(1))/pLAL(L(1))

induced by the inclusion AL(K) ↪→ AL(L(1)) is the zero map.
(2) H(L/K) = Hom(Gal(L(1)/K), A(K)[p]).

Proof. The first assertion is essential for the proof of the second, which plays an important role in
the proof of Theorem 4.10. One can refer to [MR18, Lemma 7.4] for the proof of (1). Assertion (2)
was implied in the proof of [MR18, Proposition 7.8], but, because of its importance, we include
its proof here.

Consider the following commutative diagram.

We have a = 0 by the first assertion, thus

H(L/K) ⊂ ker c = Hom(Gal(L(1)/K), A(K)[p]).

According to Lemma 2.6, we obtain

dimFp H(L/K) = dimFp A(K)[p] = dimFp Hom(Gal(L(1)/K), A(K)[p]),

so H(L/K) = Hom(Gal(L(1)/K), A(K)[p]). �

2.3 Relative Selmer groups
In this subsection we fix a (Z/pkZ)-extension L/K of global fields with p �= charK, and we allow
the case L = K.

Definition 2.9. The relative Selmer group Sel(L/K,A[p]) is the subgroup of H1(K,A[p])
defined by the exact sequence

0 −→ Sel(L/K,A[p]) −→ H1(K,A[p]) −→
∏

v∈P�K

H1(Kv, A[p])
H(Lv/Kv)

,

where (in our notation) Lv is the completion of L at some place of L above v. Note that
Sel(K/K,A[p]) is nothing more than Selp(A/K).

Lemma 2.10. The isomorphism H1(K,A[p]) ∼= H1(K,AL[pL]) identifies the standard pL-Selmer
group SelpL(AL/K) of AL with Sel(L/K,A[p]), that is, there exists an isomorphism φ making
the following diagram commutative.

Proof. This follows almost verbatim from the argument to prove [MR18, Lemma 8.4]. �
The important fact that enables us to bound the Mordell–Weil ranks in (Z/pkZ)-extensions

is that there is an isogeny (see [MRS07, Theorem 4.5])
k⊕

i=0

AL(i) → ResL
KA
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over K. Then, taking K-rational points, we get

rankZ(A(L)) = rankZ(A(K)) +
k∑

i=1

rankZAL(i)(K). (2)

By Lemma 2.10 one can use the relative Selmer groups to bound the ranks of AL(i)(K), which
gives the following theorem.

Theorem 2.11. Suppose L/K is a nontrivial (Z/pkZ)-extension, and let L(i) denote the
extension of K of degree pi inside L. Then

rankZ(A(L)) ≤ rankZ(A(K)) +
k∑

i=1

ϕ(pi) dimFp(Sel(L(i)/K,A[p])). (3)

Proof. The proof is very close to that of [MR18, Proposition 8.8]. By Lemma 2.10, the Kummer
map induces an inclusion

AL(i)(K) ⊗ (ZL(i)/pL(i)) ↪→ Sel(L(i)/K,A[p]).

Note also that Z/pZ = ZL(i)/pL(i)ZL(i) . Thus,

rankZAL(i)(K) = ϕ(pi)rankZ
L(i)

AL(i)(K)

≤ ϕ(pi) dimFp AL(i)(K) ⊗ (ZL(i)/pL(i))

≤ ϕ(pi) dimFp(Sel(L(i)/K,A[p])).

The above inequality combined with (2) completes the proof. �

3. Growth of n-Selmer ranks in degree n cyclic extensions

In this section, let n ≥ 2 be a fixed integer and A be an abelian variety over a global field
K with charK = 0 or charK � n. Based on Česnavičius’s idea in [Čes17], we explain how
to construct (Z/nZ)-extensions L/K with large rn(Seln(A/L)). The following results hold in
a more general setting, but the special case is enough for our applications. One can refer
[Čes17, §§ 4 and 5] for more general statements.

Theorem 3.1 [Čes17, Theorem 4.2]. Let S be a finite subset of P�K containing the places above
n∞ or where A has bad reduction, and (·)∗ denote the Pontryagin dual of (·). Then there is an
exact sequence

0 → Seln(A/K) → H1(Gal(KS/K), A[n]) →
⊕
v∈S

H1(Kv, A[n])
H(Kv)

→ Seln(A∨/K)∗

→ H1(Gal(KS/K), A[n]) →
⊕
v∈S

H2(Kv, A[n]),

where KS is the maximal extension of K unramified outside S.

Remark 3.2. The fppf cohomology was used in the original statement of [Čes17, Theorem 4.2].
Here we rephrase it in the language of Galois cohomology, due to the canonical isomorphism

Hi
fppf(U,A[n]) ∼= Hi(Gal(KS/K), A[n])
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(see [Čes15b, p. 1661, equation (1)]), where U := X − S, A is the Néron model of A and

X :=

{
SpecOK , if charK = 0;
CK , if charK > 0,

with CK the proper smooth curve over a finite field whose function field is K.
We also note that if K is a global function field, the condition ‘above n∞’ is an empty one.

From now on, we shall use the following notation.

Notation 3.3. The set Σ is a fixed finite subset of P�K such that:

(1) {v ∈ P�K | A has bad reduction at v or v | n∞} ⊂ Σ;
(2) the primes in Σ generate the class group of K.

For a (Z/nZ)-extension L/K, define

SL := {v ∈ P�K | v /∈ Σ is totally ramified in L, and splits completely in K(A[n])}.
The following result is based on Česnavičius’s idea presented in the proof of

[Čes17, Theorem 5.2].

Theorem 3.4. For any (Z/nZ)-extension L/K, let XL := resL/K(H1(K,A[n])) ∩ Seln(A/L).
Then there exists a constant c > 0 independent of L such that

rn(XL) ≥ |SL| − c.

Proof. Let Σ be as in Notation 3.3, S := Σ ∪ SL, and S′ (respectively, Σ′) be the set of places of
L above S (respectively, Σ). According to [Čes16, Proposition 2.5(d)], for all v ∈ SL, H(Kv) =
H1

ur(Kv, A[n]). Thus by Theorem 3.1, we have a commutative diagram with exact rows as follows.

Then the snake lemma yields the exact sequence

Ker bL → Ker (cL|Im dL
) hL→ Coker aL

jL→ Coker bL. (4)

Note that Ker bL ⊂ ker(H1(K,A[n]) → H1(L,A[n])) = H1(Gal(L/K), A[n](L)), whose order is
bounded by a constant independent of L. Along with (4), this implies

rn(ImhL) ≥ rn(Ker (cL|Im dL
)) − c1 (5)

for some constant c1 independent of L.
Note that Ker cL/Ker (cL|Im dL

) ↪→ Coker dL ↪→ Seln(A∨/K)∗, whose order is finite and
independent of L. This implies that

rn(Ker (cL|Im dL
)) ≥ rn(Ker cL) − c2 (6)

for some constant c2 independent of L.
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Let πL : Seln(A/L) −→ Coker aL be the projection. Then one can easily check that

Ker (jL ◦ πL) ⊂ XL. (7)

Note that πL : Ker (jL ◦ πL) � Ker jL is surjective, so we have

rn(Ker (jL ◦ πL)) ≥ rn(Ker jL) = rn(ImhL). (8)

Applying (5)–(8), we then have

rn(XL) ≥ rn(Ker (jL ◦ πL)) ≥ rn(ImhL) ≥ rn(Ker cL) − c

for some constant c independent of L. It remains to show the following claim.

Claim. rn(Ker cL) ≥ |SL|.
Note that for v ∈ SL, A[n] is isomorphic to (Z/nZ)2g over Kv. So H1(Kv,Z/nZ) is a direct

factor of H1(Kv, A[n]), and

H1(Kv,Z/nZ) = Hom(GKv ,Z/nZ) ⊃ H1
ur(Kv,Z/nZ).

Since Lv/Kv is a totally ramified (Z/nZ)-extension, IKv/ILv
∼= Z/nZ. Choose a continuous homo-

morphism f : GKv/ILv → Z/nZ whose restriction on IKv/ILv is an isomorphism to Z/nZ. Let f̄
be its image in H1(Kv,Z/nZ)/H1

ur(Kv,Z/nZ). Then

0 �= f̄ ∈ H1(Kv,Z/nZ)/H1
ur(Kv,Z/nZ), 0 = f̄ |GLv

∈ H1(Lv,Z/nZ)/H1
ur(Lv,Z/nZ).

Thus 0 �= f̄ ∈ Ker cL. We check that the order of f̄ is exactly n. Let g ∈ IKv/ILv be the preimage
of 1 ∈ Z/nZ. Then, for 1 ≤ m < n, (mf)(g) = m �= 0 in Z/nZ, hence mf̄ �= 0.

Such a construction is valid for every v ∈ SL, so we obtain a set of |SL| nonzero elements
of order n in Ker cL, each lying in different direct summand hence (Z/nZ)-linearly independent.
Thus we have rn(Ker cL) ≥ |SL|. This completes the proof. �

4. Bounding the Mordell–Weil ranks in (Z/pkZ)-extensions

In this section we always assume K is a global field with p �= charK.
If L/K is a (Z/pkZ)-extension with large |SL|, then Theorem 3.4 implies that dimFp Selp(A/L)

is also large. However, it could be possible that rankZ(A(L)) is very large, which leads to
small X(A/L)[p]. By Theorem 2.11, we can bound rankZ(A(L)) by the relative Selmer groups
Sel(L(i)/K,A[p]). So the (Z/pkZ)-extensions we need are those L/K with

large |SL| and also small Sel(L(i)/K,A[p]).

We give a method for finding such extensions in this section, which enables us to prove our main
result.

4.1 (Z/pkZ)-extensions of global fields with given completions at local places
In [MR18], Mazur and Rubin defined the so-called T -ramified, Σ-split extensions and showed the
existence of such extensions. Under mild hypotheses, they proved that, if T is chosen properly,
then any T -ramified, Σ-split extension L/K satisfies

Sel(L/K,A[λ]) = 0 (thus rankZA(K) = rankZA(L)),

in which A[λ] is a subgroup scheme of A[p] defined in [MR18, Definition 6.2].
However, these mild hypotheses may not hold in general. As one will see in the proof of

Theorem 4.10, in order to seek L/K with small dimFp Sel(L/K,A[p]) and large |SL|, only requiring
L/K to be T -ramified, Σ-split seems insufficient, and we need to require more: that L should
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have given completions at all v ∈ T \ {v1, vn}, in which T = {v1, v2, . . . , vn} with v1, vn two special
elements in T . This leads to the following discussion in this subsection, and our main result is
Lemma 4.6.

Definition 4.1. Let Σ′ be the set of all places of K ′ := K(μpk) above those in Σ. Suppose Σ
and Σ′ satisfy the respective conditions in Notation 3.3. Denote

P :=
{
v ∈ P�K | v /∈ Σ, v splits completely inK ′( pk

√
O×

K′,Σ′)
}
. (9)

Suppose T is a non-empty finite subset of P. A (Z/pkZ)-extension L/K is called T -ramified and
Σ-split if:

(1) L/K is totally ramified at v ∈ T and unramified outside T ;
(2) L/K splits completely at v ∈ Σ.

For v ∈ P, let

Yv := K×(O×
v )pk

∏
w∈Σ

K×
w

∏
w/∈Σ∪{v}

O×
w . (10)

Then we have a surjective map O×
v � A×

K/Yv, which induces isomorphisms

Z/pkZ ∼= O×
v /(O

×
v )pk ∼= A×

K/Yv

by the definition of P. Let

K(v) := the abelian extension of K corresponding to Yv. (11)

Then by class field theory we see that K(v)/K is a {v}-ramified, Σ-split (Z/pkZ)-extension.

Theorem 4.2. Suppose T = {v1, . . . , vn} ⊂ P. If L/K is a (Z/pkZ)-extension which is
T -ramified and Σ-split, then L ⊂ K(v1) · · ·K(vn). In particular, for every v ∈ P, K(v) is the
only (Z/pkZ)-extension which is {v}-ramified and Σ-split.

Proof. Let YL be the norm group of A×
K corresponding to L. By class field theory, since L/K is

unramified outside T ,
(· · · , 1, O×

v , 1, · · · ) ⊂ YL for all v /∈ T ;

since Lv = Kv for v ∈ Σ,

(· · · , 1,K×
v , 1, · · · ) ⊂ YL for all v ∈ Σ;

since L/K is a (Z/pkZ)-extension,
n∏

i=1

(O×
vi

)pk ⊂ YL.

Combining these facts yields

Y = K×
n∏

i=1

(O×
vi

)pk
∏
v∈Σ

K×
v

∏
v/∈Σ

⋃
T

O×
v ⊂ YL.

Note that Y is exactly the norm group corresponding to K(v1) · · ·K(vn). Thus

L ⊂ K(v1) · · ·K(vn). �
If μpk ⊂ K, then by Kummer theory, every (Z/pkZ)-extension L/K can be written as

L = K
(

pk√
a
)

for some a ∈ K×. We have the following lemma.
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Lemma 4.3. Suppose μpk ⊂ K and v ∈ P. Let Σ0 �� v be any finite subset of P�K which generates
the class group of K. Then there exists a ∈ O×

K,Σ0∪{v} such that K(v) = K( pk√
a).

Proof. Suppose K(v) = K
(

pk√
b
)

for some b ∈ K×. Then, for every place w �= v, we have
pk | ordw(b) since K(v)/K is unramified outside {v}, and ordw(b) = 0 for almost all places.
Denote

{w1, . . . , wn} := {w �= v, w /∈ Σ0 | ordw(b) �= 0}.
For each wi, the sequence

O×
K,Σ0∪{wi}

ordwi−−−→ Z → 0

is exact since Σ0 generates the class group of K. Let βi ∈ O×
K,Σ0∪{wi} such that ordwi(b) = 1.

Write ordwi(b) = pkki. Then

a :=
b

βpkk1
1 · · ·βpkkn

n

∈ O×
K,Σ0∪{v} and K(v) = K

(
pk√
a
)
. �

Recall that (· , · )v is the Hilbert symbol, and ( ··)pk is the pkth power residue symbol, whose
definitions and properties can be found in [Neu13, Chapter V, § 3].

Lemma 4.4. Suppose μpk ⊂ K and pk �= 2. Let {v1, v2} ⊂ P such that K(vi) = K( pk√ai) with
p, a1 and a2 relatively prime. Then:

(1) (a1
a2

)pk = (a2
a1

)pk ;
(2) (a1

v2
)pk = 1 ⇔ (a2

v1
)pk = 1.

Consequently, v1 splits completely in K(v2) if and only if v2 splits completely in K(v1).

Proof. (1) According to the reciprocity law of the pkth power residue (see [Neu13, Chapter VI,
Theorem 8.3]), we have (

a1

a2

)
pk

(
a2

a1

)−1

pk

=
∏

v|p∞
(a1, a2)v.

If v | ∞, then v must be a complex place by our assumption, so (a1, a2)v = 1; if v | p, then a1 ∈ O×
v

and K( pk√a2)/K is unramified at v, so a1 ∈ Nm Kv( pk√a2), which implies that (a1, a2)v = 1.
Thus, (

a1

a2

)
pk

(
a2

a1

)−1

pk

= 1.

(2) As K(vi) is totally ramified at vi and unramified outside vi, (ai) = vki
i I

pk

i with p � ki ∈ Z
and Ii a fractional ideal relatively prime to (p)vi. If (a1

v2
)pk = 1, then (a1

a2
)pk = 1 and by (1) we

get 1 = (a2
a1

)pk = (a2
v1

)k1

pk . Thus we have (a2
v1

)pk = 1 since p � k1. The converse is similar. �

Lemma 4.5. Suppose μpk ⊂ K and T = {v1, . . . , vn} ⊂ P. Then any T -ramified and Σ-split
(Z/pkZ)-extension of K has the form

L = K( pk
√
ax1

1 · · · axn
n )

where xi ∈ (Z/pkZ)× and ai ∈ K× such that K(vi) = K( pk√ai).

Proof. This is clear from Theorem 4.2. �
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Lemma 4.6. Suppose n ≥ 2, T = {v1, . . . , vn} ⊂ P and pk �= 2. Let vn+1 ∈ P \ T be a place split-
ting completely in K(v2) · · ·K(vn) and T1 = T ∪ {vn+1}. If L/K is a T -ramified and Σ-split
(Z/pkZ)-extension, then there exists a (Z/pkZ)-extension L1/K such that:

(1) L1/K is T1-ramified and Σ-split;
(2) (L1)vi = Lvi for 2 ≤ i ≤ n.

Proof. For convenience, we denote Ki := K(vi) for 1 ≤ i ≤ n+ 1. Let K ′ := K(μpk), L′ := LK ′

and d := [K ′ : K]. Let Σ′ be the set of primes of K ′ above Σ. By definition of P, the place vi

splits completely in K ′. Let vj
i (1 ≤ j ≤ d) be the primes of K ′ above vi. The sets of primes in

K ′ above T , vn+1 and T1 are

T ′ = {vj
i | 1 ≤ i ≤ n, 1 ≤ j ≤ d}, Π = {vj

n+1 | 1 ≤ j ≤ d} and T ′
1 = T ′ ∪ Π,

respectively. Then L′/K ′ is T ′-ramified and Σ′-split.
Choosing finite pairwise disjoint sets of primes Σv′ (v′ ∈ T ′

1) of K ′ which generate the class
group of K ′ and contain no prime above p, and then applying Lemma 4.3, we obtain av′ ∈ OK′,Σv′
such that

• K ′(v′) = K ′( pk√av′), p and all av′ are pairwise coprime.

Let a(i−1)d+j = a
vj

i
for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ d.

By Lemma 4.5, L′ = K ′
(

pk
√
ax1

1 · · · axnd
nd

)
with xi ∈ (Z/pkZ)× for each i. Note that

K ′Kn+1/K
′ is Π-ramified and Σ′-split. Then Kn+1K

′ = K ′
(

pk
√
a

xnd+1

nd+1 · · · ax(n+1)d

(n+1)d

)
. Let

L′
1 := K ′

(
pk
√
ax1

1 · · · axnd
nd a

xnd+1

nd+1 · · · ax(n+1)d

(n+1)d

)
.

Then L′
1 ⊂ K1 · · ·KnKn+1K

′ is T ′
1-ramified and Σ′-split. Since vn+1 splits completely in Ki for

i ≥ 2, we have (
a(i−1)d+j

vj′
n+1

)
pk

= 1 =⇒
(
and+j′

vj
i

)
pk

= 1

by Lemma 4.4. This implies

(L′
1)vj

i
= L′

vj
i

= Lvi , 2 ≤ i ≤ n, 1 ≤ j ≤ d. (12)

For any nonempty subset I ⊂ [n+ 1] = {1, . . . , n+ 1}, let KI =
∏

i∈I Ki. By considering the
ramification of primes we see thatKI ∩KJ = K if I ∩ J = ∅ andKI ∩K ′ = K. Now by induction
we have the canonical isomorphisms

Gal(KI/K) ∼=
∏
i∈I

Gal(Ki/K), Gal(KIK
′/K ′) ∼= Gal(KI/K),

Gal(KIK
′/K) ∼= Gal(KI/K) × Gal(K ′/K).

Let H = Gal(K[n+1]K
′/L′

1) and L1 = KH
[n+1]. Then one can check that L′

1 = L1K
′ and L1/K is

a T1-ramified and Σ-split (Z/pkZ)-extension.
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w is totally ramified (respectively, unramified, splits completely) ⇒
v is totally ramified (respectively, unramified, splits completely)

Moreover, (12) implies that for 2 ≤ i ≤ n, we have

Lvi = (L′
1)vi = (L1)vi(K

′)vi = (L1)vi .

This completes the proof. �
Remark 4.7. It is natural to ask whether, for each vi ∈ T , given a totally ramified (Z/pkZ)-
extension Li/Kvi , there exists a global (Z/pkZ)-extension L/K which is T -ramified, Σ-split and
Lvi = Li for vi ∈ T . The famous Grunwald–Wang theorem [NSW08, Theorem 9.2.8] asserts that
there does exist an extension L/K such that Lvi = Li for 1 ≤ i ≤ n; however, it may be ramified
at some v /∈ T . And one can prove that an extension which is T -ramified, Σ-split and Lvi = Li

may not exist in general.

4.2 Bounding the Mordell–Weil ranks in (Z/pkZ)-extensions
Now fix an abelian variety A over K. We denote

F := K(A[p], (O×
K,Σ)1/pk

),

TF := {v ∈ P�K | v /∈ Σ, v splits completely in F/K},
SL := {v ∈ P�K | v /∈ Σ, v splits completely in K(A[p]) and is totally ramified in L}.

Obviously we have TF ⊂ P and the density theorem ensures that TF has positive density.

Definition 4.8. Suppose that T = {v1, . . . , vn} ⊂ P and, for each vi, Li/Kvi is a totally rami-
fied (Z/pkZ)-extension. Let Wi := H(Li/Kvi) and Wn :=

∏
1≤i≤nWi. The artificial Selmer group

Sel(W1 × · · · ×Wn, A[p]) = Sel(Wn, A[p]) is defined by the exact sequence

0 −→ Sel(Wn, A[p]) −→ H1(K,A[p]) −→
n∏

i=1

H1(Kvi , A[p])
Wi

∏
v/∈T

H1(Kv, A[p])
H(Kv)

.

For vi ∈ T , the strict Selmer group Sel(Wn, A[p])vi at vi is the group

Sel(Wn, A[p])vi := ker(Sel(Wn, A[p]) −→ H1(Kvi , A[p])).

One can deduce the finiteness of Sel(Wn, A[p]) from the finiteness of Sel(K,A[p]).

Lemma 4.9. Let T be a finite subset of P, and L/K be a (Z/pkZ)-extension which is T -ramified
and Σ-split. If K � L′ ⊂ L, then

Sel(L′/K,A[p]) = Sel(L/K,A[p]).

Proof. See [MR18, Lemma 9.16]. �
Theorem 4.10. SupposeK is a global field, p �= charK. LetA be an abelian variety of dimension
g over K and r0 = dimFp Selp(A/K). Then there exists a sequence of (Z/pkZ)-extensions {Li}∞i=1
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such that:

(1) |SLi | ≥ i;

(2) rankZ(A(Li)) ≤
{

rankZ(A(K)) + 3(r0 + 4g), if pk = 2,
rankZ(A(K)) + (pk − 1)(r0 + 4g), if otherwise.

Proof. We shall construct by induction a set of primes {vi}∞i=1 ⊂ TF and a sequence of (Z/pkZ)-
extensions {Li}∞i=1 of K such that the following assertions hold.

(i) Li is Ti-ramified and Σ-split, where Ti := {v1, . . . , vi}; in particular, SLi ⊇ Ti and |SLi | ≥ i.
(ii) If i > 2, then vi splits completely in K2 · · ·Ki−1 and is inert in K1, where Ki := K(vi);
(iii) v2 is inert in K1.
(iv) The inequalities

ri ≤ r0 + si ≤ r0 + 2g (13)

are always satisfied, where

Wi := H((Li)vi/Kvi), Wi := W1 × · · · ×Wi,

ri := dimFp Sel(Wi, A[p]),

ti+1 := dimFp Im (Sel(Wi, A[p]) → H1
ur(Kvi+1 , A[p])),

si := dimFp Im (Sel(Wi, A[p]) → H(Lvi/Kvi)).

Note that si, ti ≤ 2g, so only the first inequality in (13) needs to be addressed.
For the base step, choose an arbitrary v1 ∈ TF and let L1 := K(v1) = K1. One can deduce

from the exact sequence (18) below that

r1 = r0 − t1 + s1 ≤ r0 + s1.

Assume that we have already constructed {vi}n
i=1 and {Li}n

i=1, n ≥ 1.
If sn = 0, we choose an arbitrary vn+1 ∈ TF which splits completely in K2 · · ·Kn and is inert

in K1.
If sn ≥ 1, let L1,n be the unique (Z/pZ)-extension of Kvn contained in (Ln)vn . Then, by

Proposition 2.8,
H((Ln)vn/Kvn) = Hom(Gal(L1,n/Kvn), A(Kvn)[p]).

Let σ̄ be a generator of Gal(L1,n/Kvn). So we can pick linearly independent cn,1, . . . , cn,sn ∈
Sel(Wn, A[p]) such that

cn,1(σ̄), . . . , cn,sn(σ̄) ⊂ A[p] are linear independent over Fp. (14)

Note that by the induction assumption, we have:

• (K1)vn/Kvn is nontrivial and unramified;
• (Kn)vn/Kvn is totally ramified;
• (K2 · · ·Kn−1)vn = Kvn .

Thus, there exists a pre-image σ ∈ GKvn
= GFvn

⊂ GF of σ̄ such that

σ|K1 �= 1, σ|K2···Kn = 1 (if n ≥ 2).

One should note that if n = 1, then we only require σ|K1 �= 1. Denote dn,j := cn,j |F for 1 ≤ j ≤ sn.
Choose a Galois extension N/K such that

GN ⊂
sn⋂
i=1

ker(dn,i) and FK1 · · ·Kn ⊂ N.
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By the Chebotarev density theorem, there exists vn+1 /∈ Tn ∪ Σ such that

vn+1 is unramified in N/K and Frobvn+1 |N = σ|N .

In particular, Frobvn+1 |F = σ|F = 1 and thus vn+1 ∈ TF . By our choice,

cn,i(Frobvn+1) = dn,i(Frobvn+1) = dn,i(σ) = dn,i(σ̄) = cn,i(σ̄), 1 ≤ i ≤ sn.

Thus, by (14) we conclude that

cn,1(Frobvn+1), . . . , cn,sn(Frobvn+1) ⊂ A[p] are linearly independent over Fp. (15)

According to our choice, vn+1 splits completely in K2 · · ·Kn and is inert in K1, so by Lemma 4.6,
there exists a (Z/pkZ)-extension Ln+1/K which is Tn+1-ramified, Σ-split and

(Ln+1)vi = (Ln)vi , 2 ≤ i ≤ n. (16)

Since the restrict map

locvn+1 : Sel(Wn, A[p]) → H1
ur(Kvn+1 , A[p])

can be regarded as the evaluation of cocycles at Frobvn+1 , (15) implies that

tn+1 = dimFp Im (locvn+1) ≥ sn. (17)

Observe the following diagram with exact rows.

(18)

Recall that sn+1 = dimFp Im loc′vn+1
, tn+1 = dimFp Im locvn+1 , thus

rn+1 − sn+1 = dimFp Sel(Wn+1, A[p])vn+1 = dimFp Sel(Wn, A[p])vn+1 = rn − tn+1,

which implies that
rn+1 = rn − tn+1 + sn+1.

Using the induction assumption and (17), we obtain

rn+1 = rn − tn+1 + sn+1 ≤ r0 + sn − tn+1 + sn+1 ≤ r0 + sn+1.

This completes our construction. We claim that for all m ≥ 1,

rankZ(A(Lm)) ≤ rankZ(A(K)) + (pk − 1)(r0 + 4g).

By (16), we have
Wi = H((Li)vi/Kvi) = H((Lm)vi/Kvi), 2 ≤ i ≤ m. (19)

Consider the following diagram with exact rows.

(20)

in which (19) gives the vertical equality. Thus, we have

dimFp Sel(Lm/K,A[p]) ≤ dimFp Sel(Wm, A[p])v1 + 2g ≤ r0 + 4g.
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Recall that by Lemma 4.9,

Sel(L(i)
m /K,A[p]) = Sel(Lm/K,A[p]).

It follows from Theorem 2.11 that

rankZ(A(Lm)) ≤ rankZ(A(K)) +
k∑

i=1

ϕ(pi) dimFp Sel(L(i)
m /K,A[p])

≤ rankZ(A(K)) + (pk − 1)(r0 + 4g).

The proof of theorem is completed except the case pk = 2.
As for the case pk = 2, by previous discussion we can find (Z/22Z)-extensions {Li/K}∞i=1

such that:

(i) |SLi | ≥ i;
(ii) rankZA(Li) ≤ rankZ(A(K)) + 3(r0 + 4g).

Furthermore, by our construction, for all v ∈ SLi , v is totally ramified in Li/K, thus v is totally
ramified in L(1)

i /K. Then {L(1)
i /K}∞i=1 is the sequence of quadratic extensions we require. �

Theorem 4.11. Let n ≥ 2 be an integer. IfK is a global field such that charK = 0 or charK � n,
then

rn(X(A/L))

can be arbitrarily large as L ranges over (Z/nZ)-extensions of K.

Proof. We first treat the case n = pk. In this case, the result follows from Theorem 4.10,
Theorem 3.4 and the exact sequence (1).

Next suppose n =
∏t

i=1 p
ki
i is the prime decomposition of n. By the first step we can find a

(Z/pki
i Z)-extension Li/K for each i such that

r
p

ki
i

(X(A/Li)) ≥ m.

Let L = L1 · · ·Lt. Note that the pi-primary part of

Ker (H1(Li, A) → H1(L,A)) = H1(Gal(L/Li), A(L))

is zero, then the restriction homomorphism

X(A/Li)[pki
i ] → X(A/L)

is injective. This implies

r
p

ki
i

(X(A/L)) ≥ r
p

ki
i

(X(A/Li)[pki
i ]) ≥ m, 1 ≤ i ≤ t.

Then L/K is a (Z/nZ)-extension we require. �

5. Growth of potential X

In this section we fix an abelian variety A defined over a global field K. We study the growth of
n-rank of the potential X of A over K, whose definition we now recall.

Definition 5.1. Let L/K be a finite extension of global fields. The potential X of A/K in L is

XK(A/L) := resL/K(H1(K,A)) ∩ X(A/L).

Clark and Sharif proved the following result.
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Theorem 5.2 [CS10, Theorem 3]. Let E/K be an elliptic curve and n be an positive integer
such that charK = 0 or charK � n. Then, for any positive integer r, there exists a field extension
L/K of degree n such that

rn(XK(A/L)) ≥ r.

Creutz later considered the case of abelian varieties. He proved the following result.

Theorem 5.3 [Cre11, Theorem 1]. Let A be a strongly principally polarized abelian variety over
a number field K such that the GK-action on the Néron–Severi group is trivial. Then, for any
prime p and any integer N , there exists a degree p extension L/K for which

rp(XK(A/L)) > N.

The method used to prove the above theorems is closely related to the study of the period
and index problem in the Weil–Châtelet group. Here we apply a different method, which can
treat high-dimensional abelian varieties, to generalize the above two results.

Theorem 5.4. Let n ≥ 2 be a positive integer and K be a global field with charK = 0 or
charK � n. Then, for an abelian variety A over K and an arbitrary positive integer m, there
exists a (Z/nZ)-extension L/K such that

rn(XK(A/L)) ≥ m.

Proof. First consider the case n = pk. By Theorems 4.10 and 3.4, there exists a (Z/pkZ)-extension
L/K such that

rpk(XL) ≥M + 2g +m and r := rankZA(L) ≤M,

where XL = resL/K(H1(K,A[n])) ∩ Seln(A/L). Denote ψL : H1(L,A[pk]) → H1(L,A)[pk]. Then
KerψL = A(L)/pkA(L). Since r ≤M , we have rpk(ψL(XL)) ≥ m. So it suffices to show that
ψL(XL) ⊂ XK(A/L). Since XL ⊂ Selpk(A/L), from the exact sequence

we obtain ψL(XL) ⊂ X(A/L). Consider the following commutative diagram.

The fact that XL ⊂ Im res′L/K implies that ψL(XL) ⊂ resL/K(H1(K,A)[pk]). Thus

ψL(XL) ⊂ XK(A/L).

The general case follows by replacing X(A/L) by XK(A/L), and applying the same argument
as in the proof of Theorem 4.11. �

6. Growth of fine Selmer groups and fine Tate–Shafarevich groups

The aim of this section is to solve a problem raised by Lim and Murty in [LM16]. Our answer
also generalizes their results about the growth of fine Selmer groups in (Z/pZ)-extensions.
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Definition 6.1. Let A be an abelian variety over a number field K, and recall that

Selpk(A/K) := Ker (H1(K,A[p∞])) →
⊕

v∈P�K

H1(Kv, A)[p∞]).

The pk-fine Selmer group Rpk(A/K) of A over K is defined by the exact sequence

0 → Rpk(A/K) → Selpk(A/K) →
⊕
v|p

H1(Kv, A[pk]).

Similarly the p∞-fine Selmer group Rp∞(A/K) is defined by the exact sequence

0 → Rp∞(A/K) → Selp∞(A/K) →
⊕
v|p

H1(Kv, A[p∞]).

In [Wut07], Wuthrich introduced the fine Tate–Shafarevich groups, which we now recall.

Definition 6.2. The fine Mordell–Weil group Mpk(A/K) is defined by the exact sequence

0 →Mpk(A/K) → A(K)/pkA(K) →
⊕
v|p

A(Kv)/pkA(Kv).

Then the fine Tate–Shafarevich group �pk(A/K) is defined by

0 →Mpk(A/K) → Rpk(A/K) → �pk(A/K) → 0.

One can similarly define Mp∞(A/K) and �p∞(A/K).

Lim and Murty proved the following result in [LM16].

Theorem 6.3 [LM16, Theorem 6.3]. Let A be an abelian variety over a number fieldK. Suppose
that A(K)[p] �= 0. Then

sup{rp(Rp∞(A/L)) | L/K is a cyclic extension of degree p} = ∞.

Furthermore, they posed the following problem.

Problem 6.4. Retaining the assumptions of above theorem, do we also have

sup{rp(�p∞(A/L)) | L/K is a cyclic extension of degree p} = ∞?

Based on Theorem 4.11, we give a positive answer to the problem above in a more general
setting.

Wuthrich has already observed that �p(A/L) is a subgroup of X(A/L) with finite index,
and later Kundu observed that this index has a uniform upper bound independent of L, as a
result of which we have the following proposition.

Proposition 6.5 [Kun21, Proposition 4.7]. Let A be an abelian variety over a number field K,
varying over all (Z/pZ)-extensions L/K. Then �p(A/L) is unbound if and only if X(A/L) is
unbounded.

Since the unboundedness of X(A/L) is proved by Theorem 4.11, we obtain the following
result.

Theorem 6.6. Let A be an abelian variety defined over a number field K. Then

sup{rp(�p(A/L)) | L/K is a(Z/pZ)-extension} = ∞.
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Note that �p(A/L) (respectively, �p∞(A/L)) is a quotient group of Rp(A/L) (respectively,
Rp∞(A/L)), so we also get the unboundedness of fine Selmer group, which generalizes the result
of Lim and Murty mentioned above by removing the condition A(K)[p] �= 0.

Corollary 6.7. Let A be an abelian variety over a number field K. Then

sup{rp(Rp(A/L)) | L/K is a cyclic extension of degree p} = ∞,

sup{rp(Rp∞(A/L)) | L/K is a cyclic extension of degree p} = ∞.
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