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Abstract. For any odd squarefree integer r, we obtain a complete description of the
G = Gal(@( )/ @) group cohomology of the universal ordinary distribution U, in this
paper. Moreover, for M a fixed integer dividing 7 — 1 for all prime factors 7 of r, we study
the cohomology group H*(G,, U,/MU,). In particular, we explain the construction of the
elements r,» for #'|r in Rubin [9], which come exactly from a certain Z/MZ-basis of the
cohomology group H°(G,, U,/MU,) through an evaluation map.

1. Introduction

Let {[a] : a € Q/Z} be a basis for a free abelian group A. Then the (dimension 1)
universal ordinary distribution U, of level r for any positive integer r is given by

. <[a} cac %Z/Z> |
<[a} ~ S [B] : |r prime,a e LiZ/z>

/b=a

For any ¢ € G, := Gal(Q(y,)/Q) and x € Z, if o({) = (* for all { € p,, set o([a]) = [xa]. By
this action, U, becomes a G,-module. The universal distribution is well known to be a free
abelian group, moreover, for any integer '|r, the natural map from U, to U, is a split
monomorphism and thus U, can be considered as a submodule of U,.

The theory of the universal distribution plays an important role in the theory of cy-
clotomic fields. Detailed information can be found in the well-known textbooks by Lang [8§]
and Washington [14]. Most notably, Kubert [6] and [7], and Sinnott [13] studied the {+1}-
cohomology of U,, from which Sinnott got his famous index formula about the cyclotomic
units and the Stickelberger ideal.

Recently, Anderson [2] found a brand new way to compute the {+1}-cohomology of
the universal distribution U,. He discovered a cochain complex which is a resolution of the
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universal distribution. To study a certain group cohomology of U,, one studies instead a
double complex related to this group cohomology. In this paper, we use Anderson’s reso-
lution to construct a double complex related to the G,-cohomology of U, and study the
spectral sequence of the double complex. Supposing that r is some fixed odd squarefree
integer, we prove the following theorem:

Theorem A (Abridged form). The cohomology group

H"(G,, U)=@H'""(G,2)

rr
where n,» = number of prime factors of v’ and

H(G,,Z) := () ker(H"(G,,Z) = H"(G,);, Z)),
/!

for G, viewed as a subgroup of G,. In particular, in the case n = 0, we have
H'(G,, Uy) = Z;
in the case n = 1, we have

HY G, U)=]]2/m.Z

r|r
where m, = ged{/ — 1 : /|r'}.
We shall discuss the Unabridged form in §5. What’s more, for any positive integer M

which is a common factor of / — 1 over all prime factors Z of r, let 6, be a generator of the
cyclic group G, and let

/=2
Drr = H Z kO'?,
/r" k=0

then

Theorem B. The image of the family

{D,/ : Vr’|r}

in U,/MU, is a 7/ MZ-basis for H*(G,, U,/ MU,).

y

/Irl

Theorem B has interesting applications in arithmetic. We follow the line given in
Rubin [9]. Let F = Q(u,,)" be the maximal real subfield of Q(u,, ), assume {/ : /|r} is a
family of distinct odd primes which split completely in F/Q and are =1 (mod M) for a
fixed integer M. Suppose that we have a G,-homomorphism & from U, to F(u,)”. Then &
induces a map
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H"(&): H"(Gy, Up/MUy) — H"(Gy, F(g)" /F(,) ™)

for each n € Z . In the case n = 0, since H*(G,, F(g,)* /F(p,)™) = F*/F*™, we have the
map

H°(&): H(G,, U,/ MU,) — F* /M.

In particular, let @2 be the abelian closure of @. Let e be an injective homomorphism from
Q/7 to Q*. Put

: . « : Ly ..
Then ¢ is a G,-homomorphism from U, to F(u,)”. The image H°(¢) (D,/ [Z Z]) is just
/|’
the Kolyvagin element x, as given in [9]. From this point of view, we can regard the Euler
system as a system in the cohomology group H°(G,, U,/MU,). This is the initial motiva-
tion for this paper.

This paper is organized in the following order. We give general notation in §2. In
§3, we study Anderson’s resolution in detail. In §4, a special G,-projective resolution P, of
Z is constructed and the group cohomology of Z and of Z/MZ are given. With this pro-
jective resolution P,, we construct a double complex in §5 whose total cohomology is the
G,-cohomology of U,. The standard spectral sequence method is then used to compute the
cohomology group H*(G,, U,). In §6, we study the lifting problem and prove Theorem B.
At the end of this paper, we include an appendix by Prof. Anderson on his resolution.

Acknowledgment. [ thank my advisor Professor Greg W. Anderson for introducing
me to this interesting field, for his insight and insistence driving me to write this paper. The
double complex method is the brain child of Professor Anderson. I also thank Dr. Hans Uli
Walther for some useful discussion about Lemma 5.2. This paper is part of my University
of Minnesota Ph.D thesis.

2. Notation

Fix a finite set S of cardinality |S| = s. Fix a family {/;: i € S} of distinct odd prime
numbers. Fix a positive integer M dividing /; — 1 for all i € S. Fix a total order w of S. Put

® r—=yrg:= H /[,
ieS
* Gg:= Gal(@(,ur)/@).
Foreachie S, put

® @; := the inertia subgroup of Ggs at ¢;,

® g; := a fixed generator of G;,
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/[—2 /[—2
o N, = Z O'lk, D; = Z kO’lk,
k=0 k=0
® Fr; := the arithmetic Frobenius automorphism at /; in Gs/G;.

For each subset T = S, put

d rr = H /iv Hp = Iurfa

ieT

* Gr:= HG[CGs,
ieT

e Np:= H N;, Dy := H D;.
ieT ieT

Put R := Z>[S]. For any element e = (¢;) € R, put

e dege:=)> ¢,
® suppe:={ieS:e + 0},

* w(e) := (w(e);) € R where w(e), = Y e;.

j<(0i
For any e, e’ € R, put w(e,e’) := 3 eje;.
j<lUl'

For a e Q/Z, the order of a (denoted by ord ¢) means its order in Q/Z. For any set X,
the cardinality of X is denoted by | X|, the free abelian group generated by X is denoted by
(X, and the free Z/M7Z-module generated by X is denoted by (X ),,. The family of all
subsets of X is denoted by 2%. We call a subfamily # of 2% an order ideal of X if for all
Y e #,2Y c #. For any pair of sets X and Y, the difference of X and Y is denoted by X\ Y.

For any complex C°, the complex C°®[n] is the complex with components
C"[n] = C™. For any complex C* of Z-modules, C}, := C* ® Z/MZ.

3. Universal ordinary distribution and its structure

3.1. Universal ordinary distribution and Anderson’s resolution. Let {[d] :a e Q/Z}
be a basis of a free abelian group A. Recall that by Kubert [6], the (rank 1) universal or-
dinary distribution U is given by

{la] :a e Q/Z) '
(= Splnen)

nb=a

U:

For any positive number f, the universal ordinary distribution of level f'is given by

- <[a] :ae}Z/Z>

<[a]— > (8] :p|f,aejé2/z>
pb=a
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For any o € Gal(Q(4,)/Q), set o([a]) = [xa] if ¢ sends each f-th root of unity to its x-th
power. By this action, Uy is a Gy = Gal(Q(y,)/Q)-module. Much has been studied about
the structures of U and Uy, we list some basic properties here (for detailed proof, see

1
Anderson [1], [2], Kubert [6], [7] and Washington [14]). First recall for any a € fZ /Z, a can

be written uniquely as

a= " modZ), 0<a,<p-1.
plfveN D’

Then
Proposition 3.1. 1) The universal ordinary distribution Uy is a free abelian group of

1
rank |Gy|, the set {[a] - a € ]—FZ/Z,apl +p — 1,Vp|f} is a Z-basis for Uy.

2) For any factor g of f, the natural map from U, to Uy is a split monomorphism.
Moreover, by these natural maps, U is the direct limit of Uy for f € N and thus U is free.

In the sequel, for our convenience, the universal distribution U, will be written as Ug
and U,, as Ur. Now let

Ly = <[a, T):ae L7/2,T S>
s
be the free abelian group generated by the symbols [a, T, and let
rr
Lt = <[a, T):|T|=-pae —72/7,T = S>,
r's

then L§ is a bounded graded module. Furthermore, for any ¢ € Gs, set ola, T'] = [xa, T| if o
sends each r-th root of unity to its x-th power. By this action, L§ becomes a Gg-module.
Let

ieT /ib=a

dla, T = > (i, T)([a, T\{i}] - > b, T\{i}]>
where

i, T) = (—n)VeTi<elll it je T,
’ 0, ifig¢T.

It is easy to check that d*> = 0 and d is Gs-equivariant. Thus (L§,d) is a cochain complex.
Note that the definition of d depends on w. We’ll write d,, instead if we need to emphasize
the order w. The following proposition is given by Anderson:

Proposition 3.2. The n-th cohomology of the complex (L%, d) is 0 for n % 0 and Us
for n =0, furthermore, the map from LY to Us is given by u: [a, 0] — [a].
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Remarks. 1. The above proposition (in a more general form suitable for a resolution
for the distribution Uy for general /'), though known by Anderson for quite a while, has no
published proof by now. We put the proof in Appendix A, traces of the idea behind the
proof can be found in Anderson [1], [2].

2. For the sake of this proposition, we call (L, d) Anderson’s resolution of the uni-
versal distribution Us. This resolution has been used by Das [5] in his work about the
algebraic I'-monomials and double coverings of cyclotomic fields.

3.2. Double complex structure of L§. A remarkable fact about Anderson’s resolu-
tion LY is that it possesses an even more delicate double complex structure, which in turn
gives a natural filtration for the universal distribution Us. We start with a more careful

look at L§, which we’ll denote by L* instead. For any 7' < S, we always regard L} as a
subcomplex of L°*. Moreover, for any order ideal ¢ of S, put

L.(f) = Z L;w and Us(j) = Z Ur.

Tey Tey

In particular, let #(n) be the order ideal consisting of all subsets 7" such that |7'| < n,
and let L*(n) =L*(#(n)) and Us(n) = Us(#(n)). Note that L*(27) =Lj. For any

ae %Z/Z, let
suppa := {i: /;jorda} = S.
We see that
L* = [a,T] : suppan T = 0.
Then L*(_¢#) is the free abelian group generated by
{la,T]: Tusuppae ¢, T nsuppa = 0},
and Ug( #) is the free abelian group generated by
{la] : suppa e #,as1 + /i —1forallie S}

Immediately we have

Proposition 3.3. Let ¢, and ¢, be two order ideals of S, then:

1) L*(71n 7)) =L (4)) nL*(f2), Us(J1 0 F5) = Us(J1) 0 Us(f2).

2) L*( 710 7,) =L(J1) + L*(73), Us(J1 v ) = Us(J1) + Us(F>).

Then

Proposition 3.4. The complex L*( ) is acyclic with the 0-cohomology Us( 7).

Proof. We let L*(_#) be the complex
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0— L) — - — L 7) = Us(#) — 0.

Hence it suffices to show that L*(_#) is exact. Let 7 be a maximal element in the order ideal
#. Let ¢’ be the order ideal whose maximal element set is the set of maximal elements of
J excluding T, then

7=yg"u2l.
By Proposition 3.3, we have
L*(#)/L*2T) = L*(#")/L* (4" n27).

Now we prove the proposition by induction on the cardinality of maximal elements of ¢. If
# has only one maximal element, this is just Proposition 3.2. In general, both ¢’ and
#' 27 have less maximal elements than ¢ has. Thus the exactness of L*(_#) follows from
the exactness of the three complexes L*(27), L*(#") and L*(#' n27). O

Now we can construct a double complex whose total single complex is (L®,d). With
abuse of notation, we’ll write it as L*°®. For any pair of subsets 7/, T of S such that
T' 2T, set

Lpr = a, T : suppa = S\T",
then L7/ 7 is isomorphic to Indgj, Z. Moreover, for any i € T, the map
¢ Lrr — Ly ny,  a, T]— [a, T\{i}]
defines a natural isomorphism between L7/ 7 and Lz 7\y;;. Now for any 7' < S,

L= @ L., where Thu (S\T1) <= T,T>n (S\T1) =0,
7.7

and iflet [(#) := {(T1,T2) : T, U (S\Th) € #, T>» 0 (S\T}) = 0}, then

L'(/)= & Lnn

(T1, T2) eT(f)
In general for any i € S, define
22 L7 — Lerlv [aa T} = XT(Z) [a’ T\{l}]

where y is the characteristic function of 7. Let ¢(L”) be the subgroup of L?*! generated
by ¢,(L?) for all i e S, inductively, let ¢"(L?) be the subgroup of L™ generated by
9;(p" ' (L?)) for all i € S. By this setup, there is a filtration of L? given by

(szrp(Lfs) c gosﬂ?fl(l;sdrl) c ... c L7,
This filtration enables us to define the double complex structure of L°®. For the element

[a, T e L*, we say [a, T] is of bidegree (py, p,) if [a, T] € pP>(LP)\p”> 1 (LP~1), more ex-
plicitly, if
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p1=suppal —s, p»=s—|suppa| —|T|.

Then we see that all elements of Ly 7 are of bidegree (—|7”|,|T’| — |T|). Let LP"?> be the
subgroup of L* generated by all symbols [a, T| with bidegree (p,, p,), then

= @ @ Lo
|T|==p1—p2 |T'|==p1
T'2T

Set

1
dl:Lp]’p2 _)Lp1+l7p2, [a7 T] = —Z(l)(i, T)Nl Fr:1a+ZaT\{l} )
ieT i

dy: L7102 — LPort [ T e i, TY(1 = FriYa, T\{i}],
ieT

It is easy to check that d12 = d22 = d\dy + drd; = 0. Hence we construct a double complex
(L**;d\,d,). Note that d = d; + d» and

_ 1,P2
L’= @ L'
p1+p2=p

thus (L°®, d) is the single total complex of the double complex (L**; d;, d>), with the second
filtration given by ¢. Thus the total cohomology of (L*°®;d;,d,) is the cohomology of
(L*,d).

Proposition 3.5. The E| term of the spectral sequence arising from the double complex
(L**;dy,da) by the first filtration (i.e., Hj'(L*"?)) is

Epl-pZ — { US(S_p2)/US(S—p2 - 1), lf‘pl = —pz’
1 0, otherwise.

Thus the spectral sequence for the first filtration degenerates at E).
Proof. Note that

L'(n)= @ L

P22s—n

then it is easy to see that L*”?[—p,] is nothing but the quotient complex
L*(s — p2)/L*(s — p» — 1). The short exact sequence

0—=Ls—ps—1) = L*(s = p2) = L"[=ps] = 0
induces a long exact sequence
RN Hi(L'(S —pz)) — Hi(L"pz[—pz]) N S a8 (L'(S — P2 — l)) — ..

By Proposition 3.4, for i # 0 and —1, both H'(L*(s — p»)) and H*' (L*(s — p, + 1)) are 0,
so is H'(L*?2[—p,]). Therefore the above long exact sequence is just the exact sequence
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0 — H ' (L*”[=pa]) = Us(s = p» — 1) = Us(s — p2) — H (L™"*[=p2]) — 0.

Since the map from Ug(s — p> — 1) to Us(s — p2) is injective, the proposition follows im-
mediately. [

Remark. It is an interesting problem to investigate the spectral sequence coming
from the second filtration of L*°.

Now tensoring L* with Z/M7Z, since L*® is a resolution of free abelian groups, by
Proposition 3.1, Proposition 3.2 and Proposition 3.4, we have

Proposition 3.6. 1) One has

Us/MUs, if n=0,

H%MH:{Q if n=+0.

2) Moreover, for any order ideal ¢ of S, one has

Us(#)/MUs(#), if n=0,

H%MAj»:{Q if n+0.

4. The cohomology groups H*(G7,7Z) and H* (Gr,Z/MZ7)
4.1. A projective resolution of Z. We first have a convention here: Let X be a finite

totally ordered set and x € X. Suppose that to every x € X we have a module A4, associated
to x. We call

Ay =44 ® - @Ay,

the standard tensor product of A, over X if X = {xj,...,x,} and x; < - - < x,,. Similarly,
we can define the standard tensor product of elements a, € A, and of complexes A43.

Let

(’}‘i‘ (%
/ py..._°>pl.0_>()

(Pia, 0): -+ =25 Py

with P; = Z[Gj] for any j = 0, d;; is the multiplication by 1 — g; if j is even and by N; if j is

odd. It is well known that P;, is a Z[G;]-projective resolution of the trivial module Z. For

any T < S, let Py, be the standard tensor product of P;, over i € T. It is well known by

homological algebra that Py, is a Z[Gr]-projective resolution of the trivial module Z. Now

for the collection {P; ,,: i € T}, the standard product of P; ., over T is a rank 1 free Z[G7]-

module whose grade is > e;. Now let e € R be the element whose i-th component is ¢; if
1

i € T and 0 if not, and write the standard product of P; ., over T as Z[Gr]le], then

PT. = @ Z[GT] [6] .

suppec T
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Forany x=(--- ® x; ® ---) € Z[Gr][e], the differential is given by

or(x) = L (=1 (- @ G (%) ® - --).

ieT
In particular, for T = S let

P, =Ps, = P Z[Gslle].

eeR

For any T’ < T, we have a natural inclusion : Z[Gr][e] — Z[G7][e] for any e € R such
that suppe = T'. By this inclusion, P/, becomes a subcomplex of Pr,.

Now we define a diagonal map ®7: Py, — Pre ® Pr,. First set
(Die;,ie,.’: Pi,e,-—}—e; - Pie,- ® Piel.’v

1®1, if e; even,
1 ® g, if ¢; odd, e/ even,
g ®a!’, if e; odd,e] odd.

i
0<m<n<(;—-2

11—

Then the map ®;: P;,, — P;, ® P;, given by Dy, e/ is the diagonal map for the cyclic group
G; (see Cartan-Eilenberg [4], p. 250-252). For any e, e’ € R with support contained in 7,
consider the standard product P, . of P, ® Pie,_/ over i € T. The isomorphism
o Pie,- ® Pje,’ - PjefPie,-;
J v
X®@y (—1D)"ly@x
induces an isomorphism o: P, .- — Z[Gr]le] ® Z|Gr][e'] by

(@) ) e (—1)“’<""9/)(-~~x[-~) ® (-+-yi--).

On the other hand, the standard product of the diagonal maps ®;, ;. over i € T defines a
map f: Z|Grlle + €'] — P, Welet @, = oo ff and let

Drpg= Z D .

e,e’:dege=p,dege’=q
suppe+e’' =T

Then ®7 defines the diagonal map from Py, to Pz, ® Pr,. This map enables us to com-
pute the cup product structures.

4.2. The cohomology groups H*(Gr,Z) and H* (Gr,Z/MZ). Let
C! = Homg, (P, Z),

then C; is the complex
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7 0 Z/ﬁlz 0 Z/,»—l.“

with the initial term at degree 0. We denote by Cl'-f the j-th term of C?. By the theory of
group cohomology,

H*(G;,Z) = H*(C}).
Now for any 7' < S, let C% be the standard tensor product of C} for i € T If write
Homg, (Z(Grlle], 2) = Z]e],
then

C.T = HOl’IlGT (PT., Z) = @ Z[e],
suppecs T’

and
H*(Gr,Z) = H*(C%).
Moreover, for any T’ < T, the inclusion z: Pz, — P7, induces a map
1": Cy — C%,
which is just the natural projection of

D Ze— D 7l

suppec T suppec T’

On the other hand, G can also be considered naturally as a quotient group of Gr, by this
meaning, the inflation map is just the injection

D Ze— D Zl

suppec T’ suppec T
Now for any j € Z>( even, let
' 00— CY—0--, if j =0,
C;j = . /i—1 .
-0 ¢/ ol 0---, ifj>0.

For any e = (¢;) € 2R, i.e., ¢; even for all i € S, we let C be the standard product C; over
ieS.If suppe < T, then C; is a subcomplex of C% and

= @ C.
ee2R
suppec T

Figure 1 shows us what the decomposition looks like in the case S = {1,2}. Denote by 4,
the cohomology group H*(C?) and A its n-th component. Then
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H*(G772> = @ A67 Hn(GTvz) = @ A:

ee2R ee2R
suppec T suppec T
Clo.g) Chy| |Cly
Clo.o Chyl  |Cly
Coor  Cho  Clo

Figure 1. The complex Cg when S = {1,2}.

We now study the abelian group A.. First we need a lemma from linear algebra:

Lemma 4.1. Let v = (my,my,...,m,)" be an n-dimensional column vector with inte-
ger entries m;, then the greatest common divisor of the m; is 1 if and only if there exists an
n x n matrix A € SL,(Z) whose first column is v.

Now suppose suppe = T = {i1,...,i,} and |T| = ¢. If t = 0, then T = 0, it is easy to
see that 4, = A? = Z. Now if T + 0, we claim that C}[dege — 7] is isomorphic to the ex-
terior algebra A(xy,...,x;) with differential d(x) = > (/; — 1)x; A x and degx; = 1. This
claim is easy to check: First if 1= 1, let T = {i}, then C} = C%~! @ C¢%. This case is
trivial. In general, if C?“[e; — 1] is isomorphic to A(x;), the tensor product of C:“[e; — 1] is
nothing but C’[dege — ¢] and the tensor product of A(x;) is just A(xy,...,x;), hence they
are isomorphic to each other.

Now let my be the greatest common divisor of /; — 1 for i € T, thus the greatest
common divisor of (¢/; — 1)/my is 1, let A be the matrix given by Lemma 4.1 corresponding
to the vector (...,(Z; —1)/mr,...). Let (yy,...,»,) = (x1,...,x)A4. Then {yy,..., y,} is
a set of new generators for the above exterior algebra and we have d(x) = mry; A x. We
see easily that

H*(A(x1, ..., %)) = (Z/mrZ)*"
and
HI(A(x1,....x)) = 2/mrz)(7), 0<j<i—1.
Combining the above analysis, we have
Proposition 4.2.  There exists a_family of complexes
{C: < C* = Homg,(P,,Z) : e € 2R}

such that:
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1) Foreach T = S, we can identify C = Homg, (Pr., Z) with @  C. through the
following splitting exact sequence: supp ZéT

0—- & C —-C —C,—0.
e€2R
suppedT

2) The cohomology groups H*(C.) = A, and H"(C) = A! are given by:

(a) If'suppe * 0, let m, be the greatest common divisor of £; — 1 for i € suppe, then A,

is the abelian group (Z /m.Z )Zsupqu , and

4" — { (Z/méz)(‘mppl‘ l), if n=dege—jand 0 <j < |suppe| — 1,
e

0, otherwise.

(b) If suppe =0, then A, = A? =

For the case H*(G,Z/M?Z7), the situation is much easier. We have

Proposition 4.3.  There exists a family

{le] e H*(Gs,Z/M?Z) : e € R}

with the following properties:

1) For each T < S and n € Z >, the restriction of the family

{le] : e € R,suppe = T,dege = n}

to H'(Gr,Z/M7Z) is a 7| M Z-basis of the latter.

2) For each T < S and ee R such that suppe £ T

, the restriction of [e] to
H*(Gr,Z]MZ) vanishes.

3) One has the cup product structure in H*(Gr,Z/MZ) given by

ule] =17 T (5 Jiere)

for all e,e’ € R.

Proof. The complex Cj},; = Homg, (P, Z/MZ) by definition, is a complex with
C{V[ ;= Z/MZ for j = 0 and the differential 0. In general, C), , = C7 ® Z/MZ is exactly
the standard tensor product of C3, ; for all i e T. Write

Cy; 7 = Homg,(Pr., Z/MZ) = Y. 7Z/MZ]e).
suppec T

Since now Cj, ; has differential 0, H*(Cj, ) =

Cis.7- The restriction map is easy to see.
This finishes the proof of 1) and 2).
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For the cup product, the diagonal map ®7 given above naturally induces a map:
CurxCyr—Cyr
which defines the cup product structure. More specifically, the cup product map
Z/MZle] x Z)/MZ[e') — Z/MZ]e + ¢'|
is induced from ®,,.. Now the claim follows quickly from the explicit expression of
G, . O
5. Study of H* (G, Ug)
5.1. The complex K. With the preparation in §3 and §4, set
K** := Homg, (P,,L*).

Let d and 0 be the differentials of K** induced by the differentials of d of L* and 0 by of P,
respectively. If we let

[a,T,e] := ([e] — [a, T]) € Homg,(Pe,<[a, T])),

then

kro = (o T.dsae "L 2/2.]T) = -pdege = q )
S

dla,T,e] = 3 (i, T) ([a, T\{i},el = > b, T\{i},é‘]);

ieT lib=a

dla, T, el = (DTS (=1)*@r.

(1 —0a)[a,T,e+¢], if e; even,
ieS

Nila, T,e + &, if ¢; odd.
Forany T < S, set
K**(T) = Homg (P, LY) = {[a, T',¢] : [a, T'| e L}, e € R)
and
K%* = Homg, (Pre,LY) =<[a,T',¢] : [a,T'] e L}, e € R,suppe < T).

Furthermore, for any order ideal ¢, set

K**(,#) := Homg, (P, L*( 7)) = TEXK”'(T),

and set
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K**(n) := Homg, (Ps,L*(n)).

Set

<[a,e} S %Z/Z,eeR>

)

U = HOII]GS(P., US) =

/,-b:a

<[a,e} — Y. [be]:ae f—;Z/Z,eeR>

with differential 6 induced by 0. Correspondingly,

1
<[a,e] :ae —Z/7 for some Te/,eeR>
rr

)

/,-b:a

U() = p
<[a,e] — > [be]:ae V—[Z/Z for some Tej,eeR>
T

which is a subcomplex of U®. We consider U* as the double complex (U**®;0,J) con-
centrated on the vertical axis. From Proposition 3.2, we have a map

L) CNC) [a7e}7 lfT:®7
wK** - U [q,T,¢— ,
0, if T =+0.

Proposition 5.1.  The map u (resp. its restriction) is a quasi-isomorphism between K**
(resp. K**(#)) and U** (resp. U**(#)). Therefore:

1) Hp(K™*) = H*(Gs, Us), Httnal(K.’.(f)) = H*(GSv US(j))
2) Hiyu(K57) = H*(Gs, Us/ MUs), Hiy (K3 (#)) = H*(Gs, Us(#)/MUs(.%)).

Proof. Immediately from Proposition 3.2 (resp. Proposition 3.4 for #), we see that
keru is d-acyclic, and hence by spectral sequence argument, it is (d + J)-acyclic. On the
other hand, u is surjective. Thus u is a quasi-isomorphism. Now 1) follows directly from the
quasi-isomorphism. For 2), just consider u & 1, which is also a quasi-isomorphism. []

From Proposition 5.1, the Gs-cohomology of Ug is isomorphic to the total coho-
mology of the double complex (K**;d,d). Therefore we can use the spectral sequence of
the double complex K** to study the Gg-cohomology of Us. The spectral sequence of K**
from the second filtration has given us Proposition 5.1. Now we study the spectral sequence
from the first filtration. Then

EP9(K™*) = HY(K"®) = HY(Gs, L).
Now since

1P = @ PP — @ @ LT’,Ty

pitp2=p |T|=—p T'2T
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then

EYK) = @ @ H(GsLr.r),
Tl=-pT'2T

Recall

L) ={(T,T2) : v (S\Th) € J, To~ (S\T}) = 0}

from §3. We have

EM(K™(f)= @ HYGs.Lr.r)
(T, T)el(#)

5.2. A Lemma. Suppose that for any 7 < S, there is an abelian group Br asso-
ciated to 7, and set

Ar= @ Brr.
T”gT

Then for any 7’ 2 T, there is a natural projection from A7 to A7. Now let %E’T be the
cochain complex with components given by

and differential d given by
d:Ar— @ A,
ieT'nT

ieT'nT

where x|T,\ ! is the projection of x in A7 ;. It is easy to verify that % ; is indeed a chain
complex. Furthermore, we have

Lemma 5.2. Forany T < S,

@ BT/v ljp n= 0:
H" (€5 r,d) = T'2T
0, otherwise.

Proof. Let ‘é:qj be the subcomplex of ¢ ;- with the same components as 6 ;- ex-
cept at degree 0, where

€sr= D Br.
T'2T

We only need to show that (g&,T is exact. We show it by double induction to the
cardinalities of S and 7. If T = (), we get a trivial complex. If S consists of only one ele-
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ment, or if T consists only one element, it is also trivial to verify. In general, suppose
ip =max{i:ie T}. Let So = S\{ip} and Ty = T\{ip}. Then we have the following com-
mutative diagram which is exact on the columns:

d ~ d

0 — %3, —— Gy — G5y, — 0 —— 0
I [ A
~0 d ~1 d Zt—1 d ot
0 (gS,T (gSA,T .“(gS.T (gS,,T 0
d d Zi—1 d ot
O —_— @ BT’ — AS(] — ...(gS[),TQ - (gS(),T() 0

S2T'2T)

Here p means projection and i means inclusion. The differential  is induced by the differ-
ential d of the second row. Notice that the third row is a variation of the chain complex
(5301 1,» the first row is the chain complex q%gy 1,- By induction, the first row and and the third
row are exact, so is the middle one. [

5.3. The study of E; terms. By §5.1, we know that

EP'K*) = @ @ H(Gs, Ly 7).
| Tl=—p T'2T

Now let’s c_onsigler tkle induced differentiall d of d in the E; term. Since d = d; + d», we can
also write d = d| + d». We first look at 5, which is induced by the map

Lri.7 — @ Ly, 13y,
ieT

[a, 7] = Y oo(i, T)(1 = Fri'la, T\{i}].

ieT

Since for any i € T', Ly 7 and Ly 1\y;y are Gs-isomorphic by the map ¢;, and since for any
g =0, H1(G, A) is a trivial G-module, we have

dy = S (i, T)(1 — Fr;H)g, = 0.

ieT
The map d; is induced by the map

Lr.r — @ Lrngiy, 14y
ieT

1
[a,T) — =Y (i, T)N; | Frila+—, T\{i}].
ier /i

For any i € T, consider the map
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Yi: L7 — Lrngy, 7\(iy

1
[a, T] — N; Fr;‘a+7,T\{i} .

The map y; is a Gs-homomorphism and therefore induces a map in Gs-cohomology:
H(;): H)(Gs, Ly,1) — H*(Gs, L\, 7\(i})-

We have the commutative diagram:

Vi
Ly 7 —— Lrngy, (i)

Jor [

Z res Z

where the top row are Gs-modules, the left Z is a trivial Gy-module, the right Z is a trivial

,T] to 1 and [ ad ,T] to 0
Vs\T/ Vs\T/
if x & 1. Then the above diagram induces the following commutative diagram:

Grn (;y-module, and 07/ is the homomorphism sending [

, W)
H4(Gs,Lp,7) — H4(Gs, Ly, 1\(1})

P?/ Jﬁ;/w}

res

Hq(GT/’Z) _— Hq(GT/\{i}7Z)
where 07, (and 07, () is the isomorphism given by Shapiro’s lemma (see Serre [11], Chap.
VII, §5, Exercise). We identify H4(Gs, Ly, 7) with HY(G7+, Z), moreover, to keep track of
T, we’ll write H(G71,Z) as H(Grr 7, Z). Then we see that H?(y;) is the restriction map

from HY(Gr/,r,2Z) to H!(Grngiy,1\(iy, Z). The induced differential d = d, is exactly the
map

Hq(GT’,Taz) - @ Hq(GT’\{i}A,T\{i}?Z%
ieT

x = =Y (i, T)x;
ieT

where x; is the restriction of x in HY(Grn (y,7\(i}y, Z). Hence we have a cochain complex
€(q;S,T)

d di
HY(Gs 1,2) — GaTHq(GS\{i},T\{i}v Z)---— HY(Gg\1,¢,Z) — 0.
1€

Note that the complex E}*?(K**) is just the direct sum of %(¢; S, T') over all subsets 7 of S.
Moreover, the complex E}?(K**)(#) is the direct sum of %(q;S,T) over all subsets

Te .
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Recall in Proposition 4.2, we obtained

HY(Gr,Z)= @ Al
e€2R
suppec T’

If let

Al =HYGr,7), BL= G?R A7,
sui)ge:T

then we have A% = @ B?,. The complex %(q;S,T)[—|T| satisfies the conditions in
T'cT
Lemma 5.2, thus the n-th cohomology of the cochain complex %(¢; S, T) is 0 if n + —|T|
and ) By if n = —|T|. We have the following proposition:
T'ST

Proposition 5.3.  One has:

) ESIK) = @ D AL

|[T|=—p e€2R
suppe2T
2) EYI(K(s)= @ D AL
|[T|=—p e€2R

Tey suppe=2T
5.4. Proof of Theorem A. Finally we are in a position to prove Theorem A. Put

S$** =<[a,T,e] eK**,a + 0if suppe 2 T.

It is easy to verify that S*° is a subcomplex of K** using the explicit formulas for d and ¢
given in §5.1. Set

Q** =K"*/S** =[0,T,e] : suppe 2 T).
Note that the differential of Q** induced by d is 0. Moreover, set
S** () = K" () 08",
and
Q™*(f) =K"*(7)/S"*(J) =<[0,T,e]: T € 7,suppe 2 T).

Let f be the corresponding quotient map, then we have a commutative diagram:

We make the following claim:
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Proposition 5.4. The quotient map [ K** — Q®%° is a quasi-isomorphism. Moreover,
the quotient map - K**(#) — Q%*(#) is a quasi-isomorphism.

Proof. Let
&7 :=<[0,T,e]:ee Ry =Homg,(P,,Ls 1) < K**
and let
L =<[0,T,e] :suppe2T), L7 :=<[0,T,e|:suppe< S\{i}, forsomeie T).

Through the map Ls r — Z, [0, T] — 1, we have a commutative diagram

g]ﬂ — g]/: ® g;/".
ee2R ieT,ee2R
suppe=>T suppec= S\{i}

where C* and C are given in Proposition 4.2. By this diagram, we identify %7 with C*. By
Proposition 4.2, we have

ker(H*(Gs, Z) — H*(Gs\ (), Z)) :H*< D C;).
ié)seu%)ise

Then by the proof of Proposition 5.3,

ker(67|Hq(g)7g)) = m ker(H*(GS)LS,T) - H*(GS7LS\{i}¢T\{i}))
ieT

=mH*( ® c;>=H*<m ® c:)

ieT _e€2R ieT ee2R
iesuppe iesuppe
. * L _ * le
=H"( @D C)=H(Z)
e€e2R
T csuppe

where the second and the last identifications are made using the isomorphisms given in the
commutative diagram above. Hence we have

EyYK**) = D kergm(:z;)): © HU(ZLr).

|T|=—p |T|==p

On the other hand,

Q= @

TS

Since d = 0 in Q*°, the spectral sequence of Q®** by the first filtration (i.e., by d) degen-
erates at £;. We have
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E{Q) < ELUQT) = @ HILY)

Since the projection map from %5 to %7 in the commutative diagram above is
nothing but the restriction of the quotient map f at £, by the above analysis, we get an
isomorphism

for ELIK™®) — E9(Q).
Thus the spectral sequence of K** and Q** are isomorphic at E, for » = 2. In our case, the
first filtration is finite, thus strongly convergent, therefore f is a quasi-isomorphism (see

Cartan-FEilenberg [4], page 322, Theorem 3.2).

The case ¢ is similar. In this case,

EYIK)(S) = @ kerldlyugy) = @ HIU(LT),
|;\§:¢p IT|==p

and

Q*(/)= & Zr.
Teyg

Now follow the same analysis as above. [

For any subset T of S, set

H;(Gs,Z) := () ker(H*(Gs,7) = H*(Gs\iy,2))
ieT

we see that
H*(Z7) = Hy(Gs, Z)
by the identification of #; and C®. The following theorem is the main result in the paper:

Theorem A (Unabridged form). 1) The cohomology group H*(Gs, Us) is given by

H*(Gs,Us) = @ Hr(Gs, Z)[|IT]|= D @D AT,
TS TS ee2RT
suppe=2

where A,[|T|] represents the cohomology group H*(C[|T|]).

2) The cohomology group H* (GS, US(/)) is given by

H*(Gs,Us(7)) = @ Hi(Gs, )T = @& @ A[TI].
Tes TefsuggggT



22 Ouyang, Group cohomology of universal distribution

Proof:  We only prove 1). The proof of 2) follows the same route. By Proposition 5.1
and Proposition 5.4, we know that

(GS7 US) tota] (K.) Htt)tal (Q.) :

Now

Hiy(Q*) = @ H"T(27).

TS
Part 1) follows immediately. []

Remarks. 1) We can see that part 1) is actually a special case of part 2) when the
order ideal ¢ is 25.

2) By Theorem A, in the case n = 0, we have
H'(Gs, Us) = 7;
in the case n = 1, we have

HY(Gs,Us) = [] Z/mrZ
TS

where my =ged(/; —1:ieT) as given in §4. It is likely the cohomology classes in

H'(Gs, Us) have a natural role to play in the Euler system method, but this role has not yet
been worked out in detail.

In the case Z/MZ, we have
Theorem 5.5. There exists a_family
{cr.. € H (G5, Us/MUs) : T < S,ee R,suppe 2 T}
with the following properties:
1) For each n € 7>, the subfamily
{ere: T = S,ee R, suppe 2 T,dege =n+|T|}
is a Z)/MZ-basis for H"(Gs, Us/MUs).

2) For any order ideal ¢ of S, let Us( ¢ Z Ur. By the inclusion Us( ) — Us,

H*(Gs, Us(#)/MUs(¥)) can be considered as a submodule of H*(Gs, Us/Ms). Further-
more, the subfamily

{¢r..:Te ¢,eec Rsuppe 2T}

is a Z/MZ basis for H*(Gs, Us(#)/MUs(7)).
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3) One has cup product structure

(i—1
loere= (0% T (D5 )ereee

foralle;e’ e Rand T < suppe.

Proof. 1) By Proposition 5.4, we have induced quasi-isomorphism:

f® LK) — Q).

Now since the induced differentials of d and J in QY are 0. Consider the cocycle [0, T, €]
in Qf;, there exists a cocycle Cr . (unique modulo boundary) which is the lifting of [0, 7', ¢]
by the quotient map f ® 1. Hence u(Cr,.) ® 1 is a cocycle in the complex Uj,. Let
cr,e denote the cohomology element in H*(Gs, Us/MUs) represented by the cocycle
u(Cr,) ®1. Then {cr,.:suppe 2T} is a canonical Z/MZ-basis for the cohomology
group H*(Gs, Us/MUs). This finishes the proof of 1).

2) Similar to 1), just consider the map f ® 1: K}/ (.#) — Q3 (#).

3) For the cup product, there is a natural homomorphism

Z/MZ@ US/MUS — US/MUS,

therefore H*(Gs,Us/MUs) (and also H*(Gs,Us(#)/MUs(#))) has a natural

H*(Gs,Z/MZ)-module structure. By the theory of spectral sequences (see, for example
Brown [3], Chap. 7, §5), we have the cochain cup product

Cy, ®K5 — K5/

By using the diagonal map ®g defined in §3, it is easy to check that:
Ci @S} =S,

hence we can pass the cup product structure to the quotient and have
Cir @ Q3 — Q3

Now 3) follows immediately from the explicit expression of ®g. This concludes the
proof. []

6. Explicit basis of H*(Gs, Us/MUy)

In §5, we obtained a canonical basis {ct . : supp 2 T'} for the cohomology group
H*(Gs, Us/MUs). However, little is known yet for the explicit expression of the cocycle
¢t in the complex Homg, (P., Us/ M Uy), which makes it necessary to study how to lift the
cocycle [0,7,e] in Qf to the cocycle Cr,. in Kj,'. Unfortunately, we are unable to
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get a complete answer for this problem in this paper. We obtain a partial solution in the
0-cocycles case, however, which is enough for us to prove Theorem B.

6.1. The triple complex structure of K. Recall from §3, L has a double complex
structure, therefore we can make K a triple complex. Set

KPP = Homg, (Pe, LPF?) =[a, T, e] : [a, T| € LP"F? dege = ¢)

with the differentials (d,, d»,0) given by

dila, T, e] = =3 (i, T)N; | Fr; a+* T\{i},e

ieT

dla,T,e] = Yo, T)(1 - Fr; '), T\{i}, e,

ieT

and J as given in the double complex K**. In this setup, we see that K(_#) becomes a triple
subcomplex of K, moreover

K(n): @ KPuP2nd,

D22s—n

Correspondingly, we define triple complex structures on Ky, K;/(#) and K,,(n). This tri-
ple complex structure enables us to construct different double complex structures in K and
K,,. By studying those double complexes, we can gather more information about K. This
method will be illustrated in the next subsection.

6.2. The double complex (K3/** dy,6). For fixed p,, let

K'P?' @Kpl qu

p1,q

with differentials d; and J, then we get a double complex (K3/>*;d;,d). Similarly, we can
get the double complex (K3, ;di +J,dy) whose (p, + ¢, p,)-component is @@ K579, As
before, for any #, we have double complexes K}/**(#) and @ K;7>%(#) which are
subcomplexes of K3/** and @ K4, 7> respectlvely First we have

Proposition 6.1. 1) H; . (K3/**;d1,0) is a free Z/MZ-module generated by cocycles
C’T . With leading term [0, T, e] and the remainder with q-degree less than dege over all pairs
(T,e) satisfying |T| = s — py and suppe 2 T.

2) Moreover, Hpy, (K3/>°(7);d1,0) is a free Z/MZ-module generated by cocycles
C’T . with leading term [0, T, e] and the remainder with g-degree less than dege over all pairs
(T,e) satisfying T € ¢, |T| =s — p, and suppe 2 T.

Proof:  We only prove 1). The proof of 2) is similar. First look at the spectral
sequence of K3/** with the second filtration (i.e., the filtration given by ¢), then

EPYI(KS/™) = HY(Gs, Li™).
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Next for the differential d; induced on Ej, with the same analysis as in computing the E,
terms of (K;d,0) (see §5, Proposition 5.3), we have

S O z/Mz, ifp=-—s

D1, q (37 ® D2, @\ |T|=s—p, e:dege=q
EZ (KM ) — suppe2T

0, if p1 + —s.

Furthermore, let (Q}7*°;0,0) be the double complex generated by all symbols [0, 7', ¢]
satisfying |7T'| = s — p» and suppe =2 7', which can be considered as a quotient complex of
K3/7%°. As in the proof of Theorem A, the quotient map induces an isomorphism between
cohomology groups. Let C7., be a cocycle in K}/** with image [0, 7', ] in Q}/*°, then the
cocycle Cr , is the sum of a leading term [0, 7', ¢] and a remainder contained in the direct
sum of K714 where ¢’ < dege and p| + ¢’ = dege —s. [

Proposition 6.2. The spectral sequence of the double complex (K3 ;di +9,d)
with the first filtration, degenerates at E\. The spectral sequence of the double complex
(K5, (#);dy + 6, d>) with the first filtration, degenerates at Ej.

Proof.  We only prove the first part. The E}-terms of the spectral sequence are

E{;1+q"pz(K;1;1.) — H[’lH](K;‘;Ipzﬂ;dl’&).

total

Note that |[E]"?| > |E}?| = --- = |EZY| in general for any spectral sequence, then

@ le+q(K;‘}[p2’.;d1,5) 2 |Hn

total total (KFI;[.? d+ 5) |

p1+p2tq=n
By Theorem 5.5 and Proposition 6.1, the left hand side and the right hand side of the above
inequality have the same number of elements, hence the inequality is actually an identity.
Therefore, the spectral sequence of K}, with filtration given by p; + ¢ degenerates at
E.. O

The advantage of studying the triple complex structure of the complex K;, is that we
.sPZy.

can obtain the (—p)-cocycles of Kj/*® rather quickly. Recall that
(1 — O'j)D,‘ = N,‘ (mod M)
Now for the (—p2)-cocycles C ,, the pair (7',e) must satisfy dege = |T'| and therefore
e =er:= Y ¢&. In this case, for any i € T, we always have
ieT

w(i,T) = (_1)w(67)[ — (_1)“’(‘7‘\(/})1'.

First

5[07 Tu 6} = Oa dl [07 T: eT] == Zw(lv T)Nl |:rT/\t{i} ) T\{l})eT:| )

ieT
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then

3(Z 01T Ve \ () = (-0 "0, T e

ieT

Continue this procedure, we have

T'esT ieT’ /i

CL, = 3 (~)TIer-rn2p, [Z T\ T\T',enp
er ) ) .
Apparently, we see that if 7 € #, then the cocycles C;., are all contained in the

subcomplex K3/**(_#). Combining the above results, we have

Proposition 6.3. 1) The canonical basis {C}., :|T|=s—p2} of HPI(K}/>*) is
given by

C} _ Z (_1>\T/‘(2\T\—\T’|_l)/2DT/ Z rT\/T/,T\T/,eT\T/ .
T g et
2) If we restrict our attention in the subcomplex K3/**( %), then H=P) (K3/**( 7))
has a canonical basis {Cy ,, : |T| =s—p2, T € 7}

6.3. Proof of Theorem B. First we claim that

1
Dr[ 52 1 e (. U/ MUS) = (U5 1109
ierti
. . . . 1
We prove it by induction on |T'|. For T = {;}, it is easy to see that (1 — g;)D; {7} =0 for
J
all i € S. Now in general, for any j e T,

ieT ieT\{j}“i
which is 0 by induction, for j ¢ T, it is obviously 0. Hence the claim holds.

Now we consider the double complex (K3}, d; +J,d>). By Proposition 6.2, we know
that (K;V;,dl +0,dy) degenerates at E; for the first filtration. By Proposition 6.3,
El_p2 P*(K3/ ) is generated by {C7., :|T| = s — py}. We plan to lift C7., to a 0-cocycle in
K3, which is guaranteed by the degeneratlon at Ey. Moreover, we can study the lifting
C}., in K/ (T). Therefore there exists a cocycle Cr.., in K},,'(T) with the leading term

Cr.., and the remainder contained in the direct sum of Kp R ( T) where pi +p5 +¢' =0
and p5 > p,. Hence the image u(CT or) is exactly of the form

iDT[z}] T Re(T),

ieTti

where Re(7) is of the form
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Re(T)= > n4la].
ord(a)|rr
ord(a) #rr

Both u(Cr.,) and Dy [Z ;] are 0-cocycles of Ug/MUs, and hence is Re(T).
ierti

In order to prove Theorem B, it is sufficient to prove

. o 1
(%) Re(T) = linear combination of Dy [ > —} forT' < T.
ieT'ti
We show (x) by induction on |T|. If |T'| = 1, this is trivial. Now in general, without loss of
generality, we may assume that 7= S and for any 7’ < S, Re(7"”) is a linear combination

of DT//[ > /i] for 7" < T'. Then u(éT’,e’T) for any 7’ < S is a linear combination of

ieT” "’

Dyr| > +| with T” = T. By Proposition 5.1, Proposition 6.2 and Theorem 5.5,
ieT" '

H(Gs,Us(s —1)/MUs(s — 1)) is generated by {u(Cr..): T’ < S} and hence by
Dri| Y }} But obviously Re(S) e Us(s—1)/MUs(s—1), so (x) holds for Re(s).

i

ieT
Theorem B is proved.

Remark. One natural question to ask is if the bases of H%(Gg, Us/MUs) obtained
in Theorem 5.5 and in Theorem B are the same. Unfortunately, they are not the same even
in the case |S| = 3. Right now, we don’t know too much about the explicit expression of the
cocycles ct,.. A deep understanding of those cocycles might tell us more about the arith-
metic of the cyclotomic fields.

Appendix A. A resolution of the universal
ordinary distribution

By Greg W. Anderson at Minneapolis

A.1. Basic definitions

A.1.1. The universal ordinary distribution. Let .o/ be a free abelian group equipped
with a basis {[x]} indexed by x e @ n[0,1). For all x € @ put [x] := [{x)], where {x) is
the unique rational number in the interval [0, 1) congruent to x modulo 1. The universal
ordinary distribution U is defined to be the quotient of .«7 by the subgroup generated by all
elements of the form

M_ér;i

i=1

:| (f€Z>0,X€@).
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A.1.2. The universal ordinary distribution of level . Fix a positive integer f. Let

</(f) be the subgroup of .o/ generated by the set {[x] |x € %Z} The universal ordinary

distribution U(f") of level fis defined to be the quotient of .oZ( f') by the subgroup generated
by all elements of the form

[x] -

g [x+i
=1

J } (geZ>o,g\f,xe;Z)-

The inclusions .<Z(f) = .« induce a natural isomorphism lim U(f) — U.

A.1.3. The ring A and its action on .«/. Let A be the polynomial ring over Z gen-
erated by a family {X,} of independent variables indexed by primes p, and for each positive
integer f, put

Xy = HX;’EA, Y= [](1 —Xpi)eiel\
where /=[] p/" is the prime factorization of f. Each of the families {X;} and {Y;} is a

basis for A as a free abelian group. We equip .7 with A-module structure by the rule

-

1

for all primes p and x € Q. One has
U=/ <Z Yp&i>.
p
This last observation suggests that we can usefully resolve U by a procedure of Koszul type.

A.2. The structure of .oZ as a A-module

A.2.1. Partial fraction expansions. Each x € Q@ has a unique partial fraction expan-
sion

x=x+ XY %
P i P

where p ranges over primes, i ranges over positive integers, xo € Z, x,; € Z N [0, p), and all
but finitely many of the coefficients x,; vanish. For each nonnegative integer n, put

There exist at most n primes

R, =
" {XEQ p such that x,; =p — 1.

b

and let <7, be the subgroup of .«/ generated by {[x]|x € %#,}.
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Theorem 1. The following hold:

1. For all positive integers [ and n, one has

A A(f) S Awr 0 A (f) + %Xp&f(f/p),

where the sum is extended over primes p dividing f.

2. For each positive integer f, the family {X,[x]} indexed by the set

{(gax) €/ Xﬁo}ng,erg(Z}

is a basis for </ (f).

3. For each positive integer f, the family {Y,[x]} indexed by the set

{(g,x) € Z+y X %0}g|f,xe;2}

is a basis for </ (f).
4. The family {Xr[x|} indexed by pairs (f,x) € Z~o x Ry is a basis for <.
5. The family { Yy[x|} indexed by pairs (f,x) € Z~o X Ry is a basis for o/ .

6. The free abelian group </ is free as a A-module, and the family {[x|} indexed by
x € Ry is a A-basis for of.

1 : . C
Proof. 1. For each x € j;Z N (#,\Z%,-1), there exists some prime p dividing f such

that x,; = p — 1, and one has
p—1 i
o =—(E [x+1]) + xolosl
i=1 V4

2. The family {X,[x]} generates .«/(f) by what we have already proved. The family
{X,[x]} is of cardinality

whence the result.

2

glf

o Jiz\ = SN2/ /9)2)"| = S(Z/92)"| = 1.
glf glf

Therefore the family {X,[x]} is a basis for .27 (f).

3.—6. These assertions follow trivially from what we have already proved. []
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Corollary 1. The following hold:

1. For each f € Z~y, the group U(f) is free abelian and the family {[x|} indexed by
X€ }Z N Ry gives rise to a basis for U(f).

2. The group U is free abelian and the family {[x]} indexed by x € R gives rise to a
basis for U.

3. The natural map U(f) — U is a split monomorphism.
(Thus the classical results of Kubert [6] are recovered.)

Proof. Clear. []

A.3. Construction of resolutions

A.3.1. The complex (L,d). Let L be a free abelian group equipped with a basis
{[x,g]} indexed by pairs (x,g) with xe @ " [0, 1) and g a squarefree positive integer. For
all x e @ and squarefree integers g, put [x,g] := [(x),g]. For all xe Q@ and increasing
sequences p; < - -+ < py,, of primes, we declare the symbol [x, p; - - - pn] to be of degree —m
and we set

i Pilx+j
dlx, py - pal = (=1 ([Xapl TP Pl = ) p‘]
j= 1

yP1 - Di—1Pi+1 " 'Pm] ) )

thereby equipping the group L with a grading and a differential d of degree 1. The map
[x,1] — [x] induces an isomorphism H°(L,d) ~, U.

A.3.2. The subcomplexes (L( f), d). Fix a positive integer /. We define L(f') to be
the graded subgroup spanned by the symbols of the form [x,g] where g divides f and

xe 7. 1t is clear that L(f) is d-stable. The map [x, 1] — [x] induces an isomorphism
H°(L(f),d) = U(f).

A.3.3. The noncommutative ring A. Let A be the exterior algebra over A generated
by a family of symbols {Z,} indexed by primes p. For each increasing sequence
p1 < -+ < pm of prime numbers, put

Eppm =8 A o0 AE, €A,

and declare E,, .., to be of degree —m, thereby defining a A-basis {Z,} for A indexed by
squarefree positive integers 2 and equipping A with a A-linear grading. Let d be the unique
A-linear derivation of A of degree 1 such that

d=, = Y,
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for all primes p. One then has

m

= _ i-ly =

dZp,.p, = 2 (1) YpBpipipiispn
i=1

for all increasing sequences p; < --- < p,, of prime numbers.

_ A.3.4. The subcomplexes (1~\( f), d). Fix a positive integer f. The graded subgroup
A(f) generated by all elements of the form Y =, where gh divides f'is d-stable. It is not
difficult to verify that the complex (A( f ),d) is acyclic in nonzero degree, and that
H° (A( 1), d) is a free abelian group of rank 1 generated by the symbol &; = 1.

A.3.5. The action of A on L. We equip L with graded left A-module structure by the
rules

(=)= ooy op] i pé{prs.. s Pty

cien -] .
0 ifpe{p, ..., omh

and

Pix+1i
Xp[xapl o Pm] = Z[ »P1-- 'Pm]

for all primes p and increasing sequences p; < - -- < p,, of primes. By a straightforward
calculation that we omit, one can verify that

d(&n) = (d&)n + (—1)*E(dn)
for all homogeneous ¢ € A and 5 € L.
Theorem 2. The following hold:
1. For each positive integer f, the complex (L( 1), d) is acyclic in nonzero degree.
2. The complex (L,d) is acyclic in nonzero degree.

Proof. We have only to prove the first statement. By Theorem 1 and a straightfor-
ward calculation that we omit, one has

L(f) = (69) Alg)lx. 1]

where the direct sum is indexed by pairs (x, g) with x € —Z n %, and ¢ the largest positive
integer such that x € ?Z. Each of the subcomplexes ([\(g)[x, 1],d) is an isomorphic copy

of (A(g), d), and the latter we have already observed to be acyclic in nonzero degree. []
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A.3.6. Note on references. The construction of (L( 1), d) presented here is cobbled
together from ideas presented in the author’s papers [1] and [2], along with simplifications
suggested by many conversations with Pinaki Das and Yi Ouyang on these topics.
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