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Abstract. In this paper, we construct three classes of strictly optimal frequency-

hopping sequence (FHS) sets with respect to partial Hamming correlation and

family size. The first and second classes are based on the trace map, the third
class is based on a generic construction.

1. Introduction

With advantages such as secure properties, multiple-access, anti-jamming, and
anti-fading, frequency-hopping multiple-access (FHMA) is now widely used in mod-
ern communication systems such as military communications, bluetooth, sonar
echolocation systems and so on [26]. In FHMA systems, frequency-hopping se-
quences (FHSs) are used to control the frequency on which each sender transmits
a message at any given time, so there exist two and more sender transmit their
packet in the same frequency, it may cause a collision. But the collision can be
measured by the Hamming correlation of FHS set. To reduce the multi-access in-
terference due to the frequency collisions, the Hamming correlation of FHS set must
be minimized. In fact, the parameters of FHS sets are not independent with each
other, and they are subjected to limitation of some theoretic bounds, for example,
the Lempel-Greenberger bound [19], the Peng-Fan bound [24], or the coding theory
bound [8]. Therefore, it has received a lot of attention about constructing optimal
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FHSs with respect to the bounds and much progress have been made (see [9]-[12],
[27]-[17], [31, 23], [15] and the references therein).

The traditional Hamming correlation of FHSs can be divided into two types in
general: the periodic Hamming correlation and the aperiodic Hamming correlation.
Considering the correlation window, the Hamming correlation can be divided into
the periodic partial Hamming correlation, and the aperiodic partial Hamming cor-
relation. Compared with the traditional type, the results are relatively little known
about the periodic partial and aperiodic partial ones. In the practical application
scenarios, the length of a correlation window is usually shorter than the period of the
chosen FHSs and may vary from time to time according to the channel conditions
[10]. Consequently, the partial Hamming correlation begin to attract attention, and
this paper shall focus on the construction of FHS sets with respect to the periodic
partial Hamming correlation. Eun et al. [10] obtained a class of FHSs with optimal
partial Hamming correlation from the m-sequence and GMW sequences over poly-
nomial residue class ring. In 2012, Zhou et al. [32] derived FHS sets with optimal
partial Hamming correlation from trace functions, and generalized the Peng-Fan
bounds on the periodic Hamming correlation based on the array structure.

In 2014, Cai et al. [4] presented FHS sets with optimal partial Hamming correla-
tion from generalized cyclotomy. Later, the authors gave some theoretic bounds of
the size of FHS sets and presented a new class of FHSs with optimal partial Ham-
ming correlation in [3]. Very recently, combinatorial constructions of FHSs with
optimal partial Hamming correlation have been reported, see [1, 2, 11, 29, 21].

The purpose of this paper is to construct three classes of strictly optimal FHS
sets with optimal partial Hamming correlation and optimal family sizes. We list
the parameters of our construction and related known ones in Table 1, which gives
a comparison of our construction and the constructions before us.

Table 1. Known Strictly Optimal FHS Sets

Length
AlphabetM(F ;L)

Family
Constraints Reference

Size Size

pm−1
r

pm−1
⌈
L
T

⌉
r

ψ(x) is identity,
[32]

r|p− 1, gcd(r,m) = 1

p2m − 1 pm
⌈

L
pm+1

⌉
1 [32, 10]

p(pm − 1) pm
⌈

L
pm−1

⌉
pm−1 φ(x) is identity [3]

pm−1
r

pm−1
⌈
L
T

⌉
r

ψ(x),
Theorem 3.2 here

r|p− 1, gcd(r,m) = 1

p2m−1
r

pm
⌈

L
pm+1

⌉
r

f(x),
Theorem 3.4 here

r|p− 1, gcd(r, 2m) = 1

p(pm − 1) pm
⌈

L
pm−1

⌉
pm−1 φ(x) Theorem 4.5 here

T = q−1
p−1

, q = pm and gcd(d, p − 1) = 1; ψ(x) is Fp-linear automorphism of Fq ; φ(x) can be

found in Lemma 4.3; f : Fq2 → Fq is d-form difference-balanced function.

Compared with the constructions in [32, 10], our first and second constructions
generate strictly optimal FHS sets by using the trace map, and it provides us a
large number of choice for ψ(x) and f(x) (see Table 1). The third class is a generic
construction, it can generate a great deal of strictly optimal FHS sets by using some
sequence sets (satisfied A1) and sequences (satisfied A2).
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2. Preliminaries

Throughout this paper we shall use the following notations.

• p is an odd prime and q = pm > 1 is a p-power;
• Fq is the finite field of q elements, and F∗q = Fq − {0} is the multiplicative

group of Fq;
• α is a primitive element of Fq;

• Trqn/q(x) =
n−1∑
i=0

xq
i

is the trace map from Fqn to its subfield Fq;

• For t ∈ Z, 〈t〉n ∈ {0, · · · , n− 1} denotes the remainder of t by n.
• For all sequences (xt)

n−1
t=0 indexed by a subscript t ∈ {0, · · · , n−1}, we denote

xt = x〈t〉n for any t ∈ Z.
• For X a finite set, #X denotes the cardinality of X. For the map f : X → Y

and y ∈ Y , f−1(y) = {x ∈ X : f(x) = y} is the set of preimages of y.

2.1. Strictly optimal FHS sets. Let N,M be two positive integers and F =
{f0, f1, . . . , fd′−1} be an alphabet of d′ available frequencies. Let F be a set of

M frequency-hopping sequences of the form (xi)
N−1
i=0 with xi ∈ F . We also call

F an (N,M ; d′)-FHS set. For X = (xt)
N−1
t=0 and Y = (yt)

N−1
t=0 in F , the partial

Hamming correlation of X and Y over a window of length L ∈ {1, · · · , N} starting
from j ∈ {0, · · · , N − 1} is

(1) HX,Y (τ ; j | L) :=

j+L−1∑
t=j

h[xt, yt+τ ] (τ ∈ {0, · · · , N − 1}),

where h[a, b] = 1 if a = b and 0 otherwise (i.e. the Kronecker δ-function). In other
words,

(2) HX,Y (τ ; j | L) = #{t : j ≤ t ≤ j + L− 1, xt = yt+τ}.
If X = Y (resp. X 6= Y ), HX,X(τ ; j | L) (resp. HX,Y (τ ; j | L)) is called the partial
Hamming autocorrelation (resp. cross-correlation) of X (resp. X and Y ). Define

H(X;L) := max
0≤j<N
1≤τ<N

HX,X(τ ; j | L) (X ∈ F),(3)

H(X,Y ;L) := max
0≤j<N
0≤τ<N

HX,Y (τ ; j | L) (X 6= Y ∈ F),(4)

M(F ;L) := max
X,Y ∈F
X 6=Y

{H(X;L), H(X,Y ;L)}.(5)

In 2014, Cai et al. [4] obtained the following bounds on the maximum partial
Hamming correlation of FHS sets: for any (N,M ; d′)-FHS set F , for any window
length 1 ≤ L ≤ N ,

(6) M(F ;L) ≥
⌈
L

N

⌈
(NM − d′)N
(MN − 1)d′

⌉ ⌉
,

and

(7) M(F ;L) ≥
⌈

[2IMN − (I + 1)Id′]L

(MN − 1)MN

⌉
,

where I =
⌊
MN
d′

⌋
. The partial Hamming correlation bound in (6) is the bound

proved by Eun et al. [10] for the case M = 1, the Lempel-Greenberger bound by
[19] for L = N and M = 1, and the Peng-Fan bound by [24] for L = N . In fact,
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the bounds defined in Eqs. (6) and (7) are proved to be the same in [5, Theorem
1.3] if NM > d′.

In 2016, inspired by the idea of Ding et al. [8], Cai et al. [3] obtained the
following results: for any (N,M ; d′)-FHS set F ,

(8) M ≤ min
2≤L≤N

{⌊
1

N

⌊
(L−M(F ;L))d′

L− d′M(F ;L)

⌋⌋
: L > d′M(F ;L)

}
,

and

(9) M ≤ min
2≤L≤N

{⌊
d′M(F ;L)+1

N

⌋
: L >M(F ;L)

}
.

Definition 2.1. Let F be an (N,M ; d′)-FHS set.
(1) F is said to be strictly optimal with respect to the partial Hamming correla-

tion if one of the bounds in (6) or (7) is achieved for any correlation window length
1 ≤ L ≤ N .

(2) F is said to be strictly optimal with respect to family size if one of the bounds
in (8) or (9) is achieved for any correlation window length 2 ≤ L ≤ N .

2.2. Difference-balanced functions.

Definition 2.2. A function f(x) : Fqn → Fq is called balanced if #f−1(x) = qn−1

for each x ∈ Fq. It is called difference-balanced if the difference function f(δx)−f(x)
is balanced for any δ ∈ Fqn \ {0, 1}.
Remark 1. In the literature (see [25]), balanced and difference-balanced functions
are defined over F∗qn . However, the following is clear. If assigning f(0) = 0 to a
balanced function f over F∗qn , one gets a balanced function over Fqn ; for a balanced
function f over Fqn , then f − f(0) is a balanced function over F∗qn . If assigning
f(0) = b for any b ∈ Fq to a difference-balanced function f over F∗qn , one gets a
difference-balanced function over Fqn ; for a difference-balanced function f on Fq,
the restriction of f on F∗qn is a difference-balanced function over F∗qn .

Pott-Wang [25] tells us that a difference-balanced function f such that f(0) = 0 is
always balanced. Moreover, the following is the list of all known difference-balanced
functions from Fqn to Fq satisfying f(0) = 0:

(0) Functions which are surjective and Fq-linear.
(1) Functions of the form

(10) f(x) = Trqn/q(x
d),

where d is a positive integer prime to qn − 1.
(2) Functions of Helleseth-Gong type, which was discovered in [16].
(3) Functions of Lin type

(11) f(x) = Tr3n/3(x+ xs),

where q = 3, n = 2l + 1 and s = 2 × 3l + 1. The difference balance property
of functions of this type was a conjecture of Lin [20] and proved by Hu et al.
[18].

(4) Functions which are composites of functions of the previous types (when the
composition is legal).

Definition 2.3. Let d be an integer prime to q− 1. A function f(x) from Fqn onto
Fq is called a d-form function if

f(yx) = ydf(x)



Strictly Optimal Frequency-Hopping Sequence Sets 5

for any y ∈ Fq and x ∈ Fqn .

By definition, it is easy to see all the known difference-balanced functions are
d-form functions: functions of type (0) are 1-form functions, of type (1) are d-form
functions, and of type (2) and (3) are 1-form functions for the case q = p.

Lemma 2.4. Let f : Fq2 → Fq be a d-form difference-balanced function and δ /∈
{0, 1}, let fδ(x) = f(δx)− f(x). Then f−1δ (0) = Fq · aδ for some aδ ∈ F∗q2 .

Proof. On one hand f−1δ (0) is of order q as fδ is balanced. On the other hand,

f(ca) = cdf(a) if c ∈ Fq, hence fδ(a) = 0 implies that fδ(ca) = 0 for any c ∈ Fq.

Remark 2. All known difference-balanced functions f : Fq2 → Fq such that f(0) =
0 are d-form functions belonging to one of the following two types: (i) a surjective
Fq-linear map; (ii) (x 7→ ψ(Trq2/q(x

d))) or (x 7→ Trq2/q(ψ(xd))) where ψ is an
Fq-linear automorphism of Fq2 .

3. Construction of optimal FHS sets via the trace map

Let q = pm and α be a primitive root of F∗q . Let T = q−1
p−1 . For a nonzero vector

w = (a0, a1, . . . , ak−1) ∈ Fkq , let Vw = 〈a0, · · · , ak−1〉Fp
be the Fp-subspace of Fq

generated by w and let R(w) = dimFp Vw. Define the map T = Tw : Fq → Fkp by

(12) T (x) = (Trq/p(a0x),Trq/p(a1x), . . . ,Trq/p(ak−1x)).

Lemma 3.1. The map T is an Fp-linear map whose kernel ker(T ) = V ⊥w where V ⊥w
is the orthogonal complementary of Vw via the nondegenerate bilinear map Trq/p.
In particular, dimFp ker(T ) = m−R(w) and dimFp Im(T ) = R(w).

Proof. An element x ∈ ker(T ) if and only if Trq/p(aix) = 0, i.e., x⊥ai for all i, in

other words, x ∈ V ⊥w .

We construct optimal FHS sequences based on w with R(w) = m− 1 or m.

3.1. First class of optimal FHS sets.

Theorem 3.2. Fix w = (a0, · · · , ak−1) ∈ Fkq such that R(w) = m−1. Let r | p−1

such that gcd(r,m) = 1 and n′ = q−1
r . Let v = (αrt)0≤t≤n′−1. Let d ∈ Z such that

gcd(d, q − 1) = 1 and ψ be an Fp-linear automorphism of Fq. Define the sequence
set

F = F(w; r, d, ψ) = {Si : 0 ≤ i ≤ r − 1}
where

(13) Si = (sit)0≤t≤n′−1 and sit = T ◦ ψ(αd(i+rt)).

Then F is an (n′, r; pm−1)-FHS set and for each correlation window length 1 ≤ L ≤
n′,

M(F ;L) =

⌈
L

T

⌉
.

Moreover, F is a strictly optimal FHS set with optimal partial Hamming correlation
with respect to the bound in (7) and with optimal family size with respect to the bound
in (8).



6 Xianhong Xie, Yi Ouyang, Honggang Hu and Ming Mao

Proof. As gcd(d, q − 1) = 1, αd is still a primitive root of F∗q . Replacing α by αd,
we may assume d = 1.

The alphabet set {sit : 0 ≤ i ≤ r− 1, 0 ≤ t ≤ n′− 1} of F is nothing but Im(T ),
hence it is of order pm−1 by Lemma 3.1.

We are left to compute M(F ;L). Note that ker(T ◦ ψ) = ψ−1 ker(T ) is 1-
dimensional Fp-vector space, pick 0 6= a ∈ ker(T ◦ ψ), then ker(T ◦ ψ) = aFp. Fix
i, j and τ such that if i = j, then τ 6≡ 0 mod n′. The value HSi,Sj (τ ; l | T ) is

nothing but the number of t ∈ [l, l + L − 1] such that sit = sjt+τ , in other words,

αi+rt − αj+r(t+τ) = αrt(αi − αj+rτ ) ∈ aFp. Note that i − j − rτ is not a multiple
of q − 1, hence αi − αj+rτ 6= 0. Let b = (αi − αj+rτ )−1a, then

sit = sjt+τ ⇐⇒ αrt ∈ bF∗p.

Suppose we have αrt0 ∈ bF∗p for some t0 (otherwise HSi,Sj (τ ; l | L) = 0). Then

sit = sjt+τ ⇐⇒ αr(t−t0) ∈ F∗p.

Note that F∗p = {αcT : 0 ≤ c ≤ p− 2} and gcd(r, T ) = gcd(r,m) = 1, then

sit = sjt+τ ⇐⇒ t− t0 ∈ TZ.

This means that the number of t ∈ [l, l+L− 1] such that sit = sjt+τ is at most
⌈
L
T

⌉
,

i.e., HSi,Sj (τ ; l | L) ≤
⌈
L
T

⌉
. Hence M(F , L) ≤

⌈
L
T

⌉
.

On the other hand, the bound Eq. (7) gives

M(F ;L) ≥
⌈
L

N
· [2INM − (I + 1)Id′]

(NM − 1)M

⌉
=

⌈
Lr

q − 1
· (p− 1)(q − 2)

(q − 2)r

⌉
=

⌈
L

T

⌉
.

Thus M(F , L) =
⌈
L
T

⌉
and F is optimal with respect to the bound in (7).

Set L = q−1
r , thenM(F ;L) = p−1

r and d′M(F ;L) < L. According to the bound
in (8), we have

M ≤
⌊

1

N

⌊
(L−M(F ;L))d′

L− d′M(F ;L)

⌋⌋
=

⌊
rq

q − 1

⌋
= r.

Thus the family size of F is optimal with respect to the bound in (8). This completes
the proof.

Remark 3. In Theorem 3.2, from the choice of ψ(x), we can see that F is equivalent
with the ones constructed in [32], where two sequence sets are called equivalent if
one can be obtained by the other from permuting the symbols of the corresponding
alphabet (see [22]). However, the method of determining the Hamming correlation
here is more straightforward and simple.

Example 3.3. Let p = 5, m = d = 3, r = 2 and (a0, a1) = (1, α), where α is
a primitive element of F53 over F5 generated by α3 + α + 1 = 0. Suppose ψ is
Frobenius automorphism of F53 . Then the set F of (13) consists of the following
two FHSs:

S0 = ((3, 0), (1, 3), (1, 2), (4, 2), (0, 0), (1, 2), (0, 4), (0, 4), (1, 1), (1, 0), (1, 4), (2, 0),

(3, 0), (4, 4), (1, 4), (4, 4), (3, 3), (4, 2), (3, 1), (1, 4), (0, 1), (3, 2), (4, 1), (4, 2), · · · ) ;

S1 = ((2, 4), (1, 4), (2, 2), (4, 1), (0, 0), (2, 2), (1, 3), (1, 3), (3, 0), (4, 3), (0, 1), (3, 1),

(2, 4), (2, 0), (0, 1), (2, 0), (4, 0), (4, 1), (1, 1), (0, 1), (4, 2), (0, 3), (0, 4), (4, 1), · · · ) .
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By computation,

M(F ;L) =

⌈
L

31

⌉
=

{
1, for 1 ≤ L ≤ 31,

2, for 31 < L ≤ 62.

F is strictly optimal with respect to the bound in (7), and also has an optimal family
size with respect to the bound in (8).

3.2. Second class of optimal FHS sets.

Theorem 3.4. Fix w = (a0, · · · , ak−1) and assume R(w) = m. Let θ be a primitive

element of Fq2 , r be an odd factor of q − 1, n′ = q2−1
r and v = (θrt)n

′−1
t=0 . Suppose

f : Fq2 → Fq is a d-form difference-balanced function. Define a sequence set F =:
{Si = (sit)0≤t≤n′−1 : 0 ≤ i ≤ r − 1} by

(14) sit = T (f(θi+rt)).

Then F is an (n′, r; q)-FHS set and for each correlation window length 1 ≤ L ≤ n′,

M(F ;L) =

⌈
L

q + 1

⌉
.

Moreover, F is a strictly optimal FHS set with optimal partial Hamming correlation
with respect to the bound in (7) and with optimal family size with respect to the bound
in (8).

Proof. By Lemma 3.1, we know the alphabet size of F is pm, and the map T is
injective, hence

(15) sit = sjt+τ ⇐⇒ f(θi+rt) = f(θj+rt+rτ ).

Fix i, j, τ such that if i = j then τ 6≡ 0 mod n′. Then δ = θj−i+rτ /∈ {0, 1}. By
Lemma 2.4, the set f−1δ (0) of solutions of f(δx)− f(x) = 0 is aFq for some a 6= 0.

If there exists an element θi+rt0 ∈ f−1δ (0) (otherwise HSi,Sj (τ ; l | L) = 0), then

θi+rt0 ∈ aF∗q and

sit = sjt+τ ⇐⇒ θi+rt ∈ aF∗q ⇐⇒ θr(t−t0) ∈ F∗q .

Any c ∈ F∗q is of the form c = θ(q+1)s, since (r, q + 1) = 1, we have

sit = sjt+τ ⇐⇒ t− t0 ∈ (q + 1)Z.

Therefore, we have HSi,Sj (τ ; l | L) ≤
⌈

L
q+1

⌉
and

M(F ;L) ≤
⌈

L

q + 1

⌉
.

We now check the strictly optimality of the sequence set F , from (7),

M(F ;L) ≥
⌈
L

N
· [2INM − (I + 1)Id′]

(NM − 1)M

⌉
=

⌈
Lr

q2 − 1
· (q − 1)(q2 − 2)

(q2 − 2)r

⌉
=

⌈
L

q + 1

⌉
.

Thus M(F ;L) =
⌈

L
q+1

⌉
.
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Taking L = q2−1
r , then M(F ;L) = q−1

r and d′M(F ;L) < L. According to the
bound in (8), we have

M ≤
⌊

1

N

⌊
(L−M(F ;L))d′

L− d′M(F ;L)

⌋⌋
=

⌊
rq2

q2 − 1

⌋
= r.

Actually, the family size of F is exactly r.

Remark 4. Compared with the known constructions in [32, 10], our construction
in Theorem 3.4 is new and the FHS set is not equivalent to theirs, and it provides
us a large number of choices from different f(x).

Example 3.5. Let p = q = 7, r = 3, k = 1 and a0 = 1. Assume that θ is a
primitive element of F72 over F7. Set

f(x) = Tr72/7(x5).

Then, F consists of the following three FHSs of length 16:

S0 = (2, 3, 4, 1, 0, 1, 3, 3, 5, 4, 3, 6, 0, 6, 4, 4);

S1 = (3, 0, 3, 2, 2, 1, 5, 2, 4, 0, 4, 5, 5, 6, 2, 5);

S2 = (6, 6, 3, 1, 6, 5, 0, 5, 1, 1, 4, 6, 1, 2, 0, 2).

By computer experiments,

M(F ;L) =

⌈
L

8

⌉
=

{
1, for 1 ≤ L ≤ 8,

2, for 9 ≤ L ≤ 16.

Thus, F is strictly optimal with respect to the bound in (7), and also has an optimal
family size with respect to the bound in (8).

4. Second construction of optimal FHS sets

4.1. A generic construction. From now on, let q = pm.

Definition 4.1. For an (n,M ; q)-FHS set U := {U i = (uit)
n−1
t=0 : 0 ≤ i ≤M−1} and

a function φ(x) over Fq, for any given triple (i, j, τ) ∈ [0,M−1]2×[0, n−1]−{(i, i, 0)},
we say that (U , φ) satisfies A1 if

(16) φ(uit+τ )− φ(ujt ) = constant c(i, j, τ) ∈ F∗q for all 0 ≤ t ≤ n− 1.

For a vector v = (v0, v1, . . . , vn′−1) ∈ Fn′q and a function ϕ(x) over Fq, we say
that (v, ϕ) satisfies A2 if for b ∈ Fq,

(17) max
1≤τ≤n′−1

#{t : ϕ(vt+τ )− ϕ(vt) = b, 0 ≤ t ≤ n′ − 1} = 1.

Theorem 4.2. Let N = nn′ with gcd(n, n′) = 1 and M be positive integers. Sup-

pose U is an (n,M ; q)-FHS set such that (U , φ) satisfies A1. Suppose v ∈ Fn′q such

that (v, ϕ) satisfies A2. Then the FHS set F := {Si : 0 ≤ i ≤ M − 1} with

Si = (sit)
N−1
t=0 defined by

(18) sit = φ(uit) + ϕ(vt), 0 ≤ t ≤ N − 1,

is an (N,M ; q)-FHS set and for each correlation window length L ∈ {1, · · · , N},

M(F ;L) ≤
⌈
L

n′

⌉
.
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Proof. For 0 ≤ τ ≤ N − 1, 0 ≤ i, j ≤ M − 1 and 0 ≤ l ≤ N − 1 such that τ 6= 0 if
i = j, by Eq. (1) we have

HSi,Sj (τ ; l | L) =

L+l−1∑
t=l

h[sit, s
j
t+τ ]

=

L+l−1∑
t=l

h[φ(uit) + ϕ(vt), φ(ujt+τ ) + ϕ(vt+τ )]

=

L+l−1∑
t=l

h[φ(uit)− φ(ujt+τ ), ϕ(vt+τ )− ϕ(vt)].(19)

Note that uit := ui〈t〉n , vt := v〈t〉n′ and sit := si〈t〉N for t ∈ Z by our convention.

The triple (i, j, τ) belongs to two disjoint cases, either i = j and 〈τ〉n = 0 or else.
In both cases (the first case is trivial and the second follows from Eq. (16))

φ(uit)− φ(ujt+τ ) = b ∈ Fq for all t ∈ Z,

with b = 0 if and only if i = j and 〈τ〉n = 0. Note that if i = j, then τ 6= 0, so one
must have 〈τ〉n′ 6= 0 or b 6= 0. Then by (17), one has

(20)

l+n′z+n′−1∑
t=l+n′z

h[sit, s
j
t+τ ] =

n′−1∑
t=0

h[b, ϕ(vt+τ )− ϕ(vt)] ≤ 1

for any integers z and l. Write the correlation window length L as L = m1n
′ +m2

where 0 ≤ m2 < n′. From (19) and (20), if m2 = 0, then

HSi,Sj (τ ; l | L) =

l+L−1∑
t=l

h[sit, s
j
t+τ ] =

m1−1∑
z=0

l+n′z+n′−1∑
t=l+n′z

h[sit, s
j
t+τ ] ≤ m1,

if m2 > 0, then

HSi,Sj (τ ; l | L) =

m1−1∑
z=0

l+n′z+n′−1∑
t=l+n′z

h[sit, s
j
t+τ ] +

l+m1n
′+m2−1∑

t=l+m1n′

h[sit, s
j
t+τ ] ≤ m1 + 1.

In both cases, we have HSi,Sj (τ ; l | L) ≤
⌈
L
n′

⌉
. Hence

M(F ;L) ≤
⌈
L

n′

⌉
,

which completes the proof of this theorem.

Remark 5. The special case that φ(x) = ϕ(x) = x, (U , φ) and (v, ϕ) satisfying A1
and A2 was used in [3] to construct optimal FHS sets.

4.2. Third class of optimal FHS sets.

Lemma 4.3. Let R = {a0 = 0, a1, · · · , apm−1−1} be a set of additive coset repre-

sentatives of Fp to Fq. Construct pm−1 sequences U = {U i = (uit)
p−1
t=0 : 0 ≤ i ≤

pm−1 − 1} by

(21) uit = ai + t, ai ∈ R.

Then M(U ;L) = 0 and U is an (p, pm−1, 0; pm)-FHS set. In particular, U is an
(p, 0; p)-FHS if m = 1.
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Suppose that P (x) = xe + ce−1x
e−1 + · · · + c0 ∈ Fq[x] is a polynomial prime

to xm − 1, and let φ(x) = xp
e

+ ce−1x
pe−1

+ · · · + c0x : Fq → Fq. Then for any
(i, j, τ) ∈ [0, pm−1 − 1]2 × [0, p− 1]− {(i, i, 0)}, for any 0 ≤ t ≤ p− 1,

φ(uit+τ )− φ(ujt ) = φ(ai − aj + τ) ∈ F∗q .

Hence (U , φ) satisfies A1.

Proof. This is because φ is additive and defines a bijection from Fq to itself, and
ai − aj + τ 6= 0 if (i, j, τ) 6= (i, i, 0).

Lemma 4.4. Let α be a primitive root of Fq and v = (αt)q−2t=0 . For gcd(d, q−1) = 1,
set ϕ(x) = xd, then (v, ϕ) satisfies A2.

Proof. For gcd(d, q − 1) = 1 and any fixed 1 ≤ τ ≤ q − 2, {(αdτ − 1)αdt : 0 ≤ t ≤
q − 2} = F∗q , it is clear that

max
1≤τ≤q−2

#{t : ϕ(αt+τ )− ϕ(αt) = b, 0 ≤ t ≤ q − 2} = 1.

Theorem 4.5. Let (U , φ) and (v, ϕ) be given by Lemmas 4.3 and 4.4 respectively.
Then the FHS set F constructed from (U , φ) and (v, ϕ) in Theorem 4.2 is an (p(pm−
1), pm−1; pm)-FHS set such that for any correlation window length 1 ≤ L ≤ p(pm −
1),

M(F ;L) =

⌈
L

pm − 1

⌉
.

Moreover, F is a strictly optimal FHS set with optimal partial Hamming correlation
with respect to the bound in (6) and with optimal family size with respect to the bound
in (9).

Proof. By Theorem 4.2, we know that F is an (p(pm − 1), pm−1; pm)-FHS set and

M(F ;L) ≤
⌈

L
pm−1

⌉
. We are left to check the equality and the optimality of the

partial Hamming correlation and family size with respect to the bounds in Eqs.(6)
and (9).

For (N,M, d′) = (p(pm − 1), pm−1, pm),⌈
(NM − d′)N
(NM − 1)d′

⌉
=

⌈
(p(pm − 1)pm−1 − pm)p(pm − 1)

(p(pm − 1)pm−1 − 1)pm

⌉
=

⌈
(pm − 2)p(pm − 1)

pm(pm − 1)− 1

⌉
= p.

Then Niu et al.’s bound in Eq.(6) is that for any correlation window length 1 ≤
L ≤ p(pm − 1), for any M FHS set F of length N and alphabet size d′,

M(F ;L) ≥
⌈
L

N

⌈
(NM − d′)N
(NM − 1)d′

⌉⌉
=

⌈
L

pm − 1

⌉
.

Hence M(F ;L) =
⌈

L
pm−1

⌉
and F has optimal partial Hamming correlation with

respect to the bound in (6).
Take L = pm − 1, then M(F ;L) = 1. The bound (9) gives

M ≤
⌊

p2m

p(pm − 1)

⌋
=

⌊
pm−1p(pm − 1) + pm

p(pm − 1)

⌋
= pm−1.
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Note that the actual family size of F is exactly pm−1, hence F has an optimal family
size with respect to the bound in (9).

Example 4.6. Let p = 3, m = 2, d = 1 and α be a primitive element of F32

over F3 satisfying α2 + α + 2 = 0. Take ai ∈ {1, α, α2} with 0 ≤ i ≤ 2. Suppose
U = {(1, 2, 0); (α, α+ 1, α+ 2); (α2, α2 + 1, α2 + 2)} and v = (αt)7t=0. Set

φ(x) = x3 − αx, ϕ(x) = x.

Then the sequence set F in Theorem 4.5 consists of the following three FHSs of the
length 24:

S0 =(α3, α3, α2, α, α7, α5, 0, α5, 1, 1, 0, α3, α5, α4, α6, α4, α, α, α6, 1, 2, α7, α2, α7);

S1 =(2, 2, 1, α5, α2, 0, α, 0, α7, α7, α, 2, 0, α6, α3, α6, α5, α5, α3, α7, α6, α2, 1, α2);

S2 =(α2, α2, α5, α6, α, α3, 2, α3, 0, 0, 2, α2, α3, 1, α7, 1, α6, α6, α7, 0, 1, α, α5, α).

By computer experiments, M(F ;L) =
⌈
L
8

⌉
for any 1 ≤ L ≤ 24. F is strictly

optimal with respect to the bound in (6), and also has an optimal family size with
respect to the bound in (9).

Example 4.7. Let p = 3, m = 3, d = 3 and α be a primitive element of F33

over F3 satisfying α3 − α + 1 = 0. Take ai ∈ {0, α, 2α} with 0 ≤ i ≤ 2. Suppose
U = {(0, 1, 2); (α, α+ 1, α+ 2); (2α, 2α+ 1, 2α+ 2)} and v = (αt)25t=0. Set

φ(x) = x, ϕ(x) = x3.

Then the sequence set F in Theorem 4.5 consists of the following three FHSs of the
length 78:

S0 =(1, α, α10, α9, α2, α8, α18, α12, α23, α,

α18, α18, α10, 0, α14, α19, α14, α15, α2, α17, · · · );
S1 =(α9, α14, α4, α16, α10, α5, α21, α11, α15, α14,

α21, α21, α4, α, 0, α8, 0, α17, α10, α23, · · · );
S2 =(α16, 0, α2, 1, α4, α19, α6, α7, α17, 0,

α6, α6, α2, α14, α, α5, α, α23, α4, α15, · · · ).
By computer experiments,

M(F ;L) =

⌈
L

26

⌉
=


1, for 1 ≤ L ≤ 26,

2, for 27 ≤ L ≤ 52,

3, for 53 ≤ L ≤ 78.

F is strictly optimal with respect to the bound in (6), and also has an optimal family
size with respect to the bound in (9). Moreover, we can check that F is equivalent
to FHS set in [3, Theorem 4].

5. Conclusion

In this paper, we construct three classes of strictly optimal FHS sets (given
in Theorems 3.2, 3.4 and Theorem 4.5 respectively) with optimal partial Hamming
correlation and optimal family size. Our main contribution is as follows: our second
construction based on d-from difference-balanced functions (there are many) is new
and not equivalent to the known constructions; our third construction is based on a
generic approach (Theorem 4.2), which is inspired by and contains the one in [3]. It
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would be very interesting if one can find new examples satisfying the assumptions
in Theorem 4.2 and we leave this as an open problem for future study.
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