
J. reine angew. Math. 537 (2001), 1Ð32 Journal fuÈr die reine und
angewandte Mathematik
( Walter de Gruyter

Berlin � New York 2001

Group cohomology of the universal ordinary
distribution

By Yi Ouyang at Minneapolis
With an appendix by Greg W. Anderson

Abstract. For any odd squarefree integer r, we obtain a complete description of the
Gr � Gal

ÿ
Q�mr�=Q

�
group cohomology of the universal ordinary distribution Ur in this

paper. Moreover, for M a ®xed integer dividing lÿ 1 for all prime factors l of r, we study
the cohomology group H ��Gr;Ur=MUr�. In particular, we explain the construction of the
elements kr 0 for r 0jr in Rubin [9], which come exactly from a certain Z=MZ-basis of the
cohomology group H 0�Gr;Ur=MUr� through an evaluation map.

1. Introduction

Let f�a� : a A Q=Zg be a basis for a free abelian group A. Then the (dimension 1)
universal ordinary distribution Ur of level r for any positive integer r is given by

Ur �
�a� : a A

1

r
Z=Z

� �
�a� ÿ P

lb�a

�b� : ljr prime; a A
l

r
Z=Z

� � :
For any s A Gr :� Gal

ÿ
Q�mr�=Q

�
and x A Z, if s�z� � zx for all z A mr, set s��a�� � �xa�. By

this action, Ur becomes a Gr-module. The universal distribution is well known to be a free
abelian group, moreover, for any integer r 0jr, the natural map from Ur 0 to Ur is a split
monomorphism and thus Ur 0 can be considered as a submodule of Ur.

The theory of the universal distribution plays an important role in the theory of cy-
clotomic ®elds. Detailed information can be found in the well-known textbooks by Lang [8]
and Washington [14]. Most notably, Kubert [6] and [7], and Sinnott [13] studied the fG1g-
cohomology of Ur, from which Sinnott got his famous index formula about the cyclotomic
units and the Stickelberger ideal.

Recently, Anderson [2] found a brand new way to compute the fG1g-cohomology of
the universal distribution Ur. He discovered a cochain complex which is a resolution of the



universal distribution. To study a certain group cohomology of Ur, one studies instead a
double complex related to this group cohomology. In this paper, we use Anderson's reso-
lution to construct a double complex related to the Gr-cohomology of Ur and study the
spectral sequence of the double complex. Supposing that r is some ®xed odd squarefree
integer, we prove the following theorem:

Theorem A (Abridged form). The cohomology group

H n�Gr;Ur� �
L
r 0 jr

H
n�nr 0
r 0 �Gr;Z�

where nr 0 � number of prime factors of r 0 and

H n
r 0 �Gr;Z� :� T

ljr 0
ker
ÿ
H n�Gr;Z� �!res

H n�Gr=l;Z�
�
;

for Gr=l viewed as a subgroup of Gr. In particular, in the case n � 0, we have

H 0�Gr;Ur� � Z;

in the case n � 1, we have

H 1�Gr;Ur� �
Q
r 0jr

Z=mr 0Z

where mr 0 � gcdflÿ 1 : ljr 0g.

We shall discuss the Unabridged form in §5. What's more, for any positive integer M
which is a common factor of lÿ 1 over all prime factors l of r, let sl be a generator of the
cyclic group Gl and let

Dr 0 :� Q
ljr 0
Plÿ2

k�0

ksk
l ;

then

Theorem B. The image of the family

Dr 0
P
ljr 0

1

l

" #
: Er 0jr

( )

in Ur=MUr is a Z=MZ-basis for H 0�Gr;Ur=MUr�.

Theorem B has interesting applications in arithmetic. We follow the line given in
Rubin [9]. Let F � Q�mm�� be the maximal real sub®eld of Q�mm�, assume fl : ljrg is a
family of distinct odd primes which split completely in F=Q and are 1 1 �mod M� for a
®xed integer M. Suppose that we have a Gr-homomorphism x from Ur to F�mr��. Then x
induces a map
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H n�x�: H n�Gr;Ur=MUr� ! H n
ÿ
Gr; F�mr��=F�mr��M�

for each n A ZZ0. In the case n � 0, since H 0
ÿ
Gr; F�mr��=F�mr��M� � F�=F�M , we have the

map

H 0�x�: H 0�Gr;Ur=MUr� ! F�=F�M :

In particular, let Qab be the abelian closure of Q. Let e be an injective homomorphism from
Q=Z to Qab�. Put

x��a�� �
 

e a� 1

m

� �
ÿ 1

! 
e aÿ 1

m

� �
ÿ 1

!
:

Then x is a Gr-homomorphism from Ur to F�mr��. The image H 0�x� Dr 0
P
ljr 0

1

l

" # !
is just

the Kolyvagin element kr 0 as given in [9]. From this point of view, we can regard the Euler
system as a system in the cohomology group H 0�Gr;Ur=MUr�. This is the initial motiva-
tion for this paper.

This paper is organized in the following order. We give general notation in §2. In
§3, we study Anderson's resolution in detail. In §4, a special Gr-projective resolution P� of
Z is constructed and the group cohomology of Z and of Z=MZ are given. With this pro-
jective resolution P�, we construct a double complex in §5 whose total cohomology is the
Gr-cohomology of Ur. The standard spectral sequence method is then used to compute the
cohomology group H ��Gr;Ur�. In §6, we study the lifting problem and prove Theorem B.
At the end of this paper, we include an appendix by Prof. Anderson on his resolution.

Acknowledgment. I thank my advisor Professor Greg W. Anderson for introducing
me to this interesting ®eld, for his insight and insistence driving me to write this paper. The
double complex method is the brain child of Professor Anderson. I also thank Dr. Hans Uli
Walther for some useful discussion about Lemma 5.2. This paper is part of my University
of Minnesota Ph.D thesis.

2. Notation

Fix a ®nite set S of cardinality jSj � s. Fix a family fli: i A Sg of distinct odd prime
numbers. Fix a positive integer M dividing li ÿ 1 for all i A S. Fix a total order o of S. Put

. r � rS :� Q
i AS

li,

. GS :� Gal
ÿ
Q�mr�=Q

�
.

For each i A S, put

. Gi :� the inertia subgroup of GS at li,

. si :� a ®xed generator of Gi,
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. Ni :� Pliÿ2

k�0

sk
i , Di :� Pliÿ2

k�0

ksk
i ,

. Fri :� the arithmetic Frobenius automorphism at li in GS=Gi.

For each subset T LS, put

. rT :� Q
i AT

li, mT :� mrT
,

. GT :� Q
i AT

Gi HGS,

. NT :� Q
i AT

Ni, DT :� Q
i AT

Di.

Put R :� ZZ0�S�. For any element e � �ei� A R, put

. deg e :�P
i

ei,

. supp e :� fi A S : ei 3 0g,

. o�e� :� ÿo�e�i� A R where o�e�i �
P
j<oi

ej.

For any e; e 0 A R, put o�e; e 0� :� P
j<oi

e 0j ei.

For a A Q=Z, the order of a (denoted by ord a) means its order in Q=Z. For any set X,
the cardinality of X is denoted by jX j, the free abelian group generated by X is denoted by
hXi, and the free Z=MZ-module generated by X is denoted by hXiM . The family of all
subsets of X is denoted by 2X . We call a subfamily J of 2X an order ideal of X if for all
Y A J, 2Y LJ. For any pair of sets X and Y, the di¨erence of X and Y is denoted by XnY .

For any complex C�, the complex C��n� is the complex with components
C m�n� � C m�n. For any complex C� of Z-modules, C�M :� C�nZ=MZ.

3. Universal ordinary distribution and its structure

3.1. Universal ordinary distribution and Anderson's resolution. Let f�a� : a A Q=Zg
be a basis of a free abelian group A. Recall that by Kubert [6], the (rank 1) universal or-
dinary distribution U is given by

U � h�a� : a A Q=Zi

�a� ÿ P
nb�a

�b� : n A N

� � :
For any positive number f, the universal ordinary distribution of level f is given by

Uf �
�a� : a A

1

f
Z=Z

� �
�a� ÿ P

pb�a

�b� : pj f ; a A
p

f
Z=Z

* + :
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For any s A Gal
ÿ
Q�mf �=Q

�
, set s��a�� � �xa� if s sends each f-th root of unity to its x-th

power. By this action, Uf is a Gf � Gal
ÿ
Q�mf �=Q

�
-module. Much has been studied about

the structures of U and Uf , we list some basic properties here (for detailed proof, see

Anderson [1], [2], Kubert [6], [7] and Washington [14]). First recall for any a A
1

f
Z=Z, a can

be written uniquely as

a1
P
pj f

P
n AN

apn

pn
�mod Z�; 0Y apn Y pÿ 1:

Then

Proposition 3.1. 1) The universal ordinary distribution Uf is a free abelian group of

rank jGf j, the set f�a� : a A
1

f
Z=Z; ap1 3 pÿ 1; Epj f g is a Z-basis for Uf .

2) For any factor g of f, the natural map from Ug to Uf is a split monomorphism.
Moreover, by these natural maps, U is the direct limit of Uf for f A N and thus U is free.

In the sequel, for our convenience, the universal distribution Ur will be written as US

and UrT
as UT . Now let

L�S � �a;T � : a A
rT

rS
Z=Z;T LS

� �
be the free abelian group generated by the symbols �a;T �, and let

L
p
S � �a;T � : jT j � ÿp; a A

rT

rS

Z=Z;T LS

� �
;

then L�S is a bounded graded module. Furthermore, for any s A GS, set s�a;T � � �xa;T � if s
sends each r-th root of unity to its x-th power. By this action, L�S becomes a GS-module.
Let

d�a;T � � P
i AT

o�i;T� �a;Tnfig� ÿ P
lib�a

�b;Tnfig�
 !

where

o�i;T� � �ÿ1�jf j A T :j<oigj; if i A T ,

0; if i B T .

(

It is easy to check that d 2 � 0 and d is GS-equivariant. Thus �L�S; d� is a cochain complex.
Note that the de®nition of d depends on o. We'll write do instead if we need to emphasize
the order o. The following proposition is given by Anderson:

Proposition 3.2. The n-th cohomology of the complex �L�S; d� is 0 for n3 0 and US

for n � 0, furthermore, the map from L0
S to US is given by u: �a; j� 7! �a�.
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Remarks. 1. The above proposition (in a more general form suitable for a resolution
for the distribution Uf for general f ), though known by Anderson for quite a while, has no
published proof by now. We put the proof in Appendix A, traces of the idea behind the
proof can be found in Anderson [1], [2].

2. For the sake of this proposition, we call �L�S; d� Anderson's resolution of the uni-
versal distribution US. This resolution has been used by Das [5] in his work about the
algebraic G-monomials and double coverings of cyclotomic ®elds.

3.2. Double complex structure of L�S . A remarkable fact about Anderson's resolu-
tion L�S is that it possesses an even more delicate double complex structure, which in turn
gives a natural ®ltration for the universal distribution US. We start with a more careful
look at L�S, which we'll denote by L� instead. For any T LS, we always regard L�T as a
subcomplex of L�. Moreover, for any order ideal J of S, put

L��J� :� P
T AJ

L�T and US�J� :� P
T AJ

UT :

In particular, let J�n� be the order ideal consisting of all subsets T such that jT jY n,
and let L��n� � L�

ÿ
J�n�� and US�n� � US

ÿ
J�n��. Note that L��2T� � L�T . For any

a A
1

rS
Z=Z, let

supp a :� fi : lijord agLS:

We see that

L� � h�a;T � : supp aXT � ji:

Then L��J� is the free abelian group generated by

f�a;T � : T W supp a A J;T X supp a � jg;

and US�J� is the free abelian group generated by

f�a� : supp a A J; ali1 3 li ÿ 1 for all i A Sg:

Immediately we have

Proposition 3.3. Let J1 and J2 be two order ideals of S, then:

1) L��J1 XJ2� � L��J1�XL��J2�, US�J1 XJ2� � US�J1�XUS�J2�.

2) L��J1 WJ2� � L��J1� � L��J2�, US�J1 WJ2� � US�J1� �US�J2�.

Then

Proposition 3.4. The complex L��J� is acyclic with the 0-cohomology US�J�.

Proof. We let ~L��J� be the complex

Ouyang, Group cohomology of universal distribution6



0! Lÿs�J� ! � � � ! L0�J� !u US�J� ! 0:

Hence it su½ces to show that ~L��J� is exact. Let T be a maximal element in the order ideal
J. Let J 0 be the order ideal whose maximal element set is the set of maximal elements of
J excluding T, then

J � J 0W 2T :

By Proposition 3.3, we have

~L��J�=~L��2T� � ~L��J 0�=~L��J 0X 2T�:

Now we prove the proposition by induction on the cardinality of maximal elements of J. If
J has only one maximal element, this is just Proposition 3.2. In general, both J 0 and
J 0X 2T have less maximal elements than J has. Thus the exactness of ~L��J� follows from
the exactness of the three complexes ~L��2T�, ~L��J 0� and ~L��J 0X 2T�. r

Now we can construct a double complex whose total single complex is �L�; d�. With
abuse of notation, we'll write it as L�;�. For any pair of subsets T 0, T of S such that
T 0MT , set

LT 0;T :� h�a;T � : supp a � SnT 0i;

then LT 0;T is isomorphic to IndGS

GT 0
Z. Moreover, for any i A T , the map

ji: LT 0;T ! LT 0;Tnfig; �a;T � 7! �a;Tnfig�

de®nes a natural isomorphism between LT 0;T and LT 0;Tnfig. Now for any T LS,

L�T �
L

T1;T2

LT1;T2
; where T2 W �SnT1�LT ;T2 X �SnT1� � j;

and if let G�J� :� f�T1;T2� : T2 W �SnT1� A J;T2 X �SnT1� � jg, then

L��J� � L
�T1;T2� AG�J�

LT1;T2
:

In general for any i A S, de®ne

ji: Lp ! Lp�1; �a;T � 7! wT�i��a;Tnfig�

where wT is the characteristic function of T. Let j�Lp� be the subgroup of Lp�1 generated
by ji�Lp� for all i A S, inductively, let jn�Lp� be the subgroup of Lp�n generated by
ji

ÿ
jnÿ1�Lp�� for all i A S. By this setup, there is a ®ltration of Lp given by

js�p�Lÿs�L js�pÿ1�Lÿs�1�L � � � LLp:

This ®ltration enables us to de®ne the double complex structure of L�. For the element
�a;T � A L�, we say �a;T � is of bidegree �p1; p2� if �a;T � A jp2�Lp1�njp2�1�Lp1ÿ1�, more ex-
plicitly, if
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p1 � jsupp aj ÿ s; p2 � sÿ jsupp aj ÿ jT j:

Then we see that all elements of LT 0;T are of bidegree �ÿjT 0j; jT 0j ÿ jT j�. Let Lp1;p2 be the
subgroup of L� generated by all symbols �a;T � with bidegree �p1; p2�, then

Lp1;p2 � L
jT j�ÿp1ÿp2

L
jT 0 j�ÿp1

T 0MT

LT 0;T :

Set

d1: Lp1;p2 ! Lp1�1;p2 ; �a;T � 7! ÿP
i AT

o�i;T�Ni Frÿ1
i a� 1

li
;Tnfig

� �
;

d2: Lp1;p2 ! Lp1;p2�1; �a;T � 7! P
i AT

o�i;T��1ÿ Frÿ1
i ��a;Tnfig�;

It is easy to check that d 2
1 � d 2

2 � d1d2 � d2d1 � 0. Hence we construct a double complex
�L�;�; d1; d2�. Note that d � d1 � d2 and

Lp � L
p1�p2�p

Lp1;p2 ;

thus �L�; d� is the single total complex of the double complex �L�;�; d1; d2�, with the second
®ltration given by j. Thus the total cohomology of �L�;�; d1; d2� is the cohomology of
�L�; d�.

Proposition 3.5. The E1 term of the spectral sequence arising from the double complex

�L�;�; d1; d2� by the ®rst ®ltration (i.e., H
p1

d1
�L�;p2�) is

E
p1;p2

1 � US�sÿ p2�=US�sÿ p2 ÿ 1�; if p1 � ÿp2,

0; otherwise.

�
Thus the spectral sequence for the ®rst ®ltration degenerates at E1.

Proof. Note that

L��n� � L
p2Zsÿn

Lp1;p2

then it is easy to see that L�;p2 �ÿp2� is nothing but the quotient complex
L��sÿ p2�=L��sÿ p2 ÿ 1�. The short exact sequence

0! L��sÿ p2 ÿ 1� ! L��sÿ p2� ! L�;p2 �ÿp2� ! 0

induces a long exact sequence

� � � ! H i
ÿ
L��sÿ p2�

�! H i�L�;p2 �ÿp2�� ! H i�1
ÿ
L��sÿ p2 ÿ 1��! � � � :

By Proposition 3.4, for i3 0 and ÿ1, both H i
ÿ
L��sÿ p2�

�
and H i�1

ÿ
L��sÿ p2 � 1�� are 0,

so is H i�L�;p2 �ÿp2��. Therefore the above long exact sequence is just the exact sequence

Ouyang, Group cohomology of universal distribution8



0! Hÿ1�L�;p2 �ÿp2�� ! US�sÿ p2 ÿ 1� ! US�sÿ p2� ! H 0�L�;p2 �ÿp2�� ! 0:

Since the map from US�sÿ p2 ÿ 1� to US�sÿ p2� is injective, the proposition follows im-
mediately. r

Remark. It is an interesting problem to investigate the spectral sequence coming
from the second ®ltration of L�;�.

Now tensoring L� with Z=MZ, since L� is a resolution of free abelian groups, by
Proposition 3.1, Proposition 3.2 and Proposition 3.4, we have

Proposition 3.6. 1) One has

H n�L�M� �
US=MUS; if n � 0,

0; if n3 0.

�
2) Moreover, for any order ideal J of S, one has

H n
ÿ
L�M�J�

� � US�J�=MUS�J�; if n � 0,

0; if n3 0.

�

4. The cohomology groups H ��GT ;Z� and H ��GT ;Z=MZ�

4.1. A projective resolution of Z. We ®rst have a convention here: Let X be a ®nite
totally ordered set and x A X . Suppose that to every x A X we have a module Ax associated
to x. We call

AX � Ax1
n � � � nAxn

the standard tensor product of Ax over X if X � fx1; . . . ; xng and x1 < � � � < xn. Similarly,
we can de®ne the standard tensor product of elements ax A Ax and of complexes A�x.

Let

�Pi�; qi�: � � � ���!qi; j�1
Pi; j�1 ���!qij

Pij � � � ���!qi0
Pi0 ���! 0

with Pij � Z�Gi� for any j Z 0, qij is the multiplication by 1ÿ si if j is even and by Ni if j is
odd. It is well known that Pi� is a Z�Gi�-projective resolution of the trivial module Z. For
any T LS, let PT� be the standard tensor product of Pi� over i A T . It is well known by
homological algebra that PT� is a Z�GT �-projective resolution of the trivial module Z. Now
for the collection fPi; ei

: i A Tg, the standard product of Pi; ei
over T is a rank 1 free Z�GT �-

module whose grade is
P

i

ei. Now let e A R be the element whose i-th component is ei if

i A T and 0 if not, and write the standard product of Pi; ei
over T as Z�GT ��e�, then

PT� �
L

supp eLT

Z�GT ��e�:
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For any x � �� � � n xi n � � �� A Z�GT ��e�, the di¨erential is given by

qT�x� �
P
i AT

�ÿ1�o�e�iÿ� � � n qi; eiÿ1�xi�n � � �
�
:

In particular, for T � S let

P� � PS� �
L
e AR

Z�GS��e�:

For any T 0LT , we have a natural inclusion i: Z�GT 0 ��e� ,! Z�GT ��e� for any e A R such
that supp eLT 0. By this inclusion, PT 0� becomes a subcomplex of PT�.

Now we de®ne a diagonal map FT : PT� ! PT�nPT�. First set

Fiei ; ie 0i : Pi; ei�e 0
i
! Piei

nPie 0
i
;

1 7!
1n 1; if ei even,

1n si; if ei odd; e 0i even,P
0Ym<nYliÿ2

sm
i n sn

i ; if ei odd; e 0i odd.

8>><>>:
Then the map Fi: Pi� ! Pi�nPi� given by Fiei; ie

0
i

is the diagonal map for the cyclic group
Gi (see Cartan-Eilenberg [4], p. 250±252). For any e; e 0 A R with support contained in T,
consider the standard product Pe; e 0 of Piei

nPie 0
i

over i A T . The isomorphism

a: Piei
nPje 0

j
! Pje 0

j
Piei

;

xn y 7! �ÿ1�eie
0
i yn x

induces an isomorphism a: Pe; e 0 ! Z�GT ��e�nZ�GT ��e 0� byÿ� � � �xi n yi� � � �
� 7! �ÿ1�o�e; e 0��� � � xi � � ��n �� � � yi � � ��:

On the other hand, the standard product of the diagonal maps Fiei; ie 0i over i A T de®nes a
map b: Z�GT ��e� e 0� ! Pe; e 0 . We let Fe; e 0 � a � b and let

FT ;p;q �
P

e; e 0:deg e�p;deg e 0�q
supp e�e 0LT

Fe; e 0 :

Then FT de®nes the diagonal map from PT� to PT�nPT�. This map enables us to com-
pute the cup product structures.

4.2. The cohomology groups H ��GT ;Z� and H ��GT ;Z=MZ�. Let

C�i � HomGi
�Pi�;Z�;

then C�i is the complex

Ouyang, Group cohomology of universal distribution10



Z ��!0 Z ��!liÿ1
Z ��!0 Z ��!liÿ1 � � �

with the initial term at degree 0. We denote by C
j

i the j-th term of C�i . By the theory of
group cohomology,

H ��Gi;Z� � H ��C�i �:

Now for any T LS, let C�T be the standard tensor product of C�i for i A T . If write

HomGT
�Z�GT ��e�;Z� � Z�e�;

then

C�T � HomGT
�PT�;Z� �

L
supp eLT

Z�e�;

and

H ��GT ;Z� � H ��C�T�:

Moreover, for any T 0LT , the inclusion i: PT 0� ,! PT� induces a map

i�: C�T ! C�T 0 ;

which is just the natural projection ofL
supp eLT

Z�e� ! L
supp eLT 0

Z�e�:

On the other hand, GT 0 can also be considered naturally as a quotient group of GT , by this
meaning, the in¯ation map is just the injectionL

supp eLT 0
Z�e� ,! L

supp eLT

Z�e�:

Now for any j A ZZ0 even, let

C
�j
i �

� � � 0 ��! C0
i ��! 0 � � � ; if j � 0,

� � � 0 ��! C
jÿ1

i ��!liÿ1
C

j
i ��! 0 � � � ; if j > 0.

(

For any e � �ei� A 2R, i.e., ei even for all i A S, we let C�e be the standard product C�ei

i over
i A S. If supp eLT , then C�e is a subcomplex of C�T and

C�T �
L

e A 2R
supp eLT

C�e :

Figure 1 shows us what the decomposition looks like in the case S � f1; 2g. Denote by Ae

the cohomology group H ��C�e� and An
e its n-th component. Then
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H ��GT ;Z� �
L

e A 2R
supp eLT

Ae; H n�GT ;Z� �
L

e A 2R
supp eLT

An
e :

We now study the abelian group Ae. First we need a lemma from linear algebra:

Lemma 4.1. Let v � �m1;m2; . . . ;mn� t be an n-dimensional column vector with inte-
ger entries mi, then the greatest common divisor of the mi is 1 if and only if there exists an

n� n matrix A A SLn�Z� whose ®rst column is v.

Now suppose supp e � T � fi1; . . . ; itg and jT j � t. If t � 0, then T � j, it is easy to
see that Ae � A0

e � Z. Now if T 3j, we claim that C�e �deg eÿ t� is isomorphic to the ex-
terior algebra L�x1; . . . ; xt� with di¨erential d�x� �P�li ÿ 1�xi 5 x and deg xi � 1. This
claim is easy to check: First if t � 1, let T � fig, then C�ei

i � C eiÿ1 lC ei . This case is
trivial. In general, if C�ei

i �ei ÿ 1� is isomorphic to L�xi�, the tensor product of C�ei

i �ei ÿ 1� is
nothing but C�e �deg eÿ t� and the tensor product of L�xi� is just L�x1; . . . ; xt�, hence they
are isomorphic to each other.

Now let mT be the greatest common divisor of li ÿ 1 for i A T , thus the greatest
common divisor of �li ÿ 1�=mT is 1, let A be the matrix given by Lemma 4.1 corresponding
to the vector

ÿ
. . . ; �li ÿ 1�=mT ; . . .

�
. Let �y1; . . . ; yt� � �x1; . . . ; xt�A. Then fy1; . . . ; ytg is

a set of new generators for the above exterior algebra and we have d�x� � mT y1 5 x. We
see easily that

H �ÿL�x1; . . . ; xt�
� � �Z=mT Z�2 tÿ1

and

H j
ÿ
L�x1; . . . ; xt�

� � �Z=mT Z� tÿ1
j� �; 0Y j Y tÿ 1:

Combining the above analysis, we have

Proposition 4.2. There exists a family of complexes

fC�e LC� � HomGS
�P�;Z� : e A 2Rg

such that:

C��0; 4�

���� C��2; 4� C��4; 4�

C��0; 2�

���� C��2; 2� C��4; 2�

C��0; 0�� C��2; 0� C��4; 0�

Figure 1. The complex C�S when S � f1; 2g.
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1) For each T LS, we can identify C�T � HomGT
�PT�;Z� with

L
e A 2R

supp eLT

C�e through the

following splitting exact sequence:

0! L
e A 2R

supp eLj T

C�e ! C� ! C�T ! 0:

2) The cohomology groups H ��C�e� � Ae and H n�C�e� � An
e are given by:

(a) If supp e3j, let me be the greatest common divisor of li ÿ 1 for i A supp e, then Ae

is the abelian group �Z=meZ�2
jsupp ejÿ1

, and

An
e � �Z=meZ�

jsupp ejÿ1
j

ÿ �
; if n � deg eÿ j and 0Y j Y jsupp ej ÿ 1,

0; otherwise.

(

(b) If supp e � j, then Ae � A0
e � Z.

For the case H ��G;Z=MZ�, the situation is much easier. We have

Proposition 4.3. There exists a family

f�e� A H ��GS;Z=MZ� : e A Rg

with the following properties:

1) For each T LS and n A ZZ0, the restriction of the family

f�e� : e A R; supp eLT ; deg e � ng

to H n�GT ;Z=MZ� is a Z=MZ-basis of the latter.

2) For each T LS and e A R such that supp eLj T , the restriction of �e� to

H ��GT ;Z=MZ� vanishes.

3) One has the cup product structure in H ��GT ;Z=MZ� given by

�e�W �e 0� � �ÿ1�o�e; e 0� Q
i AS

eie
0
i11�2�

li ÿ 1

2

� �
�e� e 0�

for all e; e 0 A R.

Proof. The complex C�M; i � HomGi
�Pi�;Z=MZ� by de®nition, is a complex with

C
j
M; i � Z=MZ for j Z 0 and the di¨erential 0. In general, C�M;T � C�T nZ=MZ is exactly

the standard tensor product of C�M; i for all i A T . Write

C�M;T � HomGi
�PT�;Z=MZ� � P

supp eLT

Z=MZ�e�:

Since now C�M;T has di¨erential 0, H ��C�M;T� � C�M;T . The restriction map is easy to see.
This ®nishes the proof of 1) and 2).
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For the cup product, the diagonal map FT given above naturally induces a map:

C�M;T � C�M;T ! C�M;T

which de®nes the cup product structure. More speci®cally, the cup product map

Z=MZ�e� � Z=MZ�e 0� ! Z=MZ�e� e 0�

is induced from Fe; e 0 . Now the claim follows quickly from the explicit expression of
Fe; e 0 . r

5. Study of H ��GS ;US�

5.1. The complex K. With the preparation in §3 and §4, set

K�;� :� HomGS
�P�;L��:

Let d and d be the di¨erentials of K�;� induced by the di¨erentials of d of L� and q by of P�
respectively. If we let

�a;T ; e� :� ��e� 7! �a;T �� A HomGS
�Pe; h�a;T �i�;

then

K p;q � �a;T ; e� : a A
rT

rS
Z=Z; jT j � ÿp; deg e � q

� �
;

d�a;T ; e� � P
i AT

o�i;T� �a;Tnfig; e� ÿ P
lib�a

�b;Tnfig; e�
 !

;

d�a;T ; e� � �ÿ1�jT jP
i AS

�ÿ1�o�e�i �
�1ÿ si��a;T ; e� ei�; if ei even,

Ni�a;T ; e� ei�; if ei odd.

(

For any T LS, set

K�;��T� � HomGS
�P�;L�T� � h�a;T 0; e� : �a;T 0� A L�T ; e A Ri

and

K�;�T � HomGT
�PT�;L�T� � h�a;T 0; e� : �a;T 0� A L�T ; e A R; supp eLTi:

Furthermore, for any order ideal J, set

K�;��J� :� HomGS

ÿ
P�;L��J�

� � P
T AJ

K�;��T�;

and set
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K�;��n� :� HomGS

ÿ
P�;L��n�

�
:

Set

U� :� HomGS
�P�;US� �

�a; e� : a A
1

rS
Z=Z; e A R

� �
�a; e� ÿ P

lib�a

�b; e� : a A
li

rS
Z=Z; e A R

* + ;

with di¨erential d induced by q. Correspondingly,

U��J� :�
�a; e� : a A

1

rT

Z=Z for some T A J; e A R

� �
�a; e� ÿ P

lib�a

�b; e� : a A
li

rT

Z=Z for some T A J; e A R

* + ;

which is a subcomplex of U�. We consider U� as the double complex �U�;�; 0; d� con-
centrated on the vertical axis. From Proposition 3.2, we have a map

u: K�;� ! U�;�; �a;T ; e� 7! �a; e�; if T � j,

0; if T 3j.

�

Proposition 5.1. The map u (resp. its restriction) is a quasi-isomorphism between K�;�

(resp. K�;��J�) and U�;� (resp. U�;��J�). Therefore:

1) H �
total�K�;�� � H ��GS;US�, H �

total

ÿ
K�;��J�� � H �ÿGS;US�J�

�
.

2) H �
total�K�;�M � � H ��GS;US=MUS�, H �

total

ÿ
K�;�M �J�

� � H �ÿGS;US�J�=MUS�J�
�
.

Proof. Immediately from Proposition 3.2 (resp. Proposition 3.4 for J), we see that
ker u is d-acyclic, and hence by spectral sequence argument, it is �d � d�-acyclic. On the
other hand, u is surjective. Thus u is a quasi-isomorphism. Now 1) follows directly from the
quasi-isomorphism. For 2), just consider un 1, which is also a quasi-isomorphism. r

From Proposition 5.1, the GS-cohomology of US is isomorphic to the total coho-
mology of the double complex �K�;�; d; d�. Therefore we can use the spectral sequence of
the double complex K�;� to study the GS-cohomology of US. The spectral sequence of K�;�

from the second ®ltration has given us Proposition 5.1. Now we study the spectral sequence
from the ®rst ®ltration. Then

E
p;q
1 �K�;�� � H

q
d �Kp;�� � H q�GS;L

p�:

Now since

Lp � L
p1�p2�p

Lp1;p2 � L
jT j�ÿp

L
T 0MT

LT 0;T ;
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then

E
p;q
1 �K�;�� �

L
jT j�ÿp

L
T 0MT

H q�GS;LT 0;T�:

Recall

G�J� � f�T1;T2� : T2 W �SnT1� A J;T2 X �SnT1� � jg

from §3. We have

E
p;q
1

ÿ
K�;��J�� � L

�T 0;T� AG�J�
H q�GS;LT 0;T�:

5.2. A Lemma. Suppose that for any T LS, there is an abelian group BT asso-
ciated to T, and set

AT �
L

T 00LT

BT 00 :

Then for any T 0MT , there is a natural projection from AT 0 to AT . Now let C�S;T be the
cochain complex with components given by

Cn
S;T �

L
jT 0j�sÿn

T 0M�SnT�

AT 0 ;

and di¨erential d given by

d: AT 0 !
L

i AT 0XT

AT 0nfig;

x 7! P
i AT 0XT

o�i;T 0XT�xjT 0nfig;

where xjT 0nfig is the projection of x in AT 0nfig. It is easy to verify that C�S;T is indeed a chain
complex. Furthermore, we have

Lemma 5.2. For any T LS,

H n�C�S;T ; d� �
L

T 0MT

BT 0 ; if n � 0,

0; otherwise.

(

Proof. Let ~C�S;T be the subcomplex of C�S;T with the same components as C�S;T ex-
cept at degree 0, where

~C0
S;T �

L
T 0QT

BT 0 :

We only need to show that ~C�S;T is exact. We show it by double induction to the
cardinalities of S and T. If T � j, we get a trivial complex. If S consists of only one ele-
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ment, or if T consists only one element, it is also trivial to verify. In general, suppose
i0 � maxfi : i A Tg. Let S0 � Snfi0g and T0 � Tnfi0g. Then we have the following com-
mutative diagram which is exact on the columns:

0 ���! ~C0
S;T0

���!d ~C1
S;T0

���!d � � � ~C tÿ1
S;T0

���! 0 ���! 0x???p

x???p

x???p

x???p

0 ���! ~C0
S;T ���!d ~C1

S;T ���!d � � � ~C tÿ1
S;T ���!d ~C t

S;T ���! 0x???i

x???i

x???i

x???i

0 ���! L
S0MT 0MT0

BT 0 ���!d AS0 ���!d � � � ~C tÿ1
S0;T0

���!d ~C t
S0;T0

���! 0:

Here p means projection and i means inclusion. The di¨erential d is induced by the di¨er-
ential d of the second row. Notice that the third row is a variation of the chain complex
~C�S0;T0

, the ®rst row is the chain complex ~C�S;T0
. By induction, the ®rst row and and the third

row are exact, so is the middle one. r

5.3. The study of E2 terms. By §5.1, we know that

E
p;q
1 �K�;�� �

L
jT j�ÿp

L
T 0MT

H q�GS;LT 0;T�:

Now let's consider the induced di¨erential d of d in the E1 term. Since d � d1 � d2, we can
also write d � d1 � d2. We ®rst look at d2, which is induced by the map

LT 0;T !
L
i AT

LT 0;Tnfig;

�a;T � 7! P
i AT

o�i;T��1ÿ Frÿ1
i ��a;Tnfig�:

Since for any i A T , LT 0;T and LT 0;Tnfig are GS-isomorphic by the map ji, and since for any
qZ 0, H q�G;A� is a trivial G-module, we have

d2 �
P
i AT

o�i;T��1ÿ Frÿ1
i �ji � 0:

The map d1 is induced by the map

LT 0;T !
L
i AT

LT 0nfig;Tfig;

�a;T � 7! ÿP
i AT

o�i;T�Ni Frÿ1
i a� 1

li
;Tnfig

� �
:

For any i A T , consider the map
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ci: LT 0;T ! LT 0nfig;Tnfig;

�a;T � 7! Ni Frÿ1
i a� 1

li
;Tnfig

� �
:

The map ci is a GS-homomorphism and therefore induces a map in GS-cohomology:

H q�ci�: H q�GS;LT 0;T� ! H q�GS;LT 0nfig;Tnfig�:

We have the commutative diagram:

LT 0;T ���!ci
LT 0nfig;Tnfig???yyT 0

???yyT 0nfig

Z ���!res
Z

where the top row are GS-modules, the left Z is a trivial GT 0-module, the right Z is a trivial

GT 0nfig-module, and yT 0 is the homomorphism sending
1

rSnT 0
;T

� �
to 1 and

x

rSnT 0
;T

� �
to 0

if x3 1. Then the above diagram induces the following commutative diagram:

H q�GS;LT 0;T� ���!H q�ci�
H q�GS;LT 0nfig;Tnfig�???yy�

T 0

???yy�
T 0nfig

H q�GT 0 ;Z� ���!res
H q�GT 0nfig;Z�

where y�T 0 (and y�T 0nfig) is the isomorphism given by Shapiro's lemma (see Serre [11], Chap.
VII, §5, Exercise). We identify H q�GS;LT 0;T� with H q�GT 0 ;Z�, moreover, to keep track of
T, we'll write H q�GT 0 ;Z� as H q�GT 0;T ;Z�. Then we see that H q�ci� is the restriction map
from H q�GT 0;T ;Z� to H q�GT 0nfig;Tnfig;Z�. The induced di¨erential d � d1 is exactly the
map

H q�GT 0;T ;Z� !
L
i AT

H q�GT 0nfig;Tnfig;Z�;

x 7! ÿP
i AT

o�i;T�xi;

where xi is the restriction of x in H q�GT 0nfig;Tnfig;Z�. Hence we have a cochain complex
C�q; S;T�

H q�GS;T ;Z� �!d1 L
i AT

H q�GSnfig;Tnfig;Z� � � � �!d1
H q�GSnT ;j;Z� �! 0:

Note that the complex E
�;q
1 �K�;�� is just the direct sum of C�q; S;T� over all subsets T of S.

Moreover, the complex E
�;q
1 �K�;���J� is the direct sum of ~C�q; S;T� over all subsets

T A J.
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Recall in Proposition 4.2, we obtained

H q�GT ;Z� �
L

e A 2R
supp eLT

Aq
e :

If let

A
q
T � H q�GT ;Z�; B

q
T �

L
e A 2R

supp e�T

Aq
e ;

then we have A
q
T �

L
T 00LT

B
q
T 00 . The complex C�q; S;T��ÿjT j� satis®es the conditions in

Lemma 5.2, thus the n-th cohomology of the cochain complex C�q; S;T� is 0 if n3ÿjT j
and

P
T 0MT

BT 0 if n � ÿjT j. We have the following proposition:

Proposition 5.3. One has:

1) E
p;q
2 �K�;��G

L
jT j�ÿp

L
e A 2R

supp eMT

Aq
e .

2) E
p;q
2

ÿ
K�;��J��G L

jT j�ÿp
T A J

L
e A 2R

supp eMT

Aq
e .

5.4. Proof of Theorem A. Finally we are in a position to prove Theorem A. Put

S�;� � h�a;T ; e� A K�;�; a3 0 if supp eMTi:

It is easy to verify that S�;� is a subcomplex of K�;� using the explicit formulas for d and d
given in §5.1. Set

Q�;� � K�;�=S�;� � h�0;T ; e� : supp eMTi:

Note that the di¨erential of Q�;� induced by d is 0. Moreover, set

S�;��J� :� K�;��J�XS�;�;

and

Q�;��J� :� K�;��J�=S�;��J� � h�0;T ; e� : T A J; supp eMTi:

Let f be the corresponding quotient map, then we have a commutative diagram:

K�;�M �J� ���!inc
K�;�M???yf

???yf

Q�;�M �J� ���!inc
Q�;�M :

We make the following claim:
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Proposition 5.4. The quotient map f : K�;� ! Q�;� is a quasi-isomorphism. Moreover,
the quotient map f : K�;��J� ! Q�;��J� is a quasi-isomorphism.

Proof. Let

L�T :� h�0;T ; e� : e A Ri � HomGS
�P�;LS;T�LK�;�

and let

L 0�
T :� h�0;T ; e� : supp eMTi; L 00�

T :� h�0;T ; e� : supp eLSnfig; for some i A Ti:

Through the map LS;T ! Z, �0;T � 7! 1, we have a commutative diagram

L�T L 0�
T a L 00�

T???y ???y ???y
C�

L
e A 2R

supp eMT

C�e a
L

i AT ; e A 2R
supp eLSnfig

C�e

where C� and C�e are given in Proposition 4.2. By this diagram, we identify L�T with C�. By
Proposition 4.2, we have

ker
ÿ
H ��GS;Z� ! H ��GSnfig;Z�

� � H �
� L

e A 2R
i A supp e

C�e
�
:

Then by the proof of Proposition 5.3,

ker�djH q�L�T �� �
T

i AT

ker
ÿ
H ��GS;LS;T� ! H ��GS;LSnfig;Tnfig�

�
� T

i AT

H �
� L

e A 2R
i A supp e

C�e
�
� H �

� T
i AT

L
e A 2R

i A supp e

C�e
�

� H �
� L

e A 2R
TLsupp e

C�e
�
� H ��L 0�

T �

where the second and the last identi®cations are made using the isomorphisms given in the
commutative diagram above. Hence we have

E
p;q
2 �K�;�� �

L
jT j�ÿp

ker�djH q�L�T �� �
L
jT j�ÿp

H q�L 0�
T �:

On the other hand,

Q�;� � L
TLS

L0�T :

Since d � 0 in Q�;�, the spectral sequence of Q�;� by the ®rst ®ltration (i.e., by d ) degen-
erates at E1. We have
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E
p;q
1 �Q�;�� � E

p;q
2 �Q�;�� �

L
jT j�ÿp

H q�L 0�
T �:

Since the projection map from L�T to L 0�
T in the commutative diagram above is

nothing but the restriction of the quotient map f at L�T , by the above analysis, we get an
isomorphism

f2: E
p;q
2 �K�;�� ! E

p;q
2 �Q�;��:

Thus the spectral sequence of K�;� and Q�;� are isomorphic at Er for rZ 2. In our case, the
®rst ®ltration is ®nite, thus strongly convergent, therefore f is a quasi-isomorphism (see
Cartan-Eilenberg [4], page 322, Theorem 3.2).

The case J is similar. In this case,

E
p;q
2 �K�;���J� �

L
T AJ
jT j�ÿp

ker�djH q�L�T �� �
L
jT j�ÿp

H q�L 0�
T �;

and

Q�;��J� � L
T AJ

L 0�
T :

Now follow the same analysis as above. r

For any subset T of S, set

H �
T�GS;Z� :� T

i AT

ker
ÿ
H ��GS;Z� �!res

H ��GSnfig;Z�
�

we see that

H ��L 0�
T �GH �

T�GS;Z�

by the identi®cation of L�T and C�. The following theorem is the main result in the paper:

Theorem A (Unabridged form). 1) The cohomology group H ��GS;US� is given by

H ��GS;US� �
L

TLS

H �
T�GS;Z��jT j� �

L
TLS

L
e A 2R

supp eMT

Ae�jT j�;

where Ae�jT j� represents the cohomology group H ��C�e �jT j��.

2) The cohomology group H �ÿGS;US�J�
�

is given by

H �ÿGS;US�J�
� � L

T AJ
H �

T�GS;Z��jT j� �
L

T AJ

L
e A 2R

supp eMT

Ae�jT j�:
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Proof. We only prove 1). The proof of 2) follows the same route. By Proposition 5.1
and Proposition 5.4, we know that

H ��GS;US� � H �
total�K�� � H �

total�Q��:

Now

H n
total�Q�� �

L
TLS

H n�jT j�L 0�
T �:

Part 1) follows immediately. r

Remarks. 1) We can see that part 1) is actually a special case of part 2) when the
order ideal J is 2S.

2) By Theorem A, in the case n � 0, we have

H 0�GS;US� � Z;

in the case n � 1, we have

H 1�GS;US� �
Q

TLS

Z=mT Z

where mT � gcd�li ÿ 1 : i A T� as given in §4. It is likely the cohomology classes in
H 1�GS;US� have a natural role to play in the Euler system method, but this role has not yet
been worked out in detail.

In the case Z=MZ, we have

Theorem 5.5. There exists a family

fcT ; e A H ��GS;US=MUS� : T LS; e A R; supp eMTg

with the following properties:

1) For each n A ZZ0, the subfamily

fcT ; e : T LS; e A R; supp eMT ; deg e � n� jT jg

is a Z=MZ-basis for H n�GS;US=MUS�.

2) For any order ideal J of S, let US�J� �
P

T AJ
UT . By the inclusion US�J� ,! US,

H �ÿGS;US�J�=MUS�J�
�

can be considered as a submodule of H ��GS;US=MS�. Further-
more, the subfamily

fcT ; e : T A J; e A R; supp eMTg

is a Z=MZ basis for H �ÿGS;US�J�=MUS�J�
�
.
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3) One has cup product structure

�e 0�W cT ; e � �ÿ1�o�e 0; e� Q
i AS

eie
0
i11�2�

li ÿ 1

2

� �
cT ; e�e 0

for all e; e 0 A R and T L supp e.

Proof. 1) By Proposition 5.4, we have induced quasi-isomorphism:

f n 1: K�;�M ! Q�;�M :

Now since the induced di¨erentials of d and d in Q�;�M are 0. Consider the cocycle �0;T ; e�
in Q�;�M , there exists a cocycle CT ; e (unique modulo boundary) which is the lifting of �0;T ; e�
by the quotient map f n 1. Hence u�CT ; e�n 1 is a cocycle in the complex U�M . Let
cT ; e denote the cohomology element in H ��GS;US=MUS� represented by the cocycle
u�CT ; e�n 1. Then fcT; e : supp eMTg is a canonical Z=MZ-basis for the cohomology
group H ��GS;US=MUS�. This ®nishes the proof of 1).

2) Similar to 1), just consider the map f n 1: K�;�M �J� ! Q�;�M �J�.

3) For the cup product, there is a natural homomorphism

Z=MZnUS=MUS ! US=MUS;

therefore H ��GS;US=MUS� (and also H �ÿGS;US�J�=MUS�J�
�� has a natural

H ��GS;Z=MZ�-module structure. By the theory of spectral sequences (see, for example
Brown [3], Chap. 7, §5), we have the cochain cup product

C�M nK�;�M ! K�;�M :

By using the diagonal map FS de®ned in §3, it is easy to check that:

C�M nS�;�M LS�;�M ;

hence we can pass the cup product structure to the quotient and have

C�M nQ�;�M ! Q�;�M :

Now 3) follows immediately from the explicit expression of FS. This concludes the
proof. r

6. Explicit basis of H0�GS ;US=MUS�

In §5, we obtained a canonical basis fcT; e : suppMTg for the cohomology group
H ��GS;US=MUS�. However, little is known yet for the explicit expression of the cocycle
cT; e in the complex HomGS

�P�;US=MUS�, which makes it necessary to study how to lift the
cocycle �0;T ; e� in Q�;�M to the cocycle CT ; e in K�;�M . Unfortunately, we are unable to
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get a complete answer for this problem in this paper. We obtain a partial solution in the
0-cocycles case, however, which is enough for us to prove Theorem B.

6.1. The triple complex structure of K. Recall from §3, L has a double complex
structure, therefore we can make K a triple complex. Set

K p1;p2;q :� HomGS
�P�;Lp1;p2� � h�a;T ; e� : �a;T � A Lp1;p2 ; deg e � qi

with the di¨erentials �d1; d2; d� given by

d1�a;T ; e� � ÿ
P
i AT

o�i;T�Ni Frÿ1
i a� 1

li

;Tnfig; e
� �

;

d2�a;T ; e� �
P
i AT

o�i;T��1ÿ Frÿ1
i ��a;Tnfig; e�;

and d as given in the double complex K�;�. In this setup, we see that K�J� becomes a triple
subcomplex of K, moreover

K�n� � L
p2Zsÿn

K p1;p2;q:

Correspondingly, we de®ne triple complex structures on KM , KM�J� and KM�n�. This tri-
ple complex structure enables us to construct di¨erent double complex structures in K and
KM . By studying those double complexes, we can gather more information about K. This
method will be illustrated in the next subsection.

6.2. The double complex �K�;p2;�
M ; d1; d�. For ®xed p2, let

K
�;p2;�
M � L

p1;q
K

p1;p2;q
M ;

with di¨erentials d1 and d, then we get a double complex �K�;p2;�
M ; d1; d�. Similarly, we can

get the double complex �K�;�M ; d1 � d; d2� whose �p1 � q; p2�-component is
L

K
p1;p2;q
M . As

before, for any J, we have double complexes K
�;p2;�
M �J� and

L
K

p1;p2;q
M �J� which are

subcomplexes of K
�;p2;�
M and

L
K

p1;p2;q
M respectively. First we have

Proposition 6.1. 1) H �
total�K�;p2;�

M ; d1; d� is a free Z=MZ-module generated by cocycles

C 0T ; e with leading term �0;T ; e� and the remainder with q-degree less than deg e over all pairs
�T ; e� satisfying jT j � sÿ p2 and supp eMT .

2) Moreover, H �
total

ÿ
K
�;p2;�
M �J�; d1; d

�
is a free Z=MZ-module generated by cocycles

C 0T ; e with leading term �0;T ; e� and the remainder with q-degree less than deg e over all pairs

�T ; e� satisfying T A J, jT j � sÿ p2 and supp eMT .

Proof. We only prove 1). The proof of 2) is similar. First look at the spectral
sequence of K

�;p2;�
M with the second ®ltration (i.e., the ®ltration given by q), then

E
p1;q
1 �K�;p2;�

M � � H q�GS;L
p1;p2

M �:
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Next for the di¨erential d1 induced on E1, with the same analysis as in computing the E2

terms of �K; d; d� (see §5, Proposition 5.3), we have

E
p1;q
2 �K�;p2;�

M � �

L
jT j�sÿp2

L
e: deg e�q
supp eMT

Z=MZ; if p1 � ÿs,

0; if p1 3ÿs.

8><>:
Furthermore, let �Q�;p2;�

M ; 0; 0� be the double complex generated by all symbols �0;T ; e�
satisfying jT j � sÿ p2 and supp eMT , which can be considered as a quotient complex of
K
�;p2;�
M . As in the proof of Theorem A, the quotient map induces an isomorphism between

cohomology groups. Let C 0T ; e be a cocycle in K
�;p2;�
M with image �0;T ; e� in Q

�;p2;�
M , then the

cocycle C 0T ; e is the sum of a leading term �0;T ; e� and a remainder contained in the direct
sum of K p 0

1
;p2;q

0
where q 0 < deg e and p 01 � q 0 � deg eÿ s. r

Proposition 6.2. The spectral sequence of the double complex �K�;�M ; d1 � d; d2�
with the ®rst ®ltration, degenerates at E1. The spectral sequence of the double complexÿ
K�;�M �J�; d1 � d; d2

�
with the ®rst ®ltration, degenerates at E1.

Proof. We only prove the ®rst part. The E1-terms of the spectral sequence are

E
p1�q;p2

1 �K�;�M � � H
p1�q
total �K�;p2;�

M ; d1; d�:

Note that jE p;q
1 jZ jE p;q

2 jZ � � � Z jE p;q
y j in general for any spectral sequence, then

L
p1�p2�q�n

H
p1�q
total �K�;p2;�

M ; d1; d�
�����

�����Z jH n
total�K�;�M ; d � d�j:

By Theorem 5.5 and Proposition 6.1, the left hand side and the right hand side of the above
inequality have the same number of elements, hence the inequality is actually an identity.
Therefore, the spectral sequence of K�;�M with ®ltration given by p1 � q degenerates at
E1. r

The advantage of studying the triple complex structure of the complex KM is that we
can obtain the �ÿp2�-cocycles of K

�;p2;�
M rather quickly. Recall that

�1ÿ si�Di � Ni �mod M�:

Now for the �ÿp2�-cocycles C 0T ; e, the pair �T ; e� must satisfy deg e � jT j and therefore
e � eT :� P

i AT

ei. In this case, for any i A T , we always have

o�i;T� � �ÿ1�o�eT �i � �ÿ1�o�eTnfig�i :

First

d�0;T ; e� � 0; d1�0;T ; eT � � ÿ
P
i AT

o�i;T�Ni

rTnfig
li

;Tnfig; eT

� �
;
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then

d
P
i AT

Di

rTnfig
li

;Tnfig; eTnfig
� �� �

� �ÿ1�jT jd1�0;T ; eT �:

Continue this procedure, we have

C 0T ; eT
� P

T 0LT

�ÿ1�jT 0 j�2jT jÿjT 0jÿ1�=2DT 0
P

i AT 0

rTnT 0
li

;TnT 0; eTnT 0
� �

:

Apparently, we see that if T A J, then the cocycles C 0T ; eT
are all contained in the

subcomplex K
�;p2;�
M �J�. Combining the above results, we have

Proposition 6.3. 1) The canonical basis fC 0T ; eT
: jT j � sÿ p2g of H�ÿp2��K�;p2;�

M � is

given by

C 0T ; eT
� P

T 0LT

�ÿ1�jT 0j�2jT jÿjT 0 jÿ1�=2DT 0
P

i AT 0

rTnT 0
li
;TnT 0; eTnT 0

� �
:

2) If we restrict our attention in the subcomplex K
�;p2;�
M �J�, then H�ÿp2�ÿK�;p2;�

M �J��
has a canonical basis fC 0T ; eT

: jT j � sÿ p2;T A Jg.

6.3. Proof of Theorem B. First we claim that

DT

P
i AT

1

li

� �
A H 0�GS;US=MUS� � �US=MUS�GS :

We prove it by induction on jT j. For T � f jg, it is easy to see that �1ÿ si�Dj
1

lj

� �
� 0 for

all i A S. Now in general, for any j A T ,

�1ÿ sj�DT

P
i AT

1

li

� �
� �Frj ÿ 1�DTnf jg

P
i ATnf jg

1

li

" #

which is 0 by induction, for j B T , it is obviously 0. Hence the claim holds.

Now we consider the double complex �K�;�M ; d1 � d; d2�. By Proposition 6.2, we know
that �K�;�M ; d1 � d; d2� degenerates at E1 for the ®rst ®ltration. By Proposition 6.3,
E
ÿp2;p2

1 �K�;�M � is generated by fC 0T ; eT
: jT j � sÿ p2g. We plan to lift C 0T ; eT

to a 0-cocycle in
K�;�M , which is guaranteed by the degeneration at E1. Moreover, we can study the lifting
C 0T ; eT

in K�;�M �T�. Therefore there exists a cocycle ~CT ; eT
in K�;�M �T� with the leading term

C 0T ; eT
and the remainder contained in the direct sum of K

p 0
1
;p 0

2
;q 0

M �T� where p 01 � p 02 � q 0 � 0
and p 02 > p2. Hence the image u� ~CT ; eT

� is exactly of the form

GDT

P
i AT

1

li

� �
�Re�T�;

where Re�T� is of the form
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Re�T� � P
ord�a�jrT

ord�a�3rT

na�a�:

Both u� ~CT ; eT
� and DT

P
i AT

1

li

� �
are 0-cocycles of US=MUS, and hence is Re�T�.

In order to prove Theorem B, it is su½cient to prove

Re�T� � linear combination of DT 0
P

i AT 0

1

li

� �
for T 0 T :��� Lj

We show ��� by induction on jT j. If jT j � 1, this is trivial. Now in general, without loss of
generality, we may assume that T � S and for any T 0Lj S, Re�T 0� is a linear combination

of DT 00

� P
i AT 00

1
li

�
for T 00Lj T 0. Then u� ~CT 0; e 0

T
� for any T 0Lj S is a linear combination of

DT 00

� P
i AT 00

1
li

�
with T 00LT . By Proposition 5.1, Proposition 6.2 and Theorem 5.5,

H 0
ÿ
GS;US�sÿ 1�=MUS�sÿ 1�� is generated by fu� ~CT 0; e 0

T
� : T 0Lj Sg and hence by

DT 0

� P
i AT 0

1
li

�
. But obviously Re�S� A US�sÿ 1�=MUS�sÿ 1�, so ��� holds for Re�s�.

Theorem B is proved.

Remark. One natural question to ask is if the bases of H 0�GS;US=MUS� obtained
in Theorem 5.5 and in Theorem B are the same. Unfortunately, they are not the same even
in the case jSj � 3. Right now, we don't know too much about the explicit expression of the
cocycles cT; e. A deep understanding of those cocycles might tell us more about the arith-
metic of the cyclotomic ®elds.

Appendix A. A resolution of the universal

ordinary distribution

By Greg W. Anderson at Minneapolis

A.1. Basic de®nitions

A.1.1. The universal ordinary distribution. Let A be a free abelian group equipped
with a basis f�x�g indexed by x A QX �0; 1�. For all x A Q put �x� :� �hxi�, where hxi is
the unique rational number in the interval �0; 1� congruent to x modulo 1. The universal

ordinary distribution U is de®ned to be the quotient of A by the subgroup generated by all
elements of the form

�x� ÿPf

i�1

x� i

f

� �
� f A Z>0; x A Q�:
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A.1.2. The universal ordinary distribution of level f. Fix a positive integer f. Let

A� f � be the subgroup of A generated by the set �x� jx A
1

f
Z

� �
. The universal ordinary

distribution U� f � of level f is de®ned to be the quotient of A� f � by the subgroup generated
by all elements of the form

�x� ÿPg
i�1

x� i

g

� �
�g A Z>0; gj f ; x A

g

f
Z�:

The inclusions A� f �HA induce a natural isomorphism limÿ! U� f � !@ U .

A.1.3. The ring L and its action on A. Let L be the polynomial ring over Z gen-
erated by a family fXpg of independent variables indexed by primes p, and for each positive
integer f, put

Xf :�QX ei
pi

A L; Yf :�Q�1ÿ Xpi
�ei A L

where f �Q
i

pei

i is the prime factorization of f. Each of the families fXf g and fYf g is a

basis for L as a free abelian group. We equip A with L-module structure by the rule

Xp�x� �
Pp
i�1

x� i

p

� �
for all primes p and x A Q. One has

U �A=

�P
p

YpA

�
:

This last observation suggests that we can usefully resolve U by a procedure of Koszul type.

A.2. The structure of A as a L-module

A.2.1. Partial fraction expansions. Each x A Q has a unique partial fraction expan-
sion

x � x0 �
P

p

P
i

xpi

pi

where p ranges over primes, i ranges over positive integers, x0 A Z, xpi A ZX �0; p�, and all
but ®nitely many of the coe½cients xpi vanish. For each nonnegative integer n, put

Rn :�
�

x A Q

����� There exist at most n primes

p such that xp1 � pÿ 1:

�
X �0; 1�

and let An be the subgroup of A generated by f�x� jx A Rng.
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Theorem 1. The following hold:

1. For all positive integers f and n, one has

An XA� f �LAnÿ1 XA� f � �P
pj f

XpA� f =p�;

where the sum is extended over primes p dividing f.

2. For each positive integer f, the family fXg�x�g indexed by the set

�g; x� A Z>0 �R0

��gj f ; x A
g

f
Z

� �
is a basis for A� f �.

3. For each positive integer f, the family fYg�x�g indexed by the set

�g; x� A Z>0 �R0

��gj f ; x A
g

f
Z

� �

is a basis for A� f �.

4. The family fXf �x�g indexed by pairs � f ; x� A Z>0 �R0 is a basis for A.

5. The family fYf �x�g indexed by pairs � f ; x� A Z>0 �R0 is a basis for A.

6. The free abelian group A is free as a L-module, and the family f�x�g indexed by

x A R0 is a L-basis for A.

Proof. 1. For each x A
1

f
ZX �RnnRnÿ1�, there exists some prime p dividing f such

that xp1 � pÿ 1, and one has

�x� � ÿ Ppÿ1

i�1

x� i

p

� �� �
� Xp�px�;

whence the result.

2. The family fXg�x�g generates A� f � by what we have already proved. The family
fXg�x�g is of cardinality

P
gj f

R0 X
g

f
Z

���� ���� �P
gj f
jÿZ=� f =g�Z��j �P

gj f
j�Z=gZ��j � f :

Therefore the family fXg�x�g is a basis for A� f �.

3.±6. These assertions follow trivially from what we have already proved. r
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Corollary 1. The following hold:

1. For each f A Z>0, the group U� f � is free abelian and the family f�x�g indexed by

x A
1

f
ZXR0 gives rise to a basis for U� f �.

2. The group U is free abelian and the family f�x�g indexed by x A R0 gives rise to a
basis for U.

3. The natural map U� f � ! U is a split monomorphism.

(Thus the classical results of Kubert [6] are recovered.)

Proof. Clear. r

A.3. Construction of resolutions

A.3.1. The complex �L; d�. Let L be a free abelian group equipped with a basis
f�x; g�g indexed by pairs �x; g� with x A QX �0; 1� and g a squarefree positive integer. For
all x A Q and squarefree integers g, put �x; g� :� �hxi; g�. For all x A Q and increasing
sequences p1 < � � � < pm of primes, we declare the symbol �x; p1 � � � pm� to be of degree ÿm
and we set

d�x; p1 � � � pm� :�
Pm
i�1

�ÿ1�iÿ1 �x; p1 � � � piÿ1pi�1 � � � pm� ÿ
Ppi

j�1

x� j

pi
; p1 � � � piÿ1pi�1 � � � pm

� � !
;

thereby equipping the group L with a grading and a di¨erential d of degree 1. The map
�x; 1� 7! �x� induces an isomorphism H 0�L; d�@!U .

A.3.2. The subcomplexes
ÿ
L� f �; d�. Fix a positive integer f. We de®ne L� f � to be

the graded subgroup spanned by the symbols of the form �x; g� where g divides f and

x A
g

f
Z. It is clear that L� f � is d-stable. The map �x; 1� 7! �x� induces an isomorphism

H 0
ÿ
L� f �; d�!@ U� f �.

A.3.3. The noncommutative ring ~L. Let ~L be the exterior algebra over L generated
by a family of symbols fXpg indexed by primes p. For each increasing sequence
p1 < � � � < pm of prime numbers, put

Xp1���pm
:� Xp1

5 � � � 5Xpm
A ~L;

and declare Xp1���pm
to be of degree ÿm, thereby de®ning a L-basis fXhg for ~L indexed by

squarefree positive integers h and equipping ~L with a L-linear grading. Let d be the unique

L-linear derivation of ~L of degree 1 such that

dXp � Yp
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for all primes p. One then has

dXp1���pm
�Pm

i�1

�ÿ1� iÿ1Ypi
Xp1���piÿ1pi�1���pm

for all increasing sequences p1 < � � � < pm of prime numbers.

A.3.4. The subcomplexes
ÿ

~L� f �; d�. Fix a positive integer f. The graded subgroup
~L� f � generated by all elements of the form YgXh where gh divides f is d-stable. It is not
di½cult to verify that the complex

ÿ
~L� f �; d� is acyclic in nonzero degree, and that

H 0
ÿ

~L� f �; d� is a free abelian group of rank 1 generated by the symbol X1 � 1.

A.3.5. The action of ~L on L. We equip L with graded left ~L-module structure by the
rules

Xp�x; p1 � � � pm� � �ÿ1�jfijpi<pgj�x; pp1 � � � pm� if p B fp1; . . . ; pmg,
0 if p A fp1; . . . ; pmg,

(

and

Xp�x; p1 � � � pm� �
Pp
i�1

x� i

p
; p1 � � � pm

� �

for all primes p and increasing sequences p1 < � � � < pm of primes. By a straightforward
calculation that we omit, one can verify that

d�xh� � �dx�h� �ÿ1�deg xx�dh�

for all homogeneous x A ~L and h A L.

Theorem 2. The following hold:

1. For each positive integer f, the complex
ÿ
L� f �; d� is acyclic in nonzero degree.

2. The complex �L; d� is acyclic in nonzero degree.

Proof. We have only to prove the ®rst statement. By Theorem 1 and a straightfor-
ward calculation that we omit, one has

L� f � � L
�x;g�

~L�g��x; 1�

where the direct sum is indexed by pairs �x; g� with x A
1

f
ZXR0 and g the largest positive

integer such that x A
g

f
Z. Each of the subcomplexes

ÿ
~L�g��x; 1�; d� is an isomorphic copy

of
ÿ

~L�g�; d�, and the latter we have already observed to be acyclic in nonzero degree. r
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A.3.6. Note on references. The construction of
ÿ
L� f �; d� presented here is cobbled

together from ideas presented in the author's papers [1] and [2], along with simpli®cations
suggested by many conversations with Pinaki Das and Yi Ouyang on these topics.
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