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Abstract The Dieudonné–Manin classification theorem on ϕ-modules (ϕ-isocrystals) over a perfect

field plays a very important role in p-adic Hodge theory. In this note, in a more general setting we give

a new proof of this result, and in the course of the proof, we also give an explicit construction of the

Harder–Narasimhan filtration of a ϕ-module.
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1 Statement of Dieudonné–Manin Classification Theorem

Let k be a perfect field of characteristic p > 0. The classical Dieudonné–Manin classification
theorem (cf. [1]) provides a slope decomposition of a ϕ-module over the field W (k)[ 1p ], which
is loosely analogous to the eigenspace decomposition of a vector space equipped with a linear
transformation. For more information on ϕ-module, see [2]. In particular for the geometric
background, see [3] and [4]. In this note, in a more general setting we give a new proof of
this result, and in the course of the proof, we also give an explicit construction of the Harder–
Narasimhan filtration of a ϕ-module. This is without the huge machinery of commutative
formal groups in the original proof.

Let p be a prime number. For q = pf , let Fq be the unique finite field of q elements and
Zq = W (Fq). Suppose that k is a perfect field of characteristic p containing Fq. Suppose that
E is a complete discrete valuation field of mixed characteristic, OE the ring of integers of E,
mE the maximal ideal of OE , π a uniformizing parameter of mK , and kE = OE/mE = Fq the
residue field of OE . Recall that

WOE
(k) = OE ⊗Zq

W (k)

is the strict OE-ring over k, i.e., WOE
(k) is a commutative ring together with an injective

homomorphism of rings ι : OE → WOE
(k), such that it is complete and separated by the π-adic
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topology and that WOE
(k)/πWOE

(k) ∼= k. Set

K0 = WOE
(k)

[
1
π

]
⊃ WOE

= WOE
(k).

Note that if q = p, OE = Zp and π = p, then WOE
is the usual ring of Witt vectors of k. The

Frobenius substitution σ : k → k, λ �→ λq extends by functoriality to WOE
(k) and K0, which

we still denote by σ.

Definition 1.1 A ϕ-module D over K0 is a finite-dimensional K0-vector space equipped with
a bijective σ-semi-linear map ϕ.

Assume D is a ϕ-module over K0 of dimension r. Suppose that {e1, . . . , er} is a basis of
D over K0, then ϕ(ei) =

∑r
j=1 aijej . The matrix of ϕ under this basis is A = (aij)1≤i,j≤r ∈

GLr(K0). Suppose {e′1, . . . , e′r} is another basis and A′ the matrix of ϕ under this basis,
suppose the transformation matrix of these two bases is P , then A = σ(P )A′P−1. Thus
tN (D) = vπ(detA) is a well-defined integer independent of the choice of basis.

Definition 1.2 The slope of a ϕ-module D �= 0 of K0 is defined to be μ(D) = tN (D)
dimK0 D .

A ϕ-module D is called pure of slope μ (or isoclinic) if there exists a WOE
-lattice M of D

such that π−dϕh(M) = M where μ = d
h , d, h ∈ Z and h ≥ 1.

Remark 1.3 (i) A ϕ-module pure of slope 0 is nothing but an étale ϕ-module over K0 (see [2]).
(ii) Suppose D = K0e1 ⊕ · · · ⊕K0en, ϕ(ei) = ei+1 for 1 ≤ i ≤ n− 1 and ϕ(en) = pe1. Then

D is pure of slope 1
n .

The aim of this note is to give a simple proof of the following theorem of Dieudonné–Manin
which classifies all ϕ-modules.

Theorem 1.4 (Dieudonné–Manin [1]) For a ϕ-module D over K0, then

D =
⊕
μ∈Q

Dμ,

where Dμ is the part of D pure of slope μ and Dμ = 0 for all but finitely many μ. Hence
μ dimK0 Dμ ∈ Z and

tN (D) =
∑
μ∈Q

μ dimK0 Dμ.

Remark 1.5 By Fontaine’s theory of mod-p representations (cf. [2, Chapter 2]), if k is
algebraically closed and if D is pure of slope μ = d

h with d, h ∈ Z, h ≥ 1, then D ∼= K0 ⊗Q
ph

Dϕh=pd .

2 Proof of the Classification Theorem

Suppose D is a ϕ-module. For h, d ∈ Z and h ≥ 1, we write ϕh,d = π−dϕh. Then ϕh,d is
bijective in D. Let M be a WOE

-lattice of D, we set Mh,d =
⋂

n≥0 ϕ−n
h,d(M) and Dμ = Mh,d[ 1

π ]
where μ = d/h ∈ Q. Clearly by definition Mh,d is a sub-WOE

-module of M stable under ϕh,d.

Proposition 2.1 Suppose D is a ϕ-module over K0, μ = d
h ∈ Q. Then,

(1) Dμ is independent of the choices of the lattice M and the pair (h, d).
(2) x ∈ Dμ if and only if the WOE

-module WOE
[x, ϕh,d(x), . . . , ϕn

h,d(x), . . .] is a finite WOE
-

module, in particular Dμ is a ϕ-submodule of D.
(3) {Dμ}μ∈Q forms a decreasing filtration of D which is separate and exhaustive, in other

words,
(i) if μ ≤ μ′, then Dμ ⊃ Dμ′

;
(ii) Dμ = D for μ � 0 and Dμ = 0 for μ 
 0.
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Proof (1) Suppose M ′ = TM is another lattice of D where T ∈ GL(D). We choose k ∈ N

such that TM ⊃ πkM . For x ∈ Mh,d[ 1
π ], suppose πax ∈ Mh,d. Then ϕn

h,d(π
ax) ∈ M for all

n ∈ N and ϕn
h,d(π

a+kx) ∈ πkM ⊂ M ′ for all n ∈ N, thus πa+kx ∈ M ′
h,d and x ∈ M ′

h,d[
1
π ]. This

proves the independence of M .
Now for (h′, d′) = (kh, kd), we let M ′ =

⋂
0≤j≤k−1 ϕj

h,d(M). Then M ′ is a lattice in D and
M ′

kh,kd = Mh,d. Thus Mkh,kd[ 1
π ] = M ′

kh,kd[
1
π ] = Mh,d[ 1

π ]. This proves the independence of the
pair (h, d).

(2) Let μ = d
h . Suppose M is a lattice in D. Then x ∈ Dμ means that there exists k ∈ N,

πkx ∈ Mh,d, or equivalently ϕn
h,d(π

kx) ∈ M for n ∈ N, so WOE
[x, ϕh,d(x), . . . , ϕn

h,d(x), . . .] ⊃
π−kM is a finite WOE

-module. Conversely, if the WOE
-module WOE

[x, ϕh,d(x), . . . , ϕn
h,d(x), . . .]

is a finite WOE
-module, we extend it to a WOE

-lattice M of D, then x ∈ Mh,d ⊂ Dμ.
(3) If d < d′, then by definition Mh,d ⊃ Mh,d′ , this proves (i). Suppose πd2M ⊂ ϕ(M) ⊂

πd1M , then for d > d2, M1,d = 0 and for d < d1, M1,d = M , this proves (ii). �
Remark 2.2 Suppose D = Da,b = K0e1 ⊕K0e2, ϕ(e1) = e2 and ϕ(e2) = ae1 + be2, a natural
question is to compute Dμ

a,b for μ ∈ Q. At present we do not know the answer.

Lemma 2.3 Suppose 0 → D1 → D → D2 → 0 is a short exact sequence of ϕ-modules. Then
(1) the sequence 0 → Dμ

1 → Dμ → Dμ
2 is exact ;

(2) if moreover D1=Dμ0 for some μ0, then 0 → Dμ
1 → Dμ → Dμ

2 → 0 is exact.

Proof (1) follows easily from Proposition 2.1 (2).
(2) The case μ > μ0 follows from the case μ = μ0. So we need only to prove the exactness in

the case μ ≤ μ0. We first show the case μ = μ0, which is equivalent to the claim (D/Dμ0)μ0=0.
We assume D = Dλ, μ0 = d0

h and λ = d
h .

We claim there exists a WOE
-lattice M in D such that M is stable under ϕh,d and M ∩Dμ0

is stable under ϕh,d0 . To see this, we first find a WOE
-lattice L in D which is stable under ϕh,d,

then the image of L in D/Dμ0 is a WOE
-lattice. Suppose it is generated by ē1, ē2, . . . , ēr. For

each i, take a preimage of ēi in L, denoted by ei. Choose a WOE
-lattice L0 in Dμ0 which is stable

under ϕh,d0 . Then there exists N ∈ N, such that L ∩ Dμ0 ⊆ π−NL0. Take er+1, er+2, . . . , en

as a basis of π−NL0. (Note that π−NL0 is still stable under ϕh,d0 .) Then the lattice M

generated by e1, e2, . . . , en is what we need. That is because ϕh,d(ei) ∈ L ⊆ M when i ≤ r, and
ϕh,d(ei) = πd0−dϕh,d0(ei) ∈ π−NL0 ⊆ M when i ≥ r + 1.

If (D/Dμ0)μ0 �= 0, then there exists x ∈ D, x /∈ Dμ0 , ϕn
h,d0

(x) ∈ M + Dμ0 for any n.
For n ≥ 1, let kn be the smallest integer such that ϕn

h,d0
(x) = xn + π−knyn where xn ∈ M ,

yn ∈ M ∩ Dμ0 (if ϕn
h,d0

(x) ∈ M , let kn = 0). In fact, kn is also the smallest integer such that
ϕn

h,d0
(x) ∈ π−knM .

We have ϕh,d0(xn + π−knyn) = xn+1 + π−kn+1yn+1 = ϕh,d0(xn) + π−knzn, where zn ∈
M ∩ Dμ0 . Since ϕh,d0(M) ⊆ π−(d0−d)M , it is easy to see kn+1 ≤ max(kn, d0 − d). Take
N = max(k1, d0 − d), then kn ≤ N is bounded. This implies that πNx ∈ ⋂

n≥0 ϕ−n
h,d0

(M).
Hence πNx and x ∈ Dμ0 , a contradiction. Thus we have shown (D/Dμ0)μ0=0.

Now for the case μ < μ0, if Dμ = D, then by (1), D/Dμ0 ⊇ (D/Dμ0)μ ⊇ Dμ/(Dμ0)μ =
D/Dμ0 , so all must be equal. In the general case, the exact sequence

0 → Dμ/Dμ0 → D/Dμ0 → D/Dμ → 0,

and the fact (D/Dμ)μ = 0 implies that (Dμ/Dμ0)μ = (D/Dμ0)μ. Together with (Dμ/Dμ0)μ =
Dμ/Dμ0 , we get (D/Dμ0)μ = Dμ/Dμ0 . �

For any μ ∈ Q, we let D>μ be the union of all Dμ′
for μ′ > μ and D<μ be the intersection

of all Dμ′
for μ′ < μ.
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Lemma 2.4 (1) For any μ, there exists μ′ < μ, Dμ′
= Dμ. In particular, the filtration {Dμ}

is left continuous, i.e., D<μ = Dμ.
(2) For μ = d

h and dimK0D
μ=l, if Dμ = D>μ, then Dμ′

= Dμ where μ′ = ld+1
lh .

Proof (1) By Lemma 2.3 (2), we can replace D by D/Dμ and assume Dμ = 0. Let μ = d
h .

Take a lattice M in D, then
⋂∞

i=0 ϕ−i
h,d(M) = 0, and there exists k such that

⋂k
i=0 ϕ−i

h,d(M)

⊆ π2M . One can show easily that
⋂Nk

i=0 ϕ−i
h,d(M) ⊆ π2NM for N ≥ 1 by induction.

Let L be the lattice
⋂k

i=0 ϕ−i
h,d(M). Then ϕ−j

kh,kd(L) =
⋂k(j+1)

i=kj ϕ−i
h,d(M) and

j⋂
i=0

ϕ−i
kh,kd(L) =

k(j+1)⋂
i=0

ϕ−i
h,d(M) ⊆ π2(j+1)M.

So we have
j⋂

i=0

ϕ−i
kh,kd−1(L) =

j⋂
i=0

π−iϕ−i
kh,kd(L) ⊆

j⋂
i=0

π−jϕ−i
kh,kd(L) ⊆ πjM.

As a consequence
⋂∞

i=0 ϕ−i
kh,kd−1(L) = 0, which implies that Dμ′

= 0 for μ′ = kd−1
kh .

(2) By Lemma 2.3 (1), we can replace D by D ∩ Dμ and assume D = Dμ. The fact
D>μ = D implies that there exists α ∈ N, D

αd+1
αh = D. Therefore we have a lattice M which

is stable under ϕαh,αd+1, and consequently stable under ϕαh,αd. It is easy to see ϕn
αh,αd(M) =

ϕn
αh,αd+1(π

nM) → 0 as n → ∞. Therefore for any lattice L stable under ϕh,d, ϕn
h,d(L) → 0 as

n → ∞; in particular, ϕn
h,d(L) ⊂ πL when n is sufficiently large.

If L is stable under ϕh,d, then ϕi
h,d(L) ⊃ ϕi+1

h,d (L), and there exists a chain of sub-k-vector
spaces of L/πL,

L

πL
⊃ · · · ⊃ ϕi−1

h,d (L)

ϕi
h,d(L) ∩ πL

⊃ ϕi
h,d(L)

ϕi
h,d(L) ∩ πL

⊃ ϕi+1
h,d (L)

ϕi+1
h,d (L) ∩ πL

⊃ · · · .

It is easy to check that if dimk
ϕi

h,d(L)

ϕi
h,d(L)∩πL

= dimk
ϕi+1

h,d (L)

ϕi+1
h,d (L)∩πL

, then

dimk

ϕj
h,d(L)

ϕj
h,d(L) ∩ πL

= dimk

ϕi
h,d(L)

ϕi
h,d(L) ∩ πL

for any j > i. Since dimk
ϕj

h,d(L)

ϕj
h,d(L)∩πL

= 0 when j is sufficiently large, the fact dimk
L

πL = l implies

that ϕl
h,d(L) ⊆ πL. This means that L is stable under ϕlh,ld+1 and hence D

ld+1
lh = D. �

Corollary 2.5 Let a = sup{λ ∈ Q : Dλ = D}. Then a is a rational number and Da = D.

Proof Suppose dimK0 D = l. If a is not rational, by Dirichlet’s approximation theorem, there
exist infinitely many pairs of integers (p, q) such that p

q < a < p
q + 1

q2 . Choose q > l and let

(p, q) = (d, h). By the above lemma, D
d
h + 1

lh = D
d
h = D and hence d

h + 1
lh < a, a contradiction.

The second part of the corollary follows from Lemma 2.4 (1). �
Proposition 2.6 Set grμD = Dμ/D>μ, then grμD is pure of slope μ.

Proof By Lemma 2.3, we can replace D by Dμ/D>μ, and assume Dμ = D and D>μ = 0.
Let μ = d

h . Then there exists a WOE
-lattice M of Dμ = D which is stable under ϕh,d. The

filtration of sub-k-vector spaces

· · · ⊆ ϕn
h,d(M)

ϕn
h,d(M) ∩ πM

⊆ ϕn
h,d(M)

ϕn
h,d(M) ∩ πM

⊆ · · · ⊆ M

πM
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of M/πM is stable since dimk M/πM = dimK0 D is finite.

If ϕN
h,d(M)

ϕN
h,d(M)∩πM

= 0 when N is sufficiently large, then ϕn
Nh,Nd(M) ⊆ πnM for all n ∈ N, which

implies that M ⊆ ⋂
n≥0 ϕ−n

Nh,Nd+1(M). This is not possible since D>μ = 0. As a consequence,

when N is sufficiently large, we have a bijection of the nonzero k-vector space ϕN
h,d(M)

ϕN
h,d(M)∩πM

to

itself

ϕn
h,d :

ϕN
h,d(M)

ϕN
h,d(M) ∩ πM

→ ϕN
h,d(M)

ϕN
h,d(M) ∩ πM

for n ∈ N. Replace (h, d) by (Nh, Nd) and still denote it by (h, d), then we get a bijection

ϕn
h,d :

ϕh,d(M)
ϕh,d(M) ∩ πM

→ ϕh,d(M)
ϕh,d(M) ∩ πM

for any n ∈ N.
If ϕh,d : M → M is not bijective, then there exists x1 satisfying ϕh,d(x1) ∈ πM and

x1 /∈ πM . Indeed, if ϕh,d : M → M is not surjective, we can find an element x ∈ M

and x /∈ ϕh,d(M). Since ϕh,d(M) is still a WOE
-lattice in D, we can find k ∈ N such that

πkx ∈ ϕh,d(M) and πk−1x /∈ ϕh,d(M). Then take x1 ∈ M to be the preimage of πkx.
We now construct by induction a sequence (xn) such that xn − xn−1 ∈ πn−1M and

ϕi
h,d(xn) ∈ πiM for any 1 ≤ i ≤ n. Suppose x1, x2 · · ·xn have been constructed and ϕn

h,d(xn) =
πnzn. Let xn+1 = xn + πny. It is easy to see ϕi

h,d(xn+1) ∈ πiM for 1 ≤ i ≤ n if y ∈ M .
Since ϕn+1

h,d (xn+1) = πn(ϕh,d(zn) + ϕn+1
h,d (y)), to have ϕn+1

h,d (xn+1) ∈ πn+1M , it’s sufficient to
find y ∈ M such that ϕh,d(zn) + ϕn+1

h,d (y) ∈ πM , but this is guaranteed by the bijection

ϕn
h,d :

ϕh,d(M)
ϕh,d(M) ∩ πM

→ ϕh,d(M)
ϕh,d(M) ∩ πM

.

Take x = limn→∞ xn. Then x ∈ M , x �= 0. It’s easy to see ϕn
h,d(x) ∈ πnM for any n ≥ 0,

so x ∈ ⋂
n≥0 ϕ−n

h,d+1(M) which contradicts D>μ = 0. �
Since D is of finite dimension, grμD = 0 for all but finitely many μ. Suppose μ1 > μ2 >

· · · > μr are all the μ’s such that grμD �= 0. In fact we can take μ1 = sup{λ ∈ Q : Dλ �= 0}
and μi = sup{λ ∈ Q : Dλ

� Dμi−1} when i > 1. By Lemma 2.4 (1), Dμi � Dμi−1 , and if
μi > μ > μi+1, then Dμ=Dμi . We have

Proposition 2.7 Suppose D is a ϕ-module. Then the filtration

0 � Dμ1 = grμ1D � Dμ2 � · · · � Dμr = D

is the Harder–Narasimhan filtration of D, i.e., the unique filtration · · · � Di � Di+1 � · · · of
ϕ-modules such that the Di/Di−1’s are pure of strictly decreasing slopes.

Proof The existence follows from Proposition 2.6. For the uniqueness, by Lemma 2.3, for a
Harder–Narasimhan filtration 0 = D0 � D1 � · · · � Ds = D of D, then Dμ = 0 for μ > μ(D1)
and Dμ(D1) = D1 �= 0. We also have Dμ = 0 for μ > μ1 and Dμ1 �= 0. Thus μ(D1) = μ1 and
D1 = Dμ1 . Now the rest follows from induction on the length of the filtration. �
Proposition 2.8 Suppose 0 → D1 → D → D2 → 0 is a short exact sequence of ϕ-modules,
then for every μ ∈ Q, 0 → Dμ

1 → Dμ → Dμ
2 → 0 is also exact.

Proof We prove by induction on the dimension of D. The case dim D = 1 is trivial. In
general, suppose dim D ≥ 2 and D1 is a non-zero proper sub-object of D. We assume D′ is the
second to last term of the Harder–Narasimhan filtration of D, and D′′ = D/D′, then for the
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exact sequence 0 → D′ → D → D′′ → 0 and μ ∈ Q, the complex 0 → D′μ → Dμ → D′′μ → 0
is always exact. We have the following commutative diagram with exact rows and columns:

0 0 0⏐⏐

⏐⏐


⏐⏐

0 −−−−→ D′

1 −−−−→ D′ −−−−→ D′
2 −−−−→ 0⏐⏐
 ⏐⏐
 ⏐⏐
i1

0 −−−−→ D1 −−−−→ D −−−−→ D2 −−−−→ 0⏐⏐
 ⏐⏐
 ⏐⏐

0 −−−−→ D′′

1
i2−−−−→ D′′ −−−−→ D′′

2 −−−−→ 0,⏐⏐
 ⏐⏐
 ⏐⏐

0 0 0

where D′
1 = D1 ∩ D′ and D′

2 = D′/D′
1 and D′′

1 = D1/D′
1, the injections i1 and i2 are defined

by diagram chasing, and D′′
2 = D′′/D′′

1
∼= D2/D′

2 is obtained by the snake lemma. Now taking
the μ-invariant of the above diagram, by induction, we have exact sequences in all rows and
columns except the middle row, then the middle row must also be exact by diagram chasing. �
Proof of Theorem 1.4 We are now ready to prove the theorem of Dieudonné–Manin. Suppose
that D is a ϕ-module over k such that

0 = D0 � D1 � · · · � Dr−1 � Dr = D

is the Harder–Narasimhan filtration of D, suppose μi = μ(Di/Di−1). Since ϕ is bijective on D,
replace ϕ and σ by ϕ−1 and σ−1, then D can be regarded as a ϕ−1-module and we can develop
the Harder–Narasimhan filtration for D as a ϕ−1-modules, i.e., D possesses a unique filtration

0 = D′
0 � D′

1 � · · · � D′
s−1 � D′

s = D

such that D′
i/D′

i−1 are pure of slope μ′
i = μ′(ϕ−1, D′

i/D′
i−1) as ϕ−1-modules and μ′

i’s are strictly
decreasing. By definition we see that a ϕ−1-module pure of slope μ is nothing but a ϕ-module
pure of slope −μ, thus 0 = D′

0 � D′
1 � · · · � D′

s−1 � D′
s = D is the unique filtration of D such

that the sequences μ(D′
i/D′

i−1) = −μ′
i are strictly increasing.

It suffices to show that D = ⊕(Di/Di−1). We show it by induction on the length s of the
(ϕ−1)-Harder–Narasimhan filtration of D. The case s = 1 is trivial. In general, we have Dμ = 0
for μ > μ1 and Dμ1 = D1 �= 0. By Proposition 2.8 and the induction hypothesis, we also have
Dμ = 0 for μ > −μ′

s and D−μ′
s ∼= D/D′

s−1 �= 0, thus μ1 = −μ′
s and D1

∼= D/D′
s−1 is a direct

summand of D. By induction, this finishes the proof of the theorem. �
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