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Preface

In Fall 2003, Jean-Marc Fontaine was appointed as Chair Professor of
Arithmetic Geometry at Tsinghua University in Beijing. This was the start-
ing point of broad Sino-French cooperation in number theory and arithmetic
geometry. One can read my tribute to him in the Gazette (The China Legacy
of Jean-Marc Fontaine. Gaz. Math. No. 162 (2019), 15-17) for more details
about his great effort to develop modern arithmetic geometry in China. He
gave a one-month lecture in Fall 2003 and then a one-semester course in Fall
2004 about the theory of p-adic Galois representations. The audiences con-
sisted of mostly senior undergraduate and graduate students, young postdocs
and junior faculties from Tsinghua University and nearby Peking University
and Chinese Academy of Sciences. This book grew out of the course notes
given in these two courses, first prepared by students attending the class.

From the very beginning, Jean-Marc would like to write a textbook in the
subject of p-adic Galois representations, for which he laid a firm foundation
during his lifetime work. He even had a more ambitious plan to have a book
series for all lecture notes given in the Chair Professorship Program. However,
this project took much more time than we expected and I had to carry on
by myself at last. We had a plan to finish the book in 2009/2010, then he
found the exciting result that B, is a PID and consequently most of his time
was devoted to studying the p-adic fundamental curve of Laurent Fargues
and himself. Then the more exciting development of Peter Scholze’s theory of
perfectoid spaces came out in 2011/2012. After all these great developments,
finally when he had more time, I arranged him to visit USTC for three months
after the second Sino-French Conference in Arithmetic Geometry at Sanya in
October 2016 to complete this book project. Just before he was going to depart
from Paris to China, he was found to have cancer. It is really a pity that he
did not get more time to finish this project.

The theory of p-adic Galois representation contains a huge amount of
materials which could not be filled in a 300-page book. During the many
years’ preparation of this book, Jean-Marc and I had many discussions about
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which to be included and which not. Sadly this time I don’t have Jean-Marc
to consult with and have to apply my own judgment.

The main purpose of this book, as well as Fontaine’s courses in 2003,/2004,
is to give an introduction of p-adic Hodge theory, which treats p-adic Galois
representations over certain p-adic local field K. Fontaine’s great idea is to con-
struct several big (topological) rings containing Q,, and with continuous G-
adction, say B, and then divide the category of p-adic Galois representations
into subcategories consisting of B-admissible representations, each equivalent
to a category consisting of finite dimensional vector spaces with easily de-
scribed extra structures (Frobenius action, monodromy action, filtration etc),
so that it can be studied by linear or semi-linear algebra methods.

Let me first explain briefly about the main content of this book, which
covers Chapters 3 to 10. We first define the notion of B-admissible representa-
tions and study their properties. We then relate p-adic Galois representations
of fields of characteristic p with étale p-modules. After that, we construct and
study successively the big rings C, R, By, Bdr, Beris and By, and study the
associated C-admissible, Hodge-Tate, de Rham, crystalline and semi-stable
representations. We then prove two fundamental results in p-adic Hodge the-
ory: de Rham is potentially semi-stable (Theorem A, the p-adic Monodromy
Conjecture) and weakly admissible is admissible (Theorem B), which were
proved by Berger and Colmez-Fontaine a few years before Fontaine’s courses.
Finally we prove the celebrated theorem of Cherbonnier-Colmez that all p-adic
representations are overconvergent.

Now let me explain the reason why many beautiful results are left out here.
We don’t include the integral p-adic Hodge theory of Breuil, Kisin and oth-
ers, and only include a tiny part of the theory of (¢, I')-modules of Fontaine,
Colmez, Berger, Herr and many others. We thought they deserve a whole
new book and Fontaine had the vision to write a volume II for them. In fact,
Colmez’ adaptation of Sen’s method is so elegant that it deserves more ap-
plications than just the classification of C-representations, which is the only
reason I open a new chapter (Chapter 10) to include Cherbonnier-Colmez’s
Theorem. As the main theme of this book is algebraic, not geometric, other
than the overview of f-adic representations in Chapter 2 and several remarks
scattering in the book, the geometric applications including the comparison
theorems and the relative theory are both not covered. The theory of per-
fectoid spaces of Scholze, the crowning achievement of p-adic Hodge theory,
deserves another new book written by the experts.

We thought seriously about to include the p-adic fundamental curve of
Fargues and Fontaine, before the publication of their new book. Fontaine
promised to write a new proof of Colmez’s Fundamental Lemma based on
the classification of vector bundles of this curve, and then apply it to show
Proposition 2A in §9.3 (for k arbitrary), which is essential to prove Theorem
A. To my knowledge, to achieve this, many new notions and concepts have to
be introduced. To make the book as concise as possible, I decided to apply the
method in Pliit’s thesis to prove Colmez’ result, which is a highly technical
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proof. Probably one can come out with a new proof without using the theory
of (¢, I')-modules (as the proof by Berger).

To the readers

This book grew out of Fontaine’s course notes in 2003/2004. His lectures
covered roughly § 1.1, part of § 1.2, § 1.5, Chapter 2, Chapter 3, §4.1-4.2,
Chapter 5, Chapter 6, §7.1, Chapter 8 and §9.1 in this book. The main purpose
of this book is to give an introduction of p-adic Hodge theory, and to prove
two fundamental results: de Rham is potentially semi-stable (Theorem A, the
p-adic Monodromy Conjecture) and weakly admissible is admissible (Theorem
B). The following is the content chapter-by-chapter.

Chapter 1 is a preliminary chapter. We give a brief introduction here about
inverse limits, Galois theory, Witt and Cohen rings, ramification theory of
local fields and continuous cohomology.

In Chapter 2 we give a brief overview about linear ¢-adic representations.
Most results here are not proved, but the references are (not yet!) given.

In Chapter 3 we introduce the notion of B-admissible representations. We
then study the Fp-, Z,- and p-adic Galois representations of local fields of
characteristic p, which are associated with the category of étale p-modules.
Results in Chapter 3 are essential to later development.

From Chapter 4 on, the field K is assumed to be a p-adic field with perfect
residue field k of characteristic p. In Chapter 4, we study properties about the
field C' and then classify C-representations by Sen’s method.

In Chapter 5 we construct the ring R and study its properties, most no-
tably the theorem of Fontaine and Wintenberger (Theorem 5.13). This also
leads to the basic theory of (p, I')-modules.

In Chapter 6 we construct the Hodge-Tate ring By and more importantly
the field of p-adic periods Bqr. We also introduce Hodge-Tate representations
and de Rham representations, and associate the latter with filtered K-vector
spaces.

Chapter 7 is devoted to the construction and properties of the ring Beyis.
We prove the fundamental exact sequence of p-adic Hodge theory. We intro-
duce the ring B, and the Lubin-Tate elements, prove the Fundamental Lemma
of Colmez and then prove that B, is a PID.

In Chapter 8 we introduce the ring By and semi-stable representations.
We also study filtered (¢, N)-modules and their admissibility. Then we give
the statements of Theorem A and Theorem B.

Chapter 9 is devoted to the proof of Theorem A and Theorem B based
on a prepublication of Fontaine. Along the way, we classify admissible (¢, N)-
modules with trivia filtration or of dimension < 2 and representations of
dimension 1. We introduce the fundamental complex, and prove Hyodo’s result
Hg1 = H} when k is finite.
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Finally we prove that all p-adic representations are overconvergent (Theo-
rem of Cherbonnier-Colmez) by Colmez’ adaptation of Sen’s method in Chap-
ter 10, which is essential in the theory of (p, I')-modules.

Attention: The following are a few highly technical results whose statement
is needed but whose actual proof is not:

(a) Sen’s Filtration Theorem (Theorem 1.92) in §1.4.1, which is needed in
§1.4.2 and §4.4.2 (to prove Theorem 4.47).

(b) Theorem 4.47. Actually only its corollary, Proposition 4.43, is needed.

(¢) Fundamental Lemma of Colmez (Theorem 7.41) in §7.4, which is needed
to prove B, is a PID and then in §9.5.

(d) Dieudonné-Manins Classification Theorem (Theorem 8.25) of ¢-modules
in §8.2.2.

Acknowledgment

To be filled.

Yi Ouyang
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1

Preliminary

1.1 Inverse limits and Galois theory

1.1.1 Inverse limits.

In this subsection, we always assume that 7 is a category with arbitrary
products. In particular, one can suppose & is the category of sets, of (topolog-
ical) groups, of (topological) rings, of left (topological) modules over a certain
ring. Recall that a partially ordered set I is called a directed set if for any two
elements i, € I, there exists k € I such that i <k and j < k.

Definition 1.1. Let &/ be a category with arbitrary products and I be a di-
rected set.

A family (A;)ier of objects in the category < is called an inverse system
(or a projective system) of &7 over the index set I if for each pairi < j in I,
there exists a morphism @;; : A; — A; such that the following two conditions
are satisfied:

(i) i = 1d;
(i) For every triple i < j <k, pri = ©jiPr;-

The inverse limit(or projective limit) of a given inverse system Ao =
(A;)ier is the object A in </ given by

A= %i%lAi = {(ai) € HAZ- . pjila;) = a; for every pairi < j}, (1.1)
1€ iel

such that the natural projection
Y5 : A— Ai, a = (aj)je[ — a;

is a morphism in </ for each i € I.
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Remark 1.2. The condition that the set I is a directed set is not needed to
define an inverse system. For example, if I is a set with trivial ordering, i.e.
1 < j if and only if ¢ = j, then @Ai = ][ A;. However, this condition is
el el

usually satisfied and often needed in application.

By the inverse system condition, one can see immediately that ¢; = ¢;;¢0;
for every pair ¢ < j. Actually, A is the solution of the following universal
problem.

Proposition 1.3. Let (A4;) be an inverse system in o, A be its inverse limit
and B be an object in <. If there exist morphisms f; : B — A; for all
i € I such that for every pairi < j, fi = @jio fj, then there exists a unique
morphism f : B — A such that f; = @jo f, i.e. the diagram

is commutative.
Proof. This is an easy exercise.

By definition, if 7 is the category of topological spaces, i.e., if the objects

X; are all topological spaces and the morphisms ¢;; are continuous maps,

then the inverse limit X = @Xi is a topological space equipped with a
il

natural topology, the weakest topology such that all the projections ; are

continuous maps. Recall that the product topology of the topological spaces

I1 X is the weakest topology such that the projections pr; from [] X; to X;
i€l iel
are continuous maps. Thus the natural topology of the inverse limit X is the
topology induced as a closed subset of [] X; with the product topology.
iel

For example, if each X; is endowed with the discrete topology, then X is
endowed with the topology of the inverse limit of discrete topological spaces.
In particular, if each X; is a finite set endowed with discrete topology, then
X is called a profinite set (inverse limit of finite sets). In this case, since
@Xi C [] X; is closed, and since [] X;, as the product space of compact

il i€l

spaces, is still compact, lim X; is also compact. In this case one can see that
lim X; is also totally disconnected.

If moreover, each X; is a (topological) group and if the ¢;;’s are (contin-
uous) homomorphisms of groups, then @Xi is a (topological) group with
i : @j X, — X, a (continuous) homomorphism of groups.
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If the X;’s are finite groups endowed with discrete topology, the inverse
limit in this case is a profinite group. Thus a profinite group is always compact
and totally disconnected. As a consequence, all open subgroups of a profinite
group are closed, and a closed subgroup is open if and only if it is of finite
index.

Ezample 1.4. (1) On the set of positive integers N*, we define a partial order
by n < m if n | m. For the inverse system (Z/nZ),en- of finite rings where the
transition map ¢,,, is the natural projection, the inverse limit is the compact
topological commutative ring

Z = lim Z/nZ. (1.2)

(2) Let £ be a prime number, for the sub-index set {¢™ : n € N} of N*,

Z¢ = lim Z/0"7,
neN

is the ring of f-adic integers. The ring Z; is a complete discrete valuation ring
with the maximal ideal generated by ¢, the residue field Z/¢Z = F;, and the
fraction field

Q¢ =7 B] = U A7)

m=0

being the field of ¢-adic numbers.
If N >1,let N = {7"45?---£;" be its primary factorization. Then the
isomorphism

h
7JNZ = H )0
=1

induces an isomorphism of commutative topological rings

H L. (1.3)

¢ prime number

Z

1%

1.1.2 Galois theory.

Let K be a field and L be a (finite or infinite) Galois extension of K, which
means that L/K is a separable and normal field extension. The Galois group
Gal(L/K) is the group of the K-automorphisms of L, i.e.,

Gal(L/K):={g: L > L, g(y) = for all y € K}. (1.4)

Denote by .7 the set of finite Galois extensions of K contained in L and order
this set by inclusion. Then for any pair E, F € ., one has EF € ., thus

& is in fact a directed set and L = |J F. As a consequence, we can study
Ecs
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the inverse limits of objects over this directed set. For the Galois groups, by
definition,

v=(vg) € lim Gal(E/K) if and only if (yp)|g =vg for EC F € ..
Ecy

Galois theory tells us that the map

Gal(L/K) — lim Gal(E/K)
Eey
g — (g9|g) : g|E the restriction of g in F

is an isomorphism. From now on, we identify these two groups via this iso-
morphism. Given the discrete topology on each finite group Gal(E/K), the
group G = Gal(L/K) is then a profinite group, endowed with a compact and
totally disconnected topology, which is called the Krull topology. We have

Theorem 1.5 (Fundamental Theorem of Galois Theory). There is a
one-to-one correspondence between intermediate field extensions K C K' C L
and closed subgroups H of Gal(L/K) given by

K'+ Gal(L/K’) and Hw L7

where

LH ={zxeL|g(x)=x forallge H}

is the invariant field of H.
Moreover, the above correspondence gives one-to-one correspondences be-
tween finite extensions (resp. finite Galois extensions, Galois extensions) of

K contained in L and open subgroups (resp. open mormal subgroups, closed
normal subgroups) of Gal(L/K).

Remark 1.6. We have the following remarks about the above theorem:

(a) Given an element g and a sequence (g, )nen of Gal(L/K), the sequence
(gn)nen converges to g if and only if for all E € &, there exists ng € N
such that if n > ng, then g,|p = g|&.

(b) The open normal subgroups of G are the groups Gal(L/FE) for E € .#. In
this case there is an exact sequence

1— Gal(L/E)— Gal(L/K)— Gal(E/K) — 1.

(¢) A subgroup of G is open if and only if it contains an open normal subgroup.
A subset X of G is an open set if and only if for every element z € X,
there exists an open normal subgroup H, such that the coset xH, C X.

(d) If H is a subgroup of Gal(L/K), then L = L# with H being the closure
of H in Gal(L/K).

We now give an easy example:
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Ezample 1.7. Let K = F,, be the finite field with ¢ = p/ elements, and let K
be an algebraic closure of K with Galois group G = Gal(K /K).

For each n € N, n > 1, there exists a unique extension K,, of degree n of
K contained in K. The extension K,/K is a cyclic extension whose Galois
group Gal(K,/K) 2 Z/nZ = {(p,) where ¢, = (x — x9) is the arithmetic
Frobenius of Gal(K,, /K). We have the following diagram

G —— lim Gal(K,/K)

5 i

7 —~— I’&HZ/HZ.

Thus the Galois group G = 7 is topologically generated by o4 = (¢n)n € G:
o4(z) = 29 for x € K, i.e., with obvious convention, any elements of G can be
written uniquely as g = oy with a € Z. The element 04 is called the arithmetic
Frobenius and its inverse o ! is called the geometric Frobenius of K.

If K =F,, the arithmetic Frobenius o, = (x + z?) is called the absolute
Frobenius. From now on, we simply denote o, as 0. Moreover, for any field k of
characteristic p, we call the endomorphism o : z — aP the absolute Frobenius
of k. Note that ¢ is an automorphism if and only if k is perfect.

Definition 1.8. Let K be a field and K* be the separable closure of K. The
absolute Galois group of K, denoted as Gk, is the group Gal(K*®/K).

In the case K = Q, the structure of Gg is far from being completely un-
derstood. The inverse problem of Galois theory asks for a given finite group J,
if there exists a finite Galois extension of Q whose Galois group is isomorphic
to J. There are cases where the answer is known (eg. J is abelian, J = S,,,
J = A, etc), but the general case is still wide open.

For each place p of Q (i.e., a prime number or co), let @p be a chosen
algebraic closure of the p-adic completion @, of Q (for p = 0o, we let Q, =R
and @p = C). Choose for each p an embedding o, : Q — @p. From the
diagram

Q — Q,

[

@—>Qp

one can identify Gg, = Gal(Q,/Q,) with a closed subgroup of G, called the
decomposition subgroup of G' at p. To study Gy, it is necessary and important
to study G, for all p, which is the philosophy called the local-global principle.

This phenomenon is not unique. There is a generalization of the above
facts to number fields, i.e. finite extensions of Q whose completions are finite
extensions of ,, and to global function fields, i.e. finite extensions of the field
of rational functions k(z) with k a finite field whose completions are fields of
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power series with coefficients in finite extensions of k. As a consequence, we
are led to study properties of local fields.

Representation theory is an essential tool to the study of groups in general
and the absolute Galois groups of fields in particular. The main theme of this
book is introduce the theory of p-adic Galois representations.

1.2 Witt vectors and complete discrete valuation rings

1.2.1 Nonarchimedean fields and local fields.

Let us first recall the definition of valuation.

Definition 1.9. Let A be a commutative ring with unit. If v: A - RU{4o00}
s a function satisfying the following properties
(i) v(a) = 400 if and only if a =0,
(ii) v(ab) = v(a) + v(b),
(iii) v(a + b) > min{v(a),v(b)},
and if there exists 0 # a € A such that v(a) # 0, then v is called a (nontrivial)

valuation on A. If u(A\{0}) is a discrete subset of R, then v is called a discrete
valuation.

Remark 1.10. The valuation defined above is usually called a wvaluation of
height 1.

For a ring A with a valuation v, we define the absolute value or metric
on a € A by |a| = 7¥@ for some constant v € (0,1), then A becomes a
topological space with a basis of neighborhood of 0 given by {z | v(z) > n} =
{z | |x] < 4™} for n € N which is independent of the choice of 7. We shall
keep in mind that for a € A,

a is small < |a is small < v(a) is big.
Two valuations v; and vy on A are called equivalent if there exists r € R,
r > 0, such that va(a) = rv1(a) for any a € A. Thus v1 and vy are equivalent
if and only if the respective induced topologies in A are equivalent.
If A is a ring with a valuation v, then A is always a domain: if ab = 0 but
b # 0, then v(b) < +o00 and v(a) = v(ab) — v(b) = +0o0, hence a = 0. Let K
be the fraction field of A, we may extend the valuation to K by setting
v(a/b) = v(a) — v(b).

Then the ring of valuations (often called the ring of integers)

Ok ={a € K |v(a) >0} (1.5)
is a local ring, with the maximal ideal

mi = {a € K | v(a) > 0}, (1.6)
and the residue field kx = Ok /my.
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Definition 1.11. A valuation field is a field K equipped with a valuation v.

A valuation field is nonarchimedean: the absolute value | | defines a metric
on K, which is ultrametric, since |a + b| < max(|al, |b|). Let K denote the
completion of K of the valuation v. Then K is again a valuation field with
the unique valuation extending v. Take any 0 # u € mg, then

O = lim O /(u™)

is the ring of integers of K and K = Og(1/ul.

Remark 1.12. The ring Op does not depend on the choice of w. Indeed, if
v(u) =7 >0, v(v') = s> 0, for any n € N, there exists m,, € N, such that
u™ € 'Ok, so

Wm O /(u™) = lim Ok /(u'™).

Definition 1.13. A field complete with respect to a valuation v is called a
complete nonarchimedean field.

We quote the following well-known result of valuation theory:

Proposition 1.14. If F is a complete nonarchimedean field with a valuation
v, and F' is any algebraic extension of F, then there is a unique valuation v’
on F' such that v'(z) = v(z) for any x € F. Moreover,

(1) F' is complete if and only if F'/F is finite.
(2) If o, &’ € F' are conjugate over F, then v'(a) = v'(a).

Remark 1.15. By abuse of notations, from now on we shall also write the
extended valuation v.

If F is a complete field with respect to a discrete valuation v, then v(F*) =
rZ for some constant r > 0. We denote vp = % and call it the normalized
valuation of F, thus vg is the unique valuation equivalent to v such that
vp(F*) = Z. In this case, an element m € F such that vp(m) = 1 is a
generator of mp, called a uniformizing parameter or uniformizer of F.

If F is a valuation field, for any 0 # a € mp, let v, denote the unique
valuation of F' equivalent to the given valuation such that v,(a) = 1.

Definition 1.16. A local field is a complete discrete valuation field whose
residue field is perfect of characteristic p > 0.
A p-adic field is a local field of characteristic 0.

Ezample 1.17. A finite extension of Q, is a p-adic field. In fact, it is the only
p-adic field whose residue field is finite.
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Let K be a local field with normalized valuation vx and perfect residue
field k such that char k = p > 0 (equivalently p € m). Let mx be a uniformiz-
ing parameter of K. Then vk (nx) = 1 and mg = (7x). One has topological
isomorphisms

OK%I'&nOK/m"K%ILmOK/w%OK%I'&nOK/p"OK, (1.7)

where Ok /p" Ok = Ok if char K = p. We have the following propositions:

Proposition 1.18. The local field K is locally compact, equivalently O is
compact, if and only if its residue field k is finite.

Proposition 1.19. Let S be a set of representatives of k in Ok . Then every
element x € Ok can be written uniquely as

x = Z 8T (1.8)
>0
s;€S

and x € K can be written uniquely as

x = Z sy (1.9)

i>—n
s; €S

By the binomial theorem, since p € mg, we have the following extremely
useful fact:

Lemma 1.20. For a,b € Ok,
a=bmod mg = a” =" modmiL forn >0. (1.10)

Proposition 1.21. There exists a unique multiplicative section s : k — Ok
for the projection O — k.

Proof. Let a =€ k. Since k is perfect, we can find successfully a unique se-
quence (a,) in k such that ap = a, af = ag, ---, a?. = a,,_1, in particular
a?" = a. Let @, be a(ny) lifting of a,, in Ok.
o~ ~ . . ~ 71+1 ~pT
By (1.10), @ , = @, mod my implies that a’,; =@~ modm}'"'. There-
fore s(a) :== lim af exists. By (1.10) again, s(a) is found to be independent
n—oo
of the choice of the liftings. It is easy to check that s is a section of O — k
and is multiplicative. Moreover, if ¢ is another section, we can always choose
a, = t(an), then

— lim a?" = & -
s(a) = nh_}rrgo ab = nh_,Héot(a”) = t(a),

hence follows the uniqueness.



1.2 Witt vectors and complete discrete valuation rings 9

Remark 1.22. The element s(a) is called the Teichmiiller representative of a,
and often denoted as [a].

If char(K) = p, then s(a + b) = s(a) + s(b) since (ay, +3n)pn =ar" +/5’;L".
Thus s : K — Og is a homomorphism of rings. We can and will use it to
identify k with a subfield of Ok. Furthermore, we have

Theorem 1.23. Assume Ok is a complete discrete valuation ring, k is its
residue field and K is its field of fractions. Let mg be a uniformizing parameter
of Ok . Suppose that Ok (hence K ) and k have the same characteristic, then

Ok =k[[rk]], K =k((7K)).

Proof. We only need to show the case that char(k) = 0. In this case, the com-
posite homomorphism Z — Ok — k is injective, hence the homomorphism
Z — Ok extends to Q — Og. In this way O contains the field Q. By Zorn’s
lemma, there exists a maximal subfield of Ox. We denote it by S. Let S # 0
be its image in k. Then S — S is an isomorphism. It suffices to show that
S=k.

First we show k is algebraic over S. If not, there exists a € Ok whose
image @ € k is transcendental over S. The subring S[a] maps to S[a], hence is
isomorphic to S[X], and S[a] Nmg = 0. Therefore Ok contains the field S(a)
of rational functions of a, which is contradiction to the maximality of S.

Now for any a € k, let f(X) be the minimal polynomial of S(c) over S.
Since char(k) = 0, f is separable and « is a simple root of f. Let f € S[X] be
a lifting of f. By Hensel’s Lemma, there exists z € O, f(z) =0 and Z = a.
One can lift S[a] to S[z] by sending z to a. By the maximality of S, x € S.

and thus k= S.

If K is a p-adic field and char(K') = 0, then in general s(a+b) # s(a)+s(b).
Witt vectors are very useful in this situation.

1.2.2 Witt vectors.

Assume p is a prime number. Let X, Y, X;, Y; (i« € N) be indeterminates.
Write X = (Xo,Xl, N ) and X = (Yo, Yl, cee )

Definition 1.24. The n-th Witt polynomial of X is

n

W (X) =Wo(Xo, -+, Xp) i= Zpixlpnii.
i=0

Remark 1.25. One can easily check that X,, € Z[p~!][Wo, - -+ ,W,] for each n.

Lemma 1.26. For every &(X,Y) € Z[X,Y], there exists a unique sequence
{Pn}nen of polynomials
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D, € Z[Xo, X1, X Yo, Y1, -+, Yy
such that for every n € N,
P (W (X), Wn (Y)) = Wn (Do, -+, Pn). (1.11)
Replacing the coefficient ring Z by Z,, the result still holds.

Proof. First we work in Z[}%][K, Y]. Set $¢(X,Y) = &(Xp,Yo) and define &,
inductively by

n R ) n—1 ‘
@n(X7X) = ]% <¢(Zpinnl7Zpi}/ipnt) o ZPZQZ(X7Y)P77_7> )
=0 =0 i=0

Clearly @, exists, is unique in Z[1][X, Y], and is in Z[1][Xo, -+ , Xn; Yo, -, Vo).
P i Ty
We only need to prove that @,, has coefficients in Z.

This is done by induction on n. For n = 0, @ certainly has coefficients
in Z. Assuming @; has coefficients in Z for i < n, to show that &,,,1 has
coefficients in Z, it suffices to prove that

gp(Xgn +oee +ann; }/Opn +e +pnYn)
=00(X,Y) +pPi(X,Y)" T 4 4 p" T By (X, Y) mod p
One can verify that

LHS=®(XE" + - +p" 'XP_ Y 4+ 4+ p" 'Y Y mod p”
= Go(XP, YP)" T+ pdy (X YP) 4 " 0,y (XP, YP) mod ™

By induction, &;(X,Y) € Z[X,Y], hence &;(X?,Y?) = ($;(X,Y))” mod p,
and

—1

PE (X7 YT = ph by (X, Y)Y mod p”.

Putting all these congruences together, the lemma is proven.
Definition 1.27. The polynomials
Snvpn S Z[Xo,'~' aXn§Y07"' 7Yn]

are the polynomials associated to P(X,Y) = X +Y and XY, i.e., defined
inductively by
w’rL(X)"‘wn(Z) :wn(SOaSh"' aSn)v (1'12)

Wo (X)) - Wy (Y) = Wo(Po, Pry- v+, ). (1.13)

For A € Z, the polynomials M(\)n(Xo,- -+ ,Xpn) € Zp[Xo,--- , Xy] are poly-
nomials associated to ®(X) = AX, i.e., defined inductively by

N (X) = W (M(No, -, M) (1.14)
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It is clear that
So=Xo+Ye, Po=XoY, M(\o=AX,. (1.15)
From (X4 Yo)” +pS1 = X5 +p X1+ Y + pYi, we get
51:X1+Y1—1§1<p)Xti_i (1.16)
Pl A B -
From (X} +pX1) (YP +pY1) = XD YY + p P1, we get
Pi=X| Y+ X2V, +pX) V5. (1.17)
From A\(X} +p X1) = M(N)§ + pM(N\)1, we get
AP — )

M) =2X, + XP. (1.18)
For general n, it is too complicated to write down S, P, and M, () explicitly.
However, from the definition equations, we have

Lemma 1.28. Assign X,, and Y, with weight p™. Then

(1) Sp = Xy, + Yy, + terms of degree > 2, of which all monomials have same
weight p™.

(2) P, = p" X, Y, + terms of degree > 3, of which all monomials have same
X-weight and Y -weight p", and P,(Xo,0,---,0; Yy, -+ ,Y,) = XgnYn.

(3) M(N)n, = AX,, + terms of degree > 2, of which all monomials have same
weight p™.

(4) M(p), = XP_, mod p forn > 1.

Proof. By induction. The proof of (4) needs the fact that if a = b mod p, then

a?” = bP" mod ptl.
Remark 1.29. Let S, be the associated integer polynomial to #(X,Y) = X —
Y. Then

Wy (X) = Wy (Y) = Wn (Sg s Sps- -5 5,)- (1.19)

Then S,, = X,, — Y, +terms of degree > 2, of which all monomials have same
weight p™. Moreover, if p > 2, by the fact —W,,(Y) =W, (=Y), then

Now suppose A is a commutative ring. For n > 1, let W,,(4) = A™ as a
set. For two elements a = (ag, a1, -+ ,an—1),b = (bo, b1, -+ ,bp_1) € W,(A),
define

a+b=(s0,81,""*,8n-1), @a-b=(po,p1,"* Pn-1), (1.21)

where
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s; =Si(ag, a1, -+ ,a;;bo, b1, by),

pi =P;(ao, a1, ,ai;bo, b1, -+, b;).

For a € W, (A), set

w; = W;(a) zagi +pa1fi 4+ 4 pla. (1.22)
By definition, then
wi(a+b) = w;(a) + w;(b) and w;(ab) = w;(a) w; (D).

-1 —1 .
Moreover, let s; * = S; " (ag, -+ ,a;; b, ,b;) and

a—b=1(sg, " ,5,_1) (1.23)

»Sn—1
then —a =0—a € W,(A4),
wi(a —b) = wi(a) —w;(b) and w;(—a) = —w;(a).
Definition 1.30. Denote the map
p:Wyp(A) — A", (ag, - ,an—1) — (Wo, "+ ,Wn_1).

Then
pla+1b) =p(a)+p(b) and p(a-b) = p(a)- p(b).

Proposition 1.31. (W,,(A); +,-) defined by (1.21) is a commutative ring with
0=(0,---,0) and1 = (1,0,---,0), and p is a homomorphism of commutative
rings. Moreover, for X € Z (or € Z,, if A is a Zp-module), define the scalar
multiplication X - a in W, (A) by

A-a = (M;(N)(ao, -, ai))o<i<n,
then p preserves the Z-module (or Zy-module) structure.

Proof. Note that X,, € Z[p~!][Wo, - ,W,]. Then

(1) If p is invertible in A, p is bijective and therefore W,,(A) is a ring isomor-
phic to A™.

(2) If A has no p-torsion, by the injection A — A[%], then W, (A) C
Wn(A[%D If a,b € W, (A), then a —b € W,,(A), so W,,(A) is a subring of
W (ALL).

(3) In general, any commutative ring can be written as A = R/I with R

having no p-torsion. Then W, (R) is a ring, and
Wn(I) = {(a07a17 T aanfl) | a; € I}

is an ideal of W,,(R). Then W, (R/I) is the quotient of W,,(R) by W, (I),
again a ring itself.
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The rest is clear.
For the sequence of rings W,,(A), consider the restriction maps
res: Wyy1(A) — W, (A)
(ap, a1, ,an) — (ag, a1, ,an-1).
These are surjective homomorphisms of rings. Define

W (A) = lim W, (A). (1.24)

Put the topology of inverse limit with the discrete topology on each W, (A),
then W(A) can be viewed as a topological ring. Moreover, if A is already
a topological ring, W, (A) and W(A) are then endowed with the induced
topological structures.

Definition 1.32. The ring W,,(A) is called the ring of Witt vectors of length
n of A, an element of W,,(A) is called a Witt vector of length n.

The ring W (A) is called the ring of Witt vectors of A (of infinite length),
an element of W(A) is called a Witt vector.

By construction, W (A) as a set is isomorphic to AN. For two Witt vectors
a = (ap,a1, -+ ,an, ), b = (bo,b1, -+ ,bn, ) € W(A), the addition and
multiplication laws are given by
(L+b:(80,81,"',8n7"')7 a'b:(p07pla"'7pna"')' (125)
The map
p:W(A)%ANa (a/07a/17"'aana"')H(wOawlf"7wn7"') (126)

is a homomorphism of commutative rings and moreover is an isomorphism if
p is invertible in A.

The operators W,, and W are actually functorial. Indeed, let h : A — B
be a ring homomorphism, then we get the ring homomorphisms

Wi(h) : Wi (A) —s Wa(B)
(ao,al, R ,an_l) — (h(ao),h(al), cee ,h(an_l))

for n > 1 and hence the homomorphism W (h) : W(A) — W(A). Moreover,
W, (h) and W (h) commute with p.

Remark 1.33. In fact, W, is represented by the affine group scheme W,, over
Z:
W,, = Spec(B), where B=7Z[Xo, X1, -+, Xpn_1].

with the comultiplication
m*:B— B®z B~7Z[Xo, X1, -, Xn-1;Y0,Y1, -, Yn_1]
given by
Xi— X;®l, YVi—1®X;, m'X,=58(XoX1, ,X;Y, Y1, -, Y5).
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Remark 1.84. If A is killed by p, then

(a07a17 e aa/’nfl) —a
So p is given by
W, (4) 25 An
(a()»al»"' 7an71)'—>(a0aaga"' 7a10) )

In this case p certainly is not an isomorphism. As a consequence p : W(A) —
AN is not an isomorphism either.

We now define the shift map (the Verschiebung) V, the Teichmiller map
s and the Frobenius map ¢ related to W(A).

Definition 1.35. Let A be a commutative ring.

(i) The shift map or Vershiebung is the map
V:W(A) = W(A), (ag, - ,an, )+ (0,a0, - ,an, ). (1.27)
and
V:W,(A) = Whi1(A), (ao, - ,an-1)+— (0,a0, - ,an-1). (1.28)
(ii) The Teichmiiller map s is the section
s: A—>W(A), z+— [z]=(2,0,---,0,---).

(iii) If A is a ring of characteristic p, the Frobenius map ¢ is the ring homo-
morphism:

©: W(A) = W(A), (ag,a1,---)+ (af,al,---).

If moreover, A = k is a perfect field, the Frobenius on W (k) is often
denoted as o.

Proposition 1.36. The maps V and s commute with ring homomorphisms.
Moreover,

(1) The shift map V is an additive map, and the sequences

0 — Wi(A) 5 Wipr(A) — Wi (A) — 0 (1.29)

are exact.
(2) The Teichmiiller map s is a multiplicative section of W(A) — A, and

(ag,ay, )= ZV"([an])7 a; € A (1.30)

n=0

[z] - (ag,--+) = (zag,zPaq, - 2P, - <), x,a; € A (1.31)
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Proof. By definition, it is easy to check the commutativity. Because of this,
one can reduce the proof of (1) and (2) to the case that p is invertible in A,
and then apply the isomorphism p : W (A) — AN. One can also show this fact
by just applying Lemma 1.28.

Lemma 1.37. If A is of characteristic p, then over the Witt ring W(A), one
has Vo = ¢V = p.

Proof. By Lemma 1.28(4), p(ag,a1,---) = (0,af,a}, ), hence Vo = oV = p.

Recall a commutative ring A of characteristic p is called perfect if the
endomorphism z — zP of A is an automorphism, i.e., if every element of
z € A has a unique p-th root 2P in A.

Proposition 1.38. If A is a perfect ring, then every element in W(A) can be
written in two forms

“+o0
(ag,ar,---) =Y _p"[ah "]. (1.32)

Consequently

(1) The projection W(A) — W,(A), (ag,a1,--) — (ag, -+ ,an—1) induces
W(A)/p"W(A) 2 W, (A). In particular, W(A)/pW (A) = A.

(2) W(A) is complete and separated by the p-adic topology, i.e. W(A) =
fim W (4) /"W (4).

Proof. Clear from the above two results.

Example 1.39. W(F,) = Z, by identifying the Teichmiiller representative [z]
of z € ).

1.2.3 Structure of complete discrete valuation rings with mixed
characteristic.

As an application of Witt vectors, we discuss the structure of complete
discrete valuation rings in the mixed characteristic case. The exposition in
this subsection follows the content in Serre [Ser80], Chap. II, §5.

Definition 1.40. A topological ring A is called a p-ring if there exists a de-
creasing filtration of ideals a; D as - - satisfying ., - a,, C Qpyyrn Such that

(i) A/ay is perfect of characteristic p;
(ii) A = @A/an,

A p-ring A is called a strict p-ring if furthermore p is not a zero-divisor in
A and the ideal a, = p"™A.



16 1 Preliminary

Ezample 1.41. Suppose k is a perfect ring of characteristic p.

(1) If k is the residue field of local field K, then O with the filtration {m’}
is a p-ring.
(2) In general, the Witt ring W (k) is a strict p-ring with residue ring k.

Proposition 1.42. Let A be a p-ring with residue ring k.

(1) There exists one and only one system of representatives f : k — A which
commutes with p-th powers: f(A\P) = f(A)P.

(2) Fora€ A, a € S = f(k) if and only if a is a p™-th power for all n > 0.

(3) This system of representatives is multiplicative, i.e., one has f(Au) =

FONF () for all X i € k.
(4) If A has characteristic p, this system of representatives is additive, i.e.,

F+1) = FQ) + ().
Proof. Similar to the proof of Proposition 1.21. We leave it as an exercise.

Remark 1.43. For Example 1.41, f is nothing but the Teichmiiller representa-
tive z — [z].

By Proposition 1.42, if A is a p-ring, let f: k= A/a; — A be the system
of multiplicative representatives, then for every sequence («;) of elements in
AJay, the series

Z flap’ (1.33)

converges to an element a € A. Furthermore if A is a strict p-ring, every
element a € A can be uniquely expressed in the form of a series of type

(1.33). In this case, let B; = a?', then a = 5. f(B7 )pi. We call {3} the
=0

1=

coordinates of a.

Example 1.44. Let {X,} be a family of indeterminates and S = |J Z[X2 "].

@
n>0

Let S = Z[X% 7], the completion of S by the p-adic filtration {p"S}n>0-
Then S is a strict p-ring, whose residue ring S /p§ = F,[X P""] is perfect of
characteristic p. Since X, admits p”-th roots for all n, we identify X, in S
with its image in the residue ring.

Suppose Xg, -+, Xy, -~ and Yy, -, Y, - are indeterminates in the ring

ZIXP"7,YP 7). Consider the two elements

o0 o0
r=> Xip', y=)Y Vi
1=0 1=0

If % is one of the operations +, X, —, then x * y is also an element in the ring
and can be written uniquely of the form
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oo

o0
zry =Y fQNp, with QF eF,[XI v ]
1=0

As Q7 are p~*°-polynomials with coefficients in the prime field F,, one can
evaluate it in a perfect ring k& of characteristic p. More precisely,

Proposition 1.45. If A is a p-ring with residue ring k and f : k — A is the
system of multiplicative representatives of A. Suppose {a;} and {B;} are two
sequences of elements in k. Then

> fla)p’ = > FBIP =Y )
=0 =0 =0

with v; = Q; (o, a1, -+ ; o, Br,y -+ ).

Proof. One sees immediately that there is a homomorphism
hiZIXP T YP T A

which sends X; to f(a;) and Y; to f(B;). This homomorphism extends by

o

continuity to Z[X? ", Y? "] — A, which sends z = 3 X;p’ toa = 3 f(a;)p’

7

and y = > Y;p' to B = f(B:)p’. Again h induces, on the residue rings, a
homomorphism h : F, [Xf_oo , Yip_oo] — k which sends X; to o; and Y; to ;.
Since h commutes with the multiplicative representatives, one thus has
> Flea)p' =Y f(Bi)p' =h(x) * h(y) = h(z *y)
=D hF@NIP =D (@),

this completes the proof of the proposition, as h(Q}) is nothing but ~;.

Theorem 1.46. Suppose A and A’ are two p-rings with residue rings k and
k', suppose A is also strict. For every homomorphism g : k — k', there exists
ezactly one homomorphism g : A — A’ such that the diagram

A2 A
R
is commutative. Consequently,

(1) Two strict p-rings with same residue ring are canonically isomorphic.
(2) For every perfect ring k of characteristic p, W (k) is the only strict p-ring
with residue ring k up to unique canonical isomorphism.
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0 .
Proof. For a =Y fa(a;)p* € A, if g is defined, then
i=0

gla) =Y g(fa(e)-p' =Y far(gla)) - p',
i=0 i=0

hence follows the uniqueness. But by Proposition 1.45, the map g defined
above is indeed a homomorphism.

Corollary 1.47. If k and k' are two perfect rings of characteristic p, then
Hom(k, k') = Hom(W (k), W (k')).

Definition 1.48. Let A be a complete discrete valuation ring, with residue
field k. Suppose A has characteristic 0 and k has characteristic p > 0. The
integer e = e := v(p) is called the absolute ramification index of A. Ife =1,
i.e., if p is a local uniformizer of A, then A is called absolutely unramified.

Theorem 1.49. (1) For every perfect field k of characteristic p, W (k) is
the unique complete discrete valuation ring of characteristic 0 (up to unique
isomorphism) which is absolutely unramified and has k as its residue field.

(2) Let A be a complete discrete valuation ring of characteristic 0 with a
perfect residue field k of characteristic p > 0. Let e be its absolute ramification
index. Then there exists a unique homomorphism of v : W(k) — A which
makes the diagram

W (k) d A
\ . /

commutative, moreover v is injective, and A is a free W (k)-module of rank
equal to e.

Proof. (1) is a special case of Theorem 1.46.
For (2), the existence and uniqueness of ¢ follow from Theorem 1.46, since
A is a p-ring. As A is of characteristic 0, ¢ is injective. If w4 is a uniformizer
oS} .
of A, then every a € A can be uniquely written as a = > f(a;)7y for o; € k.

1=0
Replaced 7% by p x (unit), then a is uniquely written as

e—1 o]
a= Z <Z f(aij)pi> ™, a;j € k.
=0 \i=0

Thus {1,74,--- ,773_1} is a basis of A as a W (k)-module.
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1.2.4 Cohen rings.

We have seen that if k is a perfect field, then the ring of Witt vectors W (k)
is the unique complete discrete valuation ring which is absolutely unramified
and with residue field k. However, if k is not perfect, the situation is more
complicated. We first quote two theorems without proof from Commutative
Algebra (cf. Matsumura [Mat86], § 29, pp 223-225):

Theorem 1.50 (Theorem 29.1, [Mat86]). Let (A, wA,k = A/wA) be a
discrete valuation ring and K a field extension of k, then there exists a discrete
valuation ring (B,wB, K) containing A.

Theorem 1.51 (Theorem 29.2, [Mat86]). Let (A,ma,ka) be a complete
local ring, and (R, mp, kr) be an absolutely unramified discrete valuation ring
of characteristic 0 (i.e., mg = pR). Then for every homomorphism h : kr —

ka, there exists a local homomorphism g : R — A which induces h on the
ground field.

Remark 1.52. The above theorem is a generalization of Proposition 1.46. How-
ever, in this case there are possibly many ¢ inducing h. For example, let
k =T,(z) and A = Z,(x), then the homomorphism z — z + « in A for any
o € pZ, induces the identity map in &.

Applying A = Z,, to Theorem 1.50, then if K is a given field of character-
istic p, there exists an absolutely unramified complete discrete valuation ring
R of characteristic 0 with residue field K. By Theorem 1.51, this ring R is
unique up to isomorphism.

Definition 1.53. Let k be a field of characteristic p > 0, the Cohen ring C(k)
is the unique (up to isomorphism) absolutely unramified complete discrete
valuation ring of characteristic 0 whose residue field is k.

We now give an explicit construction of C(k). Recall that a p-basis of a
field k is a set B of elements of k, such that

(i) [kP(by,--- ,by): kP] = p" for any r distinct elements by, --- , b, € B;
(ii) k= kP(B).

If k is perfect, only the empty set is a p-basis of k; if k is imperfect, there
always exist nonempty sets satisfying condition (i), then any maximal such
set (which must exist, by Zorn’s Lemma) must also satisfy (ii) and hence is a
p-basis.

Let B be a fixed p-basis of k, then k = k" (B) for every n > 0, and
Br" ={b" " |be B}isapbasisof k? . Let I,, = @ {0, -+ ,p" — 1}, then

T, = {ba = H bab,a = (ab)beB € In}

beB
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n . m o, . m
generates k as a kP -vector space, and in general T? is a basis of kP over

n+m

kP . Set
Cr+1(k) = the subring of W,,11(k) generated by
Wiyt (kP") and [b] for b € B.

For z € k, we define the Teichmiiller representative [z] = (z,0,---,0)
Wyt1(k). We also define the shift map V on W, 41(k) by V((zo,- - ,zy))
(0,20, - ,2n—1). Then every element x € W,,;1(k) can be written as

m

x = (20, ,zn) = [wo] + V([z1]) + -+ + V"([zn]).

We also has )
[V () =V"([y" ]2).

Then C,,+1 (k) is nothing but the additive subgroup of W,,11(k) generated by
(V7 ([(6*)?"z]) | b* € Tyy_p,x € KP",r = 0,--- ,n}. By Lemma 1.37, one sees
that

V' (¢"([2])) = p"[a] mod V"L

Let %, be ideals of C,+1(k) defined by

Uy = Cpyr1 (k) NV (Wyia(k)).
Then %, is the additive subgroup generated by {V™([(b%)?"z]) | b* €
T,z € kP",m > r}. Then we have C,,1(k)/% =~ k and the multipli-
cation

pr : Cn—',—l(k)/%l — %r/%r—}-l

induces an isomorphism for all » < n. Thus %, is generated by p"™ and
by decreasing induction, one has %, = p"C,y1(k). Moreover, for any = €
Cni1(k)— 2, let y be a preimage of 271 € C,,1(k)/%, then 2y = 1 — z with
z € % and zy(l1+ z+ -+ + 2™) = 1, thus « is invertible. In conclusion, we
have

Proposition 1.54. The ring C,,11(k) is a local ring whose mazimal ideal is
generated by p, whose residue field is isomorphic to k. For every r < n,
the multiplication by p" induces an isomorphism of Cpy1(k)/pCpi1(k) with
P Cria (k) /P Cria (k) and p"1Cpia (k) = 0.

Lemma 1.55. The canonical projection pr : W,y1(k) — W, (k) induces a
surjective homomorphism 9 : Cpy1(k) — Cp (k).

Proof. By definition, the image of C,4+1(k) by pr is the subring of W, (k)
generated by W, (k") and [b] for b € B, but C, (k) is the subring generated
by W, (k?" ") and [b] for b € B, thus the map o is well defined.

For n > 1, the filtration W, (k) D V(W,(k))--- D V" 1(W,(k)) D
V™ (W, (k)) = 0 induces the filtration of C, (k) D pCn(k)--- D p"~C,(k) D
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p"Cn(k) = 0. To show ¥ is surjective, it suffices to show that the associate
graded map is surjective. But for » < n, we have the following commutative
diagram

PCut (B /D Cra (k) —Es prCu(k) /o Ca (k)

| /|
VI Wt (k) [V Wi (B) ~ & 22 vy, (k) )V W, (k) ~ .

Since the inclusion j(resp. j') identifies p"Cni1(k)/p " Cpry1(k) (resp.
p"Cn(k)/p"1Co(k)) to kP", thus grd) is surjective for r < n. For r = n,
p"Cp (k) = 0. Then gr is surjective at every grade and hence ¢ is surjective.

By Proposition 1.54, we thus have
Theorem 1.56. The ring l&ncn(k) is the Cohen ring C(k) of k.

Remark 1.57. (a) By construction, C(k) can be identified with a subring of
W (k); moreover C(k) contains W (kq) where kg = () kP is the maximal

nenN
perfect subfield of k.
(b) As C(k) contains the multiplicative representatives [b] for b € B, it contains
all elements [B*] and [B~%] for n € N and « € I,,.

1.3 Galois groups of extensions of local fields

In this section, we let K be a local field with residue field k = ki perfect of
characteristic p and normalized valuation vg. Let Ok be the ring of integers
of K, whose maximal ideal is mg. Let Ug = le( = Ok — mg be the group
of units and U} = 1 + m%. for i > 1. Replacing K by L, a finite separable
extension of K, we get corresponding notations kp,vr,Or,my, Uy and Uz.
Recall the following notations:

1
€L/K

(i) er/x € N*: the ramification index defined by v (L*) = ;
(ii) e’L/K: the prime-to-p part of ey
(iii) p"r/x: the p-part of e /k;
(iv) fr/k: the index of residue field extension [kz, : k].
From previous section, if char(K) = p > 0, then K = k((rx)) for mx

a uniformizing parameter of mg; if char(K) = 0, let Ky = FracW(k) =
W (k)[1/p], then [K : Ko] = ex = vk (p), and K/Kj is totally ramified.
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1.3.1 Ramification groups of finite Galois extensions.

Let L/K be a finite Galois extension with Galois group G = Gal(L/K).
Then G acts on the ring Op. We fix an element = of O which generates O,
as an Og-algebra (such an z exists by p-adic analysis).

Lemma 1.58. Let s € G, and let © be an integer > —1. Then the following
three conditions are equivalent:

(1) s operates trivially on the quotient ring O, /m%H.
(2) vr(s(a) —a) > i+ 1 foralla € Of.

(3) vp(s(x) —x) >i+1.

Proof. This is a trivial exercise.

Proposition 1.59. For each integer i > —1, let G; be the set of s € G
satisfying the conditions of Lemma 1.58. Then the G;’s form a decreasing
sequence of mormal subgroups of G. Moreover, G_1 = G, Gy is the inertia
subgroup of G and G; = {1} for i sufficiently large.

Proof. The sequence is clearly a decreasing sequence of subgroups of G. We
want to show that G; is normal for all 7. For every s € G and every t € G,
since G, acts trivially on the quotient ring Op/mi™, we have sts™!(z) =
x mod miLH, namely, sts~! C G;. Thus, G; is a normal subgroup for all 4. The
remaining parts follow just by definition.

Definition 1.60. The group G; is called the i-th ramification group of G or
of the extension L/K.

By convention, the inertia subgroup Gy is also denoted by I(L/K) and its
invariant field by Ly = (L/K)"; the group Gi is also denoted by P(L/K)
and is called the wild inertia subgroup of G, and its invariant field denoted
by Ly = (L/K)tme,

Remark 1.61. Let H be a subgroup of G and K’ = L . If 2 € O, is a generator
of the Ok-algebra Oy, then it is also a generator of the Og/-algebra Op. Then
the i-th ramification group H; of H is nothing but G; N H. In particular, the
higher ramification groups of G are equal to those of Gy, therefore the study
of higher ramification groups can always be reduced to the totally ramified
case.

In the following, we describe the ramifications groups in more detail.
Proposition 1.62. Let w5, be a uniformizer of L. For any s € Gy and i € N,
s € Gy s(np)/np =1modm} <= s(rp)/n € Ut.

Proof. Replacing G by G reduces us to the case of a totally ramified exten-
sion. In this case 7y, is a generator of O, as an Ox-algebra. Since the formula
v (s(mp) — 7)) = 1+ vp(s(wy) /7L — 1), we have s(mz)/m, = 1modm} &
s € Gi-
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We recall the following result from study of units of local fields:

Proposition 1.63. (1) UL /U] =k ;

(2) Fori > 1, the group U};/U};H is canonically isomorphic to the group
i /miwhich is itself isomorphic (non-canonically) to the additive group
of the residue field ky,.

Then we have a more precise description of G;/G;1:

Proposition 1.64. The map
G; — UL, s+ s(mp)/7r
induces an injective homomorphism
0;:Gi/Giy1 — UL U (1.34)

of groups which is independent of the choice of the uniformizer w. Moreover,

(1) The group Go/G1 is cyclic of order prime to p = char k, and is isomorphic
to a subgroup of the group of roots of unity pw(kr) of ki via the map 6.

(2) The quotients G;/Giy1 for i > 1 are abelian groups of p-power order, and
in fact are direct products of cyclic groups of order p.

(3) The group G is a p-group, the inertia group Gq is the semi-direct product
of a cyclic group of order prime to p with a normal subgroup whose order
is a power of p.

Remark 1.65. (a) By definition, Ly is the maximal unramified subextension
inside L. By Proposition 1.64, L; is the maximal subextension of L with
ramification index prime to p, which is called the mazimal tamely ramified
subeztension inside L.

(b) Proposition 1.64 also implies that G is solvable, and so is G if k is finite.

In fact, we can describe the cyclic group Go/Gy1 = I(L/K)/P(L/K) more
explicitly.

Let N = e'L/K = [Ly : Lo]. The image of 6 in k} is a cyclic group of
order N prime to p, thus k;, = kr, contains a primitive Nth_root of 1 and
Im6y = py(kr) = {e € kr | ¥ = 1} is of order N. By Hensel’s lemma, Ly
contains a primitive N-th root of unity. By Kummer theory, there exists a
uniformizing parameter w of Ly such that

L1 = Lo(a) with « a root of XV — .
The homomorphism 6 is the canonical isomorphism

Gal(Ll/Lo) ; /,LN(kL)
g—e ifga=lga,

where [¢] is the Teichmiiller representative of e.
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By the short exact sequence
1 — Gal(Ll/L(]) — Gal(Ll/K) — Gal(kL/k) — 1,

Gal(L,/K) acts on Gal(L1/Lg) by conjugation. Because the group Gal(L; /L)
is abelian, this action factors through an action of Gal(k/k). The isomor-
phism Gal(L1/Lo) = py(kr) then induces an action of Gal(kr/k) over
pn(kr), which is the natural action of Gal(kr/k).

Suppose L/M/K is a tower of finite Galois extensions. Let G = Gal(L/K)
and G’ = Gal(M/K), let N = e’L/K and N' = e’M/K. Then one has a com-
mutative diagram

%
Go/Gy ———— un(k) (1.35)
7]
0o/G1 - e (kar).-

1.3.2 The Galois group of K*/K.

Let K*® be a separable closure of K and G = Gal(K®°/K). Let £ be the
set of finite Galois extensions L of K contained in K*, then

K= JL Gk =lmGal(L/K).

LeL LeL
Let
ur tame
K" = U L,  Ktme— U L.
LeL LeL
L /K unramified L/K tamely ramified

Then K' and K'%™m¢ are the maximal unramified and maximal tamely rami-
fied extensions of K contained in K* respectively.

The valuation of K extends uniquely to K®, but the valuation on K*® is
no more discrete, actually vg ((K*®)*) = Q, and K* is no more complete for
the valuation.

The field k = Ofur /Mg is the algebraic closure of k. We use the notations

(i) Ix = Gal(K?®/K") is the inertia subgroup, which is a closed normal
subgroup of Gg;
(ii) Gk /Ix = Gal(K™/K) = Gal(k/k) = Gy;
(i) Pk = Gal(K*/K"m™°) is the wild inertia subgroup, which is a closed
normal subgroup of Ix and of Gg;
(iv) Ix/Pr = the tame quotient of the inertia subgroup.

Note that Py is a pro-p-group, the inverse limit of finite p-groups.
For each integer N prime to p, the N-th roots of unity p, (k) is cyclic of
order N. We get a canonical isomorphism
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I/ Px — lim p (k)

NeN
N prime to p
ordering = divisibility

by the diagram (1.35). Therefore we get
Proposition 1.66. If write Z,(1) = @M@n, which is the Tate twist of Zy,

then

canonically

I /P ———— ] Ze(D). (1.36)
#P

As Gg /Ix ~ Gal(k/k) = G}, the action by conjugation of G, on I /Pk
gives the natural action on Z,(1).

1.3.3 The functions @ and V.
Assume L/K is a finite Galois extension and G = Gal(L/K). Set
ic: G—=N, s—op(s(z) —z). (1.37)

The function ig has the following properties:
(i) ig(s) > 0 and ig(1) = +o0;

(ii) i(;(s) >i+1<=seqGy;

(iii) ig(tst™!) = ia(s);

(iv) ig(st) > minfig(t),ic(s)}.

Let H be a subgroup of G. Let K’ be the subextension of L fixed by H.
Following Remark 1.61, we have

Proposition 1.67. For every s € H, ig(s) =ig(s), and H; = G; N H.

Suppose in addition that the subgroup H is normal, then the quotient
group G/H may be identified with the Galois group of K'/K.

Proposition 1.68. For every 6 € G/H,
) 1 )
ia/u(0) = > ials), (1.38)
s—0

where ' = ey /i is the ramification index of L over K'.

Proof. For § =1, both sides are equal to +00, so the equation holds.
Suppose 0 # 1. Let z(resp. y) be an Ok-generator of O (resp. Ok/). By
definition

e'ic/m(0) = vk (8(y) —y) = v (0(y) — y), and ig(s) = vr(s(z) — ).
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If we choose one s € (G representing J, the other representatives have the
form st for some ¢ € H. Hence it comes down to showing that the elements
a=s(y) —yand b= ][, py(st(xr) — x) generate the same ideal in Of.

Let f(X) =, ¢ X" € Ok/[X] be the minimal polynomial of z over the
intermediate field K’. For s € G, denote by s(f)(X) =, s(¢;)X*. Then

FX) = [TX = (@), s(HX) =[] (X = st(x)).

teH teH

As s(f) — f has coefficients divisible by s(y) — y, one sees that a = s(y) — y
divides s(f)(z) — f(z) = s(f)(x) = +b.

It remains to show that b divides a. Write y = g(z) as a polynomial in z,
with coefficients in Ok. The polynomial g(X) —y € Ok [X] has z as a root,
therefore

9(X) —y = f(X)h(X) with some h € Ok [X].

Transform this equation by s and substitute x for X in the result; ones gets
y — s(y) = s(f)(z)s(h)(x), which shows that b = +s(f)(x) divides a.

Let u be a real number > 0. Define GG,, := G; where i is the smallest integer
> u. Thus
s € G, <= ig(s) >u+1.

Put u
B(u) = /0 (Go : Go)~Ldt, (1.39)

where for —1 < u <0,

(G_1:Go)™t,  when u=—1;
1, when — 1 < u <0.

(GO : Gu) = {

Thus the function ¢(u) is equal to u between —1 and 0. For m <u < m +1
where m is a nonnegative integer, we have

1 .
P(u) = gfo(gl + g2+t gm + (u— m)gm+1), with g; = |Gi|.  (1.40)

In particular,

d(m)+1= 1 Xm:gi. (1.41)

Immediately one can verify

Proposition 1.69. The function @ : [-1,4+00) — [—1,+00) is continuous,
piecewise linear, increasing and concave, and

(1) #(0) =0, ¢(—1) = —1;
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(2) if denote by @, and P} the right and left derivatives of @, then

W) = gy P ={

Moreover, @ is characterized by these properties.

m, ifu ¢ Z;

1 .
GoGary TUEL

Proposition 1.70. &(u) = gio > min{ig(s),u+ 1} — 1.
seG

Proof. Let 8(u) be the function on the right hand side. It is continuous and
piecewise linear. One has #(0) = 0, and if m > —1 is an integer and m < u <
m + 1, then

Hence 0 = &.

Theorem 1.71 (Herbrand). Let K'/K be a Galois subextension of L/K
and H = G(L/K"). Then one has G (L/K)H/H = G,(K'/K) where v =
@L/K/('U,).

Proof. Let G = G(L/K), H = G(L/K'). For every s’ € G/H, we choose a
preimage s € G of maximal value ig(s) and show that

ic/u(s’) — 1=k (ig(s) — 1). (1.42)

Let m = ig(s). If t € H belongs to Hyp,—1 = Gp—1(L/K'), then ig(t) > m,
and ig(st) > m and so that ig(st) = m. If t ¢ H,,_1, then ig(t) < m and
ig(st) = ig(t). In both cases we therefore find that ig(st) = min{ig(t), m}.
Applying Proposition 1.68, since ig(t) = ig(t) and e’ = ep g = [Hol, this
gives

io/u(s) = el S ig(st) = el S min{ig (), m}.

teH teH

Proposition 1.70 gives the formula (1.42), which in turn yields
s € Gu(L/K)H/H < ig(s)—1>u
= Prpi(ic(s) — 1) = Oy (u) &= igryr(s’) =12 Opxi(u)
— Sl € GU(KI/K),’U = @L/K/(u)
Herbrand’s Theorem is proved.

Since the function @ is a homeomorphism of [—1,+00) onto itself, its in-
verse exists. We denote by ¥ : [—1,+00) — [—1,4+00) the inverse function of
@. The functions @ and ¥ satisfy the following transitivity condition:
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Proposition 1.72. If K'/K is a Galois subextension of L/ K, then

dsL/K = QSK’/K OQSL/K/ and WL/K = WL/K’ O!I/K//K.

Proof. For the ramification indices of the extensions L/K, K'/K and L/K’
we have e,/ = ex/ger k- From Herbrand’s Theorem, we obtain G,/ H, =
(G/H), with v =@ /g (u). Thus

1 1 1
|Gu| = |(G/H)v| |Hu‘
€L/K €K' /K €L/K’

The equation is equivalent to

1) = P 1 (0P 0 () = (Prcrpic 0 Prypaer)' (w).
As @1/ (0) = (Pxr/x © Pryk)(0), it follows that &1/ = Pgr/x 0 Pr k.
The formula for ¥ follows similarly.
We define the ramification groups in upper numbering by
G" := Gy, where u =¥ (v). (1.43)

Then G?™) = G,. We have G~ = G, G° = Gy and G? =1 for v > 0. We
also have

¥(v) = /OU[GO : GY)dw. (1.44)

The advantage of the ramification groups in upper numbering is that it is
invariant when passing from L/K to a Galois subextension.

Proposition 1.73. Let K'/K be a Galois subextension of L/K and H =
G(L/K'), then one has G*(L/K)H/H = G*(K'/K).

Proof. We put u = Vg /i (v),G" = Gk )k, apply Herbrand’s Theorem and
Proposition 1.72, and get

Y B e,
G H/H —GQL/K(U)H/H* GQL/K/(WL/K(U))

Y _ ! /
_G‘pL/K'(‘I’L/K/(U)) =G, =G o

The proposition is proved.

1.3.4 Ramification groups of infinite Galois extensions.

Let L/K be an infinite Galois extension of local fields with Galois group

G = Gal(L/K). Then G?, the ramification groups in upper numbering of G,
is defined by

GY .= li Gal(L'/K)". (1.45)

<_
L’/K finite Galois inside L
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Thus {G"} forms a filtration of G which is left continuous:
G =) av
w<v
Moreover, Herbrand’s Theorem remains true.

Proposition 1.74. Let L/K be an infinite Galois extension with group G.
If H is a closed normal subgroup of G, corresponding to the invariant field
LT =L'. Then

(1) If H is also open in G, then G¥ N H = HYc/#(®) where Yon =Yk
(2) In general, (G/H)" = G'H/H.

Proof. (1) As H is open in G,

G= lm G/N, H= lm H/N, G'= lm (G/N)".
N<H<G N<aH<1G N<H<G
N open in G N open in G N open in G

Let LV = L, consider the finite Galois extensions L”/L'/K, then (G/N)" N
H/N = (H/N)%/# () Passing to the limit, then G* N H = HYc/#®),

(2) If G/H is finite, for any normal open subgroup N of G contained in
H, by Herbrand’s Theorem, (G/H)" = (G/N)" - (H/N)/(H/N). Passing to
the limit, then (G/H)” = G'H/H in this case. In general,

(G/H)’=  Jm (G/M)’= lm G°M/M=G"H/H.
HaM<«G HaM<«G
M open in G M open in G

We thus have the proposition.

Definition 1.75. An Galois extension L/K is called an arithmetically profi-
nite extension and in abbreviation APF if for any v > —1, G¥ is an open
subgroup of G = Gal(L/K). .

If L/K is APF, then we can define

) = (GO GY)dw, if v > 0;
v, if —1<v<0.

As in the finite extension case, ¥r/x (v) is a homeomorphism of [~1, +00) to
itself which is continuous, piecewise linear, increasing and concave and satisfies
¥(0) = 0. Let &1,k be the inverse function of ¥. One can then define the
ramification group G, in lower numbering by

Gy = G?W, (1.47)

If the extension L'/L is APF and L/K is finite, then the transitive formulas
¢L’/K = QL/K OQSL’/L and !pL’/K = WL’/L o WL/K still hold.
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1.3.5 Different and discriminant.

Let L/K be a finite separable extension of local fields. The ring of integers
O is a free Ox-module of finite rank. The trace map Tr = Trp,x defines
a non-degenerate bilinear form on L which makes L self dual as a K-vector
space.

Definition 1.76. The different D, of L/K is the inverse of the dual
O -module of Oy, to the trace map inside L, i.e., ’DZ/IK s given by

@E}K ={z e L|Tr(zxy) € Ok forally € Or}. (1.48)
The discriminant 0,k is the ideal of K given by
O/ K = [@Z}K : O] = (det(p)) (1.49)

where p : ’DZ}K = O, is an isomorphism of O -modules and det p is under
any given K-basis of L.

For every z € 92/110 certainly Tr(z) € Ok; moreover, CDZ/IK is the maxi-
mal Op-module satisfying this property.

Suppose {e;} is a basis of O, over Ok, let {e}} be the dual basis of ’DZ/IK.
Define the isomorphism p by setting e; = p(e}), then

6/ = (det p)

and
det Tr(e;, e;) = det p - det Tr(e;, €f) = det p.

Thus the discriminant dy,/x is given by
6 x = (det Tr(eze;)) = (det(oj(e;)))? (1.50)

where o runs through K-embeddings of L into the separable closure K*® of

K. Note that (det p~!) is the norm of the fractional ideal @Z}K, thus

dr/k = Noyxk(Dr/K)- (1.51)
Proposition 1.77. Let a (resp. b) be a fractional ideal of K (resp. L), then
Tr(b) Ca<=bCa-Dp .
Proof. The case a = 0 is trivial. For a # 0,
Tr(b) C a <= a ! Tr(b) C Og <= Tr(a"'b) C Ok

= ahCD = bCa- D
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Corollary 1.78. Let M O L O K be finite separable extensions. Then
Dn/k =D Dryres Saayie = Oryi) ™ HNL e (Snay1).-
Proof. Repeating the equivalence of Proposition 1.77 to show that
¢C Dy <= CDrk Dy

Corollary 1.79. Let L/K be a finite extension of p-adic fields with ramifica-
tion index e. Let Dy = wy'. Then for any integer n, Tr(m}) = my where
r = [(m+n)/e], the largest integer < (m +n)/e.

Proof. Since the trace map is Og-linear, Tr(m?}) is an ideal in Ox. Now the
proposition implies that Tr(m7}) C m} if and only if

m7 C my - ’DZ}K =mjy ",
ie. if r < (m+n)/e.

Proposition 1.80. Let x € Oy, such that L = Klx], let f(X) be the minimal
polynomial of x over K. Then Dy, = (f'(x)) and dr)x = (N k f'()).

We first need the following formula of Euler:

Lemma 1.81 (Euler). Let n = deg f. Then

0, ifi=0,-+,n—2

1.52
1, ifi=n-—1. (1.52)

Te(a'/f'(2)) = {

Proof. Let ) (k = 1,---,n) be the conjugates of x in the splitting field
of f(X). Then Tr(z'/f'(xz) = >, % /f'(xx). Expanding both sides of the
identity

1 - 1
fx) ; f(@r)(X — z)

into power series of 1/X, and comparing the coefficients in degree < n, then
the lemma follows.

Proof (Proof of Proposition 1.80). Since {1,---,2" '} is a basis of Op, by
induction and the above Lemma, one sees that Tr(z™/f'(x)) € Ok for every
m € N. Thus 2/ f'(x) € @Z}K. Moreover, the matrix (a;;), 0 < ¢,j < n—1 for
a;; = Tr(z™9/ f'(x)) satisfies a;; = 0 fori+j <n—1land =1fori+j=n—1,
thus the matrix has determinant (—1)*("~Y/2, Hence 27 /f'(x),0 < j <n—1
is a basis of ’DZ}K.

Proposition 1.82. Let L/K be a finite Galois extension of local fields with
Galois group G. Then
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v (D) = ic(s) Z (IGil = 1)

s#1 . (1.53)
:[1 (1G] — 1)du = |Go|[1 (1 G¥| Vo
Thus -
ox(®Lx) = [1 (1 G*|)d. (1.54)

Proof. Let x be a generator of Op, over Ok and let f be its minimal polyno-
mial. Then Dy, is generated by f’(z) by the above proposition. Thus

vr(®r/k) = vo(f Z’UL (x — s(z )):Zig(s)
s#1 s#1
The second and third equalities of (1.53) are easy. For the last equality,

[ a=ieha= [ a- G e = o [ (G- au

(1.54) follows easily from (1.53), since v = IG—lo‘vL.

Corollary 1.83. Let L O M DO K be finite Galois extensions of local fields.
Then

& 1 1
<@ = [ (e ~ feaamr) & 0

Proof. This follows from the transitive relation Dy, = D /Dy kx and
(1.54).

1.4 Ramification in p-adic Lie extensions

1.4.1 Sen’s filtration Theorem.

In this subsection, we shall give the proof of Sen’s theorem that the Lie
filtration and the ramification filtration agree in a totally ramified p-adic Lie
extension. We follow the beautiful paper of Sen [Sen72].

Let K be a p-adic field with perfect residue field k. Let L be a totally
ramified Galois extension of K with Galois group G = Gal(L/K). Let e =
ec = vk (p) be the absolute ramification index of K.

If G is abelian, let (G)" := {¢" | g € G} and G|n] be the n-torsion
subgroup of G.

If G is finite, put

vg =inf{v |v >0,G" =1}, (1.56)
ug :=inf{u |u>0,G, =1}. (1.57)

Then
ug = Yq(ve) < |Glug. (1.58)
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Lemma 1.84. Assume L/K is a totally ramified finite Galois extension with
group G. There is a complete non-archimedean field extension L' /K’ with the
same Galois group G such that the residue field of K' is algebraically closed
and the ramification groups of L/K and L' /K’ coincide.

Proof. Pick a separable closure K* of K containing L, then the maximal
unramified extension K"* of K inside K*® and L are linearly disjoint over K.
Let K' = K™ and L' = LK™, then Gal(L'/K') = Gal(L/K). Moreover, if x
generates Op, as Ok-algebra, then it also generates O, as Og-algebra, thus
the ramification groups coincide.

Proposition 1.85. Suppose G is a finite abelian p-group. Then

v\p pv ; €G .
{(G) CGr, v (159
(GV)P =GvFea, ifv > 24

Proof. By the above lemma, we can assume that the residue field k is algebraic
closed. In this case, one can always find a quasi-finite field kg, such that k is
the algebraic closure of ko (cf. [Ser80], Ex.3, p.192). Regard Ky = W(ko)[%] as
a subfield of K. By general argument from field theory (cf. [Ser80], Lemma 7,
p-89), one can find a finite extension Ky of K inside K and a finite totally

ramified extension L; of K7, such that

(i) K/K; is unramified and hence L, and K are linearly disjoint over Kj;
(i) L1K = L.

Thus Gal(L;/K;) = Gal(L/K) and their ramification groups coincide. As

the residue field of K is a finite extension of kg, hence it is quasi-finite. The

proposition is reduced to the case that the residue field & is quasi-finite.
Now the proposition follows from the well-known facts that

p—1
UP = Upre, ifv> 2.

Ju

{Ug C Uy, ifv<-=e

hS]

and the following lemma.

Lemma 1.86. Suppose K is a complete discrete valuation field with quasi-
finite residue field. Let L/K be an abelian extension with Galois group G.
Then the image of U under the reciprocity map K* — G is dense in (G)™.

Proof. This is an application of local class field theory, see Serre [Ser80], The-
orem 1, p.228 for the proof.

Corollary 1.87. Suppose G is a finite abelian Galois p-group and denote G[n]

for the n-torsion subgroup of G. If vg < p’%leg, then vg > p™vg apm) for

allm>1; if vg > %eg, then vg = vgapp) + €a-
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Proof. If vg < 1%6@, then t,, = p "vg < p%leg, and (Gtmte)p™ =
GP"tmte = Gvete =1 for ¢ > 0, then G ¢ C G[p™] and thus vggpm] <
p~ Mg

If vg > p%leg, then t := vg — eq > p%leg, and (G'Te)P = Gitetes =
GVAte for € > 0. Thus ve = vg /G + €a-
Definition 1.88. We call a finite abelian Galois p-group G small if vg <
p’%leg, or equivalently, if (G*)P C GP* for all x > 0.
Lemma 1.89. If G is small, then for every m > 1,

ug > p"Hp — D)(GP™ : Glp))ug G- (1.60)

Proof. For every € > 0, we have

vG

vae
ug =%q(vg) = / (G: Gt)dt > / (G: Gt)dt
0 p~lug+te

>(vg —p~lvg —€)(G: GP ) > <UG‘ ' pTl - 5) (G : Glp]).

The last inequality holds since (Gp_1”G+5)p = 1 by Proposition 1.85. Then by
Corollary 1.87,

ug > ]%(G : Glpl)ve = " (p — 1)(G : Glpl)vgcpm-

Since ug/cpm) < (G : G[p™"])ve cpm) by (1.58), we have the desired result.

We now suppose G is a p-adic Lie group of dimension d > 0 with a Lie
filtration {G(n)}, which means that G(1) is a non-trivial pro-p group and that

Gn)=Gn+1) ={seG|s"eCGn+1)}
For n > 1, we denote
U =Ya/Gn), Un =VG/G(n)s  Un = UG G(n) = Pn(Un), €n = €g(n). (1.61)

Proposition 1.90. For each n > 1 we have G*NG(n) = G(n)?»®) forv > 0.
In particular,

QY — G(n)unJr(van)(G:G(n))’ for v > vy, (162)

i.e.,
Gt = G(n)Untten  fort > 0. (1.63)

As a consequence, forn, r > 1,

VG(n)/Glntr) = Un + (Unpr — 00 (G G(n)). (1.64)
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Proof. The first equality follows from Proposition 1.74. For v > v,, then
GY C G(n) and

U, (v) = Up(vp) + /U(G :G(n))dv = up + (v —vp)(G : G(n)).

n

NOW ¥ = UG (n)/G(ntr) IS characterized by the fact that G(n)” € G(n+r) and
G(n)"™ C G(n+r) for all € > 0, but & = v, is characterized by the fact
that G* € G(n +r) and G**¢ C G(n +r) for all € > 0, thus (1.64) follows
from (1.62).

Proposition 1.91. There exists an integer ny and a constant ¢ such that for
all n > nq,
Unt1 =vUp +€ and v, =ne+c.

Proof. By (1.63), we can replace G by G(ng) for some fixed ng and G(n) by
G(no +n). Thus we can suppose G = exp ., where . is an order in the Lie
algebra Lie(G) such that [£,.Z] C p’.% and that G(n) = expp™.Z. Then
(G : G(n)) = p™® for all n, and for » < n + 1, there are isomorphisms

G(n)/G(n+7) 2% pn 2 )"t P 2t = (L) L) (1.65)

Thus G(n)/G(n + d + 3) is abelian for sufficient large n.

If G(n)/G(n +r) is abelian and small for > 2, then apply Lemma 1.89
with finite Galois group A = G(n)/G(n + r), m = r — 1. Note that in this
case Upr = Ug and Upi1 = ug gppr-1], then

UnAr —9—d Un+1
— 2 -p T
Cn+r €n+1

But note that the sequence u, /e, < ﬁ is bounded, then for r = d + 3,

G(n)/G(n+ d+ 3) can not be all small.
We can thus assume G(ng)/G(n1 +1) is not small, then by Corollary 1.87,

VG (no)/G(n1+1) = VG(no)/G(n1) T €nos

and by (1.64), then
Uny+1 = Up, T+ €.

Hence G(n1)/G(ny + 2) is not small and vy, 12 = vp,4+1 + e. Continue this
procedure inductively, we have the proposition.

Theorem 1.92. There is a constant ¢ such that
Grete ¢ G(n) Cc G"™¢ (1.66)

for all n.
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Remark 1.93. The above theorem means that the filtration of G by upper
numbering ramification subgroups agrees with the Lie filtration. In particular
this means that a totally ramified p-adic Lie extension is always APF.

If G = Z,, the above results were shown to be true by Wyman [Wym69],
without using class field theory.

Proof. We can assume the assumptions in the first paragraph of the proof of
Proposition 1.91 and (1.65) hold. We assume n > n; > 1.

Let ¢; be the constant given in Proposition 1.91. Let ¢y = ¢; + 2

[0

p—1

some constant a > 1. By Proposition 1.91, G"**t¢% C G(n) for large n.
By (1.63),

for

Gne—i—co _ Gvn-&-;‘fﬁl _ G(n)“ﬂ*?i’i,
Apply Proposition 1.85 to the finite abelian Galois group A = G(n)/G(2n+1),

L aen en
since up, + 75§ > S, we have

(GneJrCo)PG(Qn + 1) = G("“)HCOG(?n + 1) (167)

Put
M, = p "log(G"T°G(2n)/G(2n)) C L /p" L.

Then (1.67) implies that M, is the image of M,, 1 under the canonical map
LptL — L pn L. Let

M:yLnMnC.f.

n

Then M,, = (M + p™.L)/p".L. We let
I=Q,Mn.Z.

Since the ramification subgroups G™¢*¢0 are invariant in G, each M,, and

hence M is stable under the adjoint action of G on .Z. Hence Q,M, as a

subspace of Lie(G), is stable under the adjoint action of G, hence is an ideal of

Lie(G) = Qp-Z. As aresult, I is an ideal in £. Let N = exp [ and G = G/N.

Then G is a p-adic Lie group filtered by G(n) = exp p".Z where £ = £/I.
A key fact of Sen’s proof is the following Lemma:

Lemma 1.94. dimG =0, i.e., G = 1.

Proof (Proof of the Lemma). If not, we can apply the previous argument to
G to get a sequence 7,, and a constant ¢; such that 0,, = ne + ¢ for n > n;.
But on the other hand, we have

éne-‘rCo =G" T N/N C G(2n)N/N = G(2n)

since
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Gt G(2n)/G(2n) = exp(p™M,,)
Cexp((p"] +p*" L) [p*"Z) = N(n)G(2n) [G(2n).

Hence for all n > ny and 71, one gets ne + ¢y > Vs, = 2ne + ¢1, which is a
contradiction.

By the lemma, thus we have I = £, i.e., p"°.¥ C M for some ng. Then

for large n,
PRLIL C (pL + M) [p" L = M,

Applying the operation exp op™, we get
G(n+ng)/G(2n) C G"TG(2n)/G(2n).

Thus Gt contains elements of G(n + ng) which generate G(n + ng)
modulo G(n + ng + 1). It follows that G™*t% > G(n 4 ng) as G"t0 =
im G"eTc0G(m)/G(m) is closed. This completes the proof of the theorem.

1.4.2 Totally ramified Z,-extensions.

Let K be a p-adic field and K, be a totally ramified extension of K with
Galois group I" = Z,. Let K,, be the subfield of K., which corresponds to
the closed subgroup I, = I'?" = p"Z,. Let vy be a topological generator of I'.
Then 7, :=~?" is a topological generator of I',.

For the higher ramification groups I'¥ of I'" with the upper numbering,
suppose I'V = I, for v, < v < v,41, then by Proposition 1.91 or by Wyman’s
result [Wym69], we have v,41 = v, + e for n > 0. By Herbrand’s Theorem
(Theorem 1.71),

LTy, ifvp <v<wigr, @ <n;

) (1.68)

otherwise.

Gal(Kn/K)" = I'""T, /T, = {

)

Proposition 1.95. If L be a finite extension of K., then
TTL/KOO (OL) D) mg_ -

Proof. Replace K by K, if necessary, we may assume L = LyK such that
Lo/K is finite and linearly disjoint from K., over K. We may also assume
that Lo/ K is Galois. Put L,, = LoK,,. Then by (1.55),

o0

UK(QL"/K")Z/ (| Gal(Ko/K)"| ™" — | Gal(Ly /)| ) do.

-1

Suppose that Gal(Lo/K)" = 1 for v > h, then Gal(L/K)" C I' and
Gal(L,,/K)" = Gal(K,,/K)" for v > h. We have

h
vk (Dr,/k,) g/ | Gal(K,,/K)"| 'dv — 0
-1

as n — oo by (1.68). Now the proposition follows from Corollary 1.79.
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Corollary 1.96. For any a > 0, there exists x € L, such that
vg(x) > —a and Trp /() = 1. (1.69)

Proof. For any a > 0, find o € O such that vg(Try k. _(c)) is less than a.
Let z = m, then x satisfies (1.69).

Remark 1.97. Clearly the proposition and the corollary are still true if replac-
ing Ko by any field M such that Ko, C M C L. (1.69) is called the almost
étale condition.

Proposition 1.98. There is a constant ¢ such that
vk (DK, k) =en+c+p "a, (1.70)
where a,, is bounded.

Proof. We apply (1.68) and (1.54), then

vk (Dk, k) = / (1- \Gal(Kn/K)”rl)dv =en+c+p "ay.

-1

Corollary 1.99. There is a constant ¢ which is independent of n such that
forall x € K,

v (p " Trg, k(7)) > vk () —c. (1.71)

Proof. By the above proposition, vk (D, ., /k,) = e+p~"b, with b, bounded.
Let O, be the ring of integers of K, and m, its maximal ideal. Suppose
OKpir JKn = mle_l. By Corollary 1.79, we have

TrKn+1/Kn, (miLJrl) = mgr.m
where j = [%}. Thus

n

vk (07 T, 1/, (7)) 2 vk (2) — ap™
for some a independent of n. The corollary then follows.

Definition 1.100. For n > 0, Tate’s normalized trace map R,, : Koo — K,
is the map
Ru(z) =p " Trg, ... /K, (@) if £ € Kpym. (1.72)

Denote Ry(x) = R(x).

Remark 1.101. Using the transitive properties of the trace map, one can easily
see the definition is indenpent of the choice of m.

Proposition 1.102. There exists a constant d > 0 such that for all x € K,

v (r — R(z)) > vk (ye — ) — d. (1.73)
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Proof. We prove by induction on n > 1 the inequality
vg(z — R(z)) > vg(yz —x) — ¢y, fz € K, (1.74)

with ¢ = e, ¢41 = ¢ + ap™" for some constant a > 0.
For x € K41, then

p—1 p—1
pr — TrKn+1/Kn (1') =pr — Z’Y;l’ = Z(l + Yt ’Y'f;l)(l - fYH)x’
=0 =1

thus
vz —p? Trg, .\ /K, (2) > vr (T —ymr) — e

In particular, let ¢; = e, (1.74) holds for n = 1.
In general, for x € K, 11, then

R(Trg, ., /k, ®) = pR(z), and (y — 1) Trg, ., /K, (v) = Trg, /K, (Y2 — ).
By induction,
vK(TrKnH/Kn (z) — pR(x)) EUK(TrKn“/Kn (v —2)) —cn
>uk (7w — 2) + e — ap™ — e,
thus
vg(z — R(z)) > min(vk (z —p ! Tree, /K, (), vk(yx —x) — ¢, —ap™ ")

> vk (yx — x) —max(cy, ¢, +ap™")
which establishes the inequality (1.74) for n + 1.

Remark 1.103. If we take K,, as the ground field instead of K and replace
R(z) by R, (z), from the proof the corresponding inequality with the same
constant d holds.

By Corollary 1.99, the linear operator R,, is continuous on K, for each n
and therefore extends to K, by continuity. Denote

X, = {z € Koo, Rn(z) = 0}. (1.75)

Proposition 1.104. For each n, X,, is a closed subspace of I/(\'Oo, Moreowver,

(1) Koo = K, ® X,
(2) The operator v, — 1 is bijective on X,, and has a continuous inverse such
that
vk (v = 1)7H(2)) 2 v (2) — d
forxz e X,.
(3) If X is a principal unit which is not a root of unity, then v, — A has a
continuous itnverse on IA(OO.
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Proof. 1t suffices to prove the case n = 0.

(1) follows immediately from the fact that R = R o R is idempotent.

(2) For m € N, let Ko = K, N Xo, then K,,, = K & K, o and X,
is the completion of K, o = UK,, o. Note that K, ¢ is a finite dimensional
K-vector space, the operator v — 1 is injective on K, o, and hence bijective
on K, ¢ and on K o. By Proposition 1.102, then

v ((y=1)7y) > vk (y) —d

for y = (y — 1)z € K. Hence (v — 1)7! extends by continuity to X, and
the inequality still holds.

(3) Since v — A is obviously bijective and has a continuous inverse on K
for A # 1, we can restrict our attention to its action on Xy. Note that

Y=A=(y=1)(1—(y—1) " r=1)),

we just need to show that 1 — (y — 1)7*(A — 1) has a continuous inverse. If
vi (A—1) > d for the d in Proposition 1.102, then vg ((y—1)"1(A—1)(x)) > 1
in Xy and

I-(r=D7'A=-1D=> (r-D'A -1

k>0

is the continuous inverse in Xy and v — A has a continuous inverse in X.

In general, as d is not changed if replacing K by K,, we can assume
v (N — 1) > d for n > 0. Then v*" — AP" has a continuous inverse in X
and so does v — A.

1.5 Continuous Cohomology

1.5.1 Abelian cohomology.

Let G be a group.

Definition 1.105. A G-module is an abelian group with a linear action of
G. If G is a topological group, a topological G-module is a topological abelian
group equipped with a linear and continuous action of G.

Let Z[G] be the ring algebra of G over Z, that is,

ZIG] = {Z agg : ag € Z,a, = 0 for almost all g}.
geG

A G-module M may be viewed as a left Z[G]-module by setting

(Z ag9)(z) = Zagg(x),for allag €Z, g€ G, v € M.

The G-modules form an abelian category.
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Let M be a topological G-module. The abelian group of continuous n-
cochains CZ (G, M) is defined as the group of continuous maps G" — M
for n > 0 and C° (G, M) := M. Let

dy : C%

cont

(G, M) — Ol (G, M)
be given by

(doa)(g) = g(a) —
(d1f)(g1,92) = 91(f(g2)) — f(g192) + f(g1);
(dnf)(gl,g% T 7gnvgn+1) = gl(f(QQa T 7gn7gn+1))

+ (=1 (- Gim1yGiGit1s Gitas )

NE

1
)n+1f(gl7g2> e ugn)

We have d,,y1d,, = 0, thus the sequence C2. . (G.M):

+

@M% ... en (G

0
Ccont cont

(Gv M) 4 Cclont (Gv M) 4 02

cont
is a cochain complex.
Definition 1.106. Set

(G, M) = Kerd,, Bl (G, M) =Imd,_1,
G, M) = Z"/B" = H"(C*(G, M)).

cont

Cont(

These groups are called the group of continuous n-cocycles, the group of
continuous n-coboundaries and the n-th continuous cohomology group of M
respectively.

Proposition 1.107. For n = 0,1, one has

HY (G, M) = G:{a6M|g( ) =a, for all g € G}, (1.76)

{f:G— M| f continuous, f(g192) = g1f(g2) + f(g1)}
{sa=(9g—~g-a—a):ae€ M}

(G, M) =

cont

(1.77)

Corollary 1.108. When G acts trivially on M, then

(G,M)=M, H.

cont

(G, M) =Hom(G, M).

cont

The cohomological functors H"(G, —) are functorial. If n : My — Ms is
a morphism of topological G-modules, then it induces a morphism of com-
plexes C3 (G, My) = C2 . (G, M3), which in turn induces morphisms from

cont
cont(G Ml) (resp Bgant(G Ml)’ resp. cont(G Ml)) to chont(G’MQ) (resp.
COnt(G M2) resp. Hcont(G)M2))'
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Proposition 1.109. For a short exact sequence of topological G-modules

0— M — ML M —0,
then there is an exact sequence

d
0— M= MY — M'S S H .

(G,M') — H}

cont

(G, M) — H

cont

(G, M"),

where for any a € (M")%, §(a) is defined as follows: choose x € M such that
j(z) = a, then define §(a) to be the continuous 1-cocycle g — i~ 1(g(z) — x).

Proof. Note that for any g € G, j(g9(x) —z) = g(j(x)) — j(z) = g(a) —a =0,
thus g(z) — = € Im i, so that i~ !(g(z) — =) is meaningful.
The proof of the exactness is routine. We omit it here.

ont(G, —) is left exact. In gen-
eral, the category of topological G-modules does not have sufficiently many
injective objects, so it is not possible to have a long exact sequence involving
all H™.

However, for the following two extremely useful cases, a short exact se-
quence do induce a long exact sequence involving all higher continuous coho-
mology groups.

From the above proposition, the functor H?

(A) G is a group endowed with the discrete topology. This is the usual group
cohomology. By convention,

Hn(Gv M) = Hg)nt(GaM)'

(B) G is a profinite group and the modules are discrete G-modules. Here we
call M a discrete G-module if the subgroup G, = {g € G | g(a) = a} for
all a € M is open in G. By convention, again set

H"(G,M) := H} .(G, M).
The inflation map then induces a natural isomorphism

lim H"(G/H,M") = H"(G,M). (1.78)
HHoqun
Ezample 1.110. If K is a field and L is a Galois extension of K, then G =
Gal(L/K) is a profinite group and H"(G, M) = H"(L/K, M) is the so-called
Galois cohomology of M. In particular, if L = K* is a separable closure of K,
we write H"(G, M) = H"(K, M).

Remark 1.111. If j admits a continuous set theoretic section s : M" — M,
one can define a map

8t HY (G, M"Y — HZTHG, M), foralln € N

cont

to get a long exact sequence (ref. Tate [Tat76]).
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1.5.2 Non-abelian cohomology.

Let G be a topological group. Let M be a topological group which may
be non-abelian, written multiplicatively. Assume M is a topological G-group,
that is, M is equipped with a continuous action of G such that g(xy) =
g(x)g(y) for all g € G, x,y € M. From now on, we denote g(z) by x9, and
denote a continuous map ¢ : G — M by (cq)gec Where ¢4 = c(g).

The 0-th cohomology is defined by

H (G, M) =M :={x e M|z =z forall g€ G} (1.79)
To define H', we first define the set of continuous 1-cocycles

1
Zcont

(G, M) = {c = (cg) continuous | ¢gp, = c4cj }. (1.80)

If ¢, € ZL . (G, M), we say that ¢ and ¢’ are cohomologous if there exists
a € M such that c; = a~lcga9 for all g € G. This defines an equivalence
relation for the set of cocycles. The 1-st cohomology is defined by

Hclont(Gv M) = Zl

cont

(G, M) /(cohomologous relations). (1.81)

Note that H (G, M) is actually a pointed set with the distinguished point

being the trivial class ¢ = (1). We call H} (G, M) (abelian or non-abelian)
trivial if it contains only the trivial element.
The above construction is functorial. If n : M; — M is a continuous

homomorphism of topological G-modules, it induces a group homomorphism
M — Mg
and a morphism of pointed sets

Hclont<G7 Ml) - Hclont(G7 MQ)

For a sequence X Ay B 7 of pointed sets which means that A,y are
morphisms of pointed sets, it is called exact if A(X) ={y € Y | u(y) = 20},
where zq is the distinguished element in Z.

Proposition 1.112. Let 1 — M’ - M 2y M" 1 be an ezact sequence

of continuous topological G-groups. Then there exists a long exact sequence of
pointed sets:

1— MG MG B e S gyG, M) S HY (G, M) D HY(G, M),

where the connecting map 0 is defined as follows: Given ¢ € M"C, pickb € M
such that j(b) = c¢. Then

3(e) = (i1 (b71b))gec-
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Proof. We first check that the map § is well defined. First, j(b=109) = ¢~ 1c9 =
1, then b=109 € Kerj = Imi, a; = i~ (b7109) € M’. To simplify notations,
from now on we take i to be the inclusion M’ < M. Then

agh = b1 =717 - (b7 10" = agaf,

thus (a4) is a 1-cocycle in M. If we choose b" other than b such that j(b') =
j(b) = ¢, then b’ = bm for some m € M’, and

a; =V =m o ImY = m T ta,m

is cohomologous to ag.

Now we check the exactness:

(1) Exactness at M’C. This is trivial.

(2) Exactness at M Y. By functoriality, joip = 1, thus Imiy C Ker jo. On
the other hand, if jo(b) = 1 and b € MY, then j(b) =1 and b€ M' N MC =
MG,

(3) Exactness at M"%. If ¢ € jo(B%), then ¢ can be lifted to an element
in MY and §(c) = 1. On the other hand, if §(c) = 1, then 1 = a, = b=1b9 for
some b € j7!(c) and for all g € G, hence b= b9 € MC.

(4) Exactness at H*(G,M’). A cocycle (ay) maps to 1 in H'(G, M) is
equivalent to say that a, = b=1b9 for some b € M. From the definition of 4,
one then see 10 = 1. On the other hand, if a;, = b='b° for every g € G, then
Fj(b71b9) = j(a,) = 1 and j(b) € M"Y and §(j(b)) = (ay).

(5) Exactness at H'(G, M). By functoriality, jii; = 1, thus Imi; C Ker j;.
Now if (by) maps to 1 € H*(G, M"), then there exists ¢ € M”, ¢c=1j(by)c? =1
for all g € G. Pick b’ € M such that j(b') = ¢, then j(b'"'by0'9) = 1 and
(V' "1bgb'9) = (ay) is a cocycle of M.

We adopt the same conventions as in the abelian case. If G is endowed
with the discrete topology, or if G is a profinite group and M is a discrete G-
module (i.e., M is endowed with the discrete topology and G acts continuously
on M), then HZ (G, M) is simply denoted as H™(G, M). If G is the Galois
group of a Galois extension, we again have Galois cohomology.

Let G be a topological group and let H be a closed normal subgroup
of G, then for any topological G-module M, M is naturally regarded as an
H-module and M a G/H-module. Then naturally we have the restriction
map

res: H} (G, M) — H}

cont (H7 M)

Given a cocycle (ag) : G/H — M* for any g € G, just set a;, = ag, then (ay)

is a 1-cocycle in G with values in M C M, thus we have the inflation map
Inf: H (G/H MYy — H (G, M).

cont

Proposition 1.113 (Inflation-restriction sequence). One has the follow-
ing ezact sequence

Iif) Hgont(Ga M) g Hl

11— Hclont(G/H’ MH) cont(H’ M) (1'82)
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Proof. By definition, it is clear that the composition map reso Inf sends any

element in H} (G/H, M) to the distinguished element in H} ,(H, M).
(1) Exactness at HY (G/H,MH): If (ay), = (ag), is equivalent to the

distinguished element in H'(G, M), then a;, = m™'m?¢ for some m € M, but
forany h € H, ag = agp, thusmd = (m")9, thus m = m” and hence m € MH
so (ag)z is cohomologous to the trivial cocycle from G/H to M*.

(2) Exactness at HL (G, M): If a : G — M is a cocycle whose restriction
to H is cohomologous to 1, then a;, = m~!m" for some m € M and all h € H.
Let a), = may(m™~")9, then a’ is cohomologous to a and aj, =1 for all h € H.
By the cocycle condition, then aj, = a'ga;f = ay, if h € H. Thus aj, is constant
on the cosets of H. Again using the cocycle condition, we get aﬁlg = a’gh for
all h € H, but hg = gh' for some h' € H, thus aj, = a'gh for all h € H. We

therefore get a cocycle (ag = af)) : G/H — M* which maps to a.

At the end of this section, we introduce the following classical result:

Theorem 1.114 (Hilbert’s Theorem 90). Let K be a field and L be a
Galois extension of K, finite or not. Then

(1) HY(L/K,L) =0;
(2) HY(L/K,L*) = 1;
(3) Moreover, for alln > 1, HY(L/K,GL,(L)) is trivial.

Proof. It suffices to show the finite extension case. (1) is a consequence of
normal basis theorem: there exists a normal basis of L over K.

For (2) and (3), we have the following proof which is due to Cartier (cf.
Serre [Ser80], Chap. X, Proposition 3).

Let ¢ be a cocycle. Suppose z is a vector in L™, we form b(z) =

cs(s(x)). Then b(x), + € K™ generates L™ as a L-vector space.
seGal(L/K)
In fact, if w is a linear form which is 0 at all b(z), then for every h € L,

0= ub(he) = 3 uleos(h)s(@) = 3 s(hyule, (s(x))-

Varying h, we get a linear relation of s(h). By Dedekind’s linear independence
theorem of automorphisms, u(css(z)) = 0, and since ¢ is invertible, u = 0.

By the above fact, suppose z1,--- ,x, are vectors in L™ such that the
y; = b(x;)’s are linear independent over L. Let T be the transformation matrix
from the canonical basis e; of L™ to x;, then the corresponding matrix of
b = > css(T) sends e; to y;, which is invertible. It is easy to check that
s(b) = ¢; b, thus the cocycle c is trivial.






2

£-adic representations of local fields: an
overview

2.1 f-adic Galois representations

We let G = Gal(L/K), the Galois group of a Galois extension L/K,
equipped with the natural profinite topology.

2.1.1 Definition and basic properties.

Definition 2.1. Let E be a topological vector field. A continuous linear rep-
resentation of G with coefficients in F or a continuous FE-representation is
a finite dimensional E-vector space V with induced topology equipped with a
continuous linear action of G, equivalently, it is a continuous group homo-
morphism

p: G — Autg(V).

The dimension of a representation is its dimension as an E-vector space.
If moreover, G = Gk 1is the absolute Galois group of the field K, such a
representation of G is called a Galois representation of K.

Remark 2.2. (1) If dim V' = d, one has an isomorphism Autg(V) = GL4(FE)
under a given E-basis of V', hence p extends to a homomorphism G — GL4(V).
However this extension depends on the choice of the basis.

(2) If E is endowed with the discrete topology, then the continuous con-
dition means that p factors through a suitable finite Galois extension F' of K
contained in L:

G £ Autg (V).

N

Gal(F/K)

(3) Assume that E is a completion of a number field. Then either £ = R,
C or a finite extension of Qy for a suitable prime number /.
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(i) If E = R or C, then p is continuous if and only if Ker (p) is an open normal
subgroup of G.

(ii) If E is a finite extension of Q, of degree d and V is an E-linear repre-
sentation of G of dimension h, by the inclusion Autg (V) C Autg,(V), V
is naturally viewed as a Qg-representation of dimension hd and F —
Autg, (V). Conversely, if V' is a Qg-linear representation of G to-
gether with an embedding £ < Autg,(¢(V), then V is viewed as an
E-representation of G.

Definition 2.3. An (-adic representation of G is a finite dimensional Q-
vector space equipped with a continuous and linear action of G.

In particular a representation of Gy is called an f-adic Galois representa-
tion of K.

Definition 2.4. A Z,-representation of G is a finitely generated Zy-module,
equipped with a linear and continuous action of G.

Ezample 2.5. (1) The trivial £-adic representation is Qg with trivial G-action.
The trivial Z,-representation is Zy.
(2) A Zy-representation killed by ¢ is nothing but an Fy-representation.

Example 2.6. If V is a continuous f-adic representation of G of dimension
1, write V' = Que, then g(e) = n(g)e. The map g — n(g) is a continuous
homomorphism 1 : G — Q. Conversely, given 1 : G — Q/, then Qy - e with
the G-action g(e) = n(g)e is an f-adic representation of G of dimension 1. If
G = Gk, we let Q(n) be the f-adic Galois representation of K determined
by 7.

Similarly, a free Zg-representation of rank 1 is uniquely determined by
a continuous homomorphism 7 : G — Z;. We let Z;(n) be the free Z,-
representation of Gk determined by 7.

Recall a (full) lattice in a Qg-vector space W is a free Zy-submodule of W
with generators forming a basis of W.

Lemma 2.7. For any ¢-adic representation V' of G, there exists a lattice T
of V' which is stable by G-action and thus a free Zg-representation of G. In
particular, there exists a basis of V', such that p : G — Autg, (V) = GL4(Qy)
factors through GLg4(Zy).

Proof. Suppose V is an ¢-adic representation. Let Ty be a lattice of V', then for
every g € G, g(Tp) = {g(v) | v € Ty} is also a lattice. Moreover, the stabilizer
H = {g€ G| yg(Tp) =To} of Ty is an open subgroup of G and hence G/H is
finite, the sum
T=> g(Tp)
geG

is a finite sum. 7" is again a lattice of V, and is stable under G-action, hence
is a Zg-representation of G. If {e1,--- ,eq} is a basis of T over Zj, then it is
also a basis of V over Qy, thus
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G \ ? GL4(Qy).
GLq4(Zy)

Remark 2.8. On the other hand, given a free Zs-representation T' of rank d of
G, we can get a d-dimensional f-adic representation V' by

V=Q®z,T, gAot)=2g(t), N€Q teT.

For all n € N, G acts continuously on T/¢"T with the discrete topology.
Therefore we have

p: G — AutZé (T) ('1 GLd(Zé))
Aut(T/0"T) (=~ GL4(Z/0"7))
since T/0"T ~ (Z/"Z)" and T = lim T'/¢"T. The group H, = Ker (p,) is a
neN
normal open subgroup of G and Ker (p) = (| H, is a closed subgroup.

neN
As is well-known from linear algebra, one can define the direct sum, the

tensor product, the dual, the symmetric power and the exterior power of
vector spaces. We can build new representations starting from old ones:

Definition 2.9. Suppose V1, Vi and Vs are £-adic representations of G.

(1) The direct sum V4 @ Vo of Vi and Vy is the vector space Vi @ Va, together
with the G-action
g(v1,v2) = (gv1, gva). (2.1)
(2) The tensor product Vi @ Vo of Vi and Va is the vector space Vi ®q, V2
together with the G-action

g(v1 @ v2) = gu1 ® gua. (2.2)

(3) The dual representation V* of V' is the dual vector space Zg,(V,Qe) of
V' together with the G-action

g-o=@wr g " o). (2.3)

(4) The r-th symmetric power Symg, V' of V' is the r-th symmetric power
vector space of V' together with the inherited G-action from tensor products.

(5) The r-th exterior power /\&é V of V is the r-th exterior power vector space
of V' together with the inherited G-action from tensor products.

Remark 2.10. For finite free Zy-modules T', T} and T5, one can define direct
sum Ty & T, tensor product T; ®z, Ts and dual T* = 2%, (T, Z;). Equipped
with the obvious G-actions, we obtain the corresponding direct sum, tensor
product and dual as free Z,-representations.
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2.1.2 Examples of ¢-adic Galois representations of K.

Assume that K is a field, K* is separable closure of K and G =
Gal(K*/K).

(1). The Tate module of the multiplicative group G,;,.

Consider the exact sequence

-
1 — ppn (K®) — (K°)¢ 2225 (K°)X — 1,

where for a field F,
pin(F)={a€ F|a" =1} (2.4)
Then pyn (K®) ~ Z /"7 if char K # ¢ and ~ {1} if char K = {. If char K # ¢,
the homomorphisms
Hyn+1 (KS) — I.ALZH(KS), a —r ae
form an inverse system, thus define the Tate module of the multiplicative group
Gm

To(Gpm) = lim pagn (K°). (2.5)
neN

Ty(Gy) is a free Zy-module of rank 1. Fix an element t = (g, )nen € Te(Gp)
such that

eo=1, e1 #1, sﬁﬂ =e,.
Then Tg(Gm) = th with

A-t=(epr) An € Z, A=\, mod ("Zy.

neN’
For any g € Gk, then g(t) = x(g)t, with the cyclotomic character
X:GK—>Z;. (26)

Thus Ty(G,) = Ze(x) is a free Zy-representation of Gi of rank 1. In conven-
tion, we write

Ty(Gm) = Ze(1), Ve(Gm) = Qe(1) = Q¢ ®z, Ze(1). (2.7)
=17

Set Z¢(—1) ¢(1)*, and for r € Z, set
Ze(1)®T, ifr>0;
Z(r) = Let" = { Ze, if r = 0; (2.8)
Zg(—1)®_r, if r <0,
Qe(r) = Q¢ - t" = Q¢ ®z, Zy(r). (2.9)

Then g(t") = x"(g) - t” for all g € Gk, and
Zy(r) = Ze(x"),  Qe(r) = Qe(X").

These representations are called the Tate twists of Zy. Moreover, for any ¢-adic
representation V, V(r) =V ®q, Q¢(r) are the Tate twists of V.
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(2). The Tate module of an elliptic curve.

Assume char K # 2,3. Let f(X) € K[X], deg(f) = 3 such that f is
separable, then
f(@) = AMX —n)(X = a)(X — as)

with distinct roots aq, as, ag € K. Let E be the corresponding elliptic curve
Y2 = f(X). Then

B(K®) = {(z,y) € (K*)* | y* = f(2)} U{oo}, where O = {co}.

The set E(K?) is an abelian group on which G acts. One has the exact se-
quence

0 —s E["] — B(K*) 25 B(K®) — 0,
where E[¢{"] = {P € E(K?®) | {"P = O}. If { # char K, then E[{"]
(Z/0"7Z)?. 1f £ = char K, then cither E[f"] = Z/¢"Z in the ordinary case, or
E[¢"] = O in the supersingular case.
With the transition maps

I

E["TY — E[¢"], P+ (P,
the Tate module of E is defined as
Ty(E) = l&nE[ﬁn] (2.10)

n

The Tate module T;(E) is a free Zs-module of rank 2 if char K # ¢; and
1 or 0 if char K = £. Set Vy(E) = Q; ®z, T¢(E). Then V,(E) is an f-adic
representation of G of dimension 2, 1,0 respectively.

(3). The Tate module of an abelian variety.

An abelian variety is a projective smooth variety A equipped with a group
law

AxA— A
Set dim A = ¢g. Then

(i) A(K?) is an abelian group;
(ii) The ¢"-torsion group A[("] = (Z/0"Z)* if char K # ¢, and A[("] =
(Z)e"Z)" with 0 < r < g if char K =/,

We then get the Z.ll and ¢-adic Galois representations of A:

729 if char K # ¢;
Ty(A) =lim A" = { T8 ’
«(4) o 1] {Zz, if char K = ¢;

W<A) =Q Rz, Tg(A) (2.12)

(2.11)
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(4). £-adic étale cohomology.

Let Y be a proper and smooth variety over K*® (here K* can be replaced
by a separably closed field). One can define for m € N the cohomology group

H™ (Y, Z/0"Z),

which is a finite abelian group killed by £”. Then the inverse limit ]&n H™(Yet, Z/0"7),
defined by the natural transition maps

H™(Yer, Z)0"Z) — H™ (Yoo, Z/ (" L),
is a finitely generated Z,-module. Define
HE(Y,Qe) = Q¢ ®z, lim H™ (Yer, Z/0"Z),

then HZ (Y, Q) is a finite dimensional Q,-vector space.
Let X be a proper and smooth variety over K, and

Y = Xg: = X ® K° = X Xgpec k Spec(K®).
Then H}}(Xgs,Qy) gives rise to an ¢f-adic representation of G .

Example 2.11. If X is an abelian variety of dimension g, then
m m *
HE (X, @) = N\ (X)),
If X =P%, then

0, if m is odd or m > 2d;
Qy (—%) , ifmiseven, 0 <m < 2d.

H™(P%.,Q) = {
Remark 2.12. This construction extends to more generality and conjecturally
to motives. To any motive M over K, one expects to associate an f-adic
realization.

2.2 f-adic representations of finite fields

In this section, let p be a prime, K = F, be the finite field of order ¢ = p-
power and K*® be a fixed algebraic closure of K. Let o = (z — %) be
the Frobenius and 7x = ¢’ be the geometric Frobenius of K, which are
both topological generators of the absolute Galois group G Kz. Let K, be the
unique extension of K of degree n inside K°.
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2.2.1 f-adic Galois representations of finite fields.

As 7k (x) is a topological generator of Gk, an f-adic representation p :
Gr — Autg,(V) is uniquely determined by p(7x) = u € Autg,;(V): for
n€Z, p(tp) =u"; for n € Z,

p(tp) = lim u™, (2.13)

meEZ
men

which means the limit must make sense.

Lemma 2.13. Given any u € Autg,(V). There ezists a continuous homo-
morphism p 1 Gg —— Autg, (V) such that p(Tx) = w if and only if the
etgenvalues of u in a chosen algebraic closure of Qp are £-adic units, i.e.
P,(t) = det(u — t Idy) as a polynomial in Qq[t] must have coefficients in Z;
and the constant term P,(0) € Z; is a unit.

Proof. Choose a basis {ey,--- ,eq} of V, then u is represented by a matrix A
in GL4(Q¢). We then write A = P71UP with P,U € GL4(Q,) and U is the
Jordan canonical form of A. The limit in (2.13) exists if and only if lim U™

meZ
me—=n
exists.
If there exists p such that p(7x) = u, then limits of the form limZ U™ make
me
m—n

sense, which implies the diagonal elements of U (the eigenvalues of u) can not
have absolute value > 1. Apply the argument to «~!, then the eigenvalues of
u~! can not have absolute value > 1. Hence the eigenvalues of u must all be
{-adic units.

If all eigenvalues of w are units, it is easy to check the limit lim U™ exists,

meZ
m—n

so does the limit in (2.13).
Definition 2.14. The characteristic polynomial of the representation V is
the polynomial Py (t) = det(Idy — t7x).
We have Py (t) = (—t)?Py (1/t).
Remark 2.15. The representation V is semi-simple if and only if u = p(7x) is

semi-simple. As a result, isomorphism classes of semi-simple ¢-adic represen-
tations V' of G are determined by Py (t).

2.2.2 f-adic geometric representations of finite fields.

Let X be a projective, smooth and geometrically connected variety over
K. Let C,, = Cp(X) = #X(K,) € N be the number of K, -rational points of
X. The zeta function of X is defined by:

oo

Zx(t) :=exp (Z C:t") € Q[[]]- (2.14)

n=1
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Let | X| be the underlying topological space of X. If z is a closed point of | X]|,
let K (x) be the residue field of z and deg(z) = [K(x) : K]. Then Zx(t) can
be expressed as an Euler product

1
ZX (t) = H W. (215)
Gl

Theorem 2.16 (Weil Conjecture, proved by Deligne). Let X be a pro-
jective, smooth and geometrically connected variety of dimension d over the
finite field K of cardinality q. Then

(1) There exist Py, Py, , Pag € Z[t], Prn(0) =1, such that

_ P Ps(t) - Poa—1(t)

Zx(t) = . 2.16
x(®) Po(t)Py(t) -+ - Paog(t) (2.16)
(2) There exists a functional equation
1
Zx = ) = ¢ P Zx(t 2.17
X (th) q x(t) (2.17)

1 2d
where B = = —-1)™By, and By, = deg P, .
2
m=0

(3) If we make an embedding of the ring of algebraic integers Z < C, and

decompose
Bm

P, (t) = H(l —amjt), oy € C.

j=1
Then |am ;| = q% .

The proof of Weil’s conjecture is why Grothendieck, M. Artin and oth-
ers ([AGV73]) developed the étale theory, although the p-adic proof of the
rationality of the zeta functions is due to Dwork [Dwo60]. One of the key
ingredients of Deligne’s proof ([Del74a, Del80]) is that for ¢ a prime num-
ber not equal to p, the characteristic polynomial of the f-adic representation
HQ(XK%QZ) is

Phzg (xges00) (1) = P (2)-

Definition 2.17. Let Q be an algebraic closure of Q, and w € Z. A Weil

number of weight w relative to K =T, is an element o € Q satisfying

(i) there exists i € N such that ¢'a € Z;

(ii) for any embedding o : Q — C, |o(a)| = ¢*/2.

Moreover, o is said to be effective if o € Z.
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Remark 2.18. (a) This is an intrinsic notion.
(b) If i € Z and if « is a Weil number of weight w, then ¢‘« is a Weil
number of weight w + 2i, hence is effective if i > 0.

Definition 2.19. An f-adic representation V of G is called pure of weight
w if all reciprocal roots of Py (t) are Weil numbers of weight w, and is called
effective of weight w if moreover all reciprocal roots are algebraic integers.

Remark 2.20. (a) Let V be an f-adic representation. If V' is pure of weight w,
then V() is pure of weight w — 2¢. This is because Gk acts on Qg(1) through
x with y(arithmetic Frobenius)= ¢, so x(7x) = ¢~ . Therefore 75 acts on
Q¢(i) by multiplication by ¢~%. If V is pure of weight w and if i € N, i > 0,
then V' (—1) is effective.

(b) The Weil Conjecture implies that V = HJ(Xk-,Qy) is pure and
effective of weight m, and Py (t) € Q[¢].

Definition 2.21. An (-adic representation V of Gk is said to be geometric
if the following two conditions hold:

(i) V is semi-simple;

(ii) V' can be written as a direct sum V = @ Vi, with V,, pure of weight w
wEZ
and almost all V,, = 0.

Let Repg, (G k) be the category of f-adic representations of Gx. We de-
note by Repg, 4o(Gr) the full sub-category of geometric representations,
which is a sub-Tannakian category of Repg, (Gk), i.e. stable under sub-
objects, quotients, ®, ®, dual, and Qy is the unit representation as a geometric
one. We denote by Repg, ¢ro(Gk) the smallest sub-Tannakian category of
Repg, (Gk) containing all objects isomorphic to H' (X, Q) for X projec-
tive smooth varieties over K and m € N, which is also the smallest full sub-
category of Repg, (G i) containing the objects isomorphic to Hz (X, Q) ()
for all X, m € N and i € Z, and stable under sub-objects and quotients.

Conjecture 2.22. Repg, 4o(GK) = Repg, cro(Gk)-
Theorem 2.23. We have Repg, 4.,(Gx) € Repg, gro(Gk)-

The only thing left in Conjecture 2.22 is to prove that HJ}(Xks, Q) is
geometric. We know that it is pure of weight m, but do not know in general
if it is semi-simple.

2.3 f-adic representations of local fields

2.3.1 f-adic representations of local fields.

In this section we assume K is a local field, whose residue field k is perfect
of characteristic p > 0. Recall Ix and Pk are the inertia subgroup and the
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wild inertia subgroup of the absolute Galois group Gg. Assume ¢ # p is a
fixed prime number.
We have the following two exact sequences

1—Ix —Gg — G — 1,

Under the isomorphism
I /P 27/ (1) = [[ 2e(1) = Zo(1) x ] Ze(1)
L#p UF#Lp

we define Pk ¢ to be the inverse image of Hg,;ép,é Zp (1) in I and Ggp ==
Gk /Pk . Then we have
Ix/Pxo = Z(1)

and the short exact sequences
1 —Z(1) — Gr,e — G — L. (2.18)

Let V be an f-adic representation of G and T be a Zy-lattice stable under
G k-action. Hence we have

Gg — Autzl ~ GL4(Zy)
Aut@[ ~ GLd(Qg)

where d = dimg, (V). The image p(Gk) is a closed subgroup of Autg, (T).
Consider the following sequence

1 — Ny — GL4(Zy) — GL4(Fy) — 1,

where N is the kernel of the reduction map. Let N,, be the subgroup of
matrices congruent to 1mod¢™ for n > 1. As N;/N, is a finite ¢-group,
Ny ~ I'Lle /N, is a pro-¢ group. By the exact sequence

1— Pk — Py — [[ 2e() —1,
0+#p, €

note that Pk is a pro-p group, then Pk, is the inverse limit of finite groups
with prime-to-¢ orders, thus p(Px¢) N N1 = {1}. Hence p(Pxk,¢) — GL4(F¢)
is a finite group.

Definition 2.24. Let V' be an f-adic Galois representation of K with the
associated homomorphism p : Gxg — Autg, (V).

(i) V is unramified or has good reduction if Ix acts trivially.
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(ii) V' has potentially good reduction if p(Ix) is finite, in other words, if there
exists a finite extension K'/K inside K*® such that V as an £-adic Galois
representation of K' has good reduction.

(iii) V' is semi-stable if Ix acts unipotently, in other words, if the semi-
simplification of V' has good reduction.

(iv) V is potentially semi-stable if there exists a finite extension K' of K
contained in K° such that V is semi-stable as a representation of G- .

Remark 2.25. Notice that (4) is equivalent to the condition that there exists
an open subgroup of Ix which acts unipotently, or that the semi-simplification
of V has potentially good reduction.

Theorem 2.26. Assume that the group pjeo (K (ue)) = {e € K(ue) | 3 n such
that € = 1} is finite. Then any (-adic representation of Gy is potentially
semi-stable. In particular, this is the case if k is finite.

Proof. Replacing K by a suitable finite extension we may assume that Pk ,
acts trivially, then p factors through G ¢:

Gk P Athg (V)
\ /
Ggk, ¢

Consider the sequence
1—Z(1) — Gg,¢— G — 1.

Let t be a topological generator of Zy(1). So p(t) € Autg, (V). Choose a finite
extension E of Qg such that the characteristic polynomial of p(t) splits in F.
Let V! = E ®q, V. Then V' is an E-representation of G, via the action

gA®v) =A® g(v).
Let a be an eigenvalue of p(t) and 0 # v € V’/ be an eigenvector of a, i.e.
P)(©) = a-v.

If g € Gk, ¢, then gtg—t = tx¢(9) where y; : Gk,¢ — Z; is the cyclotomic
character. Then

platg™)(w) = p (W(Q)) (v) = aX* D,
Therefore
5(6)(g () = tg™ 1) = (tg™V)(v) = g1 (@ D) = X @) g1y,

This implies, if a is an eigenvalue of p(t), then for all n € Z such that there
exists g € Gk, ¢ with x¢(g) = n, a™ is also an eigenvalue of 5(¢). The condition
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Moo (K (1)) is finite <= Im(x,) is open in Z; . Thus there are infinitely many
such n’s. This implies @ must be a root of 1. Therefore there exists an N > 1
such that ¢tV acts unipotently. The closure of the subgroup generated by t~
acts unipotently and is an open subgroup of Z,(1). Since Ix — Z4(1) is
surjective, the theorem now follows.

Corollary 2.27 (Grothendieck’s ¢-adic monodromy Theorem). Let K
be a local field. Then any £-adic representation of Gk coming from algebraic
geometry (eg. Vi(A), HZ (Xks,Q¢)(3), -+ ) is potentially semi-stable.

Proof. Let X be a projective and smooth variety over K. Let Ky be the field
of finite type over the prime field of K by joining all coefficients of the defining
equations of X. Let K; be the closure of Ky in K. Then K; is a complete
discrete valuation field whose residue field k; is of finite type over F,. Let ko
be the radical closure of k1, and K5 be a complete separable field contained
in K and containing K, whose residue field is ks. Then ppe (k2) = ppe (K1),
which is finite. Then

X:X()XKOK, XQZX()XKUKQ, X:XQXKQK,

where X is defined over K. The action of Gx on V comes from the action
of Gk,, hence the corollary follows from the theorem.

Theorem 2.28. Assume k is algebraically closed. Then any potentially semi-
stable £-adic representation of Gk comes from algebraic geometry.

Proof. We proceed the proof in two steps. First note that k is algebraically
closed implies Iy = Gk.

(TI): assume the Galois representation (V,p) is semi-stable. Then the action
of Pk , must be trivial from the above discussion, hence the representation
factors through G, ,. Identify Gk, o with Z,(1), and let ¢t be a topological
generator of this group. Then p : Gx — Autg, (V) factors through 5 : Gx ¢ =
Zo(1) — Autg, (V) and is uniquely determined by p(t) € Autg, (V).

For each integer n > 1, there exists a unique (up to isomorphism) repre-
sentation V,, of dimension n which is semi-stable and in-decomposable. Write
it as V,, = Q}, and we can assume

1
1

As 'V, = Sym(&g_l(VQ), it is enough to prove that V4 comes from algebraic
geometry. Write
0—Q —Vo—Q —0,
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where V5 is a non-trivial extension. It is enough to produce a non-trivial
extension of two trivial /-adic representations of dimension 1 from algebraic
geometry.

For 0 # q € mg, let E be the Tate elliptic curve over K such that E(K*®) =
(K*)*/q*, then

E["] = {a € (K*)* | 3m € Z such that a" = qm} /qgn

and

Vi(E) = Q¢ @z, Tu(E), Ty(E) = lim E[¢").

An element « € Ty(E) is given by

a = (ap)nen, oy € B[], aflﬂ = ay,.
From the exact sequence

0 — ppm(K®) — E[{"] — Z/"Z — 0,

and noting that pn (K®°) = pm(K) as k is algebraically closed, we have a
non-trivial extension

0—Q — Vi(E) — Q —0.

(II): assume V is potentially semi-stable. Then there exists a finite extension
K’ of K contained in K* such that Ix» = Gk acts unipotently on V.

Let ¢ be a uniformizing parameter of K’. Let E be the Tate elliptic curve
associated to ¢ defined over K’, and let V;(E) be the semi-stable Galois rep-
resentation of G/ . From the Weil scalar restriction of E, we get an abelian

variety A over K and
Vi(A) = Indgk, Vi(E)

is an f-adic representation of Gg of dimension 2 - [K' : K]. All ¢-adic repre-
sentations of G which are semi-stable f-adic representations of G+ come
from V;(A).

2.3.2 An alternative description of potentially semi-stability.

Let the notations be as in the previous subsection. To any 0 # ¢ € mg,
let E be the corresponding Tate elliptic curve, whose Tate module

Ve(E) = Ve ((K*)* /¢%) = Qe @ lim ((K°) /¢") [€"].
Then one has a short exact sequence of ¢-adic representations of K

00— Q — Vi(E)(=1) — Q(=1) — 0.
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Let ¢ be a generator of Qy(1). Let u € V;(E)(—1) be a lifting of the generator
(2.19)

t—1 of Qg(*l). Put
B@ = Qf[u]a

and define the following Q-linear map
N : By —> Bg(—l) =By RqQ, Qg(—l) (2 20)
b — Vet l=-—2Lg¢l '

Note that N commutes with the action of Gk . For any f-adic representation
(2.21)

. H
lim (By @q, V)

H«algk
open

V of Gk, set
Dg(V) =

Then the map N extends to N : Dy(V) — Dy(V)(—1)

Definition 2.29. Denote by € the category of pairs (D, N), where
(i) D is an £-adic representation of Gk with potentially good reduction.
(ii) N : D — D(-1) is a Qg-linear map commuting with the action of
G, and is nilpotent. Here nilpotent means the following: write N(§) =
N(6) ®@t~L, where Ny : D — D, then that N; (or N ) is nilpotent means

that the composition of the maps
D~ p—1) XU pogy . N by

is zero for r large enough. The smallest such r is called the length of D.
(iii) Home ((D, N), (D', N")) is the set of the maps n : D — D’ where 1 is
Q¢-linear, commutes with the action of Gk, and the diagram

D 1 D’
N\L lN’
D(-1) ﬁD’(—l)

commutes.

One can check immediately that
Dg : RepQZ(GK) — %

is a functor. In the other direction, we can define the functor
V,:% — Repg,(Gk)-

Suppose the Galois group Gk acts diagonally on By ®g, D. Since
(Be ®q, D)(—1) = (Br ®q, D) ®g, Qe(—1) = By(—1) ®q, D = By ®g, D(-1),
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define the map N : By Rq, D — (Bg RQ, D)(—l) by
NO®0)=NbRd+b® NJ.

Set
V¢(D,N):=Ker (N: By®q, D — (By®q, D)(—1)). (2.22)

Theorem 2.30. (1) If V is any £-adic representation of G, then
Vy (Dg(V)) —V

is injective and is an isomorphism if and only if V is potentially semi-
stable.

(2) Vo(D, N) is stable by Gk and dimg, V¢(D, N) = dimg,(D) and V¢(D, N)
is potentially semi-stable.

(3) Dy induces an equivalence of categories between Repg, (G ), the cat-
egory of potentially semi-stable ¢-adic representations of Gk and the cat-
egory €, and Vy is the quasi-inverse functor of Dy.

Proof. (1) is a consequence of a more general result (Theorem 3.14) in next
chapter. One needs to check that By is so-called (Qg, H)-regular for any normal
open subgroup H of I, i.e. it needs to satisfy: (i) Bf = (Frac B,)¥; (ii) for a
non-zero element b such that the Qy-line generated by b is stable by H, then
b is invertible in By. This is easy to check: (i) Bf = (Frac By)? = Q. (ii)
b € Qy is invertible.

(2) is proved by induction to the length of D. If the length is 0, then
ND =0 and Vy(D,N) = BN=°® D = D, and the result is evident. We also
know that N is surjective on By ® D. In general, suppose D is of length r + 1.
Let Dy = Ker (N : D — D(-1)) and Dy = Im(N : D — D(—1), and endow
D, and D5 with the induced nilpotent map N. Then both of them are objects
in ¢, D is of length 0 and D5 is of length r. The exact sequence

0—Dy —D—Dy —0

induces a commutative diagram

0 —— By®D; —_— B, ® D — By® D, — 0
v il i

0 —— B®Dy(-1) —— By®D(-1) —— By®Dy(-1) —— 0

and since N is surjective on By ® D, by the snake lemma, we have an exact
sequence of Qy-vector spaces

0— Vy(D1,N) — Vy(D,N) — Vy(Dy,N) — 0

which is compatible with the action of G. By induction, the result follows.
(3) follows from (1) and (2).
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Exercise 2.31. Let (D, N) be an object of €. The map

V@(D) C By ®@e D — D

induces an isomorphism of Q-vector spaces between Vy(D) and D (but it
does not commute with the action of Gk ). Describe the new action of Gx on
D using the old action and N.

2.3.3 The finite residue field case.

Assume k is a finite field with ¢ elements of characteristic p. Assume £ # p.

We identify G, = (7,) with Z.
Definition 2.32. The Weil group Wi of K is the subgroup of Gk defined by

1 I G -+ =7 1

where a(g) =m if g|z = 1.

The Weil-Deligne group of K (relative to K /K ), denoted as W Dy, is the
group scheme over Q which is the semi-direct product of Wi by the additive
group G, over which Wy acts by

wrw ™t = ¢ Wy, (2.23)
Suppose E is any field of characteristic 0.

Definition 2.33. A Weil representation of K over E is a finite dimensional
E-vector space D equipped with a homomorphism of groups p : W —>
Autg (D) whose kernel contains an open subgroup of I.

A Weil-Deligne representation is a Weil representation equipped with a
nilpotent endomorphism N of D such that

N o p(w) = ¢ p(w)o N  for any w € Wg. (2.24)

Remark 2.84. For an E-vector space D with an action of W, we can define
D(-1) = D®pg E(—1), where E(—1) is a one-dimensional E-vector space on
which I acts trivially and the action of 7 is multiplication by ¢~'. Then an
object of Repr (W Dk) is nothing but a pair (D, N) where D is an E-linear
continuous representation of Wx and N : D — D(—1) is a morphism of
E-linear representation of Wy (which implies that N is nilpotent).
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Ezample 2.35. Any f-adic representation V' of G i which has potentially good
reduction defines a continuous Qg-linear representation of Wy . As W is dense
in G, the action of Wk determines the action of Gk. Let Repg, (G ) be
the category of potentially semi-stable ¢-adic representation of G . By results
from previous subsection, we have a fully faithful functor

Repyg,, pst(GK) — Repg, (WDk)

Vs (Du(V), N). (2.25)

Definition 2.36. Suppose E and F are two fields of characteristic 0 (for in-
stance, E = Qq, and F = Q). Let D (resp. D') be an E-linear representation
(resp. F-representation) of WDk . D and D' are said to be compatible if for
any field 2 and embeddings

E<= 0 and F— 0,
R R D~ N2 Qp D' are isomorphic as 2-linear representations of W D .

Theorem 2.37. Assume that A is an abelian variety over K. If £ and ¢’ are
different prime numbers not equal to p, then Vy(A) and Vi (A) are compatible.

Conjecture 2.38. Let X be a projective and smooth variety over K. For any
m € N, if ¢, ¢/ are primes not equal to p, then

HE (X s, Q) and Hg (X ks, Qu)
are compatible.

Remark 2.39. If X has good reduction, it is known that the two representa-
tions are unramified with the same characteristic polynomials of Frobenius by
Weil’s conjecture. It is expected that 75 acts semi-simply, which would imply
the conjecture in this case.

Definition 2.40. An E-linear continuous representation V. of Wy is called
pure of weight w € Z if all reciprocal roots of the characteristic polynomial of
T € Wk a lifting of 71, acting on'V (in a chosen algebraic closure E of E) are
Weil numbers of weight w relative to k, i.e. for any root \, A € Q and for any
embedding o : Q — E, we have

[o(A) = /2.
Remark 2.41. This definition is independent of the choices of 7 and E.
For V any FE-linear continuous representation of Wi and r € N, set
D=D{V,r)=VaV(-)oV(-2)®--oV(-r)
with the nipotent map N : D — D(—1) given by
N(vg,v_1,v_92,-++ ,0_p) = (V_1,V_2, "+ ,0_p,0).

Then D is a representation of W Dg.
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Definition 2.42. An E-linear representation of W Dy is called elementary
and pure of weight w + r if it is isomorphic to such a D with V satisfying
(i) V is pure of weight w;

(ii) V is semi-simple.

Definition 2.43. Let m € Z. A geometric representation of WDk pure of

weight m is a representation which is isomorphic to a direct sum of elementary
and pure representation of weight m.

Remark 2.44. The full sub-category Repy 4o,(W D) of Rep (W Dy ) formed
by geometric representations of W D g pure of weight m is abelian category.

Definition 2.45. An ¢-adic representation of Gy is called geometric if the
associated Qg-linear representation of W Dy is geometric.

For ¢ # p, let
Repgg, geo(GK)

be the category of pure geometric /-adic representation of G of weight m,
which is the category of those V' such that (D(V), N) is in Rep(), g0 (W Dk )-

Congjecture 2.46. For £ # p, the (-adic representation Hf (Xrs, Q) (i) should
be an object of Repf@fg’eo(WDK) and objects of this form should generate
the category.

In the category Repy (W D), let

Definition 2.47. The category of weighted E-linear representation of W Dk,
denoted as Repn(WDk), is the category with

(i) An object is an E-linear representation D of W Dk equipped an increasing
filtration
g W’ngWnH-ng

where Wy, D is stable under W Dy, and

D, if m>0,

0, if m<O.

(ii) Morphisms are morphisms of W D -representations which respect the fil-
tration.
Then Repy (W Dk) is an additive category, but not an abelian category.

Definition 2.48. The category of geometric weighted E-linear representa-
tions of WDp, denoted by Repy yoo(WDk), is the full sub-category of
Repyn (W Dg) consisting of those D's such that for all m € Z,

grmD =W,,D/W,,_1D
18 a pure geometric representation of weight m.
Theorem 2.49. Repyg ,.,(WDk) is an abelian category.

It is expected that if M is a mized motive over K, for any ¢ prime number
# p, He(M) should be an object of Repg, geo(GK)-
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p-adic Representations of fields of
characteristic p

3.1 B-representations and regular (F, G)-rings

3.1.1 B-representations.

Let G be a topological group and B be a topological commutative ring
equipped with a continuous action of G compatible with the structure of ring,
that is, for all g € G, and by,b; € B,

g(b1 +b2) = g(b1) +g(ba),  g(bib2) = g(b1)g(b2).

Ezample 3.1. Let L/K be a Galois extension. Set B = L and G = Gal(L/K),
both endowed with the discrete topology.

Definition 3.2. A B-representation X of G is a B-module of finite type
equipped with a semi-linear and continuous action of G, where semi-linear
means that for all g € G, A € B, and z,z1,22 € X,

glx1 +x2) = g(x1) + g(x2),  g(Az) = g(N)g(x).

Remark 3.3. For a B-representation X, if G acts trivially on B, then X is just
a linear representation of G.

In particular, if B = I, endowed with the discrete topology, X is called
a mod p representation instead of a IF,-representation; if B = Q, endowed
with the p-adic topology, X is called a p-adic representation instead of a
Qp-representation.

Definition 3.4. A free B-representation of G is a B-representation such that
the underlying B-module is free.

Ezample 3.5. Let F be a closed subfield of B¢ and V be an F-representation
of G, let X = B®p V be equipped with G-action by g(A ® z) = g(\) ® g(x),
where g € G,\ € B,x € X, then X is a free B-representation.
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Definition 3.6. A free B-representation X of G is trivial if one of the fol-
lowing two equivalent conditions holds:

(i) There exists a basis of X consisting of elements of X¢;
(ii) X = B¢ which is equipped with natural component-wise action of G.

We now give the classification of free B-representations of G of rank d for
deNandd>1.

Assume that X is a free B-representation of G with basis {e1,- - ,eq}. For
every g € G, write

d
g(ej) = Zaij(g)ei-
i=1
Write Ay = (a;j(9))i,5, then Ay € GL4(B) and
gler, - ,eq) = (e1,- - ,eq)Aq. (3.1)
Thus we define a continuous map
a:G— GLg(B), gr— A, (3.2)
Moreover, on one hand
g192(€1,- -+ sea) = (€1, ,€q)Agyg,-
on the other hand,

9192(61a co 76(1) = gl((€1, T 76(1))91(‘492) = (617 T 76d)Aglgl(A92)7

hence
a(9192) = Agig, = Ag1 91(Ag,) = a(g1)g1(a(g2))

and « is a 1-cocycle in Z7 (G, GL4(B)). Moreover, if {e}, - , €} is another
basis and if P is the transition matrix, write

g(e}) = Zagj(g)eg, o'(g) = (a;j(g))lgi,jgda

then we have
o/(g) = P~ a(g)g(P). (3.3)
Therefore o and o are cohomologous to each other. Hence the class of « in
H},..(G,GL4(B)) is independent of the choice of the basis of X and we denote
it by [X].
Conversely, given a 1-cocycle a € Z} (G, GL4(B)), there is a unique
semi-linear action of G on X = B? such that, for every g € G,

d
glej) = Zaij(9)€i7 (3.4)

and [X] is the class of a. Hence, we have the following proposition:
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Proposition 3.7. Suppose d is a positive integer. The correspondence X —
[X] defines a bijection between the set of equivalence classes of free B-
representations of G of rank d and HL, . (G,GL4(B)). Moreover X is trivial
if and only if [X] is the distinguished point in H} (G, GL4(B)).

The following proposition is thus a direct consequence of Hilbert’s Theorem
90:

Proposition 3.8. If L is a Galois extension of K and if L is equipped with
the discrete topology, then any L-representation of Gal(L/K) is trivial.

3.1.2 Regular (F, G)-rings.

In this subsection, we let B be a topological ring, G be a topological group
which acts continuously on B. Set E = B%, and assume it is a field. Let F be
a closed subfield of F.

If B is a domain, then the action of G extends to C' = Frac B by

b1> g(b1)
— | = , forall ge G, by,bs € B. 3.5
g (b2 9(b2) g 1,02 (3.5)
Definition 3.9. We say that B is (F,G)-regular if the following conditions
hold:

(i) B is a domain.
(ii) B =C¢=FEDF.
(iii) For b € B, b # 0, if for any g € G, there exists A = A(g) € F such that
g(b) = \b, then b is invertible in B.

Remark 3.10. This is always the case if B is a field.

Let Repr(G) denote the category of continuous F-representations of G.
This is an abelian category with additional structures:

(a) Tensor product: if V; and V5 are F-representations of G, we set V; @ V5 =
Vi ®F Va, with the G-action given by g(v1 ® v2) = g(v1) ® g(v2);

(b) Dual representation: if V' is a F-representation of G, we set V* =
Z(V,F) = {continuous linear maps V' — F'}, with the G-action given
by (9)(v) = (g~ (0);

(¢) Unit representation: this is F' with the trivial action.

We have obvious natural isomorphisms
Vie(zeV)=(Vielh) o, VheVi=2Viel, VeF=FeVxV.

With these additional structures, Repy(G) is a neutral Tannakian cate-
gory over F' (ref. e.g. Deligne [Del90] in the Grothendieck Festschrift, but we
are not going to use the precise definition of Tannakian categories).



68 3 p-adic Representations of char. p

Definition 3.11. A category €' is called a strictly full sub-category of a
category € if it is a full sub-category such that if X is an object of € isomorphic
to an object of €', then X is also an object of €.

Definition 3.12. A sub-Tannakian category of Repr(G) is a strictly full
sub-category €, such that

(i) The unit representation F is an object of €;
(ii) If V' is an object of € and V' is a sub-representation of V', then V' and
V/V' are all in €;
(iii) If V is an object of €, so is V*;
(iv) If V1,V are both objects of €, so is V1 @ Va;
(v) If V1, Va are both objects of €, so is Vi @ Vs.

Definition 3.13. Let V' be an F-representation of G. We say that V is B-
admissible if B®g V is a trivial B-representation of G.

Let V be any F-representation of GG, then B ®p V', equipped with the
G-action by g(A® z) = g(\) ® g(x), is a free B-representation of G. Let

Dy(V):= (Bop V)Y, (3.6)

we get a map
avtB®EDB(V) — BrV

AR x — Az (3.7)

where A € B and z € Dp(V). oy is B-linear and commutes with the action
of G, where G acts on B®g Dp(V) via gA®@z) = g()\) ® .

Theorem 3.14. Assume that B is (F,G)-regular. Then
(1) For any F-representation V of G, the map «y is injective and
dimp D (V) < dimp V. Consequently

dimg Dg(V) =dimp V < ay is an isomorphism

. . (3.8)
<V is B-admissible.
(2) Let Rep2(G) be the full subcategory of Repy(G) consisting of these
representations V which are B-admissible. Then Repp(G) is a sub- Tannakian
category of Repr(G) and the restriction of Dp, regarded as a functor from
the category Repy(G) to the category of E-vector spaces, on Repa(G) is an
exact and faithful tensor functor, i.e., it is exvact and satisfies the following
three properties:

(i) If V1 and Vs are admissible, so is their tensor product V4 ® Va, and there
s a natural isomorphism

Dgp(V1) @ Dp(V2) = Dp(V1 ® Va). (3.9)
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(ii) If V is admissible, so is its dual V*, and there is a natural isomorphism
Dy(V*) = (Dp(V)". (3.10)

(iii) The unit representation F' is B-admissible Dp(F) = E.

Proof. (1) Let C = Frac B. Since B is (F, G)-regular, C¢ = B¢ = E. By the
following commutative diagram:

BopDp(V) X2 BapV

B®Eg Dc(V)

C®pDc(V) X CwpV,

the injectivity of oy, implies that of ay, g, so we may assume that B = C'is a
field. Now the injectivity of ay means that given h > 1, if x1,...,2, € Dp(V)
are linearly independent over E, then they are linearly independent over B.
We prove this by induction on h.

The case h = 1 is trivial. We may assume h > 2. Assume that z1,--- ,xp
are linearly independent over E, but not over B. Then there exist A, --- , A €
h

B, not all zero, such that Z Aiz; = 0. By induction, the A;’s are all different

=

from O Multlplylng them by —1/\p, we may assume A\, = —1, then we get

Th = Z Aix;. For any g € G,
i=1

zn = g(xn) Zg )i,

then

By induction, g(\;) = \;, for 1 <i < h—1, ie., \; € BY = E, which is a
contradiction. This finishes the proof that ay is mJectlve.
If oy is an isomorphism, then

dlmE DB(V) = dlmF V= rankB B ®F V.

We need to show that if dimg Dp(V) = dimp V, then ay is an isomorphism.
Suppose {v1,---,v4} is a basis of V over F, by abuse of notation, write
v; = 1 ®v;, then v, -+ ,vq is a basis of B ®pr V over B. Let {e1, -+ ,eq}
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d
be a basis of Dg(V) over E. Then e; = ) b;jv;, for (b;;) € Mgy(B). Let
i=1

b = det(b;;), the injectivity of ay implies that b # 0.

We need to prove b is invertible in B. Denote by detV = /\dF V = Fu,
where v = v1 A+ - -Avg. Then g(v) = n(g)v with n : G — F* a homomorphism.
Similarly let e =e; A---Aeq € /\% Dg(V), then g(e) = e for g € G. We have
e =bv, and e = g(e) = g(b)n(g)v, so g(b) = n(g)~1b for all g € G, hence b is
invertible in B by the assumption that B is (F, G)-regular (condition (3)).

The second equivalence is easy. The condition that V is B-admissible,
means that there exists a B-basis {x1, - ,24} of B ®@r V with each x; €
D (V). Since ay (1 ® x;) = z;, and ay is always injective, this condition is
equivalent to that ay is an isomorphism.

(2) Let V be a B-admissible F-representation of G, V' be a sub-F-vector
space stable under G, set V" = V/V’  then we have an exact sequences

0=V -V -sV"50

and
0—-BerV - BerV =>Br V" —0.

Then the sequence
0—Dp(V')—Dg(V) = Dg(V")--»0 (3.11)

is exact at Dg(V’) and at Dg(V). Let d = dimp V, d' = dimp V', d" =
dimp V", by (1), we have

dimE DB(V) = d, dlmE DB(V/) < d/, dlmE DB(V”) < d//,

but d = d' + d”, so we have equalities everywhere, and (3.11) is also exact at
Dp(V"). Thus the functor Dp restricted to RepZ(G) is exact, and is also
faithful since D (V) £ 0if V #£ 0.

Now we prove the second part of the assertion (2). (iii) is trivial. For (i),
we have a commutative diagram

2z

(B®p V1) ®p (BQF V2) Ber (Vi ®@p Va)

|

Dg(Vi) @ Dp(Va) -7 ->Dp(Vi @p Va)

where the map ¢ is induced by X. From the diagram o is clearly injective.
On the other hand, since V; and V5, are admissible, then

dimg Dp(Vi) ®r Dp(V2) = dimp(B ®p (Vi ®F V2)) > dimg Dp(Vi ®F V2),

hence o is in fact an isomorphism.
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At last for (ii), assume V is B-admissible, we need to prove that V* is
B-admissible and D (V*) ~ Dg(V)*.

The case dimp V = 1 is easy, since in this case V = Fv, Dg(V) = E-(b®v)
for some b € B, and V* = Fv*, Dp(V*) = E- (b~ @ v*).

If dimp V =d > 2, we use the isomorphism

(/\‘:11/) ® (det V)* = V*,

Note that /\’Z;1 V is admissible since it is a quotient of ®(f;1 V, and (det V)*
is admissible since detV is admissible of dimension 1, so V* must also be
admissible.

Consider the B-linear map

E:BrV* > (BrV)", b® f+— (ba @ v bba f(v)),

where the dual in the right hand side is B-dual. The map = is an isomorphism
commuting with the G-action. Suppose f € Dg(V*) and t € B®p V, then for

g€ G, gof(t)=g(f(g7(t)) = f(t). If moreover t € Dp(V), then g(f(t)) =
f(t) and hence f(t) € E. Therefore we get an induced homomorphism 7 :

Dp(V*) — Dp(V)*, which is injective. Since both Dp(V) and Dp(V*) have

the same dimension as E-vector spaces, 7 must be an isomorphism.

3.2 Mod p Galois representations of fields of
characteristic p > 0

In this section, we assume that E is a field of characteristic p > 0. We fix
a separable closure E® of F and set G = Gg = Gal(E*/E). Let 0 = (A — AP)
be the absolute Frobenius of E.

3.2.1 Etale ¢-modules over E.

Definition 3.15. A p-module over E is an E-vector space M together with
a map ¢ : M — M which is semi-linear with respect to the absolute Frobenius
o, i.e.,

oz +y) = @) +ey), forallwyeM; (3.12)
o(Ax) =oc(N)p(x) = NPp(z), forall e E, xe M. (3.13)

If M is an E-vector space, let M, = £ ,®; M, where E is viewed as an
E-module by the Frobenius ¢ : E — E, which means for A\, y € F and x € M,

AMp®z) =AM, A® pr = pPAQ . (3.14)
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Then M, is again an E-vector space, and if {e,--- ,eq, -} is a basis of M
over E, then {1®e1,---,1®eq,---} is a basis of M, over E. Hence we have

dimg M, = dimg M.
Our main observation is

Lemma 3.16. If M is any E-vector space, giving a semi-linear map ¢ : M —
M is equivalent to giving a linear map

&: M, — M

A®x— Ap(x). (3.15)

If M is a p-module of finite dimension d, suppose {e1,--- ,eq} is a basis
of M over E, and assume
d
pej = Z @ij€i,
i=1

then ¢(1 ® e;) = Zle a;je;. As @ : M, — M is an E-linear map between
FE-vector spaces with the same finite dimension, then we have

Proposition 3.17. If M is a @-module of finite dimension d, then

@ is an isomorphism <= @ is injective <= P is surjective

s M =F - (M) <= A = (a57) € GLy(E). >16)

Definition 3.18. A p-module M over E is called étale if @ : M, — M is an
isomorphism and if dimg M is finite.

Let ,///;2t (E) be the category of étale ¢-modules over E with the morphisms
being the E-linear maps which commute with .

Proposition 3.19. The category ///f,t (E) is an abelian category.

Proof. Let E[p] be the non-commutative (if E # F),) ring generated by E and
an element ¢ with the relation A = APy, for every A € E. The category of
p-modules over E is nothing but the category of left F[p]-modules. This is
an abelian category.

To prove the proposition, it is enough to check that, if n: M7 — Ms is a
morphism of étale p-modules over F, the kernel M’ and the cokernel M" of
1 in the category of p-modules over E are étale.

In fact, the horizontal lines of the commutative diagram

0 Ms/a (Ml)sa (M2)so > (M”)Lp >0
l/qf" iﬁbl l<1§2 l@”
0 M’ My Moy M" 0

are exact. By definition, ®; and ®5 are isomorphisms, so ¢’ is injective and &”
is surjective. By comparing the dimensions, both & and ¢” are isomorphisms,
hence Kern and Cokern are étale.
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The category .#5"(E) possesses the following Tannakian structure:
(a) Tensor product. If My, My are two étale p-modules over E, let M; @ My =
M, ®g Ms, viewed as a ¢-module by assigning

p(r1 ®@ 12) = (1) ® P(T2).

One can easily check that My @ M, € 45" (E).
(b) Unit: E is an étale p-module and for every étale p-module M,

ME=E®M=M.
(c) Dual. If M is an étale @-module, assume that ¢ : M, — M is the
corresponding isomorphism to ¢. Set M* = L (M, E), We have

~

DM (M) (M),

where the second isomorphism is the canonical isomorphism since F is a
flat F-module. Then

tpt . (M*), = M* (3.17)
gives a p-module structure on M*. Moreover, if {eq,--- ,eq} is a basis of
M, and {e7,--- ,e}} is the dual basis of M*, then

plej) = Zaij€i7 plej) = szj@f

with A = (a;;) and B = (b;;) satisfying B =tA~1.

3.2.2 The functor M.

Recall that a mod p representation of G is a finite dimensional IFj-vector
space V together with a linear and continuous action of G. Denote by
Repy (G) the category of all mod p representations of G.

We know that G acts continuously on E° equipped with the discrete topol-
ogy and F, C (E*)¢ = E, hence E* is (Fp, G)-regular. Let V be any mod p
representation of GG. By Hilbert’s Theorem 90, the E*-representation E°®p, V/
is trivial, thus V is always E*®-admissible. Set

M(V) = Dg:(V) = (E* @, V), (3.18)
then dimg M(V') = dimg, V, and
ay E? XRE M(V) — F° ®]Fp Vv

is an isomorphism.
On E*, we have the absolute Frobenius o(x) = 2P, which commutes with
the action of G-
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o(g(z)) = g(o(x)), forallge G, z € E®
We define the Frobenius ¢ on E° ®@p, V as follows:
PA®v)=N@v=0)) .
For all x € E* ®F, V, we have

p(9(x)) = g(p(x)), forallge G,

which implies that if z belongs to M(V'), so does ¢(z). We still denote by ¢
the restriction of ¢ on M(V'), then we get

e :M(V) — M(V).

Proposition 3.20. If V is a mod p representation of G of dimension d, then
the map
ay : E° Qg M(V) — E? ®]Fp \%4

is an isomorphism, M(V') is an étale o-module over E and dimg M(V) = d.
Proof. We have already known that

ay : E°@pM(V) = E* ®F, V
is an isomorphism and this implies dimg M(V') = d.

Suppose {v1,--- ,vq} is a basis of V over F,, and by abuse of notations,
write v; = 1 ® v;. Suppose {e1, - ,eq} is a basis of M(V) over E. Then

d
€ = Zbijvi7 for B = (bij) € GLa(E").
=1

Hence

d d
90(63') = Z ijVi = Zaijei.
i=1 i=1
Then A = (a;;) = B~'¢(B), and
det A = (det B) ™! det((B) = (det B ' #0.
This implies that M(V) is étale.

From Proposition 3.20, we thus get an additive functor

M : Repy, (G) = A5 (E). (3.19)
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3.2.3 The quasi-inverse functor V.
We now define a functor

V: M5 (E) — Repg, (G). (3.20)

Let M be any étale p-module over E. We view E° @ M as a p-module via
p(A@z) =N @ p(x)
and define a G-action on it by
gA®x)=gN)®z, forged.

One can check that this action commutes with . Set

V(M) ={y e E*®@p M |o(y) =y} = (E"Qp M),_,, (3.21)
which is a sub F,-vector space stable under G.
Lemma 3.21. The natural map
ay : E°®p, V(M) — E° @ M (3.22)
ARV — v
is injective and therefore dimg, V(M) < dimg M.
Proof. We need to prove that if vy,--- v, € V(M) are linearly independent

over F;,, then they are also linearly independent over E°. We use induction
on h.

The case h =1 is trivial.

Assume that h > 2, and that there exist A\1,--- , Ay € E°, not all zero, such
that Z?Zl Aiv; = 0. We may assume A\, = —1, then we have v, = Z?;ll Aiv;.

Since ¢(v;) = v;, we have
h—1
f§ : p
v = A; Vi,
i=1

which implies AY = A; by induction, therefore X; € F,,.
Theorem 3.22. The functor

M : Repy, (G) — A'(E)
1s an equivalence of Tannakian categories and

V: M (E) — Repy, (G)

is a quasi-inverse functor of M.
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Proof. Let V be any mod p representation of G, then
ay : E° ®g M(V) = ES QF, \%4

is an isomorphism of E*-vector spaces, compatible with the Frobenius and
with the action of G. We use ay to identify these two spaces. Then

VIM(V)) ={y € E° @5, V | ¢(y) = y}-
Let {v1, - ,vq} be a basis of V. If

d

d
y:ZAi®vi:ZAivi EES®V,
i=1 =1

we get p(y) = > M v;, therefore
oy =y<= N eclF,<=yecV.

We thus have V(M(V)) = V, in particular V(M) # 0 if M # 0. A formal
consequence of this fact is that M is an exact and fully faithful functor,
inducing an equivalence of categories between RepFP(G) and its essential
image (i.e., the full subcategory of ///ﬁt (E) consisting of those M which are
isomorphic to an M(V)).

We now need to show that if M is an étale p-module over F, then there
exists V' such that

M= M(V).

We take V =V (M), and prove that M = M(V(M)).

Note that

V(M) ={veE®g M| p)=uv}
={v e L(M*, E°) | pv = vp}.

Let {e7, -+ ,ej} be a basis of M*, and suppose p(e}) = > _bjje;, then giving
v is equivalent to giving z; = v(e}) € E?, for 1 < i < d. From

p(v(ef)) = v(p(e})),

we have
d d
al = v(Z bije;‘> = Z bij .
i1 i=1
Thus
d
V(M) = {(xl, L ag) € (B ‘ 2 =3 by, i = 1, ...,d}.
i=1

Let R = E[X1, -, Xa]/(X? — 320 bi; Xi)1<j<a, we have

V(M) = HomE—algebra(Ra Es)- (323)
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Lemma 3.23. Let p be a prime number, E be a field of characteristic p, E°
be a separable closure of E. Let B = (b;j) € GLq(E) and by,--- ,bqg € E. Let

d
R=E[X1,, Xal/(X] =Y biiX; = bj)i<j<a
=1

Then the set Hom g _algebra (R, E®) has ezactly p? elements.

Let us first finish the proof of the theorem. By the lemma, V(M) has p?
elements, which implies that dimp, V(M) = d. As the natural map

ay : B ®]Fp V(M) — E° QM
is injective, this is an isomorphism, and one can check that
M(V(M)) = M.

Moreover this is a Tannakian isomorphism: we have proven the following
isomorphisms

- M(V1 @ Va) = M(V1) ® M(Va),

- M(V*) =M(V)*,

- M(Fp) =K,
and one can easily check that these isomorphisms are compatible with Frobe-
nius. Also we have the isomorphisms

~ V(M; ® My) = V(M) @ V(My);
- V(M*) =V(M)";
~ V(E)=F,,

and these isomorphisms are compatible with the action of G.

Proof of Lemma 3.23. Denote by x; the image of X; in R foreveryi=1,--- ,d.
We proceed the proof in three steps.

(1) First we show that dimg R = p?. It is enough to check that {z{' % - - - ¢/
with 0 <t¢; <p—1 form a basis of R over E. For m =0,1,...,d, set

d
Ry = B[X1,--, Xal /(X] =) biiXi = bj)i<jcm:
=1

Then, for m > 0, R,, is the quotient of R,,_1 by the ideal generated by the
image of XP — 2;1:1 bim X; — bi,. By induction on m, we see that R,, is a free
E[Xomi1, Xmia,-- -, Xa]-module with the images of {X{* X% ... X!m} with
0<t; <p—1 as a basis.
(2) Then we prove that R is an étale F-algebra. This is equivalent to
d
Qllz/E = 0. But Q}Z/E is generated by dx1,--- ,dxg. From x? = 221 bijx; + by,

we have
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0=pa?~da; = Z bijd;,

hence dz; = 0, since (b;;) is invertible in GL4(E).
(3) As R is étale over E, it has the form E; x --- x E, (see, e.g. [Mil80],
[FK88] or Illusie’s course note at Tsinghua University) where the Ej’s are finite

separable extensions of E. Set nj = [E} : E], then p? = dimg R = _ n. On

the other hand, we have

HomE—algebra(R7 ES) = H HomE—algebra(Eka ES)7
k

and for any k, there are exactly nj, E-embeddings of Ej into E®. Therefore
the set Hompg_aigebra(E, E*) has p? elements.

Remark 3.24. Suppose d > 1, A € GL4(FE), we associate A with an E-vector
space M, = E?, and equip it with a semi-linear map ¢ : M4 — M, defined

by
p(Aej) = AP Z aij€;

where {e1,--- ,eq} is the canonical basis of M4. Then for any A € GL4(E),
we obtain a mod p representation V(M4) of G of dimension d.

On the other hand, if V' is any mod p representation of G of dimension d,
then there exists A € GL4(E) such that V = V(My). This is because M(V)
is an étale p-module, then there is an A € GL4(E) associated with M(V),
and M(V) = My. Thus V2 V(Myu).

Moreover, if A, B € GLy4(FE), then

V(Ma) = V(Mg) < there exists P € GLq(F), such that B = P~'Ap(P).
Hence, if we define an equivalence relation on GL4(E) by
A ~ B ¢ there exists P € GLy4(FE), such that B = P~ Ap(P),

then we get a bijection between the set of equivalences classes on GL4(E) and
the set of isomorphism classes of mod p representations of G of dimension d.

3.3 p-adic Galois representations of fields of
characteristic p > 0

As in the previous section, let E be a field of characteristic p > 0, E* a fixed
separable closure of £ and G = Gal(E£°/E). Let Repg, (G) (resp. Repy (G))
be the category of p-adic representations (resp. of Z,-representations) of G.
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3.3.1 Etale p-modules over £.

From §1.2.4, we let Og¢ be the Cohen ring C(E) of E and & be the field of
fractions of Og¢. Then
Of = lim Ok /p"O¢
neN
and Og/pOs = E, £ = og[%}.

The field £ is of characteristic 0, with a complete discrete valuation, whose
residue field is E and whose maximal ideal is generated by p. Moreover, if &’
is another field with the same property, there is a continuous local homomor-
phism ¢ : £ — &’ of valuation fields inducing the identity on E and ¢ is always
an isomorphism. If E is perfect, ¢ is unique and Og¢ may be identified with
the ring W (E) of Witt vectors with coefficients in E. In general, O¢ may be
identified with a subring of W (E).

We can always provide £ with a Frobenius ¢ which is a continuous endo-
morphism sending Og¢ into itself and inducing the absolute Frobenius x — x?
on E. Again ¢ is unique whenever F is perfect.

For the rest of this section, we fix a choice of £ and ¢.

Definition 3.25. (i) A ¢-module over O¢ is an Og-module M equipped with
a semi-linear map ¢ : M — M, that is:

p(r+y)=o@)+¢(y)

p(Ar) = p(Np(z)

forx,ye M, A€ O¢.
(ii) A p-module over & is an E-vector space D equipped with a semi-linear
map p: D — D.

Remark 3.26. A p-module over Og¢ killed by p is just a ¢p-module over E.

Set
ML,D = Og LP®O£ ]\47

which means for A, u € Og, m € M, the module structure on M, is given by
A@pm = dp(p) @m, Ap®m)=AQm. (3.24)

As in the case of p-modules, giving a semi-linear map ¢ : M — M is equivalent
to giving an Og¢-linear map @ : M, — M. Similarly if we set D, = £ ,®, D,
then a semi-linear map ¢ : D — D is equivalent to a linear map ¢ : D, — D.

Definition 3.27. (i) A p-module over O¢ is étale if M is an Og-module of
finite type and @ : M, — M is an isomorphism.

(ii) A @-module D over £ is étale if dimg D < oo and if there exists an
Og¢-lattice M of D which is stable under ¢, such that M is an étale p-module
over Og.
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Remark 3.28. If D is an étale ¢-module over £ and M the associated étale
lattice. If {e1, - ,eq} is a basis of M over Og, then it is also a basis of D
over £, and

d
pe; = Zaijei, (aij) S GLd(Og).
=1

It is easy to check that

Proposition 3.29. If M is an Og-module of finite type with an action of ¢,
then M is étale if and only if M /pM is étale as an E-module.

By Propositions 3.19 and 3.29, then

Proposition 3.30. The category //ﬁt (O¢) (resp. ///f;t(g)) of étale p-modules
over Og (resp. £) is abelian.

We want to construct equivalences of categories:
D : Repg, (G) = #S(€)

and )
M : Repy, (G) — MG (O¢).

3.3.2 The field &vr.

Let F be a finite extension of £, O be the ring of integers of F. We say
F/E is unramified if

(a) p is a generator of the maximal ideal of OF;
(b) F = Ox/p is a separable extension of F.

For any homomorphism f : E — F of fields of characteristic p, by Theo-
rem 1.51, the functoriality of Cohen rings tells us that there is a local homo-
morphism (unique up to isomorphism) C(E) — C(F') which induces f on the
residue fields.

For any finite separable extension F' of E, the inclusion E < F' induces a
local homomorphism C(E) — C(F), and through this homomorphism we iden-
tify C(E) with a subring of C(F)). Then there is a unique unramified extension
F = FracC(F) of £ whose residue field is F' (here unique means that if F,
F' are two such extensions, then there exists a unique isomorphism F — F’
which induces the identity map on £ and on F'), and moreover there exists a
unique endomorphism ¢’ : F — F such that ¢’ maps C(F) to itself, ¢'|e = ¢
and induces the absolute Frobenius map A — AP on F. We write F = £ and
still denote ¢’ as .

Again by Theorem 1.51, if F' and F’ are two separable extensions of E,
then a morphism

f:F — F'| flg =1d induces uniquely f : Er — Epr, fle =1d
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and f commutes with the Frobenius map ¢. In particular, if F/FE is Galois,
then Er /& is also Galois with Galois group

Gal(Ep/E) = Gal(F/E)

and the action of Gal(F/E) commutes with .
Let E° be a separable closure of F, then

E*=|JF

Fes

where S denotes the set of finite extensions of E contained in E*. If F, F' € S
and F' C I/, then Er C Epr, we set

£ = lim Ep. (3.25)
FeS

Then £" /€ is a Galois extension with Gal(E"/€) = G. Let £ be the p-adic
completion of £, and Ogs be its ring of integers. Then Og is a local ring,
E? is its residue field and

Oz = lim Ogur /p" O (3.26)

We have the endomorphism ¢ on " such that ¢(Ogur) C Ogur. The

.

action of ¢ extends by continuity to an action on Og; and V. Similarly we

have the action of G on ", Og; and £ur. Moreover the action of ( commutes
with the action of G. We have the following important facts:

Proposition 3.31. (1) (6/"})6' =&, (Og:)¢ = O¢.
(2) (€™)p=1 = Qp, (Oéﬁ)wzl = L.

Proof. (1) follows by the construction above, or is a consequence of Ax-Sen-
Tate’s Lemma in next chapter.

For (2), we can regard all the rings above as subrings of W (E*#). such that
the inclusion Og: < W(E?) is G- and gp-compatible. Since W(E?), =1 = Z,,
(2) follows immediately.

3.3.3 Ogi- and Zp-representations.

Proposition 3.32. For any Og;-representation X of G, the natural map

@g;@og X% 5 X

s an isomorphism.
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Proof. We prove the isomorphism in two steps.

(1) Assume there exists n > 1 such that X is killed by p™. We prove the
proposition in this case by induction on n.

For n = 1, X is an E®-representation of G and this has been proved in
Proposition 3.8.

Assume n > 2. Let X’ be the kernel of the multiplication by p on X and
X" = X/X'. We get a short exact sequence

0=-X' =X —=X"=0

where X' is killed by p and X" is killed by p”~!. Also we have a long exact
sequence
0— X% X% X"~ Hl

cont

(@, X,

Since X' is killed by p, it is just an E*-representation of G, hence it is trivial
(cf. Proposition 3.8), i.e. X’ = (E*)? with the natural action of G. So

Hclont(GaX/) - HI(G7X/) = (Hl(Ga ES))d = 0.
Then we have the following commutative diagram:

0*)0{“7 Ko, XIGHOE; Ko, XC HOE; Ko, ) S g—|

i i i

0 X' X X" 0.

By induction, the middle map is an isomorphism.
(2) Since X = Jim X /D", the general case follows by passing to the limits.
neN

Let T be a Zj,-representation of G, then Ogz ®z, T is a p-module over
Og¢, with ¢- and G-action by

pA@t) =pN)®t, gAat)=g(\)®g(t)

forany g € G, A € Oz and t € T'. Let

gur
M(T) = (Ogw ®z, ), (3.27)
then by Proposition 3.32,
ar : Ogz ®o M(T) = Ogiz @z, T (3.28)

is an isomorphism, which implies that M(T) is an Og-module of finite type,
and moreover M(T) is étale. Indeed, from the exact sequence 0 — pT' —
T — T/pT — 0, one gets the isomorphism M(T)/pM(T) = M(T/pT) as
HY (G, Oz ®z, T) = 0 by Proposition 3.32. Thus M(T) is étale if and only if
M(T/pT) is étale as a p-module over E, which was proven in Proposition 3.20.
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Let M be an étale p-module over Og, and let ¢ and G act on Ogg: ®o, M
through g(A ® z) = g(A) ® z and p(A ® z) = ¢(\) ® ¢(z) for any g € G,

AGOgu\randeM.Let

T(M) = {y € Oz ®0: M | p(y) =y} = (Ogw ®0. M) __,.  (3.29)
Proposition 3.33. For any étale p-module M over Og, the natural map
Ogl; Rz, T(M) — Og; Ros M
is an isomorphism.

Proof. (1) We first prove the case when M is killed by p", for a fixed n > 1
by induction on n. For n = 1, this is the result for étale p-modules over E.
Assume n > 2. Consider the exact sequence:

0—>M —-M—M'—0,

where M’ is the kernel of the multiplication by p in M. Then we have an exact
sequence

0—>O§;®OEM/—>O§;®@EM—)Og;@ogMH—)O,

Let X/ = Og; R0, M, X = Og; ®os M, X" = Og; ®o, M’', then X(/pzl =
T(M'), Xp=1 = T(M), X[_; = T(M"). If the sequence

0= X/ = Xpm1 = X5, =0
is exact, then we can apply the same proof as the one for the previous propo-
sition. So consider the exact sequence:

0= XLy = Xpo1 = X1 5 X' /(9 - DX,

where if x € X,—1, y is the image of x in X[/_;, then d(y) is the image of

(p — 1)(x). It is enough to check that X'/(p —1)X’ = 0. As M’ is killed by
p, X' = E* @ M' = (E*)?, as an E*-vector space with a Frobenius. Then

~

X'/(p—1)X" = (E%/(p — 1)E%)4. For any b € E*, there exist a € E*, such
that a is a root of the polynomial X? — X —b,sob=a? —a = (p — 1)a €
(p — 1)E*.

(2) The general case follows by passing to the limits.

The following result is a straightforward consequence of the two previous
results and extends the analogous result in Theorem 3.22 for mod-p represen-
tations.

Theorem 3.34. The functor

M : Repy (G) = 4 (Og), T — M(T)
is an equivalence of categories and

T : /4" (Og) = Repy (G), M — T(M)

is a quasi-inverse functor of M.
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Proof. Identify Oz @0, M(T') with Og ®z, T through (3.28), then

T(M(T))

(Ogw ®0, M(T))p=1 = (Ogz @z, T)p=1
:(Oﬁ)wzl ®Zp T=T,

and

M(T(M)) =(Ogz ®z, T(M))® = (Ogzz ®0, M)©
0%, ®o, M = M.

The theorem is proved.

3.3.4 p-adic representations.
If V is a p-adic representation of G, D is an étale p-module over &, let
D(V) = (£ ©g,V)
V(D) = (E% @¢ D)oy,

Theorem 3.35. (1) For any p-adic representation V of G, D(V') is an étale
w-module over &£, and the natural map:

EW @eD(V) — EW g,V

s an isomorphism.
(2) For any étale p-module D over £, V(D) is a p-adic representation of
G and the natural map

£V @g, V(D) — W ©gD

s am isomorphism.
(3) The functor )
D : Repg, (G) — MG(E)

is an equivalence of categories, and
6t
V4 (€) — Repg, (G)
18 a quasi-inverse functor of D.

Proof. The proof is a formal consequence of what we did in §3.3.3 and of the
following two facts:

(i) For any p-adic representation V' of G, there exists a Z,-lattice T stable
under G, V = Q, ®z, T. Thus

£9 g,V = (Ogz @z, T)[1/pl, D(V) = M(D)[1/p] = £ ®o, M(T).
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(ii) For any étale ¢-module D over &, there exists an Og-lattice M stable
under ¢, which is an étale ¢p-module over Og, D = £ ®p, M. Thus

£ @eD = (Og ®o, M)[1/p], V(D) ="T(M)[1/p] = Q, @z, T(M),

Remark 3.36. The category ///ﬁt (€) has a natural structure of a Tannakian
category, i.e. one may define tensor products, dual objects and the unit object
satisfying suitable properties. For instance, if Dy, D5 are étale p-modules over
&, their tensor product Dy ® Ds is D1 ®¢ Dy with action of ¢: p(z1 ® x9) =
o(z1) ® p(z2). Then the functor D is a tensor functor, i.e. we have natural
isomorphisms

D(V1) ® D(Va) — D(V1 ® V2) and D(V*) — D(V)*.

Similarly, we have a notion of tensor product in the category //[f(@g), two
notions of duality (one for free Og-modules, the other for p-torsion modules)
and similar natural isomorphisms.

3.3.5 Down to earth meaning of the equivalence of categories.

For any d > 1, A € GL4(O¢), let My = Og as an Og-module, let
d

{e1,--- ,eq} be the canonical basis of M4. Set ¢(e;) = > a;je;. Then My
i=1

is an étale ¢p-module over Og and Ty = T(M,) is a Zy-representation of G.
Furthermore, V4 = Q, ®z, T4 = V(D,) is a p-adic representation of G' with
D4 = E% as an E-vector space with the same (.

On the other hand, for any p-adic representation V' of G of dimension
d, there exists A € GL4(Og¢), such that V= V4. Given A, B € GL4(O¢),
T4 is isomorphic to Tp if and only if there exists P € GL4(Og), such that
B = P71 Ap(P). V, is isomorphic to Vp if and only if there exists P € GL4(€)
such that B = P~1Ap(P).

Hence, if we define the equivalence relation on GLg(Og¢) by

A ~ B & there exists P € GLg(£), such that B = P! Ap(P),

we get a bijection between the set of equivalence classes and the set of iso-
morphism classes of p-adic representations of G of dimension d.

Remark 3.37.1f A is in GLg(Og) and P € GL4(Og), then P~1Ap(P) €
GL4(Og). But if P € GL4(E), then P~1Ap(P) may or may not be in
GL4(O¢).
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C-representations and Methods of Sen

4.1 The field C and its invariant subfields

In this section, let K be a complete nonarchimedean field, K* be a separa-
ble closure of K, K be an algebraic closure of K containing K*°. Let C' = K%,
the completion of K*.

4.1.1 C is algebraically closed.

Lemma 4.1 (Krasner’s Lemma). Let F be a complete nonarchimedean
field, and E be a closed subfield of F. Suppose o, 8 € F and « separable over
E, such that |5 — a| < |o/ — «f for all conjugates & of a over E distinct from
a, then a € E(fB).

Proof. Let E' = E(8), v = 8 — a. Then E'(y) = E'(a), and E’'(y)/E’ is
separable. We want to prove that E’(y) = E’. It suffices to prove that there
is no conjugate 7' of v over E’ distinct from ~. Let 4/ = § — o’ be such a
conjugate, then |y'| = |y|. It follows that |y —~| < |v| = |8 — a]. On the other
hand, |7 — | = |& — a] > |8 — a| which leads to a contradiction.

Theorem 4.2. The field C = I/(\s, the completion of K°, is an algebraically

o~

closed field, and hence C = K* = K.

Proof. 1t suffices to show
(i) If char K = p, then for any a € C, there exists a € C, such that of = a.

(if) C is separably closed.
Proof of (i): Choose m € mg, 7w # 0. Choose v = vy, i.e., v(m) = 1. Then
Ok: ={a€ K*|v(a) >0}, Oc =lmOk:/n"Ok:

and C = O¢[1/7]. Thus 7™Pa € O¢ for m > 0, and we may assume a € O¢.
Choose a sequence (a,)nen of elements of Ok, such that a = a,, mod 7™. Let
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Po(X) = X? — "X —a, € K*[X],
then P, (X) is separable since P, (X) = —n™ # 0. Let «, be a root of P, in
K*, then «,, € Ogs and

aP +1

— n n
il — b =TT g — T + Gpg1 — .

Therefore v(af  ; —af) > n and v(apy1 — o) > n/p since (1 — an)? =
ab 1 —ab. As a consequence (o )nen converges in Oc¢. Call a the limit of
(an), then o? = nll)rfw a? = a since v(a®, — a) = v(m"ay, + an — a) > n.
Proof of (ii): Let

P(X)=ao+ a1 X +asX?+ - +ag_ X1+ x4

be an arbitrary separable polynomial in C[X]. We need to prove P(X) has a
root in C'. We may assume a; € O¢. Let C’ be the splitting field of P over C,
let » = max v(oy; — @ ), where o; and «; are distinct roots of P in C’. Choose
b; € K* such that v(b; — a;) > rd, and let

Pr=0bg+b X + b X4+ b1 X+ X% e K¥[X].

We know, because of part (i), that C' contains K, hence there exists 3 € C,
such that P;(8) = 0. Choose a € C’, a root of P, such that |5 —ao/| > |8 — ¢
for any root o € C' of P. Since P(8) = P(8) — P1(8), and v(3) > 0, we have
v(P(B)) > rd. On the other hand,

thus

v(P(B) = > v(B - a;) > rd.

i=1
It follows that v(8 — a) > r. By Krasner’s Lemma, we get a € C(8) = C.
4.1.2 Ax-Sen’s Lemma.

Let F be an algebraic extension of K. For any element « contained in
some separable extension of F, set

Ag(a) := min{v(a’ —a)}, (4.1)
where o' runs through conjugates of o over E. Then
Ap(a) = 400 if and only if a € E. (4.2)

Ax-Sen’s Lemma means that if all the conjugates o’ are close to a, then
« is close to an element of F.
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Proposition 4.3 (Ax-Sen’s Lemma, Characteristic 0 case). Let K, E, «
be as above, Assume char K = 0, then there exists a € E such that

p
— A — . 4.3
v(a —a) > Ap(a) = 1)20(17) (4.3)
Remark 4.4. (a) If & € E, we take a = « and assume (4.3) holds in this case.
(b) If choose v = vy, then vy(a —a) > Ag(a) — ﬁ, it seems like that

we have an absolute constant, however Ag(«) also varies.
We shall follow the proof of Ax ([Ax70]).

Lemma 4.5. Let R(X) € E[X] be a monic polynomial of degree d > 2 over
E, the algebraic closure of E. Suppose for any root A\ of R in E, v(\) > r.
Form € N, 0 < m < d, let R"™)(X) be the m-th derivative of R(X). Then
there exists a root p € E of R (X)), such that

= (),

d—m m

Proof. Write
d
R(X)= (X - AM)(X = X2) - (X —Aa) = ZbiXi»
i=0

then b; € Z[A1,- -+ , Ag] is homogeneous of degree d — i. If follows that v(b;) >
(d — i)r. Write

d
1 m ¢ 1—m
R0 = 3 (2 )oxm = ()08 )X = )+ (X )
then b, = (T‘i)(fl)d*mulﬂg “+ lhd—m, and
d—m d

S vl = o) () 2 (@ mir = o(( 1))

=1

Hence there exists 4, such that

i) 2= (1)

The lemma is proved.

Proof (Proof of Proposition 4.3). For any d > 1, let
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Then ¢(d) = 0 if and only if d < p. We want to show that if [E(«a) : E] = d,
then there exists a € E, such that

v(a—a) > Ag(a) — e(d)v(p).

This implies the proposition, since e(d) < e(d+ 1) and lim e(d) = —qs.
d——+o0 (r-1)

We proceed by induction on d. It is easy to check for d = 1. Now we
assume d > 2. Let P(X) be the monic minimal polynomial of o over E. Let
R(X) = P(X + «), then for m € N,

R™(X) = P"™(X 4 a).

If d is not a power of p, write d = p°n, with n prime to p, and n > 2. Otherwise
write d = p®p, s € N. We take m = p°.

The roots of R(X) are of the form o — « for o a conjugate of «. Set
r = Ag(a), and choose u as in Lemma 4.5. Write 5 = p + . Then

(B -a) 2~ : v((d))-

—m m

As PU™)(B) = 0 and PU™(X) € E[X] is of degree d — m, 3 is algebraic over
FE of degree no higher than d — m. Then either § € E, we choose a = 3; or
B ¢ E, and we choose a € E such that v(8—a) > Ag(8)—e(d—m)v(p), whose
existence is guaranteed by induction. We need to check that v(a—a) > r—e(d).

Case 1: d = mn = p°n (n > 2 prime to p). It is easy to verify v((i)) =
v((ppssn)) =0, sov(u) =v(f —a)>r. If §/is a conjugate of 8, 5/ =o' + 1/,
then

o — ) = v’ —atp —p) >,
which implies Ag(5) > r. Hence v(8 —a) > r — e(d — p*)v(p), and

v(a —a) > min{v(a — 8),v(8 —a)} > r —e(d)v(p).

Case 2: d = mp = p°p. Then v((d)) = v((p;:l)) = v(p), and v(p) >

m

r— ﬁv(p). Let 8’ be any conjugate of 3, 8/ = i/ + o', then

v =B =o' —pt+a’ —a)zr -

which implies Ag(8) > r — v(p). Then

1
P _ps

Eg%;w@%f@”“ﬂﬂMMZT—dﬁ“M@)

Hence v(a —a) =v(a— B+ —a) > r —e(d)v(p).

v(B—a)>Tr—

Proposition 4.6 (Ax-Sen’s Lemma, Characteristic > 0 case). Assume
K, E, a as above. Assume K is a perfect field of characteristic p > 0. Then
for any € > 0, there exists a € E, such that v(a —a) > Ag(a) — €.
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Proof. Let L = E(«), then L/ E is separable. Therefore there exists ¢ € L such
that Trz g (c) = 1. For r sufficiently large, v(c? ") > —e. Let ¢ = ¢? ', then
Tty p(c/)P" = Trp p(c) = 1. Replacing ¢ by ¢/, we may assume v(c) > —¢.
Let

S={o|o:L— E is an E-embedding},

and let
a="Try p(ca) = Z o(ca) = Z o(c)o(a) € E.
oceS oc€es
As Y o(c)a=Try/p(c)a = qa,
ocS
vla—a) = ’U(Z o(e)(a—o(a))) > min{v(c(c)(a —o(a)))} > Ag(a) —e.

oeS
This completes the proof.

We give an application of Ax-Sen’s Lemma. We first give a definition:

Definition 4.7. If F' is a field of characteristic p > 0, we let
Frd.— {4 € F | there exists n, such that z?" € F}

be the perfect closure of F, which is also denoted as FP°t.

Back to our case. For K a complete nonarchimedean field, the action of
Gk extends by continuity to C' = K5 =K. Let H be any closed subgroup of
Gr, L= (K*)" and H = Gal(K*/L). A natural question arises:

Question 4.8. What is CH?

Certainly EH D L and by continuity C* D L. Moreover, if char K = p,
then L4 ¢ K C C and H acts trivially on L', Indeed, for any = € L4,
there exists n € N, such that #?" = a € L, then for any g € H, (g(z))?" = z?",

which implies g(z) = . Hence Lrd ¢ CH.

Proposition 4.9. For any close subgroup H of G, let L = (K*)H, then

CoH _ L/,\ if char K =0, (4.4)
Lrad  4f char K = p.
In particular,
G _ [ﬁiK, if char K =0, (4.5)
Krad, if char K = p.

Proof. If char K = p, we have a diagram:
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K* (K™ =K c (Kmd)ps=Kmdc  (

K c  Krad c Krad

with Krad perfect. This allows us to replace K by K24, thus we may assume

that K is perfect, in which case Lrad = I, The proposition is reduced to show
the claim CH = L.

If char K = p, we choose any € > 0. If char K = 0, we choose ¢ =
ﬁv(p). For any o € C*, we want to prove that o € L. We choose a

sequence of elements «,, € K such that v(a — a,,) > n, it follows that
v(g(an) — an) = min{v(g(a, — a)),v(an —a)} > n

for any g € H. Hence Ap(ay,) > n, which implies that there exists a,, € L,

such that v(a, —an) >n—¢,and lim a, =« € L.
n—-+oo

4.2 Study of K- and P-representations of G g

4.2.1 A summary of notations and basic results

From now on, if without further notice, we shall fix the following notations.

(i) Let K be a p-adic field, Ok be its ring of integers, mx be the maximal ideal
of Ok, k = Ok /mg be the residue field which is perfect of characteristic
p, i be the normalized valuation of K, and ex = vk (p) be the absolute
ramification index of K.

(ii) Let W = W (k) be the ring of Witt vectors of k and Ky = FracW =
W1/p] be its field of fractions.

(iii) Let K be a fixed algebraic closure of K. Let C = K = K* be the p-adic
completion of K which is also algebraically closed. Let v be the unique

valuation of C' such that v(p) = 1, in other words, v = ivK.
(iv) Let Py = W (k)[1] = K§* and P = R K = K.
(v) For any subfield L of C,
(a) let Op = {z € L | v(z) > 0} be the ring of integers, my, = {z € L |
v(x) > 0} the maximal ideal and k = O /my, the residue field of L;

~

(b) let L is the p-adic completion of L in C, which means

Of:@OL/p"OL, E:OE[%] and  k; = kg.

n>1

(vi) If L is a finite extension of Ky inside K, let Lo = W (kr)[1].

1
p
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We know that

(A) K/Kj is totally ramified of degree ex, Ok is a free W-module of rank

e if T is a uniformizer of K, then {1, 7k, -- ,71';("_1} is a basis of Ok

over W as well as K over Kj.
(B) Py and K are linearly disjoint over Ky and P = PyK.
(C) Let o be the absolute Frobenius map on Kj, then

o(a) =a? (mod pW) ifaeW. (4.6)
(D) If Koy C L C K, then
CC%r = L which is L if and only if [L : K] < +oc. (4.7)

(E) Let Gy = Gal(k/k), I be the inertia subgroup of G, then one has an
exact sequence
1—-1Ix —-Gg — G — 1.

Moreover, Gal(P/P) = Ik where P is the algebraic closure of P inside C.

Definition 4.10. For any finite extension L of Ky, denote

LY = Lpp) = | Lupr) = LEG*
neN
the subfield of K obtained by adjoining to L all p™-th roots of unity, and denote
Hyp = Gal(K/L%°), Tp := Gal(L¥°/L).
By Kummer theory, then the cyclotomic character x is the homomorphism
X:Gp =Ty =7,

with Hy, = Ker (x), and Im(x) a subgroup of Z of finite index and they are
equal if L = Lg. Thus we regard I';, as an open subgroup of Z;. Moreover,
the following result is well-known:

Lemma 4.11. There exists a constant n =n(L) € N such that

(1) L/ L(upn) is totally ramified and hence k$ := kpeve is a finite extension
of kr;

(2) for any m > n, L(ppn) and Lo(pym) are linearly disjoint over Lo(piym),
and hence

Gal(L(ppn)/Lo(ppr)) = -+ = Gal(L(ppm) /Lo (ppm )) = Gal(L¥/L™).

If moreover L = Ly, then one can take n(Lg) = 0.
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By the canonical isomorphism Z; =T x (14 pZ,) (or Fa x (1 + 4Zy) if
p = 2), one can decompose

FLZALXFL

where Ay is a subgroup of F if p # 2 or Fy if p = 2, and I', = Z;,. Then
Lo := (L)AL /L is the cyclotomic Z, extension of L, which is almost totally
ramified (i.e. totally ramified after some finite extension of L). Let Hy, :=
Gal(K /L)

In conclusion, we have Fig. 4.1.

Ko© r
Ak,
KO,oo
Tk, /
Ko

Fig. 4.1. Galois extensions of K and Kj

4.2.2 K- and P-admissible representations.

Note that K is a topological field on which Gk acts continuously. Recall
a K -representation X of G is a K-vector space of finite dimension together
with a continuous and semi-linear action of G .

For X a K-representation, the map

ax . K QK XGK — X
is always injective. X is trivial if ax is an isomorphism.
Proposition 4.12. X is trivial if and only if the action of Gk is discrete.

Proof. The sufficiency is clear because of Hilbert Theorem 90. Conversely if
X is trivial, there is a basis {e1, - ,e4} of X over K, consisting of elements
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d
of XUk For any z = Y. \je; € X, we want to prove G, = {g € G| g(z) = z}
i=1
d
is an open subgroup of G. By the choice of ¢;’s, g(z) = > g(\;)e;, therefore
i=1

d d
Go=[NgeGlgh)=A}:=[)GCx,

i=1 i=1
each \; € K is algebraic over K, so G, is open, and the result follows.

Recall for a p-adic representation V of G, V is called K-admissible if
K ®q, V is trivial as a K-representation.

Let {v1,--- ,vq} be a basis of V over Q,. We still write v; = 1 ® v; when
viewed as elements of K ®q, V, then {vi,---,vq} is a basis of K ®q, V
over K. By Proposition 4.12, that V is K-admissible is equivalent to that
Gy, = {9 € G| g(v;) = v;} is an open subgroup of G for all 1 <i < d, and it
is also equivalent to that the kernel of

p:Gg — Autg, (V),

d
which is nothing but (] G,,, is an open subgroup. We thus get
i=1
Proposition 4.13. A p-adic representation V of Gk is K-admissible if and
only if the action of Gk is discrete.

We can do a little further. Recall K" is the maximal unramified extension
of K contained in K, P = K" the completion in C, and P the algebraic
closure of P in C'. Clearly P is stable under Gk, and Gal(P/P) = Ik.

Proposition 4.14. (1) A P-representation X of Gk is trivial if and only if
the action of I on X is discrete.

(2) A p-adic representation V of Gk is P-admissible if and only if the
action of Ix on 'V is discrete.

Remark 4.15. By the preceding two propositions, if V' is a p-adic represen-
tation of G, and p : Gx — Autg,(V) the corresponding homomorphism,
then

V is K-admissible <= Ker p is open in G,

_ 4.8
V' is P-admissible <= Ker p N I is open in Ig. (48)

Proof. Obviously (2) is a consequence of (1), so we only need to prove (1).
The condition is necessary since if X is a P-representation of G, then X

—d
is trivial if and only if X = P~ with the natural action of Gk.
We have to prove it is sufficient. Suppose X is a P-representation of G g

—I
of dimension d with discrete action of Ix. We know that P = P, and
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Pop X't — X

is an isomorphism by Hilbert Theorem 90. Set Y = X'% because G /I =
G, Y is a P-representation of Gi. If P @ Y — Y is an isomorphism,
since X6« = Y% P @k X% — X is also an isomorphism. Thus it is
enough to prove that any P-representation Y of Gy, is trivial, i.e., to prove
that P @ Y% — Y is an isomorphism.

But we know that any Py-representation of Gy is trivial by Proposi-
tion 3.32: we let

E:k’ OEZW 5:]{07 g — (1)1r7

then £ = Py and any é{”\r—representation of Gg is trivial. Note that P =
K ®k, Py and [P : Py] = ek, any P-representation Y of dimension d of Gy,
can be viewed as a Py-representation of dimension exd, and

Pk YO =Py®K, YO 5 Y.

The result is proven.

4.3 Classification of C-representations

In this section we write G for Gg. The goal of this section is to clas-
sify C-representations of K. To do so, by Hilbert’s Theorem 90, one should
study the cohomology group H' (G, GL4(C)). Let K, /K be a totally ram-
ified Z,-extension with Galois group I" = Z,. Sen reduces the study of
HL .(G,GL4(C)) to the study of HL (I, GLd(I/(\'OO)) by the almost étale
descent technique and then to the study of H} (I, GL4(K~)) by the de-
completion technique. This section is devoted to Sen’s method.

We fix an arbitrary totally ramified Z,-extension K, of K contained in K,
though one may always take the cyclotomic Z,-extension of K as an example,
which is totally ramified over a finite extension of K.

Let H = Gi, = Gal(K/Ky). Let I' = Iy = Gal(Ky/K) = Z,. Let
I, = I'"" and K,, = KL the subfield of K., fixed by I},. Let v be a
topological generator of I" and 7, = v*", which is a topological generator of
I

For a matrix M = (m;;) € M,«s(C), we let v(M) = minv(m;;).

4.3.1 Almost étale descent.

Lemma 4.16. Let Hy be an open subgroup of H and U be a continuous cocycle
of Hy with values in GL4(C) such that v(U, —1) > a for a constant a > 0 for
all 0 € Hy. Then there exists a matriv M € GL4(C), v(M — 1) > a/2, such
that

v(M~'Uy0(M)—1)>a+1, forall o€ H.
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Proof. We are imitating the proof of Hilbert’s Theorem 90 (Theorem 1.114).

Fix an open normal subgroup H; of Hy such that v(U, —1) > a+1+4a/2
for o € Hy, which is possible by continuity. By Corollary 1.96, we can find
a € CH1 such that

v(a) > —a/2, > 7(a)=1

TEHU/Hl

Let S C Hy be a set of representatives of Hy/H;, denote

Mg =Y o(a)Us,

oes
we have Mg — 1= > o(a)(U, — 1). Hence v(Mg — 1) > a/2 and moreover
oeS
the sequence
+oo
Mgt = (1- Mg)"
n=0

converges, and Mg € GL4(C). We also see that v(Mg) = v(Mg') = 0. We
claim that Mg is the matrix we need.

If 7 € Hy, then Uyr — U, = Uy(o(U;) — 1). If S" C Hy is another set of
representatives of Hy/Hy, then for any ¢’ € S’, there exist a unique o € S
and 7, € H; such that ¢/ = o7,, so we get

Mg — Mg = Z oc(a)(Uy = Uyr,) = Z (@)U, (1 = o(U.,)),
oes oes

and
v(Mg—Mg)2a+1+a/2—a/2=a+1.

For any 7 € Hy,
U,m(Msg) = Z To(a)U,m(Uy) = M- s.
c€eS

Then
MG'U,7(Ms) = 1+ Mg (M,s — Ms),

with v(Mg ' (Mys — Mg)) > a+ 1. The claim is proved.

Corollary 4.17. Under the same hypotheses as the above lemma, there exists
M € GL4(C) such that

o(M —1) >a/2, M™'U,0(M) =1, forallc € H,.

Proof. Suppose M; is the matrix constructed for U, and a, for i a posi-
tive integer, repeat the lemma and suppose M; is the matrix constructed
for (My - M;_1)"*Us(My---M;_1) and a + i. Now we just need to take
M = MM ---, which converges by construction.
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Proposition 4.18. H

cont

(H7 GLd(C)) =1

Proof. We need to show that any given cocycle U on H with values in GL4(C)
is trivial. Pick a > 0, by continuity, we can choose an open normal subgroup
Hy of H such that v(U, — 1) > a for any o € Hy. By Corollary 4.17, the
restriction of U on Hj is trivial. By the inflation-restriction sequence

1— H!

cont

(H/H()? GLd(CHO)) - Hclont(Hﬂ GLd(C)) - Hclont(Hov GLd(C))a

since H/H, is finite, by Hilbert Theorem 90, H}

cont
ial, as a consequence, U is also trivial.

(H/Hy, GL4(CH0)) is triv-

Proposition 4.19. The inflation map gives a bijection

jiHL (I GLy(Kx)) = HL (G, GL4(C)). (4.9)

cont

Proof. Consider the exact inflation-restriction sequence

1> H!

cont

(I',GLy(CH)) — H}

cont

(G,GLq4(C)) — H}

cont

(H,GLa(C)),

the last term is trivial by the previous Proposition, and IA(OO = CH by Ax-Sen’s
Lemma, hence follows the result.

4.3.2 Decompletion.

Recall for the totally ramified Z,-extension Ko, /K, in §1.4.2, we defined

Tate’s normalized trace map R, (z) : Koo — K, for every r € N. By Corol-
lary 1.99 and Proposition 1.104, there exist positive constants ci, ¢y indepen-
dent of r, such that

v(Re(z)) > v(z) — 1, 7€ Koo (4.10)
(e = D7) > v(x) —c2, w€ X, ={2€ Ko | Re(z) =0}.  (4.11)

Lemma 4.20. Given § > 0, b > 2c¢1 + 2¢2 + 0, b’ > b. Given r > 0. Suppose
U=1+U; + U with

Uy € My(K,),v(U1) >b—c1— ¢
Uy € Mg(Koo),v(Us) > b > b.
Then there exists M € GLd(IA(OO),v(M —1) > b—c—d such that
M= U (M) =1+ V1 + Va,
with
Vi € My(K,), v(Vi) > b—c1 — ca,
Vo € My(Koo), v(Va) > b +0.
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Proof. One has Us = R, (Usz) + (1 — v,.)V such that
v(R-(Us)) > v(Us2) —¢1, v(V)>v(Us) —c1 — ca.
Thus,

I+V) U1+ V)=1=-V+V? = )1+ U+ U)(1+ (V)
=1+ U; + R.-(Us) + (terms of degree > 2).

Let Vi = Uy + R,-(Us2) € My(K,) and W be the terms of degree > 2. Thus
(W) >b+b —2¢) —2c0 > b + 5. We can just take M =1+ V and Vo = W.

Corollary 4.21. Keep the same hypotheses as in Lemma 4.20. Then there
exists M € GLyg(Ks), v(M — 1) > b —¢1 — co such that M~ 1U~,.(M) €
GLy(K,).

Proof. Repeat the lemma (b+— b+ — b+ 20 — ---), and take the limit.

~

Lemma 4.22. Suppose B € Mgy s(Kx) is a matriz of d rows and s columns
with entries in Koo. If there exist Vi € GL4(K;) and Vo € GL4(K;) such that
for some r > 1,

v(Vi —1) > ¢, v(Va—1)>ca, 7 (B) =V1BVs,
then B € Mgy s(K;).
Proof. Take T'= B — R;(B). It suffices to show that T' = 0. Note that T has

~

entries in X; = (1— R;) Koo, and R; is K;-linear and commutes with +,., thus,
V(D) =T =VTVo =T = V1 = 1)TVo + VT (V2 = 1) = (Vi = )T (V2 — 1).

Hence, v(y(T) — T) > v(T') + c2. By Proposition 1.104, this implies v(T) =
400, i.e. T =0.

Proposition 4.23. The inclusion GLy(K+) < GLqg(Koo) induces a bijection

i: H} (I, GL4(K)).

cont

(I'GLa(Kw)) = H..

cont

Moreover, for any continuous cocycle o — Uy in ZL (I, GLa(K o)), if v(Uy—
1) > 2¢142¢y for o € T, then there exists M € GL4(Kx), v(M —1) > ¢1+c¢2
such that

or— U, = M 'U,o(M)
satisfies U! € GLq(K,).
Proof. We first prove the injectivity of i. Suppose U, U’ are cocycles of I'" in
GL4(K o) which become cohomologous in GL4(K ), that is, there is an M €

GLd(I?OO) such that M ~U,o(M) = U., for all o € I'. In particular, v,(M) =
U, 1M U., . Pick r large enough such that U, and U satisfy the conditions
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in Lemma 4.22; then M € GL4(K,). Thus U and U’ are cohomologous in
GL4(K ), and the injectivity is proved.

We now prove the surjectivity. Given U, a cocycle of I" in GLd(IA(OO), by
continuity there exists one r such that for all ¢ € I, we have v(U, — 1) >
2¢1 + 2¢o. By Corollary 4.21, there exists M € GLd(I/(\'OO), v(M—1)>c1 4 e
such that U/ = M~'U,,~,(M) € GL4(K,).

Put U, = M~'U,0(M) for all o € I'. For any such o we have

Upo(US,) = Ug,, =U. 5 = U, 7 (U7),
which implies that ,.(U}) = U, 'U,o(U, ). Apply Lemma 4.22 with V; =
UQ:l,Vg =o(U,,), then U; € GL4(K,).
The last part follows from the proof of surjectivity.

Theorem 4.24. the map
(I',GLag(Koo)) — H}

1
n: H cont

cont

(G, GLa(C))
induced by G — I' and GL4(K ) < GL4(C) is a bijection.

4.3.3 Study of C-representations.

By Proposition 3.7, if L/K is a Galois extension, we know that there is a
one-to-one correspondence between the elements of H., (Gal(L/K),GL4(L))
and the isomorphism classes of L-representations of dimension d of Gal(L/K).
Thus we can reformulate the results in the previous subsections in the language
of C-representations.

Let W be a C-representation of G of dimension d. Let

We =W ={w|weW, ow)=wforall o € H}. (4.12)

Since CH = K, W, is a K. -vector space with an action of I". Moreover,

Theorem 4.25. The natural map

C® R ﬁ/\o@ — W
is an isomorphism.
Proof. This is a reformulation of Proposition 4.18.

Theorem 4.26. There existsr € N and a K,.-representation W,. of dimension
d of I', such that
I?oo XK, W, AN Woo

Proof. This is a reformulation of Proposition 4.23. Let {e1, - ,eq} be a basis
of W, the associated cocycle o — U, in HL (T, GLd([A(OO)) is cohomologous
to a cocycle with values in GLg(K,.) for r sufficiently large. Thus there exists
a basis {ef, -+, e/} of Wi, such that W, = K.ef @-- @ K,e is invariant by
I.
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From now on, we identify IA(OO ®K, W, with WOO and W, with 1 ® W, in

—~

We.

Definition 4.27. A vector w € WOO is called K-finite if its translate by I’
generates a K-vector space of finite dimension. Let

Wy :i={w € Wae | w is K-finite}. (4.13)

By definition, one sees easily that W, is a K,-subspace of /Woo on which
I acts. Clearly K ®g, W, is a subset of W.

Proposition 4.28. One has Ko @k, W, = W, and hence I?Oo Rk, We =
We.

Proof. It suffice to show that W C Koo ®k, W

Suppose {e1,- - ,eq} is a basis of W,., then it is also a basis of /VVDO. For
an element w = Y ¢;e; of Wy, let X be the finite K-vector space generated
by I'w. Suppose {wi, - ,ws} is a basis of X. Then one can write

(wh... ,Ws>:(61,"' ,ed)B

o~

with B € Myxs(Ws). Suppose
’}/T(wla T 7ws) = (wla e 7wS)V2

and
77‘(615“' ’ed) = (617"' 7ed)V17

then 7,.(B) = V; ! BV;. Choose r big enough such that Lemma 4.22 holds,
then B has entries in K, and hence w € Ko Rk, W,.

Remark 4.29. The set W,. depends on the choice of basis and is not canonical,
but W, is canonical.

4.3.4 Sen’s operator O.

Suppose W is a C-representation of G of dimension d, and W, and W
are given as in the previous subsection. By Proposition 4.23, there is a basis
{e1,-+- ,eq} of W, (over K,) which is also a basis of W, (over K) and
of W (over C'). We fix this basis and let 0 € I' — U, € GL4(K) be the
corresponding cocycle. Then p(v,) = U,, € GL4(K,) satisfies v(U,, — 1) >
¢1 + co. Thus for any o € I, v(U, — 1) > ¢1 + ¢2 and

— k-1 (Us — 1)
log Uy := » (~1) - (4.14)

k>1

converges to a matrix in My(K,).
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Definition 4.30. For o € I', let logo = log, o be the unique a € Z; such
that o = ~v*. For g € G, letlogg :=loggr.

If o € I}, write 0 = 7}, then log(o) = alog(v;) = p"a, and U, = U,
hence
logU, logU,,

log(o) — log(yr)”

(4.15)

Definition 4.31. The operator © = Oy of Sen associated to the C'-representation
W is the endomorphism of W, whose matriz under the basis {e1,--- ,eq} is
given by
_logU,, logU,
log(y-)  log(o)’
for any o € I.. We use the same name for the endomorphisms extending by
linearity to Woo and W.

(4.16)

Remark 4.82. If Ko /K is the cyclotomic Z,-extension, then
logox : I'x = Gal(K“°/K) — Z, — Z,

maps 'k to some open subgroup p°Z, of Z,, then log x(o) = p°log(o). If
replacing log(o) by log x (o) appeared in the definition of © and the formulas
in the following, then everything still works.

Theorem 4.33. Sen’s operator © is the unique Koo -linear endomorphism of
Weo such that, for every w € W, there is an open subgroup I, of I satisfying

o(w) = exp (log(a)@> (w), forallo e I,. (4.17)

Proof. For w = Aej + -+ A\geq € W such that \; € K, then I, = . N
Iy, N---N1IY, is an open normal subgroup of I'. Then for any o € I, C I,
we have

exp <log(a)9) =explogU, = U,.
Thus
o(w) = exp (log(a)@) (w), foralloel,.

To prove the uniqueness, if (4.17) holds, let 0 € I NI, N---N 1T, write
o =72 For w € W,, on one hand, the action of ¢ on w is given by U, under

the basis {e1, - ,eq}; on the other hand, it is given by exp <log(o)®> (w), so

Uy =U; =exp (log(a)@)7

hence
alogU,,  logU,,

log(o) — log(yr)’

This gives the uniqueness.



4.3 Classification of C-representations 103

By the above theorem, Sen’s operator © on W, (and on W) does not
depend on the choice of r and W,.. Moreover, by (4.17), one has

Corollary 4.34. For w € W,

1 t _ t —
Ow) = fim CW e o YW ow (4.18)
0e(0) , dy ! i
p-adically p-aaicaily

Thus I' commutes with © on W, and G commutes with © on W.

Corollary 4.35. For w € W, O(w) = 0 if and only if the I'-orbit of w is
finite, equivalently, the stabilizer of w is an open subgroup of I.

Proof. This follows easily from (4.17) and (4.18).

Corollary 4.36. Suppose W and W' are two C-representations of G.

(1) GWGBW’ = ®W 5>} @W/,

(2) Owew =Ow ®1+1® Oy

(3) Onomw,wry = (f = foOw —Owr o f).

(4) If W' is a sub-representation of W, then Ow = Ow |w-.

Proof. (1), (2) and (4) could be easily seen from definition or by (4.18).
For (3), use the Taylor expansion at t = 0:

o' flo™'w) — f(w) = (1 + tlog(0)) f((1 — tlog(0))w) + O(t?) f (w) — f(w)
= tlog(0) f(w) — tf(log(o)w) + O(t?) f(w),

then use (4.18) to conclude.

Ezample 4.37. Suppose Ko /K is the cyclotomic Z,-extension and assume
logox = log. Let W = Ce be the C-representation of dimension 1 such that
e # 0 and o(e) = x(0)%e for all o € G (in this case W is called of Hodge-Tate
type of dimension 1 and weighti in § 6.1). Then e € W, and vt(e) = x(7)"e.
From this we have (7'(e) — e)/t — log x(7)ie = ie. Therefore the operator ©
is nothing but the multiplication by i map. This example shows that K-finite
elements can have infinite y-orbits.

Proposition 4.38. There exists a basis of Wy, with respect to which the
matriz of © has coefficients in K.

Proof. For any o € I'; we know 00 = Oc in W, thus U,o(0) = OU, and
hence © and o(©) are similar to each other. Thus all invariant factors of ©
are inside K. By linear algebra, © is similar to a matrix with coefficients in
K and we have the proposition.

Remark 4.39. Since locally U, is determined by ©, the K-vector space gener-
ated by the basis given above is stable under the action of an open subgroup
of I'.
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Theorem 4.40. The kernel of © is the C-subspace of W generated by the
elements invariant under G, i.e. Ker©® = C @ WC.

Proof. Obviously every elements invariant under G is killed by ©. Now let
X be the kernel of ©. It remains to show that X is generated by elements
fixed by G. Since © and G commute, X is stable under G and thus is a C-
representation. Therefore we can talk about X... Since C ®_ Xoo = X and
© is extended to X by linearity, it is enough to find a K-basis {e1,- - ,em}
of X such that the e;’s are fixed by I'. If w € X, then the I'-orbit of w
is finite by Corollary 4.35, therefore the action of I" on X, is continuous for
the discrete topology of X.. So by Hilbert’s Theorem 90, there exists a basis
of {e1, -+ ,em} of X fixed by I'.

Theorem 4.40 has a very important consequence.

Corollary 4.41. Suppose V is a p-adic representation of K. Then V is C-
admissible if and only if the corresponding Sen operator of C' ®@q, V' is iden-
tically zero.

Next result implies that a C-representation W is determined by its Sen
operator:

Theorem 4.42. Let W' and W? be two C-representations, and ©' and ©2 be
the corresponding operators. For W' and W? to be isomorphic it is necessary
and sufficient that ©' and ©% should be similar.

Proof. Let W = Home (W?, W2) with the usual action of G and let © be its
Sen operator. The G-representations W' and W? are isomorphic means that
there is a C-vector space isomorphism F : W' — W2 such that

colF =Foo

for all 0 € G, so F' € W&. The operators ©' and ©? are similar means that
there is an isomorphism f : W' — W?2 as C-vector spaces such that

O f=fo0,

that is f € Ker © by Corollary 4.36(3). By Theorem 4.40, W% @ C = Ker ©,
we see that the necessity is obvious.

For sufficiency, it amounts to that given an isomorphism f € W& @ C,
we can find an isomorphism F € WY,

Choose a K-basis {fi,--, fm} of W&. The existence of the isomorphism
f shows that there are scalars ¢y, , ¢, € C such that

det(clfl + -+ Cmf_m) # 07

where f; is the matrix of f; with respect to some fixed bases of W1 and W2.
In particular the polynomial det(t1f1 + -+ + t;nfm) in the indeterminates
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t1,--- ,t, cannot be identically zero. Since the field K is infinite, there exist
elements \; € K such that

det()\l‘ﬁ + -+ )\m.fm) £ 0.

The homomorphism F = A\ f; + -+ - + A\ fm then has the required property.

4.3.5 C-admissible representations.

Suppose V is a p-adic Galois representation of K and p is the associated
homomorphism. We need the following result of Sen whose proof will be given
in the next section:

Proposition 4.43. If k is algebraically closed, © = 0 if and only if p(Gk) ‘s
finite. In general, © = 0 if and only if p(Ix) is finite.

Along with Corollary 4.41, this immediately gives

Proposition 4.44. A p-adic representation V' of G is C-admissible if and
only if the action of Ix onV is discrete, i.e. V is P-admissible.

Recall that if V is a 1-dimensional p-adic representation of K, then V =
Qp(n) with n: G — Z,; a continuous homomorphism. The following famous
result of Tate is the special case of Proposition 4.44 in dimension 1:

Corollary 4.45. Q,(n) is C-admissible if and only if n(Ix) is finite, i.e., for
C(n) = C @q, Qp(n),

(4.19)

=0, if n(Ix) s not finite,
cer {20 U)ol
> K, ifn(Ik) is finite.

We give another proof of this result without using Proposition 4.43.

Proof. On one hand, if n(Ix) is finite, then Q,(n) is P-admissible, hence must
be C-admissible.

On the other hand, suppose n(Ix) is infinite. Let K /K be the cyclotomic
Zy-extension and then there exists n such that K /K, is totally ramified. By
Sen’s method, to show C(1)“% = 0, we only need to show K., (n)'% = 0. As
n(Ir) is infinite, 1(7) is not a root of unity and K. (1) = 0 is a consequence
of Proposition 1.104(3).

We end the study of C-representations with a result about the Galois
cohomology of the i-th Tate twist C'(i) = Ct' with Gk-action by g(t') =
x'(g9)t" where x is the cyclotomic character.

Proposition 4.46. One has
(1) H"(Gk,C(i)) =0 fori # 0 orn > 2;
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(2) H(Gg,C) = K, and H' (G, C) is a 1-dimensional K -vector space gen-
erated by log x = (G > Zy log Z,) € HY(Gk, Ky).

Proof. For the case n = 0, this is just Corollary 4.45.

Let Ko /K be the cyclotomic Z,-extension, Hx = Gal(K /K ) and ['x =
Gal(K o /K) = (y) = Z,. We claim that H"(Hg, C(i)) = 0 for n > 0. Indeed,
for any finite Galois extension L/K, let o € L such that Try /x (o) =1
and let ¢ € H"(L/ K, C(i)9E). Set

g gn) = >, g2 Gaorh(@)e(gr, - s ga1sh),
heGal(L/Koo)

then d¢’ = ¢. Thus H"(Hg, C(i)) = 0 by passing to the limit.
For n = 1, using the inflation and restriction exact sequence

inf

0 — HY (I'g,C(i)"%) 25 HY Gk, C1) == HY (Hg, C(i))"x.

Then the inflation map is actually an isomorphism. We have C/(i)H% = Koo (i).
Now IA(OO = K,, ® X,, where X,, is the set of all elements whose normalized
trace in K, is 0 by Proposition 1.104. Let m be large enough such that
i (X(Ym)—1) > d, then (Y ) ym—1 is invertible in X,,, by Proposition 1.104.
We have

H (I, Koo (i) = — - - — .
X (rm)vm =1 X)) ¥m — 1 X(vm)¥m — 1

Thus

. K, ifi=0:
HY (k. , Koo(i)) = ne
0, if 2 # 0.

Since Koo (7) is a K-vector space, in particular, # Gal(K,,/K) is invertible,
we have ‘ R
HI (Gal(K,,/K), Koo (i)F5m) =0, for j > 0.
By inflation-restriction again, H' (I, I?Oo(z)) =0 for ¢ # 0 and for i =0,
K =H"(I'x,Ky) = H (I'x, K) = Hom(I'x, K) = K - log X,

the last equality is because I'x = Z,, is pro-cyclic.
For n > 2, H"(Hg,C(i)) = 0. Then just use the exact sequence

l1—Hgx —Gg — I —1

and the Hochschild-Serre spectral sequence to conclude, noting that the co-
homological dimension of Ik is 1.
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4.4 Sen’s operator © and the Lie algebra of p(G).

The main objective of this section is to show Proposition 4.43. The readers
can skip this section if assuming the result.

4.4.1 Main Theorem.

Given a Qp-representation V' of Gk, let p : Gx — Autg, V be the corre-
sponding homomorphism. Let W = C ®@q, V. Then some connection between
the Lie group p(G) and the operator © of W is expected. When the residue
field k£ of K is algebraically closed, the connection is given by the following
theorem of Sen:

Theorem 4.47. Suppose the residue field k of K is algebraically closed. Then
the Lie algebra g of p(G) is the smallest of the Q,-subspaces S of Endg, V
such that © € C ®q, S.

Proof. Suppose dimg, V' = d. Choose a Q,-basis {e1,--- ,eq} of V and let U,
be the matrix of p(o) with respect to the e;’s.

Assume K, /K is the cyclotomic Z,-extension and we use logoy for log
in the definition of ©. Let {e},--- ,e};} be a basis of W, such that the K-
subspace generated by the e}’s is stable under an open subgroup I, of I' (by
Proposition 4.38, such a basis exists). If U’ is the cocycle corresponding to
the e}’s, it follows that U, € GL4(K) for o € I,. Suppose (e1, - ,eq) =
(¢h, €)M for M € GL4(K). One then has MU/ o(M) = U, for all
ceq.

Let © be the matrix of © with respect to the {e},---,e,}. Put A =
M~1OM, then A is the matrix of © with respect to {eq,--- ,eq}. For o close
to 1 in I" one knows that U. = exp(log x(c)©), and our assumptions imply
that © has entries in K.

By duality the theorem is nothing but the assertion that a Q,-linear form
f vanishes on g <= the C-extension of f vanishes on ©. By the local home-
omorphism between a Lie group and its Lie algebra, g is the Q,-subspace of
Endg, V' generated by the logarithms of the elements in any small enough
neighborhood of 1 in p(G), for example the one given by U, = 1(mod p™) for
m 2 2. Thus it suffices to prove, for any m = 2:

Claim: f(A) =0 < f(logU,) =0 for all U, = 1(mod p™).
Let
G,={0€G|U, =1 and logx(c)® =0(modp™)}, n > 2. (4.20)

Let -
Goo=[)Gn={0€G|U,=Tand x(o) =1}. (4.21)

n=2
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v V v
Let G = G2 /G and G, = Gy /G oo for m 2 2. Then G is a p-adic Lie group

and {ém} is a Lie filtration of it. Let L be the fixed field of G in K, by
Proposition 4.9, the fixed field of G in C is Z, the completion of L. It is
clear that for o € G we have M ~to(M) = I, it follows that M has entries
in E, hence A also has entries in L. From now on we work within E, and o

Vv
will be a (variable) element of G.
Assume ng is an integer large enough such that n > ng implies the formula

v
Ul =exp(© logx(c))  forall o € Gy. (4.22)

The statement of our theorem remains unchanged if we multiply M by a power
of p. We may therefore suppose that M has integral entries. After multiplying
f by a power of p we may assume that f is “integral”, i.e., takes integral
values on integral matrices.

v
For n > ng, 0 € G,,, U, = I'mod p", the equation

o

MU, = U,o(M) (4.23)

Vv
shows then that (M) = M (mod p") for o € G,,. By Ax-Sen’s lemma (Propo-

~

sition 4.3) it follows that for each n there is a matrix M,, € GL4(L) such that
v
M, = M(mod p" 1), and o(M,,) = M, for o € G,,. (4.24)

Now suppose o € én, with n 2 2. We then have
Uy =1+1logU,, and U, =1 +logU, = I +logx(c)-© (modp*").
Substituting these congruences in (4.23) we get
M + MlogU, = o(M) + log (o) - O (M)(mod p*™).
Since log U, and log x (o) are divisible by p™ we have by (4.24):
M + M, logU, = o(M) + log x(c) - @M, (mod p*"~1). (4.25)

Let 71 and 73 be integers such that p™ 1M ~! and p™© have integral entries.
Let n > r := 2ry + ro — 1. Then M, is invertible and pTl*lM,j1 is integral.
Multiplying (4.25) on the left by p™*~'M, ! and dividing by p™ ~! we get

Cp +1logU, = o(C,) +1logx(o) - M,;'OM, (modp*"~™) (4.26)

where C,, = M,;7'M = I(mod p"~"). Write A,, = M, *OM,, then it is fixed
v
by G,, and
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A, —A=M;'OM, - M*OM = (M, — M YoM, + M~'O(M, — M)
=M, *M - I)M~*OM, + M~'6(M, — M) = 0mod p"".

We get

log x(0)A,, = log x(c)A(mod p*™~").

Hence
(0 —1)C,, = logU, — log x(0) - A,,(mod p?"~").

Applying f to the above equation, note that f is an extension of some linear
form on My(Q,), we get

(7= 1S (C2) = (108 Uy) ~log (&)  f(A,)(mod p )

and hence

(0 — 1)f(Cn) = flogUy) —log x(0) - f(A)(modp>" 7). (4.27)

We need the following important lemma, whose proof will be given in next
subsection.

Lemma 4.48. Let G = Gal(L/K) be a p-adic Lie group, {G(n)} be a p-
adic Lie filtration on it. Suppose for some n there is a continuous function
A:G(n) — Qp and an element = in the completion of L such that

Ao) = (0 — Dx(modp™), for all o € G(n)
and some m € Z. Then there exists a constant ¢ such that
Meo) = 0(modp™ 1Y), for all 0 € G(n).

Suppose f(A) = 0. By (4.27) and Lemma 4.48, we conclude that f(logU,) =
v
0(mod p*~7=¢=1) for any o € G,, where ¢ is the constant of the lemma
v e v
(which depends only on G). Since oP * € G, and logU_,n—2 = p"2log U,
Y

v
for any o € G. We conclude that f(logU,) = 0(mod p"~"~¢*t1) for all o € G,
hence f(logU,) = 0 as desired, since n was arbitrary.

v

Suppose f(logU,) =0 for all 0 € G : We wish to show f(A) = 0. Suppose
not, then f(A,) # 0 and has constant ordinal for large n, dividing (4.27) by
f(A) and using Lemma 4.48, we obtain

2n—7'—c—1—s)

log x(o) = 0(mod p

Vv
for large n and all 0 € G, where s is a constant with p®f(A)~! integral.

Vv
Analogous argument as above shows that log x(c) = 0 for all o € G. This is
a contradiction since, as is well known, x is a non-trivial representation with
infinite image. This concludes the proof of the main theorem.
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By this theorem, we can prove Proposition 4.43:

Proof. First suppose k is algebraically closed. By the theorem ©® = 0 < g = 0.
So we only need to show g = 0 < p(G) is finite.

The sufficiency is obvious. For the necessity, g = 0 implies that p(G) has
a trivial open subgroup which in turn implies that p(G) is finite.

In general one just needs to replace G by the inertia subgroup I and K
by the completion of K", then the assertion follows from the algebraically
closed case.

4.4.2 Application of Sen’s filtration Theorem.
We assume k is algebraically closed. We need to use the notation in § 1.4.

Lemma 4.49. Let L/K be finite cyclic of p-power degree with Galois group
A= Gal(L/K). Suppose vqg > ea(r+1/(p—1)) for some integer r > 0. Then
p" divides the different Dy g .

Proof. Let p" = [L : K], and for 0 < i < n, let A(;) be the subgroup of order
pi in A, so A= A(n) D A(n—l) D D A(l) D A(O) = 1. Let v; = VA/Aqy -
From Corollary 1.87, we get by induction on j:

1
vV =v4 — jeqa > (rj+1)eA, for0<j<r
p—
By Herbrand’s theorem, we have

AU:A(j), for Vg <’U§’Uj_1, 1<5<.

Then

o0

1 v|—
w®ui) = [ (1= 147 d

-1

Zi(/vr(l — A" Yo + ;(1 - ]%)eA)

-1
1 ~ 1
eatreqg—eq- —)
p—1 ;pﬂ

Hence p" divides the different D k.

Proposition 4.50. Suppose G = Gal(L/K) is a p-adic Lie group and that
{G(n)} is the Lie filtration of G. Let K, be the fixed field of G(n). Then there
is a constant ¢ independent of n such that for every finite cyclic extension
E/K, such that E C L, the different D, is divisible by p~°[E : Ky].
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Proof. Put u, = ug/G(n);Vn = VG/G(n), and €, = eg(n)- From Proposi-
tion 1.91, we know that there exists a constant a such that

v, = a+ne for n large.

By the filtration theorem (Theorem 1.92), we can find an integer b large
enough such that
Gt 5 G(n+b)

for n large.
Let E/K,, be cyclic of degree p® and n large. Let Gal(E/K,,) = G(n)/H =
A. We have G(n + s —1) = G(n)P" ' ¢ H because A?" ' # 1. Thus, if
G(n)Y D G(n+s—1), then ug >y, because AY = G(n)YH/H # 1.
By Proposition 1.90, we have, for t > 0, with the above choice of a and b:
G(n)tntten — Gquette — Gat(idte 5 Gn 4t 4 b),
Ifs>b+1, putt=s—>b—1, then we get v4 > y as above, with
y=un+(s—b—1)e, >(s—b—-3+1/(p—1))en.

So if s > b+3, then p*~=3 = p~+I[E : K] divides Dg/k, by Lemma 4.49.
The same is trivially true if s < b+ 3. Thus ¢ = b + 3 works for large n (say
n >np) and ¢ = ny + b+ 3 works for all n.

Corollary 4.51. Try/k, (Op) C p°[E : K,|Ok,,.

Proof. Let [K : K,] = p°. The proposition states that Dp,r, C p° °Op,

hence O C pS*CQ}E} .- On taking the trace the corollary follows.

We now come to the proof of Lemma 4.48:

Proof (Proof of Lemma 4.48). Multiplying A and by p~™ we may assume
m = 0. Let A : G(n) — Q,/Z, be the function A(c) = A(c) + Z,. Following
A by the inclusion Q,/Z, — L/Oy, we see that A is a 1-coboundary, hence a
1-cocycle, and thus a homomorphism, because G(n) acts trivially on Q,/Z,.

Let H = Ker A and E be the fixed field of H. For ¢ € H we have (o —
Nz € @D by Ax-Sen’s Lemma, there exists an element y € FE such that
y = z(mod p~1). Then

Mo)=(c—1)z=(c—1)y (modp ), for o € G(n).

Select og € G, such that oo H generates G(n)/H. Let

Mog) = (o0 — Dy +p 'z
Then z € Opg. Taking the trace from F to K,, we find, using the Corol-
lary 4.51, that
[E: K,)\oo) €p ' E: K,|Ok,,
i.e. A(0p) = 0(mod p~°~1) and hence \(¢) = 0(mod p~¢~1) for all ¢ € G(n),
as was to be shown.
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The ring R and its structure

5.1 The ring R and its basic properties

5.1.1 The R-construction.

If A is a commutative ring of characteristic p, the absolute Frobenius map
is the ring homomorphism

p:A— A, a+— ab.

Recall that A is perfect (resp. reduced) if ¢ is an isomorphism (resp. a
monomorphism).

Definition 5.1. Assume A is a commutative ring of characteristic p, set

R(A) = lim 4,, (5.1)

neN

where A, = A and the transition map is . Then an element x € R(A) is a
sequence x = (Tp)nen satisfying x, € A and ) | = x,.

Proposition 5.2. The ring R(A) is a perfect ring of characteristic p.

Proof. Since the transition map ¢ is a ring homomorphism, R(A) must be a
ring of characteristic p.

For any = (Zn)nen, let ¥y = (Tnt1)nen, then o = yP. If 2P = 0, then
ab =z, =0 for any n > 0, hence x = 0. Thus R(A) is perfect.

For any n, let 8,, be the projection map
0, : R(A) — A, (Zp)neNn — Zn. (5.2)

‘We have
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(a) If A is perfect, then each 6, is an isomorphism; if A is reduced, then 6
(hence 6,,) is injective and the image

Oo(R(A)) = (] " (A). (5.3)

n>0

(b) If A is a topological ring, then R(A) is endowed with the topology of the
inverse limit, i.e., the weakest topology such that 6,, is continuous for all
n. In particular, one can endow A with the discrete topology and study
the induced topology on R(A).

Now let A be a ring which is separated and complete for the p-adic topol-
ogy, that is, the canonical map A — @1 A/p™A is an isomorphism. We con-
neN

sider the ring R(A/pA).
Proposition 5.3. There exists a bijection between R(A/pA) and the set

R(4) = lim A={@")en |2 € 4, @V =2} (5.4)

=P
Proof. Take x € R(A/pA), that is,
& = (Tp)nen, Tn € A/pAand 2P | = x,.
For any n, choose a lifting of x,, in A, say Z,,, we have
T, | = TpmodpA.
Note that for m € N, m > 1, if « = fmod p™ A, then
a? = P mod p™ L A.

Thus for n,m € N, we have
pmt1 ™
Ty tma1 = Trym mod p™ T A.
Hence for every n, lim fﬁfwm exists in A, and the limit is independent of
m—+00
the choice of the liftings. We denote

(n) _ 1. ~p
€T = m T
m——+o0 nt+

Then z(™ is a lifting of x,,, (z(®*V)? = 2" and z +— (2(™),,en defines a map
R(A/pA) — R(A).

On the other hand the reduction modulo p from A to A/pA naturally induces
the map R(A) — R(A/pA), (2(),en — (2 mod pA),cn. One can easily
check that the two maps are inverse to each other.
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From now on, for a ring A which is separated and complete for the p-adic
topology, we shall use the above bijection to identify R(A) with R(A/pA).
Thus R(A) inherits a ring structure via this identification, and any element
x € R(A) can be written in two ways

T = (Tp)neny = (x(”))neN, Tn € A/pA, 2" e A. (5.5)

If 2 = (™), y = (y™) € R(A), then

(wy)") = (&y™), (5.6)
and
M — (ntm) |, (ntm)yp™
(@+y)™ = lim (z +y ) (5.7)

5.1.2 Basic properties of the ring R.

The most important case in practice for R(A) is that A = O; with L being

a subfield of K containing Kj and its completion L by the p-adic valuation.
Identify O /pOr = O; /pOs, then

R(Oz) = R(O1/pOr) = { = (z)pen | 2™ € O, (V)P =2},
In particular,
Definition 5.4. The ring R := R(O¢) = R(O%/pO%).

Theorem 5.5. The ring R is a complete valuation ring perfect of character-
istic p with the valuation v = vg defined by

vr(z) = v(z) = v(z®)

where v = v, is the valuation on C normalized by v(p) = 1, its residue field
is k, and its fraction field Fr R = R(C) is a complete nonarchimedean perfect
field of characteristic p.
Furthermore, R is equipped with a natural continuous action of G, given
by
9(@) = (™),

Proof. We have v(R) = Qso U {400} as the map R — O¢, z + z(©) is onto.
We also obviously have
v(z) =+o0 =20 =0 2=0,
and
v(zy) = v(z) +v(y).

To see that v is a valuation, we just need to verify v(x +y) > min{v(z),v(y)}
for all z,y € R.
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We may assume z, y # 0, then (9,4 =£ 0. Since v(z) = v(z(®) =
p"o(x(™), there exists n such that v(z(™) < 1, v(y(™) < 1. By definition,
(z+ )™ =2 4 4™ (mod p), so

v((z +y)™) > minf{v(z™),v(y™), 1}
> min{v(z™),v(y™)},

it follows that v(z 4+ y) > min{v(x),v(y)}.
Since
v(z) > pt e vE™)>1ex, =0,

we have
{reR|v(x) >p"}=Ker (0, : R— Oc/pOc).

So the topology defined by the valuation is nothing but the inverse limit
topology, and therefore is complete.

Because R is a valuation ring, R is a domain and thus we may consider
Fr R, the fraction field of R. Then

FrR=R(C) = {z = (2")pen | 2™ € C, (V)P = 1M},

The valuation v extends to the fraction field Fr R by the same formula v(z) =
v(x(o)). Fr R is a complete nonarchimedean perfect field of characteristic p > 0
with the ring of integers

R={zeFrR|v(z)>0}

whose maximal ideal is mg = {z € Fr R | v(z) > 0}.
For the residue field R/mp, one can check that the map

R 0p /pOw — k

is onto and its kernel is mp, so the residue field of R is k.
Finally the continuity of Galois action is clear.

~ Because k is perfect and R is complete, there exists a unique section s :
k — R of the map R — k, which is a homomorphism of rings.

Proposition 5.6. The section s is given by

a€k—([a" Dnen

where [a? "] = (a? ",0,0,---) € Ofye is the Teichmiiller representative of
ap7'7l

Proof. One can check easily ([apf(nﬂ)])p = [a? "] for every n € N, thus
([P ")nen is an element @ in R, and (@) = [a] whose reduction mod p is

just a. We just need to check a — a is a homomorphism, which is obvious.
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Proposition 5.7. Fr R is an algebraically closed field.

Proof. As Fr R is perfect, it suffices to prove that it is separably closed, which
means that if a monic polynomial P(X) = X% +aq 1 X4 1+ +a; X +ap €
R[X] is separable, then P(X) must have a root in R.

Since P is separable, there exist Uy, Vj € Fr R[X] such that

UyP + VoP' = 1.

Choose 7 € R, such that v(r) = 1(for example, take 7 = (p(™),en, p{®) = p),
then we can find m > 0, such that

U=7"Uy € R[X]|], V=1"V,€ R[X],
and UP + VP =a™,

Claim: For any n € N, there exists « € R, such that v(P(z)) > p™.
For a fixed n, consider 6,, : R — O /p, recall

Ker#, ={y € R [v(y) > p"},
we just need to find x € R such that 6, (P(z)) = 0. Let
QX)=X%+ -+ X +ap € Of[X],

where «; is a lifting of 6, (a;). Since K is algebraic closed, let u € Oz be a
root of Q(X), and @ be its image in O%/pO%, then any x € R such that
0., (x) = u satisfies 6, (P(x)) = 0. This proves the claim.
Take ng = 2m + 1, we want to construct a sequence (Zn)n>n, of R such
that
V(Zpt1 —xn) =2n—m, and P(z,) € "R,

then lirf x, exists, and it will be a root of P(X).
n—-—+0o0

We construct (z,,) inductively. We first use the above claim to construct
Zn,- Assume z, has already been constructed. Put

. 1 ) ) _—
pPUl — —pli)(x) = (_)ainj,

1>
then o
P(X+Y)=PX)+YP(X)+> Y/PU(X).
Jj=2
Write 41 = x5, + vy, then
P(zn41) = P(zn) + yP'(z,) + Zyjp[j] (Tn). (5.8)

Jj=2
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If v(y) > n —m, then v(y/ PUl(z,,)) > 2(n —m) > n+1 for j > 2, so we only
need to find some y such that

v(y) >n—m, and v(P(z,)+yP (z,)) >n+1.
By construction, v(U(z,)P(x,)) > n > m, so
v(V(zn) P (z,)) = v(7™ = U(zn)P(2,)) = m,

_ P(In)
P'(wn)

which implies that v(P’'(z,)) < m. Take y =
and we get x,11 as required.

, then v(y) > n —m,

5.1.3 Fr R* and its subgroups.

Recall that the group C* has the following subgroups:

(i) Uc =04 = Oc —me :={z € C | v(x) = 0} is the unit group of O¢;
(i) Ul =1+me:={z € C|v(x—1) >0} C Uc;

(iil) UL =14 pOc:={z € C|v(x—1)>1} CUL.

Then

a) the sequence 0 — Us — C* 5 Q — 0 is exact;
( ) q C - )
(b) the exact sequence 1 — Ul — Uc — k* — 1 and the Teichmiiller map
k* — Ue induce an isomorphism Ugs = k* X U%;
¢) for any a € U}, there exists n € N such that a? € U}k;
e} C
d) U} is separated and complete by the p-adic topology.
o}

Similarly, we define subgroups of Fr R*:
(i) Us = R* =R —mp :={z € R| v(z) = 0} = the unit group of R;

(i) Ut =1l+mp:={z€R|v(x—1) >0} CUg;
(iii) Uy :=={z € R|v(x—1) > 1} CUSE.

Proposition 5.8. The map
HOI’n(Z[l/p]’ CX) — FI‘RX, f = (f(p_n))nEN

is a canonical isomorphism of Z|G k,|-modules. Moreover, identifying these
two groups through this isomorphism, then

(1) Ug = Hom(Z[1/p], OF) = k* x Ug;
(2) UL — Jim Uk/(UL)P" is a torsion free Z,-module and Uj; = Hom(Z[1/p],UY) =
neN
@p ®Zp U}%

Proof. If f is a homomorphism from Z[1/p] to C*, write (™ = f(p~™), then
()P = 2 50 2 = (2(M),en € (Fr R)*. Conversely, if 2 = (2(™)en €
(Fr R)*, let f(p~") = (™, then we get a homomorphism f : Z[1/p] — C*.
It is clear this correspondence is G g,-compatible.
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Forz € R, z € Up < z(© € Ug, thus we get

Ugr =Hom(Z[1/p], OF) = Hom(Z[1/p],k* x UZ)
=Hom(Z[1/p], k™) x Hom(Z[1/p],UZ).

In k, any element has exactly one p-th root, so Hom(Z[1/p], k*) = k*. Simi-
larly we have

Ug ={z e R|z"™ e UL} = Hom(Z[1/p], UY),
therefore we get the factorization
Up=k* xUg.
Since (U)P" = {x € UL | v(z — 1) > p"}, the map

Uk = lim Ug/(Ug)""
neN

is an isomorphism of topological groups. Thus we may consider U }1% as a Zp-
module which is certainly torsion free. For x € U}, v(z—1) > 0, then v(z?" —
1) = p"v(x — 1) > 1 for n large enough. Conversely, any element x € U}, has
a unique p"-th root in UE. We get

Qp@ZPUEH Ug
p"RQu —>uP

is an isomorphism.

5.2 The action of Galois groups on R

As seen in the previous section, let W = W (k), Ko = Frac W, then the
group Gk, = Gal(K/Kj) acts on R and Fr R continuously via

9@ )nen = (92 nen.

5.2.1 Elements invariant by closed subgroups of Gg,.

Proposition 5.9. Let L be an extension of Ko contained in K and let H =
Gal(K/L). Then

RH = R(OL/pOL), (FrR)! =Frac(R(OL/pOL)).

The residue field of R is ky, = k™, the residue field of L.
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Proof. Assume z € RH (resp. Fr RY). Write
= (") nen, 2™ € Oc(resp. C).
For h € H, h(x) = (h(2™)),ey. Hence
z € R (vesp. Fr RY) <= 2™ € (O¢)H (resp. CH), for all n € N,
then the first assertion follows from the fact
C" =L, (0c)" =0cn =0; =limO,/p"Oy.
n

The map k < R — k induces the map k; — R¥ — kr, and the composition
map is nothing but the identity map, so the residue field of R¥ is k;..
Proposition 5.10. If v(L*) is discrete, then

R(OL/pOr) = R" = ky.
This is the case if L is a finite extension of Ky.

Proof. From the proof of the previous proposition, we know k;, C R =
R(Or/pOy), it remains to show that

= (2""),en € RE, v(z2) >0 = 2=0.
We have v(z(™) = p~"v(z(?)), but v(fx) = v(L*) is discrete, so v(z) =
v(z(®) = 400, which means that 2 = 0.
5.2.2 R(Ky'°/pOksve), € and .

We denote € and 7 the following two elements inside R:

(i) € = (1,eM,...) such that ¢ =1 and e # 1;
(i) m=e— 1.

Thus €™ is a primitive p"-th root of unity in K satisfying the compati-
bility condition (¢("+1))P = &™) Thus

L = | J L(e™).

neN

Lemma 5.11. The element e = (™) ey and 7 are elements in R(Ogeve [pOfceve),
v(m) =5 >1ande € Uk. Moreover, for g € Gk,,

gle) =X, g(m) = (1 +mX@ -1, (5.9)

thus e2» = 7,,(1) as Gk,-modules.
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Proof. Note that 7(® = lim (£(™ —1)?". Since (®) —1 =0, and v(e(™) —

m—-+00
1) = W for m > 1, we have v(7) = v(7(®) = 527 > 1. Thus the
element € = (¢M™),,cx is a unit of R(Oeve [pOkeve) and belongs to Uj. The
rest is clear.
Set H = Hg, = Gal(K/K{*). Then R¥ = R(Ofeve [pOgeve) whose
residue field is & by Proposition 5.9. Since 7 € R¥ and v(7) = v, (7)) =
p% > 1, the residue field k € R¥, and R¥ is complete, we have

k[[7]] ¢ R® and k((n))  (FrR)H.

If 2 = (2(™),en € R and = 9P, then y = (2(®™Y),ey € RY, hence RY
and (Fr R) are both perfect and complete, we have

—

kK[)[ad ¢ RE,  k((x))™d C (Fr R)H.

Theorem 5.12. For H = Hy, = Gal(K/Ky'°), we have

o —

R)™ = RY, k()™ = (FrR)".
Moreover, for m € N, the projection map
Om : R = O /pO%, Om((n)nen) = Tm

has image
6‘m (RH) = OK(‘)’YC /pOKSYC .

Proof. Set Ey = k((n)), F = Ed, L = K = |J Ko(e™). It suffices to

n>1
check that O is dense in RH  or even that O is dense in R¥. Since R¥ is
the inverse limit of O, /pOr, both assertions follow from

0m(Op) = Or/pOr for all m € N.

So it suffices to show that Or/pOr, C 0,,(OF), for all m.
Set @, =™ — 1, then

O [e™] = Wlw,], Op= | Wlwa).

n=0

Write 7 = (7, )nen. Then m, = ¢, — 1 is also the image of w, in Or/pOy,
thus Oy, /pOy, is a k-algebra generated as a k-algebra by m,’s. Since k C Op,,
we are reduced to prove

T € O (OF) = O (k[[7]]Y), for all m,n € N.

For all s € Z, 77~ € k[[x]]**¢, and
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—s

P

é\pis —1= (€(n+s))neN -1

- (5n+s - ]-)neNa

where (™) = 1 if n < 0. Since €45 — 1 = Tpys for n4+s >0, let s =n —m,
we get

m—n

T = O (177 ") € Oy (K[[7]]").
This completes the proof.

5.2.3 A fundamental theorem.

Theorem 5.13. Let E§ be the separable closure of Ey = k((m)) in FrR,
then E§ is dense in Fr R, and is stable under Gg,. Moreover, for any g €
Gal(K/Ky©),

g\Eg S Gal(ES/EO),

and the map Gal(K/Kg") — Gal(E§/Ey), g = glgs is an isomorphism.

Proof. Let us first show that Ef is dense in Fr R. As Ej is separably closed,

Ej is algebraically closed. Let F be the algebraic closure of Ey in Fr R. It is
enough to check that Ey is dense in Fr R. In other words, we need to prove
that OE) is dense in R. As R is the inverse limit of O%/pO%, it is enough to
show that

Gm(OEO) = O?/pOF, for all m € N.

As E is algebraically closed, it suffices to show that

00(0z,) = Ox/pO%.

Since O = hg Oy, it is enough to check that for any finite Galois
[L:K] <400
L/Ko Galois
extension L of K,
O1/pOy, C 90(0@0). (5.10)
Let Ko, = Ko (6(”)) and L,, = Ko L, then L,, /Ky, is Galois with Galois
group J, = Gal(L,,/Ky,,) and for n large, we have J, = Jpp1 = -+ == J.

Since k C C’)FO, replacing K by a finite unramified extension, we may assume
L, /Ky, is totally ramified for any n.

Let v, be a generator of the maximal ideal of Or,,, then Or, = Ok, , V4]
since Ly, /Ko, is totally ramified. Since 0o(05,) O Ok, /pOk, ., to prove
(5.10), it is enough to check that there exists n such that v, € 0o(O5, ), where
Uy, is the image of v, in Oy, /pOy,, .

Let P, (X) € Ko,,[X] be the minimal polynomial of v,,, which is an Eisen-
stein polynomial. When n is sufficiently large, P, is of degree d = |J|. Write

P,(X)= ][ (X — g(vn)). We need the following lemma:
geJ

Lemma 5.14. For any g € J, g # 1, we have v(g(vy) —v,) — 0 as n — +o0.
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Proof (Proof of the Lemma). This follows immediately from (1.53) and the
proof of Proposition 1.95.

We will see that the lemma implies (5.10). Choose n such that v(g(v,) —
vp) < 1/dfor all g # 1. Let P,(X) € Ok, [X]/pOk,, [X] be the polynomial
Py (X) (mod p), We choose Q(X) € Og, [X], monic of degree d, a lifting of

P,. Let = be a root of Q(X). Write 8 = 6y(z). Suppose b € O is a lifting of
B, then there exists go € J such that v(b — govp) > v(b — guvy,) for all g € J.
Note that

Pa(b) = [ (6= gva), and v(Pu()) = 1,
geJ

then
1
v(gg ' — vn) = v(by — govn) > 7> v(vn — g(v,)), forall g € J\{1}.
By Krasner’s Lemma, v,, € Ko,n(go_lb), moreover, 7, € (O, ). This proves
(5.10) and the first part of the theorem.
d
For any a € E§, let P(z) = >, \X" € FEy[X] be a separable poly-
i=0
nomial such that P(a) = 0. Then for any g € Gk,, g(a) is a root of
d
g(P) = 3 g(\) X" To prove g(a) € E§, it is enough to show g(Ey) = Eo,
i=0
which follows from the fact
gm) = (1+mp@ — 1.

Moreover, for any g € Gal(K/Kg"), then g(a) is a root of P. Thus for g €
Gal(K/K{), glps € Gal(Ej§/Eyp), in other words, we get a homomorphism

Gal(K/K§¥®) — Gal(Eg/Ey).
We need to prove this homomorphism is an isomorphism.

Injectivity: g is in the kernel means that g(a) = a for all a € E§, then g(a) = a
for all @ € Fr R because Ef is dense in Fr R and the action of g is continuous.

Let a € FrR, then a = (a(™),ey with a(™ € C, and (at)P = o),
g(a) = a implies that g(a(®) = a(?), but the map 6, : Fr R — C is surjective,
so g acts trivially on C, hence also on K, we get g = 1.

Surjectivity: We identify H = Gal(K/K *°) with a closed subgroup of
Gal(E§/Ey) by injectivity. If the above map is not onto, we have

By C F = (E)" c (R = Ep,

that is, F' is a separable proper extension of Fj contained in E(ﬁad. To finish
the proof, we just need to prove the following lemma.
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Lemma 5.15. Let E be a complete field of characteristic p > 0. There is no
nontrivial separable extension F of E contained in Er2d,

Proof. Otherwise, we could find a nontrivial finite separable extension E’ of
E contained in E™. There are d = [E' : E] > 1 distinct E-embeddings
o1, -+ ,0q of E' to E°. We can extend each o; to E'™4 in the natural way,
that is, by setting o;(a) = o;(a?" )P ". This map is continuous, hence it can
be extended to W = E/r;d./gut 0; acts as the identity map on E™4, so it

acts as the identity map on E*2d, This is a contradiction.

5.2.4 Fields in the E-series.

From now on, let Fy := k((7)) and E§ be the separable closure of E
inside Fr R.

Definition 5.16. Set
E* .= Ops C E =Frac(E") := E}, (5.11)
Et:=RCE=FrR (5.12)
Moreover, if L is a finite extension of Ky inside K, set
Ef = (BT, Ep = Bt (5.13)
Ef == (EYH:,  Ep.=FE"r, (5.14)

Remark 5.17. The notion ™ means the ring of integer and ~ means the com-
pletion.

We can describe Ef, and E 1. explicitly.

Proposition 5.18. For L a finite extension of Ky, let n(L) be given by
Lemma 4.11 and kY, be the residue field of LV¢. Then

Eg ={(zn) ER|zpn € OL(s(">)/p7 ffwrl =z forn >n(L)}, (5.15)
Ef = R(Opeve [pOrese) = {(24) | 0 € Opeve [p, @by = x,}, (5.16)
and
1 . ~ ~, .1 —
By = EBf[=-]=k{((7L)), Er = Ef[=] = ki (7)) (5.17)
T TL

where Ty, is any uniformizer of Ef,.
Proof. By Proposition 5.9,

E} = R(Opeve [p) = {(wn) | @n € Opeve [p, @b, = w0}
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By Theorem 5.13, EL = @i. Thus the residue field of Ey, is also k¢ and Ef, =
ks ((r1)), Er = kS ((mr))rad. Ep is the subfield of Ey, such that EfKo/HL =
Eq.

IfL= W(ki)[%], let n(L) = 0, then Ef = k¢[[x]] and Ef, = k$ (()). One
can easily check that (5.15) holds and E;, = E} [1].

In general, write Ly = W(kji)[}%] Then E;, = Er, (7). For n > n(L),

Gal(L(e™)/Lo(e™)) = --- = Hp,/Hy := J. Let
X ={(zn) € R| 2y € Opcomy/p, 44y = @y for n > n(L)}.

Then X7 = k§[[n]] = Ef , and (Frac X)” = Ep,. If 7, € X, then Frac X =
X [%], the subfield of J-invariant elements of which is Ef,, hence Frac X =

Er and X = EZ“ We are reduced to show the existence of one uniformizer
7 of Er, in X.

For n > n(L), we let L(e™) = Lo(¢™)[r,]. We choose v, coherently
such that Np(.m+1))/L(em)(¥nt1) = Vn. Then one can check the element z =
(Zn)nen € X such that z,, = 7, is a uniformizer of EJ,.

Note that Tk, = Gk,/Hk, acts on Ey, then G, acts on F and hence 'y,
acts on FEy. Set
E; = E": = Bfr (5.18)

then Er/FE}, is a Galois extension with Galois group Gal(Er/EL) = Ar. Set
EO = EKO'

Lemma 5.19. (1) If p # 2, set

To =y el (5.19)

a€lF,

where [a] € Z, is the Teichmiiller representative of a, then

(1) 7o € Eg and Ty = 7P\ with A = 1 mod .
(ii) Eg = k((70))-
(2) If p=2, set g :=m+ 7 L. Then By == k((7)).

Proof. Exercise.

In conclusion, we have Fig. 5.1.

5.3 Basic theory of (¢, I')-modules
5.3.1 The field W (Fr R)[%] and its subrings.

Consider the Witt vectors of R and Fr R, we have the following rings:
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N/

o
} Hy Eiad
L/L/

Hyg, / ’
Er
/

Eo = Ex, EL
Ak /
Eo = Ex,

Fig. 5.1. Galois extensions of E and Fy

1 1

W(R) C W(R)[];] C W(Fr R)[;L
1

W(R) Cc W(FrR) Cc W(Fr R)[;}
Note that the ring W (Fr R) is a complete discrete valuation ring whose max-
imal ideal is generated by p and residue field is the algebraically closed field
Fr R, W(Fr R)[%] is the field of fractions of W (Fr R), and W(R)[%] is a sub-
ring of W (Fr R)[%] The ring W := W(k) C W(R).

The Galois group Gg, (and therefore Gk ) acts naturally on W (Fr R)
and W (Fr R))[%] Denote by ¢ the Frobenius map on W (Fr R)[%] and on
W (Fr R))[z%] Then ¢ commutes with the action of Gk,: ¢(ga) = gp(a) for
any g € Gk, and a € B. Moreover, W (R) and W(R)[%] is stable under -
and Gg,-actions.

We know that Ey = k((7)) C Fr R and k[[7]] C R. Let [¢] = (£,0,0,---) €

W (R) be the Teichmiiller representative of . Set
nt =[] -1eW(R). (5.20)
Then 7t = (m, %, %,---) is a lifting of 7. By the isomorphism
W (R) = lim W, (R) = lim W (R) /"W ()
where W, (R) = {(ao,--- ,an—1) | a; € R} is a topological ring induced by

the valuation topology of R, the natural topology of W(R) is nothing but the
(p, )-topology. The series
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o0
DT A€W, neN,
n=0

converges in W (R), which gives a continuous embedding
We identify W[[n]] with a closed subring of W(R).

The element 7t is invertible in W (Fr R), hence

W () = Wi [

;ﬁ C:VV(FTJE

whose elements are of the form

+o0o
> Am Ay €W, Ay =0 for n 0.

n—=—oo

Since W (Fr R) is complete, this inclusion extends by continuity to

—+o0
Og, = { D> Am Ay € W, Ay = 0 when n — oo}, (5.21)

n=—oo

the p-adic completion of W((7)).
Note that Og, is a complete discrete valuation ring, whose maximal ideal
is generated by p and whose residue field is Ej, thus is the Cohen ring of Fj.

Let & = O¢g, [%] be its fraction field, then & C B.
Note that Og, and & are both stable under ¢ and Gk, . Moreover

o([e]) = (¢7,0,---) =[], and p(m) = (1 + )" — 1. (5.22)
The group Gk, acts through T'k,: for g € Gg,,

g(g]) = (X9 0,--.) = [e]X9,

therefore
g(m) = (14 mX9 —1, (5.23)
Let
T = —p+ Z €]l (or [e] + [e7Y] — 2 if p=2),
a€l,
then &y = SOA ¥o " whose ring of integers is just the p-adic completion of

W ((m)) and the Cohen ring of Ey = k((7)).

Proposition 5.20. For any finite extension F of Ey contained in E° = E,

there is a unique finite extension Eg of &y contained in B which is unramified
and whose residue field is F.
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Proof. By general theory on unramified extensions, we can assume F = Ey(a)
is a simple separable extension, and P(X) € Ey[X] is the minimal polynomial
of a over Ey. Choose Q(X) € Og,[X] to be a monic polynomial lifting of P.
By Hensel’s lemma, there exists a unique « € B such that Q(a) = 0 and the
image of a in Fr R is a, then £p = &y(a) is what we required.

By the above proposition,

=Jér c B, (5.24)
F

Where F runs through all finite separable extensmn of Ey contained in E°.

Let 5 be the p-adic completion of £ in B then 5(‘)” is a discrete valuation

field whose residue field is E* and whose maximal ideal is generated by p.
We have

Cal(EY /&) = Gal(Ej/Fy) = Hr,, Gal(EX/Eo) = Gal(Ej/Eq) = Hg,.
Set
(EVHE =g =&, (E)x =& =€, (5.25)

then & (resp. £) is again a complete discrete valuation field whose residue field
is E (resp. E) and whose maximal ideal is generated by p, and £J"/& (resp.
EY/E) is a Galois extension with the Galois group Gal(E}"/E) = Hk (resp.
HK). Set
g =gy, £ =gu,

It is easy to check that £ (resp. €) is stable under ¢, and also stable under
Gk, which acts through 'k (resp. I'k).

Replacing F and E by Fr, and Ef, for L a finite extension of Ky, one gets
the corresponding &1, and £, whose residue fields are E, and Ep, respectively.

We have Fig.5.2 .

gur — 5(1),1r

/H N

AN

[
N

Fig. 5.2. Galois extensions of £ and &.

L
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5.3.2 Basic theory of (¢, I')-modules.

Suppose T is a Z,-representation of Hrx = Gal(K/K*°) which equals
Gal(E®/E) = Gal(E™/E), then

M(T) = (Ogz ®z, T)"* (5.26)

is an étale p-module over Og¢. By Theorem 3.34, M defines an equivalence
of categories from Rep, (Hk), the category of Z,-representations of Hy

to ///ﬁt((’)g), the category of étale p-modules over O¢, with a quasi-inverse
functor given by
T: M+— (Og; Ko, M)LP:l. (5.27)

If instead, suppose V is a p-adic Galois representation of Hy. Then by
Theorem 3.35, .

D:Vi— (Ew®q, V)T (5.28)

defines an equivalence of categories from Repg (Hg), the category of p-adic

representations of Hg to ///Sft(é'), the category of étale p-modules over &,
with a quasi-inverse functor given by

V:D— (E%@eD)per. (5.29)
Now assume V' is a Z, or p-adic Galois representation of G g, set
D(V) := (Osz ®z, V)5 or D(V) := (£ @g, V) 7x. (5.30)

Definition 5.21. A (¢, I')-module D over Og (resp. £) is a p-module over
Og (resp. £ ) together with an action of Tk which is semi-linear, and commutes
with @. D is called étale if it is an étale w-module and the action of Tk is
continuous.

If V is a Zj, or p-adic representation of G g, D(V') is an étale (¢, I')-module.
Moreover, by Theorems 3.34 and 3.35, we have

Theorem 5.22. D induces an equivalence of categories between Repr(GK)
(resp. Repg, (GKk)), the category of Z, (resp. p-adic) representations of Gi
and ///ﬁfp((’)g) (resp. ///ﬁfp(é’)), the category of étale (p, I')-modules over Og
(resp. £), with a quasi-inverse functor

V(D) = (O ®0. D), (resp. (E¥ @ D) __,) (5.31)

1
and G acting on Oz ®o, D and Sur ®e D by
gA®@d)=g(\) ®g(d)

where g is the image of g € Gi in k. Actually, this is an equivalence of
Tannakian categories.
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Remark 5.23. To be more precise, (¢, I')-modules in the above definition are
actually (¢, 'k )-modules. If set

D'(V) := (& ®g, V)<, (5:32)
then D/(V) is an étale (p, ['x)-module over € = (£')Hx  and
D'(V) = (D(V))2%, Ag = Gal(£/E).
However, by Hilbert’s Theorem 90, the map
Ee D'(V) = D(V)

is an isomorphism. Thus both .ZS'(€) and A#'1-(€) are equivalence of cat-
egories with Repg (G ). For Z, repreﬁentatlons the corresponding result is
also true.

Ezample 5.24. 1f K = Ko = W (k)[5], W = W(k), then € = & = W ((m))[1].
ItV =2Z,, then D(V) = Og, = VV/((;)) with the (¢, I')-action given by

oM =1+mP -1, g(m)=1+mX9 -1, (5.33)

Remark 5.25. We give some remarks about a (¢, I')-module D of dimension
d over £. Let (e1,--- ,eq) be a basis of D, then

d
) = Z @ijCi-
i=1

To give ¢ is equivalent to giving a matrix A = (a;;) € GLg(E). If Tk is
pro-cyclic (i.e. if p # 2 or p, C K), let 7o be a topological generator of Tk,

d
eJ) = Z bijei.
i=1

To give the action of 7y is equivalent to giving a matrix B = (b;;) € GL4(E).
Moreover, we may choose the basis such that A, B € GL4(Og).

Exercise 5.26. (1) Find the necessary and sufficient conditions on D such
that the action of vy can be extended to an action of k.

(2) Find formulas relying A and B equivalent to the requirement that ¢
and I' commute.

(3) Given (A1, By), (Az, Ba) two pairs of matrices in GLg4(&) satisfying the
required conditions. Find a necessary and sufficient condition such that the
associated representations are isomorphic.

For the theory of (¢, I')-modules, the operator ¢ is extremely important.
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Lemma 5.27. (1) {1,¢, - ,eP71} is a basis of Eq over ¢(Ep);
(2) {1,&,--- ,eP71} is a basis of Ex over o(Ek);
(3) {1,e,--- ,eP~1} is a basis of E° over p(E®);

(4) {1, [e], -+, [e]P~'} is a basis of Oz over o(Ogx).

Proof. (1) Since Ey = k((m)) with m = ¢ — 1, we have p(Ey) = k((7P));

(2) Use the following diagram of fields, note that Ex/Ej is separable but
Ey/¢(Ey) is purely inseparable:

Ey —— Ex

¢(Eo) ¢(Ek)

We note the statement is still true if replacing K by any finite extension L
over K.

(3) Because E* =, Er.
(4) To show that

(‘TOaxlv"' ,xp 1 GOE‘u\r E 5ur

is a bijection, by the completeness of O, it suffices to check it mod p, which
is nothing but (3).

Definition 5.28. The operator ¢ : Og — Ogy is an additive defined by

p—1
V(Y lel'p(xs)) = o (5.34)
i=0
Proposition 5.29. The followings are true:
(2) ¥ commutes with G, .
Proof. (1) The first statement is obvious.
(2) Note that
p—1 p—1
9O el p(@i) = > [l *Wo(g(xs)).
i=0 i=0
If for 1 <i <p—1, write ix(g9) = ig + pjg with 1 < iy <p—1, then
p—1
(Y] o(g(wi))) = dlp(g(o) + Z ¢ ([el2g(x:))) = g(wo)-
i=0
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Corollary 5.30. (1) If V is a Z,-representation of G, there exists a unique
additive operator ¢ : D(V) — D(V) such that

U(p(a)r) = ap(z), Plap(x)) = p(a)z (5.35)

if a € Og.,x € D(V) and moreover ¢ commute with Tk .
(2) If D is an étale (@, I')-module over Og,. or Ek, there exists a unique
additive operator ¢ : D — D satisfying (5.35). Moreover, for any x € D,

x= Z BREEEN) (5.36)

where z; = ¥"([e]"'x).

Proof. (1) The uniqueness follows from Og ®,(0,) (D) = D. For the ex-
istence, first define ¢» on Og ® V.2 D(V) by ¥(a ® v) = ¥(a)v. D(V) is
stable under 9 because ¢ commutes with Hg, 1) commutes with I'f; because
1 commutes with G, .

(2) Since D = D(V(D)), we have the existence and uniqueness of 1. (5.36)
follows by induction on n.

Remark 5.31. From the proof, we can define an operator 1 satisfying (5.35)
but not the commutativity of the action of I'}; for any étale p-module D.

Ezample 5.32. For Og, D Of = W[}, [e] = 1+, let 2 = F(m) € (’)2'0,
then ¢(x) = F((1 + m)? — 1). Write

p—1
F(m) = 2(1 +m) F((1+m)P — 1),
=0
then (F(m)) = Fy(m). It is easy to see if F(m) belongs to W[[n]], F;(m)
belongs to W([z]] for all i. Hence 1(OF ) € OF = W([n]]. Consequently, ¢ is
continuous on & for the natural topology (the (p,7)-topology).
Moreover, we have:

(W (F)) =Fo((1 + m)” Z Z (1 +m) Fi((z(1+ )" — 1)

zP 14=0

72 2(1+m) —1).

zl’l

Proposition 5.33. If D is an étale p-module over Og,, then ¢ is continuous
for the weak topology. Thus 1 is continuous for any an étale p-module D over
Og¢ in the weak topology.
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Proof. For the first part, choose eq, ez, -+ ,eq in D, such that
D= @(Oso/p”i)ei, n; € NU {oo}.

Since D is étale, we have D = @(Og,/p™)p(e;). Then we have the following
diagram:

D D

] j

D(O¢, /p")p(ei) — D(Og, /p" )ei

Yo zip(es) ————= > P(wi)e;

Now since x + () is continuous in Og,, the map % is continuous in D.
The second part follows from the fact that Og is a free module of Og, of
finite rank, and an étale p-module over Og¢ is also étale over Og,.
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Hodge-Tate and de Rham representations

6.1 The ring By and Hodge-Tate representations

We recall the Tate module Z,(1) = T,,(G,,) = Z, - ¢ of the multiplicative
group is a free Z, of rank 1, with Gix-action via the cyclotomic character x:

g(t) = x(g)t, X: Gk — Z,

For i € Z, the Tate twist Z, (i) = Zyt® is the free Z,-module with G g-action
through x*. Moreover, for a Zy-module M and i € Z, the i-th Tate twist of
M is M (i) = M ®z, Zy(i). Then

M— M®G), z—azt

is an isomorphism of Z,-modules. Moreover, if G acts on M, it acts on M (7)
through
g(z ®u) = gr ® gu = x'(9)gz ® u.
One sees immediately the above isomorphism in general does not commute
with the action Qf Gk.
Recall C = K.

Definition 6.1. The ring of periods of Hodge-Tate, the Hodge-Tate ring By
1s defined to be

. 1
Byr = @C(Z) = C[ta Z]
1€Z
where the element c®t' € C(i) = C ®z, Zy(i) is denoted as ct', equipped with
a multiplicative structure by
et - t? = et

We have

+oo
Bur € Bur = C((1)) = { Y eit',ci = 0,if i < 0.}

1=—00
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Proposition 6.2. The ring Bur is (Qp, Gk )-regular, which means that

(1) Byur is a domain;

(2) (Frac By )95 = BSKx = K;

(3) For every b € Byur,b # 0 such that g(b) € Q,b, for all g € Gk, then b is
invertible.

Proof. (1) is trivial.
(2) Note that By, C Frac Byr C By, it suffices to show that (By,)9% =
K.

Let b= > ¢;t', ¢; € C, then for g € Gk,
ez

g(d) = glei)x' ()t

For all g € Gk, g(b) = b, it is necessary and sufficient that each c;t! is fixed by
G, i.e., cit' € C(i)9%. By Corollary 4.45, we have C“% = K and C(i)9% =0
if ¢ # 0. This completes the proof of (2).
(3) Assume 0 # b = >_ ¢;t* € Byy such that
g9(b) = n(g)b, n(g) € Qp, for all g € Gx.

Then g(c;)x*(9) = n(g)c; for all i € Z and g € Gk . Hence

g9(ci) = (mx ") (g)ei

For all ¢ such that ¢; # 0, then Qpc¢; is a one-dimensional sub Q,-vector space
of C stable under Gx. Thus the one-dimensional representation associated
to the character 7y % is C-admissible. This means that, by Tate’s Theorem
(Corollary 4.45), for all 4 such that ¢; # 0 the action of Ix through nx ¢ is
finite, which can be true for at most one i. Thus there exists ig € Z such that
b = ¢;,t" with ¢;, # 0, hence b is invertible in Byy.

Definition 6.3. A p-adic representation V of Gk is called Hodge-Tate if it
18 Byr-admissible.

Let V be any p-adic representation, define
Dur(V) = (Bur ®g, V).
By Theorem 3.14 and Proposition 6.2, we have
Proposition 6.4. For any p-adic representation V', the canonical map
(V) : Bur @ Dyn(V) — Byx ®, V

is injective and dimg Dy (V) < dimg, V. V' is Hodge-Tate if and only if the
equality
dimK DHT(V) = dime |4

holds.
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Proposition 6.5. For a p-adic representation V' to be Hodge-Tate, it is neces-
sary and sufficient that Sen’s operator © of the C-representation W = C®q, V
is semi-simple and that its eigenvalues belong to 7Z.

Proof. If V' is Hodge-Tate, then
W; = (C(i) ®g, V)% (—i) @K C

is a subspace of W and W = @W,. One sees that the operator Oy, is just
the multiplication-by-i map (cf Example 4.37). Therefore the condition is
necessary.

To show this is also sufficient, since © is semi-simple, we can decompose
W into the eigenspaces W; of ©, where O is the multiplication-by-i map on
W;. Then © = 0 on W;(—i) and by Theorem 4.40, we have

Wi(—i) = C @ (W;(—1))°x.
Therefore

dimg Dy (V) > Y dimg (W;(—i))9% = dime W; = dimg, V

K2

and V is Hodge-Tate.
For a p-adic representation V, Dy (V) is actually a graded K-vector space
DHT(V) = @ gri DHT(V)7
i€z
where gr' Dy, (V) = (C(i) ®q, V)9%.

Definition 6.6. The Hodge-Tate numbers of a p-adic representation V of
Gk are those
h; := dimg (C(—i) @ V)% £0

forieZ

Ezample 6.7. Let E be an elliptic curve over K, then V,(E) = Q, ®z, T,(E)
is a 2-dimensional Hodge-Tate representation, and

dim(C @g, V,(E))®* = dim(C(~1) @, Vy(E))°* = L.
Thus the Hodge-Tate numbers are hg = 1 and h; = 1.
Let V' be a p-adic representation of G, define
o' Dy (V) = (Lo, (V, C(0))) %7,

then _ _
gr' Dy (V) > gr™ Dy (V)
as K-vector spaces.

Exercise 6.8. A p-adic representation V of Gk is E\HT-admiSSible if and only
if it is Byr-admissible.
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6.2 The field Bgr and de Rham representations

In this section, we shall define the ring B;'R and its fraction field, the field
of p-adic periods Bggr such that

W(R) C W(R)[%] € B, C Bug.

6.2.1 The homomorphism 6.

Let a = (ag, a1, ,Gm, ) € W(R), where a,, € R. Recall that one can
write a,, in two ways: either

am = (a T))TENa a(mr) € Oc, (a(r+1))p = ag;);

m m

or
am = (am,r)v Am,r € O?/pv afn,r+1 = Qm,r-

Then a +— (ag,n, @1n, - »an—1,,) gives a natural map W(R) — W, (O%/p).
For every n € N, the following diagram is commutative:

Wn-i—l(of/p)
A
W(R) W (O%/p)
where f,,((zo,z1, - ,2y)) = (2f,--+ 2P _}). It is easy to check the natural
map
W(R) = Im W, (O/p) (6.1)
In

is an isomorphism. Moreover, It is also a homeomorphism if the right hand
side is equipped with the inverse limit topology of the discrete topology.
Note that Oz/p = O¢/p. We have a surjective map

Wn+1(OC) — Wn(of/p)v (Clo, T van) = (607 te aan—l)-
Let I be its kernel, then
I= {(pbOapbla T 7pbn—17an) | bi;an S OC}

Recall w11 : Wit1(O¢) — Oc¢ is the map which sends (ag, a1, -+ ,a,) to
1

agn + pa’l’n + -+ + p"a,. Composite w,1 with the quotient map Oc —
Oc¢/p™, then we get a natural map W, 1(O¢) = O¢/p™. Since

W1 (Pbo, -+ s Pbu_1,an) = (pbo)P” + -+ + p" " (pby_1)? + p"an € p"Oc,

there is a unique homomorphism
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n—1
071 . Wn(O?/p) — OC/pna <d07d17 e 7dn71) = Zpia};"_l (62)
=0

such that the following diagram

Wn41

Wys1(O¢) ——— Olc
Wi (O /p) —2> Oc [p" = O /p"

is commutative. Furthermore, we have a commutative diagram:

On+1
W i1(Og/p) = Oc /p"+!

R

0,
Wn(O%/p) Oc/p"

Thus it induces a homomorphisms of rings
0:W(R) — Oc¢. (6.3)

Lemma 6.9. [f.’l? = (l‘o,xh-.. ’xT“...) c W(R) fOT T, € R and T, =
(37£zm))meN, ﬂfng) € O¢, then

+oo
O(z) = Zp"a:ﬁl"). (6.4)
n=0
Thus 0 is a homomorphism of W -algebras which commutes with the action of
Gk,-

Proof. For z = (20,21, - ), the image of x in W,,(O%/p) is (o,n: T1,n, ** » Tn—1.n)-
We can pick xl(»n) € O¢ as a lifting of ; ,,, then

n-1 ____ n—1
O (Tomy s Tp—1.n) = Zpi(xl(_n))pn—i _ szxl(_z)
=0 =0

since (xl(-"))pT = chnfr). Passing to the limit we have the lemma.

Remark 6.10. If write x € W(R) as « = ), p"[x,] where z,, € R and [z,,] is
its Teichmiiller representative, then

+oo
0(x) =S p'al®. (6.5)
n=0
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Proposition 6.11. The homomorphism 6 is surjective.

Proof. For any a € Og, there exists € R such that 2(®) = a. Let [z] =
(x,0,0,---), then §([z]) = z(®) = a.

Choose @ € R such that @w® = —p. Set
By Lemma 6.9, 0(¢) = @ +p =0.

Proposition 6.12. The kernel of 0, Ker 0 is the principal ideal generated by
&. Moreover, ((Ker )™ = 0.

Proof. For the first assertion, it is enough to check that Ker 6 C (¢, p), because
O¢ has no p-torsion and W (R) is p-adically separated and complete. In other
words, if z € Ker 6 and x = yg + px1, then 6(x) = pf(x1), hence x; € Ker .
We may construct inductively a sequence (z,,) in Ker 6 by the relation x,,—1 =

&Yn—1 + pxy, then x = (> p"y,) is a multiple of €.
Now assume z = (zg,z1, - ,ZTpn, ) € Kerf, then

0=0(x) =2 +p p" 'z,

n=1

Thus v(xéo)) > 1 = v,(p), so v(zg) > 1 = v(w). Hence there exists by € R
such that xg = bpwo. Let b = [bg], then

x*bfi(lﬂo,xl,"')*(b,(),“‘)(w,]_,(),"‘)
:(Z‘o —bow,'-') = (anhyQa"')
:p(yivy/% t ) € pW(R)a
where (y;)? = y;. Hence Ker 6 C (§,p).
For the second assertion, if x = (zg,---) € (Ker#)™ for all n € N, then
vr(zo) > vr(w™) = n. Hence zp = 0 and = = py € pW(R). Then pd(y) =

f(z) = 0 and y € Ker 6. Replacing x by x/£™, we see that y/&" € Ker 0 for all n
and thus y € [(Ker §)™. Repeat this process, then z = py = p(pz) = --- = 0.

6.2.2 Bl; and Bgr.
Note that Ko = FracW = W[%], then

W(R) [%] — Ko ow W(R).

We use the injection z — 1 ® z to identify W (R) with a subring of W (R) [ﬂ,
then
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W(R)[%] = U wip " = tim W (rp
n=0 ne

with the natural inductive topology. The G k,-equivariant homomorphism 8 :
W(R) = O¢ extends to a G k,-equivariant homomorphism of Kj-algebras

0:W(R)[-] —=C, Z p"xs] — Z pal®) (6.7)

1
p
n>ngEZ n>noE€Z

which again is surjective and continuous, and whose kernel is the principal
ideal generated by €. Then Ker 6 is a maximal ideal of W (R) [%] whose asso-
ciated quotient field is C'. We still have (), (Ker 6)™ = 0.

Definition 6.13. (i) The ring By is the (Ker 0)-adic completion of W (R) [%] ,
which means

By = lim W(R) [%] /(Ker 6)" = lim W(R)[2] /()" (6.8)

neN neN p

(ii) The field of p-adic periods By is the fractional field of Big, i.e.,
1
Byr = Frac Bj; = Bjx [g] (6.9)

By definition,

Lemma 6.14. B(TR is a complete discrete valuation ring whose residue field
is C, equipped with a continuous Gk, -action, and Bar is its valuation field.

Definition 6.15. For i € Z, let Fil' Bqg be the free B(YR-module generated by
&', The filtration on Bagr s the decreasing exhaustive and separated filtration

-+ DFil' Bqr = BIR¢' D Fil'" ' Bgr D -+ . (6.10)

Note that Fil” Bar = Bjjy, and if i > 0, Fil' Bgg = m’,, s the i-th power
dR
of the maximal ideal of B:{R. The corresponding valuation vqr on Bgr is also

given by the filtration: vgr (0) = +00 and for 0 # x € Byg,
var(z) =i, if € Fil’ By but x ¢ Fil'™ Byg. (6.11)

Remark 6.16. One must be careful for the topology on B;R. There are at least
two different topologies on B(]LR that we shall consider in the book.

(a) the topology as a discrete valuation ring;
(b) the induced topology by the inverse limit, with the topology on each
component W(R)[1]/(Ker6)" being the induced quotient topology of

W(R)[L]. ’

p
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We call (b) the canonical topology or the natural topology of B(‘IR. The topology
(a) is stronger than (b). Actually for the topology in (a) the residue field C
is endowed with the discrete topology; for the topology in (b), the induced
topology on C' is the natural topology by p-adic valuation.

Since () &"W(R)[1] =0, there is an injection

n=1 P

1
WR)[]] = Bip-
We use this to identify W (R) and W (R) [%] with subrings of Bl,. In partic-
ular, Kg = W[%] is a subfield of BCTR. For any monic irreducible polynomial
P(X) € Ko[X], under the map

Ko%Bg_Ri)C,

P(X) € C[X] has distinct roots in C, hence P(X) € Bj;[X] has distinct
roots in B(TR by Hensel’s Lemma. In this way, we see that

Lemma 6.17. K is naturally a subfield of B;’R preserving the Galois action,
and K NFil' Bgg = 0.

Remark 6.18. We can also see the inclusion of K C By in the following way.
Let L be any totally ramified finite extension of K inside K and wj be a

uniformizer of L. Set Wi(R) = L ®@w W(R) (hence Wi, (R) = W(R)[}]).
Then any element x € W (R) can be uniquely written as >, -« [2,] with
z, € R. The surjective homomorphism 6 : W, (R) — C can be extended

naturally to

0:WL(R) - C, Z 7L n] - Z a0 (6.12)

n>no n>ng

whose kernel is again a principal ideal (but not generated by £). Moreover, we
have a commutative diagram

Wk, (R) —2— C

incll Idl

Wi(R) —— C

Set
Bip,1, = lim W (R)/(Ker 0)". (6.13)
neN
Then the inclusion Wi, (R) < Wy (R) induces the inclusion B — B(TR’ 5
However, since both are complete discrete valuation rings with the same
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residue field C, the inclusion is actually an isomorphism. Moreover, this iso-
morphism is compatible with the Gk, -action. By this way, we identify Bg‘R
with BCTR ;, and hence KcC BJR.

Furthermore, let K and L be two p-adic local fields. Let K and L be al-
gebraic closures of K and L respectively. Given a continuous homomorphism
h: K — L, then there is a canonical homomorphism Bqgg(h) : Bii(K) —
B (L) such that Bqg(h) is an isomorphism if and only if & induces an iso-
morphism of the completions of K and L. Through this, we see that Bggr
depends only on C not on K.

By Theorem 1.23, we have the following important fact:

Proposition 6.19. There ezists a section s : C — BQ'R which is a homomor-
phism of rings such that 0(s(c)) = ¢ for all c € C.

However, the section s is not unique. Moreover, one can prove that

Exercise 6.20. (1) There is no section s : C' — B:R which is continuous in
the natural topology.

(2) There is no section s : C — BJ; which commutes with the action of
Gk.

In the following remark, we list some main properties of Byg.

Remark 6.21. (a) Note that k is the residue field of K, as well as the residue
field of R, and k C R (see Proposition 5.6). Thus W (k) C W(R). Then

Py = W(BL) = KF < W)L

3

and @ is a homomorphism of Py-algebras. Let P = PyK which is an algebraic
closure of Py, then
P C B
and @ is also a homomorphism of P-algebras.
(b) A theorem by Colmez (cf. appendix of [Fon94a]) claims that K is
dense in B;‘R with a quite complicated topology in K induced by the natural

topology of B(J{R. However it is not dense in Byg.

(¢) The Frobenius map ¢ : W(R) [ﬂ — W(R) [%} is not extendable to a

continuous map ¢ : Biz — Bji. Indeed, 6([w!/?] + p) # 0, thus [@w!/?] + p
is invertible in B:{R. But if ¢ were a natural extension of the Frobenius map,
on one hand ¢(1/([ew!/?] + p)) should still be invertible in B, on the other
hand one should have ¢(1/([e'/?] + p)) = 1/¢ ¢ Bix.

6.2.3 The element t.

Recall ¢ € R is the element given by ¢(© = 1 and ¢ # 1, then 7t =
[e]—1€ W(R) and



144 6 Hodge-Tate and de Rham representations
0(e] —1) =@ —1=0.
Thus [e] — 1 € Ker 6 = Fil' Bar. Then (—1)" 1 {EELS € 7 (R)[2]¢" and

(o] 1 n
logle] = ) (~1 "“T) € Bl (6.14)

n=1
We call the above element ¢ = logle].
Proposition 6.22. The element
t € Fil' By and t ¢ Fil®> Byg.
In other words, t generates the maximal ideal of B;R.

Proof. That t € Fil! Bygr is because

([e] = D"

€ Fil' Byg for all n > 1.

Since
(] ="

n

to prove that ¢ ¢ Fil? Bgg, it is enough to check that

€ Fil? Bgg if n > 2,

[e] — 1 ¢ Fil® Byg.
Since [e] — 1 € Ker 0, write [¢] — 1 = A\ with A € W(R), then
[€] =1 ¢ Fil® Bgr <= 0()\) # 0 <= X ¢ W(R)E.

It is enough to check that [¢] — 1 ¢ W(R)&2. Assume the contrary and let
[e] — 1 =A% with A € W(R). Write A = (Ao, A1, A2, ). Since

gz(walaovoa"')a 62:(w27"')7
we have \¢2 = (\gw?,---). But
= 1= (5,0,0,-+) = (1,0,0,+-) = (e — 1,---),

hence ¢ — 1 = M\gw? and

vie—1) > 2.
We have computed that v(e — 1) = ;ﬁ (see Lemma 5.11), which is less than
2 if p # 2, we get a contradiction. If p = 2, just compute the next term, we

will get a contradiction too.

Remark 6.23. We should point out that our ¢ is the p-adic analogue of 2wi € C.
Although exp(t) = [¢] # 1 in B, 0([¢]) =1 in C = C,.



6.2 The field Bqr and de Rham representations 145

Recall by Lemma 5.11), the multiplicative module £%» is isomorphic to the
Tate module T),(G,,) = Zp(1) as Gk,-modules. By the relation

log([e*]) = log([e]*) = Alog([e]) = M,

the Tate module Z,(1) can be realized as Z,t C Bjy: for any g € Gk,,
g(t) = x(g)t where x is the cyclotomic character. Moreover, we have

Fil' Bqr = Bixt' = BJ(4),

1 1
Bar = BjirR[*} = BjirR[*]v
t §
thus
or Bar = EB g’ Bar = EB Fil' Byr/ Fil'*! Bar
i€Z i€L
=D Bl (/1B (i) = P C ).
i€Z iE€EZ
Hence

Proposition 6.24. gr Big = By = C[t, 1] C Bur = C((1)).

Remark 6.25. If we choose a section s : C' — B;‘R which is a homomorphism
of rings and use it to identify C' with a subfield of BJ;, then Byr ~ C((t)).
This is not the right way since s is not continuous. Note there is no such an
isomorphism which is compatible with the action of G .

6.2.4 de Rham representations and filtered K-vector spaces.

Proposition 6.26. BSX = K.

Proof. Since K C K C BCTR C Bgr, we have
—Gx Gk
KCK =~ C--CBg-

Let 0£0b € Bgﬁﬂ we are asked to show that b € K. For such a b, there exists
an i € Z such that b € Fil' Bqr but b ¢ Fil"™ Byr. Denote by b the image of
bin gr' Bgr = C(i), then b # 0 and b € C(i)9%. Recall that

. 0, i#0,

then i = 0 and b € K C Bj. Now b —b € B and b — b € (Fil' Bgr)®* for
some ¢ > 1, hence b — b = 0.
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Note that Bggr is a field containing K, therefore containing Q,, and is
equipped with an action of Gg. It is (Q,, Gk )-regular since it is a field. For
a p-adic representation V of G, set

Dyr(V) := (Bar g, V)°¥. (6.15)
Then the map
aar(V) : Bar @k Dar(V) — Bar ®q, V
is injective.

Definition 6.27. A p-adic representation V of Gk is called de Rham if it is
Bagr-admissible, i.e., if agr(V') is an isomorphism.

The category of p-adic Galois representations of K which are de Rham is
denoted by Rep&f(GK).

We immediately see that

Lemma 6.28. V is a de Rham representation if and only if dimgx Dgr (V) =
dime (V) .

Definition 6.29. The category of filtered K-vector spaces, denoted by Fil,
is the category such that

(i) an object of Filk is a finite dimensional K -vector space D equipped with a
decreasing filtration indexed by Z which is exhaustive and separated, i.e.,
- Fil* D are sub K -vector spaces of D,
-Fil'™' D c Fil’ D,
-Fil' D =0 fori> 0, and Fil' D = D for i < 0.
(ii) a morphism
n: D1 — Doy

between two objects of Filk is a K-linear map such that
n(Fil' Dy) C Fil' Dy for alli € Z.
For D an object in Filg, set
gr' D:=Fil' D/FII'"' D,  grD:=Pa'D. (6.16)
=
The category Filk of filtered K-vector spaces is an additive category with
kernels and cokernels. In fact, let  : D1 — D5 be a morphism of Filg, then

(a) Kern is the kernel of 1) as a K-linear map, with the filtration Fil’(Kern) =
Kern NFil’ Dy,

(b) Coker 7 is the cokernel of ) a K-linear map, with the filtration Fil*(Coker ) =
Im(Fil* Dy).
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However, the induced map colm(n) — Im(7), even though is an isomorphism
of K-vector spaces, but is not always filtration-preserving, hence not a mor-
phism between filtered K-vector spaces.

Definition 6.30. A morphism n : Dy — Dy is called strict or strictly com-
patible with the filtration if for all i € Z,

n(Fil’ D1) = Fil* Dy N Im .

Proposition 6.31. A morphism n of Filk is strict if and only if the induced
map from the coimage of n to the image of n is an isomorphism.

Proof. Exercise.

By abstract nonsense, Filx thus becomes an exact category with the fol-
lowing definition of short exact sequence:

Definition 6.32. A short exact sequence in Filg is a sequence

0—D %D D" —0

such that:

(i)  and B are strict morphisms;
(i) «v is injective, [ is surjective and

a(D') ={x € D | p(x) =0}.

The category Filk is equipped with tensor product, unit and dual:

(a) If Dy and Dy are two objects in Filg, Dy ® Do is defined as
- D14® Dy = Dy ®g Doy as K—vector spaces;
- FiI'(D; ® D3) = . Fil" Dy @k Fil"? Ds.
11+i0=1

(b) The unit object is D = K with

. ) <
Fi g~ % 1s0
0, i > 0.

(¢) If D is an object in Filg, its dual D* is defined as
- D* = Yk (D, K) as a K-vector space;
-Fil'D* = (FiI7""' D)yt = {f : D - K | f(z) = 0, forall z €
Fil="*' D}.

If V is any p-adic representation of G, then Dgg (V) is a filtered K-vector
space, with 4 4
Fil' Dar (V) := (Fil’ Bar ®q, V)°*. (6.17)

For the short exact sequence
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0 — Fil'™ Byr — Fil’ Bgg — C(i) — 0,

if tensoring with V' we get

0 — Fil'™ Byr ®g, V — Fil' Bar ®q, V — C(i) ®qg, V — 0.
Take the Gi-invariant, we get

0 — Fil'™ Dgr (V) — Fil' Dar(V) = (C(i) ®q, V)“¥.

Thus

gr' Dyr(V) = Fil' Dar (V) / Fil'™ Dar(V) < (C(i) ®g, V)9 .
Hence,

grDar(V) = @ er' Dar(V) — EP(C(i) @g, V) = Dyu(V).

i€Z icZ
As a consequence, we have

Proposition 6.33. If a p-adic representation V is de Rham, then V is Hodge-
Tate and

gr' Dar (V) = (C(i) ®g, V)%,  grDar(V) = Dy (V). (6.18)

Theorem 6.34. The functor DygR : Rep&i{(G;{) — Filg is an exact, faithful
and tensor functor.

Proof. One needs to show that

(i) For an exact sequence 0 — V' — V — V" — 0 of de Rham representa-
tions, then

0— DdR(V/) — DdR(V) — DdR(VN) —0

is a short exact sequence of filtered K-vector spaces.
(ii) If V1, V2 are de Rham representations, then

Dygr (Vi) @ Dar(V2) — Dar(V1 ® V2)

is an isomorphism of filtered K-vector spaces.
(iii) If V' is de Rham, then V* = % (V,Q,) and

Dyr (V") = (Dar(V))"

as filtered K-vector spaces.
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By Theorem 3.14, (i)-(iii) all hold in the category of K-vector spaces. We
just need to check the filtration. We identify gr’ Dag (V') with (C(i) ®g, V)9
by Proposition 6.33.

For (i), tensoring C(%) to the exact sequence 0 — V' -V — V" — 0 and
then taking the G g-invariants, we have an exact sequence as K-vector spaces:

0— gI‘i DdR(V — gri DdR — gI‘i DdR(V”).

)
In particular, dim gr' Dagr(V) > dimgr’ Dgr (V') + dim gr’ Dggr (V") for all
i € Z. The equality dim Dgg(V) = dim Dgr(V”’) + dim Dgg (V") then means
dim gr' Dggr (V) = dim gr’ Dar(V’) 4 dim gr® Dag (V") for all i € Z. Thus

0 — Fil' Dgr (V') = Fil' Dgr(V) = DarDar (V") — 0

are all exact sequences as K-vector spaces. This implies (i).
For (ii), the map

gr' Dar(V1) ®k gt/ Dar (Vo) — gr't Dar(Vi @ Va),
clvlti X CQ’UQtj — C1C1 (Ul X U2)ti+j
is an injection, which gives the injection
gr'(Dar (V1) ® Dar(V2)) <= gr' Dar (Vi @ V2)

for all 4 € Z. Taking into account of the equality dimgx Dgr(V1) ® Dar(V2) =
dimg Dgr (Vi ® V2), we find that the above injection must be an isomorphism
as K-vector spaces for every i € Z. This gives the proof of (ii).

(iii) follows from

Dyr(V*) =(Bar ®q, Homg, (V,Q,))9" = Homp,, (Bar ©q, V, Bar)“*
~ Homg ((Bar ®q, V)%, K) = Dar(V)".

Proposition 6.35. Suppose i < j € ZU {£oo}, then if i > 1 or j <0,
HY(Gg,t'Big/t Big) = 0;
ifi <0 and j >0, then x — x Ulog x gives an isomorphism
HY(Gg,t'Bi /! Big) (= K) = H' (G, t'Biz /' Bip)-

Proof. For the case i,j finite, let n = j — i, we prove it by induction. For
n=1, tiB$R/ti+1B§R ~ (i), this follows from Proposition 4.46. For general
n, we just use the long exact sequence in continuous cohomology attached to
the exact sequence

0 — C(i+n) — t'Bip /t"V""' Bl — t'Big /t""" Bz — 0

to conclude.
By passage to the limit, we obtain the general case.
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Proposition 6.36. (1) There exists a p-adic representation V of Gk which
is a nontrivial extension of Qp,(1) by Qp, i.e. there exists a non-split exact
sequence of p-adic representations

0—-Q, =V —=Q,»1) —0.

2) Such a representation V is a Hodge-Tate representation.
g
(3) Such a representation V is not a de Rham representation.

Proof. (1) It is enough to prove the case K = Q) (the general case is by base
change Q, — K). In this case Ext'(Q,(1),Q,) = HL . (Q,, Q,(—1)) # 0 (by
Tate’s duality, it is isomorphic to H2, . (Q,, Q,) = Q,) and hence is nontrivial.
Thus there must exist a nontrivial extension of Q,(1) by Q,.

(2) By tensoring C(i) for i € Z, we have an exact sequence

0— C(i) = C(i) ®q, V = C(i+1) = 0.
This induces a long exact sequence by taking the G k-invariants
0 — C(i)9% — (C(i) ®g, V) = C(i +1)°% = H'(Gk,C(i)).

By Proposition 4.46,

(i) if i £ 0,—1, C(i)9% = C(i + 1)9% =0, then (V ®q, C(i))°* =
(ii) if i = 0, C9% = K, then C(1)°% =0 and (V ®q, C)°* = K;
(iii) if i = —1, C(-1)9% = 0, %< = K and H'(Gk,C(—1)) = 0, hence
(C(=1) ®g, V) = K.
As a consequence V is Hodge-Tate.
(3) is not so easy! We shall prove it in Corollary 9.30.

Remark 6.87. Any extension of Q, by Q,(1) is de Rham. Indeed, by the exact
sequence 0 — Q,(1) = V — Q, — 0, the functor (Bjz ®g, —)¢* induces a
long exact sequence

0 — (tBjr)“" =0 — (Blz ®g, V)% = K — H' (G, tBjy).
By Proposition 6.35, H' (G, tBjy) = 0. Hence Dar(V) — (Biz ® V)% —
K = Dgyr(Q),) is surjective. Thus dimg Dgr (V) = 2 and V is de Rham.
6.2.5 A digression.

Let E be any field of characteristic 0 and X a projective (or even proper)
smooth algebraic variety over E. One has the de Rham complex

For m € N, the de Rham cohomology group HJh(X/FE) is defined to be
H™(£2% / )» the m-th hyper cohomology of 2% JE> which is a finite dimensional
FE-vector space equipped with the Hodge filtration.
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Given an embedding o : E — C, then X (C) is an analytic manifold. The
singular cohomology H™ (X (C), Q) is defined to be the dual of H,,(X(C),Q)
which is a finite dimensional Q-vector space. The Comparison Theorem of
Hodge theory claims that there exists a canonical isomorphism (classical
Hodge structure)

C®o H™(X(C),Q) ~ Cop Hir(X/E).

We now consider the p-adic analogue. Assume F = K is a p-adic field
and /¢ is a prime number. Then for each m € N, the étale cohomology group
HZ (X7, Q) is an f-adic representation of Gk which is potentially semi-stable
if £ # p. When ¢ = p, we have

Theorem 6.38 (Tsuji [Tsu99], Faltings [Fal89]). The p-adic represen-
tation HZ (X%, Qp) is a de Rham representation and there is a canonical
isomorphism of filtered K -vector spaces:

Dar (Hg (X7, Qp)) =~ Hig (X/K),
and the identification
Bar ®q, H (X5, Qp) = Bar @k Hig (X/K)
gives rise to the notion of p-adic Hodge structure.

Let £ be a prime number. Let Gg = Gal(Q/Q). For p a prime number,
let G, = Gal(Q,/Q,) and I, be the inertia group. Choose an embedding
Q— @p, then I, C G, — Gog.

Definition 6.39. An ¢-adic representation V' of Gg is called geometric if

(i) V is unramified away from finitely many p’s, i.e., let p : Gg — Autg, (V)
be the representation, then p(I,) =1 except finite many p’s.
(ii) The representation is de Rham at p = £.

Conjecture 6.40 (Fontaine-Mazur [FM95]). Geometric representations are ex-
actly the representations coming from algebraic geometry.
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B..is and its properties

7.1 The ring of crystalline periods By,

7.1.1 Definition of Bygis.

Recall the #-map:

W(R) —2 T
W(R)}] -+ C,

we know Ker6 = (§) where £ = [w] +p = (w,1,0,--+), @w € R such that
0) — _
w®) = —p.

Definition 7.1. The module A% is defined to be the divided power envelope
of W(R) with respect to Ker 0, that is, by adding all elements v, (a) := % for

a € Kerf and n € N.

By definition, A2, is the sub-W(R)-module of W (R)[1] generated by the

1
cris P

elements v, (§) = %m eN,ie.,
al 1
Al = {Zawn(f), N < 400, ay € W(R)} c W(R))[;] (7.1)
n=0

Moreover, it possesses a ring structure since

m+n> €m+n B m+n
7( =

n m+n)! n

m©) - m(©) = St @2

Note that 7,(£) € W(R)[¢/p], then A%, is a subring of W (R)[¢/p]. The
completion of W(R)[{/p] by Ker 0 is W(R)[[¢/p]], the ring of power series of
¢/p over W(R), which is a subring of Bj;.
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Lemma 7.2. The ring W(R)[[¢/p]] is separated and complete by the p-adic
topology, i.e., the natural map

W(R)[[¢/pl] — Jm W(R)([E/pl)/p" W (R)[[¢/p]]

is an isomorphism.

Proof. Write S = W(R)[[£/p]]. We first show that S is separated, i.e., (| p™S =
0. Suppose z € p"S for all n € N. For every n, write

T = p" Zai’n <f)) y Qin € W(R)

Then 6(z) = p"#(ag,n), which implies §(z) = 0 and in turn implies that
6(ao.n) = 0. Then ag,, = &by, with by, € W(R). Hence x = £xq with

i—1
Tr1 = pn_l <(pb0,n + al,n) + Z Qi n (i) ) S pn_IS.

i>2

By induction we have z € £"S for all n € N. By Proposition 6.12, we have
xz=0.

For completeness, suppose y = (Ypn)nen € Mn S/p™S, and suppose x,, is
a lifting of y,, in S. We can write

Tpal — Tp = Zp"ai,n (i) , Gin € W(R).

i>0

Then Y, p™a; ,, converges to some a; € W(R) and x = Y, a;(£/p)* + o maps
to y. This finishes the proof of the lemma.

Definition 7.3. The ring Acis is defined to be lim Al /p" Al
neN
The ring B is defined to be Acris[ ]

1
cris p

By Lemma 7.2, A% is p-adically separated and A%, — A is injective.

Moreover, the inclusion A2, C W(R)[[¢/p]] induces the injection of

cris

Acris - W(R)[[f/pﬂ C B;_R7 and B+ C B(-ii—R'

cris

We have
‘A(?risC Acri\B+- .
W(R)[3]C Bi

and
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Acris = {Z anyn(§), an — 0 p-adically in W(R)} C Biq. (7.3)

Bl = {Z anYn(§), an — 0 p-adically in W(R) [;1)]} C Bii. (7.4)

However, one has to keep in mind that the expression of an element o € Ay
(resp. B(—;Ls) in the above form is not unique.

Note that the ring homomorphism 6 : W(R) — O¢ extends naturally to

AY, and Acys, which is also the restriction of the theta map on Bjj.

Proposition 7.4. The kernel
Ker (60 : Acris = Oc¢)

is a divided power ideal, whzch means that, if a € Acyis such that 6(a) = 0,
then for allm € Nym > 1, (E B s again in Acis and 0(‘;::) =0.

CT]S)

Proof. If a =" any,(€) € A%, then

cris?

a™ gnzn
m! n'
sum of i,=m n

We claim that ((n,)lz, € N for n > 1 and ¢ € N. This fact is trivially true for
i =0.If ni >0, (( ,;2 !, can be interpreted combinatorially as the number of

choices to put ni balls into 7 unlabeled boxes. Thus

a™ (ni
W = Z H Qp * ’I’L' " ) * Yniy, (f) S Agrls

sum of i,=m n

and 0(%<;) = 0.
The case for a € Acis follows by continuity.

Proposition 7.5. For the map
0: Aris > Oc = Oc/p = Ox/p.

its kernel Ker () = (Ker 0, p) is also a divided power ideal, i.e. if a € Ker (9),
then for allm € N, m > 1, % € Aeis and 9( ) 0.

Proof. This is an easy exercise, noting that p divides %r; in Zy.

Recall that
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Proposition 7.6. One has t € A and tP~1 € pAcis.

Proof. Since [e]—1 = b, b € W(R), w = (n—1"y,(¢) and (n—1)! —
0 p-adically, we have t € As.
To show tP~! € pAeys, we just need to show that ([e] — 1)P71 € pAcis.
Note that [e] =1 = (¢ — 1,%,---), and
(e—1)™ = lim (Gnim — 1)P

m——+o0

m

where (,n = ™ is a primitive p"-th root of unity. Then v((¢ — 1)(™)) =
m and

(e— 1Pt = (pP,1,--+) x unit = w? - unit.
Then

(] = 1P~ = [07] - (5) = (€ = p)” - (+) = £ - (+) mod pAes,

but £ = p(p — 1)1, (§) € pAcris, we thus get the result.
Definition 7.7. The ring of crystalline periods B.is is defined to be the ring
Bl 3] = Aaisli] = Aeuis[3, 7]

cris t plt
We then have Bg.is C Byar.-

7.1.2 Galois action on Bis.

The rings Acis, B

s and B are all stable under the action of G.
Moreover, we have

Proposition 7.8. (1) The map
LZK@KO Beris —>BdR, AR T — Ax
18 injective.

(2) BYE = K,.

Proof. (2) follows easily from (1). Indeed, since Beyis D W(R)[%],
1
Bgk =L> (W(R)[;;DGK = Ko,
where L is a Ky-algebra. If (1) is satisfied, then
K = B 2 (K ®x, Beis) ™ = K ®xx, L

and thus L = Kj.
Write AY = O @w A%, C Wo, (R)[¢/p]. Then by the same method

cris,Ox cris
in Lemma 7.2, suppose g is a uniformizer of K, then

BT 0 n o __1: 0 n + _ +
Acris,OK = @Acrjs,OK/ﬂ—K - I&HAcris,OK/p C BdR,K - BdR
n n

and consequently we have the inclusion ¢.
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7.1.3 Frobenius action ¢ on Bgyis.

Recall on W(R), we have a Frobenius map

(p((ao’al’... 7an7...)):(ag’a€)’... 70}’7”...).

For all b € W(R), ¢(b) = bP mod p, thus

(&) =& +pn=pn+ (p—1)()), n€ W(R),

and @(&™) =p™(n+ (p — 1)!7,(£))™. Therefore we can define

p(ym(8)) = %(77 + (0= (€)™ € W(R)[p(8)] € Alsss.

As a consequence,
0
p(A

cris

) c AY

cris*®
By continuity, we extend ¢ to Ags and B;is. Then

(t) = log([e”]) = log([e]”) = plog([e]) = pt,

hence ¢(t) = pt. Consequently ¢ is extended to B, by setting gp(%) = ﬁ.
The action of ¢ commutes with the action of Gi: forany g € G, b € Beyis,

(gb) = g(¢b).
7.1.4 The logarithm map.

To define the logarithm maps on C* and (Fr R)*, we need a basic fact:
Lemma 7.9. For any positive integer N, let cy be the least common multiple

of integers from 1 to N, i.e., cx = [] €1°8e N, Then
(<N

n=1 n=1 (75)

where Pn(X,Y) € Z[X,Y] is a sum of monomials of degree > N + 1.
Proof. Exercise.
The construction of the classical p-adic logarithm
log:C* = C

satisfying the key fact
log(zy) = logx + log y,

is processed in the following four steps:
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(a) For z € U} which means v(z — 1) > 1, set

oo

log z = Z(q)”*lﬂ. (7.6)

n
n=1

Then Lemma 7.9 implies log(zy) = log(x)+log(y). This function is in fact
a bijection from U} to pO¢, whose inverse is the exponential function

o} n

exp : pOc — UL, exp(z) := Z x

n=0

. (7.7)

(b) Forz € Ul =1+ me = {z € C | v(z — 1) > 0}, we define log : U, — C
by (7.6). Moreover, there exists m € N such that v(z?" — 1) > 1, then

1 m
logx = o log(x? ). (7.8)

One can also define log x via this identity.
(c) For a € Uc = OF, by the canonical decomposition

a = [a]z,
where a € k*,[a] € W(k) and = € U/, set
loga := log x. (7.9)

(d) Finally for z € C*, suppose v(xz) = £ with 7,5 € Z and s > 1, then
v(z®) =7 =wv(p") and % =y € OF. By the relation

S

log(x—) =logy = slogz — rlogp,
pT
to define log x, it suffices to define log p. In particular, if set log p := 0, the

corresponding logarithm, usually denoted as log,, is called the Iwasawa
logarithm, which means

1 1
log, z 1= 5 log,y = 5 log y. (7.10)

From now on, the logarithm on C* used will be the Iwasawa logarithm.
Exercise 7.10. If € U/, then logz = 0 if and only if = € My (C) =
Moo (KC).

Similarly, we define the logarithm map

log : (Fr R)* — Bggr, x — log[z]
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as follows, with the key rule

log[zy] = log[x] + log[y] (7.11)
enforced. Recall that
Up=1l+mp={zeR|v®—-1)>0}D
Up={zcR|v(x—1)>1}.
For any z € U?{, there exists m € N, m > 1, such that z?" € Uf. Choose
x € Uk, then the Teichmiiller representative of z is [z] = (,0,---) € W(R).
(1) For x € Ug, set
o0 o0
togle] == S (-1t T g gy S DT )
n=1

n n+1

n=0
This series converges in Ags: one has

O] —1) =2 -1 = 0([z] —1) =0,

hence v, ([z] — 1) = bt Aeris and

n!
0o

logla] = (=1)""'(n = 1)y ([a] = 1)

n=0
converges since (n — 1)! — 0 when n — co. We thus get
log : U113 — Aeiis, @ +— log[z].

By Lemma 7.9, we know (7.11) is satisfied. We also see easily that log[z] =
0 only if = 1, thus the logarithm map is injective.

(2) Forz € U§7 suppose m > 0 such that 2?" € U}g, then the logarithm map
on Uy extends uniquely to BJ, by

log : UE — B

1 m
cris? log[x] = pim log[ajp ] (713)
(7.11) implies that this definition is independent of the choice of m.
(3) For a € R*, we define
logla] := log[x] (7.14)
by using the decomposition R = kX x U, a = agx for ag € k*, x € Uj.
(4) Finally, for any x € (Fr R)*, suppose v(z) = %, with r,s € Z and s > 1.
Recall @ € R is given by @w(® = —p,v(w) = 1. Then ;r =y € R*.
Hence the relation

S

log [;} = log[y] = slog[z] — rlog[w],
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implies that

(rlog[w] + log[y]).

1
log[] = —

Thus in order to define log[x], it suffices to define log[w].
Note that 6 ([_—w; - 1) = :—z —1=0, then

oz (=) - Sy S “UT Z o

n=1

is a well defined element in B(TR. Set

u = log[w] := log (g) =— Z:l % € Bi;. (7.15)

Then we get the desired logarithm map
log: (FrR)* — Bj;, x+— log[z].

We note that the logarithm map commutes with G i-action. Moreover, for
x € (Fr R)*, if set p(log[x]) = log[p(z)], then ¢(log[z]) = plog[z]. In this way,
¢ extends to Im(log : (Fr R)* — BJ).
Definition 7.11. Set U := Im(log : Uj — B,

cris

) C (BZ

cris

)P=P

Clearly ¢t = log[e] € U.

Lemma 7.12. The kernel of log : R* — U < B, is kX, and the isomor-
phism log : U;{ = U induces the following commutative diagram with evact

rows

0g(®
0 BN Ut Lo 0
0 Qpt lf ‘.cC 0
0 — Fil' Bar Biy —t—=cC 0

where log(o) : Ug — C is given by x — logz®). As a consequence,
UNFil' Bar = Qpt = Q,(1), U +Fil' Bag = Bj. (7.16)
Proof. Clear.

Remark 7.13. We shall see in Theorem 7.28 that U = {u € B, | pu = pu}.
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We need to know more about u = log[w]. For every g € Gk, , gw = we"(9)
where 7 : Gk, — Z,; is a character of G, thus

g(u) = log([gw]) = u +n(g)t. (7.17)

Proposition 7.14. The element u is transcendental over Ceys, the field of
fractions of Beyis-

We need a lemma:

Lemma 7.15. u is not contained in Cpig.

Proof. Let 8 = ¢/p, then € and /8 are both inside Fil' B4r but not Fil® Byg.
Let S = W(R)[[8]] C By be the subring of power series > a, 3" with coeffi-
cients a,, € W(R). For every i € N, let Fil' S = S N Fil’ Byg, then Fil* S is a
principal ideal of S generated by 3°. We denote by

0" : Fil' By — O¢

the map B'a — O(a). Then *(Fil’ ) = Oc¢.

By construction, Aeis C S and hence Cepys = Frac Aeys C Frac(S). We
show that au ¢ S for all 0 # « € S, which is sufficient for the lemma.

By Lemma 7.2, S is separated by the p-adic topology, it suffices to show
that if 7 € N and a € S — pS, then p"au ¢ S. Write a = ) ¢,5" wth
cn € W(R). If for all n, 8(c,,) € pOc, then ¢, € (p,§)W(R) C pS and « € pS,
which is not possible. Thus there exists ¢ < +oo such that 6(c;) ¢ pOc and
O(cn) € pOc for n < i. In other word, we may write

a=pY buf" +0iF Y baf" = A+ Ar+ A

n<i n>i

with b, € W(R) and 6(b;) ¢ pOc. Suppose j € N such that j > r and p’/ > i.
Write

) i—1 on j—1.3n p? j—1.3n
fpﬂfluzzp%: Z]%+6—+Z%::31+BQ+B3.

n>1 n<pd n>pi

We are reduced to show —p’~Lau ¢ S. Note that

(a) By € S and hence aB; € S, also clearly A1By €5,

(b) A3Bs, A3By and Ay Bs are all in Fil'"™' ! Byp;

(c) For all n such that p/ < n < p/ +1i < 2p7, p]_iﬁn - A; € S, hence
A1By € S+ Fil"™ ! Byr;

(d) AyBy = b3 /p € Fil'™? Byg.
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Thus if —p?Lau € S, then
b7 Jp € Fil''?’ Byp N (S + Fil™'"' 1 Byg) = Fil't?’ § + Fil't?"+! By,
Now on one hand, 677’ (b;31+7’ /p) =0(b;)/p ¢ Oc; on the other hand,
it (Fil't?’ S + Fil™"? ! Byg) = Oc,
we have a contradiction.

Proof (Proof of Proposition 7.14). If u is not transcendental, suppose ¢ +
X+ 4cg1 X%+ X% is the minimal polynomial of u in Cgs. By (7.17),
for g € Gk,, gu = u+n(g)t. Since Cys is stable by G, , then

g(co) + -+ + glca—1)(u+n(g)t)" " + (u+n(g)t)* = 0.

By the uniqueness of the minimal polynomial, for every ¢ € Gg,, one has
g(cg_1)+d-n(g)t = c4_1. Let ¢ = cq_1+du, then g(c) = cand ¢ € (Bqr)®*0 =
Ko C Beris, thus u = d~!(c — ¢q_1) € Ceyis, which contradicts Lemma 7.15.

Corollary 7.16. For the map log : (Fr R)* — BCTR, its kernel is k* and its
image is U & Qpu.

Proof. Exercise.

7.2 Interaction of Filtration and Frobenius on B,,is.

Definition 7.17. Suppose A is a subring of Bar (in particular, A = W(R),

W(R)[3], Wi(R) = W(R)[}] @K, K, Acis, Blsss Bexis)-

(i) For every r € Z, set Fil" A := A NFil" Bgr. Denote by 0 : Fil A =
AN Bd+R — C the restriction of 0 : B;R = C.

(i) If A is moreover a subring of Beys stable by ¢, set

IMA:={ae A|p"(A) € Fil" A forn € N}. (7.18)

By definition, if T4 = 4, ie., A C B(TR (which is the case for A = W(R),
W(R)[%], Agis or BYL), then {I" A : r € N} forms a decreasing sequence of
ideals of A, which reveals the interaction between the filtration structure and
the Frobenius action on A. We write I'M A = I A in this case.

We shall study I (T)W(R) and I A, in this section.
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7.2.1 The ideals I W (R).

For z € R, let 2/ = 27 = ¢~ !(z). For z € W(R), let 2/ = ¢~ !(z), and
let T € R be the reduction of x modulo p. Then T =7 =¢ — 1. Set

ri= = = =1+ [+ + [P (7.19)

Then we have 8(7) = Y. (eM)* =0,

0<i<p—1
e—1
F=1l+e'+ - 4+ =—,
e -1
and v(7) = 2= — 1= =1, hence 7 is a generator of Ker 6.
p—1 p—1

Proposition 7.18. Suppose r € N.

(1) The ideal "YW (R) is the principal ideal generated by 7. In particular,
ITIW (R) is the r-th power of IW(R).
(2) For every element a € I'NW(R), a generates this ideal if and only if

v(a) = prf’l.

We first show the case r = 1, which is the following lemma:

Lemma 7.19. (1) The ideal IW(R) is principal, generated by 7.
(2) For every element a = (ag,a1,---) € IW(R), a generates the ideal IW (R)
if and only if v(ag) = p%l. In this case, v(a,) = 1% for every n € N.

Proof. For a = (ag, -+ ,an, ) € IW(R), let o, = ar, then for every m € N,
0(ema) =Y pral =af +- 4 pmal +pmHall 4 =0, (7.20)
n>0

We claim that for any pair (r,m) € N x N, one has v(a,,) > p ™(1+p~ 1 +
-+++p~"). This can be shown by induction to the pair (r,m) ordered by the
lexicographic order:

(a) If r=m =0, 8(a) = ap (mod p), thus v(ag) > 1.
(b) If r = 0, but m # 0, one has

m—1
0=0(p"a) = Z pral” 4+ pmal”  (mod p™tl);
n=0

by induction hypothesis, for 0 < n < m—1, v(a,) > p~™, thus v(p"a?" ) >
n+p™ =" >m+ 1, hence v(p™aP, ) > m+ 1 and v(a,,) > p~™.
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(¢) If r # 0, one has

m—1 o)
0=0(p"a)= ) p'al +pTal’ Y pral’;
n=0 n=m-+1

by induction hypothesis,
-for0<n<m-—1,v(a,) >p (1 +pt+---p7"), thus

V(e ) > A P (L) > A (LT
-forn>m+1,v(a,) >p (1 + - 'pir+1), thus
U(pnozﬁm) Z n+pm—n(1 +...p—r+1) Z m+ (1 _"_._.p—r);

one thus has v(ay,) > p~™™ (1 +---+p~").

By the claim, if a € IW(R), v(an) = p" - 555, thus v(a,) = ;5. On the

other hand, for any n € N, 8(¢"m) = 0([¢]"" — 1) = 0, thus @ € TW(R).
Asv(e—1) = %, the claim implies IW(R) C (7t,p). But the set (O¢)Y is
p-torsion free, thus if px € IW(R), then x € IW(R). Hence IW(R) = ()
and v(ag) = £5.

By induction to n, repeatedly applying (7.20) and the condition v(a,) >
p p

p—1° we obtain U(an) = p—1-

Proof (Proof of the Proposition). Let gr' W(R) = Fil' W(R)/Fil'™ W(R)
and let % be the projection from Fil' W (R) to gr’ W(R). As Fil' W(R) is
the principal ideal generated by 7¢, gr' W(R) is a free Oc-module of rank 1
generated by (%) = 6'(7)". Note that 7t = 7', then

" (m) = WPt e for every n e N.

For i > 1, 8(¢'(7)) = p, hence 0 (o™ (m)) = p*(e™) — 1) - 0*(7).

Proof of (1): The inclusion 77" W (R) C I!"l is clear. We show "W (R) D I'"]
by induction. The case = 0 is trivial. Suppose r > 1. If a € I W (R), by
induction hypothesis, we can write a = 7t"~1b with b € W(R). We know that
07— (¢"(a)) = 0 for every n € N. But

0" (0" (@) = 0(p"(8))-(8' (" (M) = (" (e 1)) (" (b))-6" (7).

Since 8 (7)"~! is a generator of gr"~* W(R) and since p"(¢() — 1) # 0, one
must have §(¢" (b)) = 0 for every n € N, hence b € IW(R). By the precedent
lemma, there exists ¢ € W(R) such that b = we. Thus a € W (R).

Proof of (2): It follows immediately from that v(t") = rv(e — 1) = zﬁl’
and that € W(R) is a unit if and only if Z is a unit in R, i.e. if v(Z) = 0.
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7.2.2 A description of Acyis.

For n € N, write n = r,, + (p — 1)g, with r,,¢, € Nand 0 <r, <p—1
and set
trd =gy (77 p) = (07 gl (7.21)

Note that

(a) ifp =2, ti"r =7 /(27n)) = 4, (t/2), and 127} = 5, (£/2) = mVn(t2/8)9
(b) if p > 2, tiP=Dn} = 4, (271 /p).

We have shown that tP~! /D € Acyis, therefore tin} e Acis. We denote

A = {Z a,ti" | an, € W, nh_{r;o an = O} C Ko[[t]] N Acris, (7.22)
neN
0. := W|[n]]. (7.23)
By the fact

tn pin g,
ot 1 — i n°{n}
m=e 1_Zn|_z ot € A,

n>1 " n>1
then
Ss g As g Acris
are sub-W-algebras of A.,is stable by the actions of ¢ and of Gk, which factors
through I'x, = Gal(K{¥“/Ky). We also see that
7t77.
n—+1

t = log(le]) =7 37 (-1)"

n>0

=7 u,

where v is a unit in A.. Recall Ag, is the torsion subgroup of I'x,, set

AKO AKO

0:=0:""CA:=A"", (7.24)
t" "

mo=-p+ » [[JM=0p-1) > 5 (resp. 2 > —)€0.  (7.25)
a€l, n>1 ’ n>1"

p—1|n 2|n
Lemma 7.20. If p # 2, then

A= {Zanfyn(tpl/p) |an € W, lim a, = O}

neN

= {Zanr)/n(ﬂ-O/p) | ap € W, ILIH Ay = O} ;

neN
if p =2, then replacing t?=1/p by t*/8 and 7o /p by mo/8. And

(0] :W[[ﬂ'o]], 05 ®0/1=/15.
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Proof. Since the subfield of Kq((t)) fixed by Ak, is Ko((t?~1)) (vesp. K((t?))
if p=2), we get the first identity for A.

By computation my = 7t lw (resp. m?w) for some unit w € O*. Thus
0 = W[[rP~1]] = W{[ro]]. Now by the relation ¢ = 7tu, we can replace tP~1/p
(resp. t2/8) by mo/p (resp. mo/8) to get the second identity for A. One also
sees the evident identification O, ®g A = A..

Proposition 7.21. (1) The element my is a generator of IP~UW (R) if p # 2
(resp. of VW (R) if p=2).
(2) There exists a unit u € O such that

pmo = umo(p + o)’ if p # 2 (resp. umo(p + m0)* if p = 2).

Proof. We just show the case p # 2, the case p = 2 is analogous.
Proof of (1): Let 71 be the norm of 7t over the field extension Ko ((t))/Ko((tP~1)).

Then
m= ][] mm= ] (-1 €0

hEAKO aEF;
By Proposition 7.18, since [¢]@ — 1 is a generator of W (R), 7, is a generator
of IP=UW (R). Since m; = m?~'w for some unit w € 0, 0 = W[nP~!]] =
W([m1]]. We can write 79 = > -, am7* where a,, € W and a; is a unit.
Moreover, since ag = 0(mp) = 0, mg generates the same ideal as 7.

Proof of (2): Write ¢ = p+ mp = ZaeIF,, ]l and ¢’ = »~'(q). By com-
putation, ¢’, like 7, is a generator of the kernel of the restriction of 6 to
0. = p=1(0.) = W[[n']], thus

=) =n'r=uiq
with 4} a unit in OL. Then ¢(7) = u;7q and (P~ 1) = u’f—lnp_lqp_l. Since
7o and 1 are two generators of O, N IP~UW(R), p(my) = umgg?~* with
imply

u a unit in O.. Now the uniqueness of v and the fact that O = OEA Ko

that v and v~ ! € O.

If Ag is a commutative ring, A; and A, are two Ag algebras such that A;
and A, are separated and complete by the p-adic topology, we let A1®.4,A42
be the separate completion of A; ® 4, A2 by the p-adic topology.

Theorem 7.22. One has an isomorphism of W(R)-algebras
a: W(R)®oA — Aeis

which is continuous by p-adic topology, given by

o o
o <Z am @ Vm(p)) = Zam’)/m(?)
The isomorphism « thus induces an tsomorphism

a.: W(R)®o.Ae — Aeris.
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Proof. The isomorphism o, comes from
W(R)®0.A: = W(R)®0.0. ®0 A= W(R)&oA

and the isomorphism «. We only consider the case p # 2 (p = 2 is analogous).

As ¢ is a generator of Ker 6 and ¢’ = plvy,(¢') € pAcris, To = ¢—p € pAcris
and 7o /p € Fil! Acris- Thus the homomorphism « is well defined and contin-
uous. We are left to show that « is an isomorphism. Since both the source
and the target are rings separated and complete by p-adic topology without
p-torsion, it suffices to show that « induces an isomorphism on reduction
modulo p.

But Aeris/pAcris = A% /pA°... is the divided power envelope of R relative

cris; cris P

to the ideal generated by ¢’, thus it is the free module over R/¢’P with a basis
a”
. P
proposition, ¢(mo) = umoqP L, thus mo = u/mq P~ = v/ (¢’P — pg’?~1), which
implies that R/q¢'P = R/ and Acyis/pAeis is the free module over R/7y with
a basis consisting of the images of 'ym(%“). It is clear this is also the case for

the ring W(R)®o A modulo p.

consisting of the images of v, (¢’) or equivalently of v,,(%-). By the previous

7.2.3 Filtration of A..is by I = 117 A,

Proposition 7.23. For every r € N, write 1"} = I" A, Then if r > 1,
I is a divided power ideal of Acris which is the associated sub-W (R)-module
(and also an ideal) of Aewis generated by t1°} for s > r.

Proof. Suppose I(r) is the sub-W (R)-module generated by {5} for s > r. It
is clear that I(r) C I") and I(r) is a divided power ideal.

It remains to show that I'"l C I(r). We show this by induction on r. The
case r = 0 is trivial.

Suppose r > 1 and a € I"). The induction hypothesis allows us to write a

as the form
a= Z astish
s>r—1
where a, € W(R) tends p-adically to 0. If b = a,_1, we have a = bt{"=1} + o
where o’ € I(r) C I} thus bt{"=1} € II"]. But

SDn(bt{rfl}) _ p(rfl)n . (Pn(b) . t{rfl} =Crm- (Pn(b) . trfl

where ¢;.,, is a nonzero rational number. Since t"~! € Fil"~! —Fil", one has
b € 1M N W (R), which is the principal ideal generated by 7. Thus bt{r—1}
belongs to an ideal of Aeis generated by 7tti™ =1}, But in Ay, ¢t and 7t generate
the same ideal as t = 7t x (unit), hence bt{"=1} belongs to an ideal generated
by t - t{"=1} which is contained in I(r).
For every r € N, we let
AT = Aeis/IT, WT(R) = W(R)/IMW (R). (7.26)

cris
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Proposition 7.24. For everyr € N, A7 .. and W"(R) have no p-torsion. The
natural map

S WH(R) — AL
are injective, and its cokernel is p-torsion, annihilated by p™m! where m is

the largest integer such that (p — 1)m < r, i.e., m = [;j]

Proof. For every r € N, Agis/ Fil” Agyis is torsion free. The kernel of the map
Acris = (Acris/ Fil” Acris)N7 z = (¢"xmod Fil"),en
is nothing but I'"), thus

Al — (Acris/ Fllr Acris)N

cris

is torsion free. As (" is injective by definition, W"(R) is also torsion free.

As a W(R)-module, A~  is generated by the images of vs(p~lmg) for
0 < (p—1)s <r,since p*slys(p~tmg) € W(R), and v(p®s!) is increasing, we
have the proposition.

Proposition 7.25. For r € N, let Fil; Acris = {x € Fil" Agyis | o € p" Acris}-

(1) The sequence

0 — Zpt'"™h — Fill Acyis Pl A — 0

is exact.
(2) The ideal Fil; Acyis 18 the associated sub-W (R)-module of Acis generated

by ¢y (p~HtPY), for j+(p—1)n =1
(3) If m is the largest integer such that (¢ — 1)m < r, then for every x €
Fil" Acis, p"mlz € Fil; Acis.

Proof. Write v = p~"¢p — 1. It is clear that Zpt{r} C Kerwv. Conversely, if
x € Kerv, then = € I and can be written as

x = Z ast®t a, € W(R) tends to 0 p-adically.

s>r

Note that for every n € N, (p~"p)"(z) = ¢"(a,)t!™ (mod p"Aes), thus
z = bt"} with b € W(R) and moreover, ¢(b) = b, i.e. b € Z,.

Let N be the associated sub-W (R)-module of Ais generated by q’jvn(tp; ),
for j+ (p—1)n>r.If j,n € N, one has

tp—1

P i n(p— tp_l tp—l
w(q’J%(T)) = ¢p" P Dy, (

_— :p]""n(p 1) 1_|_ J’Y’I’L ,
’ ) ( p) ( ) )

thus NV C Fil; Agris.
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Since Zpt{r} C N, to prove the first two assertions, it suffices to show
that for every a € Aeys, there exists € N such that v(z) = a. Since N and
Acris are separated and complete by the p-adic topology, it suffices to show
that for every a € Aqis, there exists € N, such that v(z) = a (mod p). If
a=30sr/p1 anfyn(%) with a, € W(R), we can just take x = —a.

Thus it remains to check that for every ¢ € N such that (p — 1)i < r and
for b € W(R), there exists € N such that v(z) — bw(%) is contained in
the ideal M generated by p and 7, (p~'tP~!) with n > i. It suffices to take

x = yq"'_(p_l)i'yi(§) with y € W(R) the solution of the equation

oy — """Vl =b.

Proof of (3): Suppose x € Fil" Ais, then by Proposition 7.24, one can
write
p'mle =y+ 2z, y e W(R), z € Ihl.

Since z € II"l C N, one sees that y € Fil” W(R) = ¢"W(R) C N.
Theorem 7.26. (1) Suppose
Bl.. = {x € Bais | ¢"(x) € Fil° Beyis for all n € N}.

Then ¢(Blyy) € Bl € Bl if p # 2 and ¢*(Bly,) € Bl C Bl if

cris cris cris cris
p=2.

(2) For every r € N, the sequence

0— Q,(r) — FiI'BE. 2 2L gt 0

s exact.
(3) For every r € Z, the sequence

0 — Qu(r) — Fil” Byis 22" Beyy — 0
is exact.

Proof. For (1), B, C B!, is trivial. Conversely, suppose = € B(,;,. There
exist r,j € N and y € Agis such that = t7"pJy. If n € N, ¢"(x) =
P~ It " (), then " (y) € Fil” Ags for all n, and thus y € I"). One can

write y = > ant{™t"} with a,, € W(R) converging to 0 p-adically. One

m>0
thus has
T = p—j Z amt{m-i-r}—r and oz = p—j—r Z <'D(tlm)pm—&-rt{m+7'}—1".
m>0 m>0

By a simple calculation, px = p~7=" Y ¢9(am,)t™, where ¢, is a rational
m>0
number satisfying
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w(em) = (m+1) (1ill>.

If p # 2, it is a positive integer and p(x) € p™/ "W (R)[[t]] € p~/ =" Aeis C
BY. . For p = 2, the proof is analogous.

The assertion (2) follows directly from Proposition 7.25.
For the proof of (3), by (2), for every integer ¢ such that r+i > 0, one has

an.exactsequence

0 — Qu(r+1i) — FiI"t* Bf. — BT

cris cris

— 0,
which, Tensoring by Q,(—1%), results the following exact sequence

0— Qu(r) — t"FiI'""BY, —t7'BL —0.

cris cris

The result follows by passing the above exact sequence to the limit.

7.3 The subrings B., "B, and B, }, of Bgs

7.3.1 The ring B..
Definition 7.27. For h,d € Z and h > 1, set

P g ={x € Beis | px = pdx}, P,':d =P,qN BT

cris”

— h_
In particular, set Be :== P g = B! and "B, = Py = B? =1

cris cris

Let us first consider the case h = 1. Note that B, O Q, is a ring, and
every P, g = B.t? is a free B.-module of rank 1. Recall U is the image of UE
in BT . under the logarithm map, hence U C Pf 1- Moreover, we have

cris

Theorem 7.28. (1) Fil’ B, = Qp, and Pf:d =0 for every d < 0.

(2) One has U = Pf:l, hence the sequence 0 — Qpt — Pl":l %0 = 0 is ezact.
3) Moreover, pick any u € U — Q,t, then for d > 0,
p

Pf:d ={z= ot b w2 4 g u |z, gl € U}

and thus Pffd is generated by U.
(4) The sequence

0—Q,— Be®BJj; — Bar — 0 (7.27)

is exact.
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Proof. (1) Fil’ B, = Q, is a special case of Theorem 7.26 (3). If z € P,
then t—¢ € B, NFil™¢ Bgr, which is 0 if d < 0.

(2) Suppose z € Py, and suppose u € U such that 6(z) = 0(u), then
T —u = txg with g € B. N Bg‘R CFil’B, = Qp. Therefore z € U and (2) is
proven.

(3) In general, for z € Pf,'d, suppose 6(z) = ¢ and 6(u) = ¢y, we find
241 € U such that 0(z4_1) = ¢/ci~ !, then O(z — 24 1u?~1) = 0 and we may
write  — z4_1u? ! = ty with y € B(TR N Py, 4—1. Moreover, one can easily
check that ¢"(y) € Bl for n € N. By Theorem 7.26(1), y € B, and hence
in Pff 4—1- We now proceed by induction.

(4) It is enough to show that B, + B;R = Bgr. We show by induction on
d > 0 that Fil™% Byr C B, + BJ,. Suppose Fil"**! Byg C B, + B, Suppose
=19\ € Fil™® Byr and 0(\) = ¢ # 0. By (3), we can find y € Pfd, O(y) =c.
Then t~%y € B, and

x—t"dy =t"4\—y) e Fil""" Byg,
and the claim is proven.

Remark 7.29. The exact sequence (7.27) is the so-called fundamental exact
sequence of p-adic Hodge theory, which also has the form

0 — Q, — B. — Bar/Bjz — 0. (7.28)
Moreover, for x € B,, we define
deg () := min{d € Z,t% € Pl'fd}. (7.29)

Then the proof of the theorem implies that deg. (x) = d if and only if = €
Fil—¢ B:{R — Fil™®*! Byg. In this sense, deg. () = —vgr(x) and Bgg is the
completion of Frac B, under the valuation vgg.

7.3.2 Lubin-Tate representations and the ring B, p.
Lemma 7.30. The map Py ®q, Be — Beris, A @ T+ Az is injective.

Proof. Suppose z =Y, \i®z; — 0, \; € Py, z; € Be, we need to show z = 0.

We use induction on the number of (non-zero) terms n in the summand of
x. The case n =1 is trivial. Now suppose >, Ajxz; = 0, then >, p(\;)z; = 0.
We may assume @(\;) # A; for some j (otherwise A; € Q,, for all ¢ and hence
x = 0). Then the element

D (PO = @(A)Ag) @ i 0

has fewer terms in the summand. The inductive hypothesis implies that
©(Aj)Ai —@(Ai)A; =0 for each ¢, i.e., \;/\; € Qp. Hence z = 0.
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From now on, we use the above injection to identify Py ®q, Be with a sub-
ring of Beris. Let Qun = W(th)[%] C Py be the unique unramified extension
of Q, of degree h and let Z,» = W (FF,1) be its ring of integers.
Proposition 7.31. The injection above induces an isomorphism

th: Qpr ®q, Be — "B., a®b— ab.

In particular, Fil° "B, = Qpr -

Proof. We need to find the inverse map. Suppose eg,e1 = @(eg), -+ ,ep—1 =

©"1(ep) is a normal basis of Q,~ over Q,. Suppose {e; | 1 < i < r} is the

dual basis defined by the trace map, then p(e}) = ef_;, and the inverse map
h—1

is just the map = — 3. e; ® pp(efx) where for x € "B., p(z) = = + ¢(z) +
i=0

<o+ o (2) € Be..
Definition 7.32. For h € N, h > 1, set
Vi :={x € Bf, |¢"(x)=pz,0(z) =0} = P,il N Fil' Byr.

cris

Lemma 7.33. If Vi, # 0, then V}, is a 1-dimensional Qpn-vector space and
the map Vi, = Vi, x + zp(x) - - " 1(x) is onto.

Proof. We know Vi = Q,t by Theorem 7.28. Note that V}, is a Q,r-vector
space by definition. For any 0 # x € Vj, 0 # zp(x) - " 1(z) = at € V;
with a € Q. Since the norm map of Q,» to Q, is onto, we can take b € Q,n
such that bp(b)---©"~1(b) = a~'. Then the element ¢, = bx € V}, satisfies
tho(tn) - " 1(ts) = t, hence the map is onto.

For any 0 # z € Vj, then z € B, and hence ¢'(z) € Bf,, C BIR. By
the identity zp(z)--- " !(x) = at and the fact at is invertible in B,
is also invertible in B.;is. This identity also implies z € Fil' B4r — Fil®> Bar
and ¢'(z) € Fil® Bgg — Fil' Byg for all 1 < i < h. In particular, we have
x/ty, € Beris and

¢'(z/tn) € Bjz N Beyis  for i € N.
By Theorem 7.26(1), z/t;, € Bl and then z/t, = ¢"(z/ty) € BL,..

)Wh:l =Qpr and Vj, = Qpnty.

We recall the functional equation lemma ([Haz78],§2.2 and §8) of formal
groups.

As a
consequence x/t, € (B

cris

Lemma 7.34 (Functional Equation Lemma). Suppose A is a subring of
the field K, I is an ideal of A, p is a prime number such that p € I, q is a
power of p and s € K such that sI C A. If g(X) =Y 2, b;X* € A[[X]] such
that by = 1, and fy(X) € K[[X]] satisfies the functional equation

fo(X) = g(X) + s fo(X), (7.30)

Then T'y(X,Y) = [y (f(X)+ fo(Y)) defines a one dimensional commutative
formal group law over A. Furthermore,
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(1) If 9(X) = >i2, b; X, then fg_lfg(X) e A[[X]]; if moreover by = 1,
then I'y and Iy are isomorphic over A, with the isomorphism given by
f5 fo(X).

(2) Suppose K is a local field, A = Ok the ring of valuation, q the cardinality
of the residue field, I the mazximal ideal of Og and s = m a uniformizer
of I. Then I'y is a Lubin-Tate formal group law over A associated to .

Applying Lemma 7.34 to the case

qg=7p", K=Q,, A=2Z, I =pZ,; s=pand g(X) =X,

then
r(X) = fx(X) =3 ]%Xq" € Q, X)), (7.31)
neN
DX, Y) =1 1r(X) +1p(Y)) € Z,[[X, Y]] (7.32)

defines a Lubin-Tate formal group law I" over Z, associated to the uniformizer
p. By the theory of Lubin-Tate formal groups, Z, is isomorphic to End(I") by
a — [a]r(X) where

[alr(X) =1 (alp(X)) = aX + degree > 2 € End(I).
Proposition 7.35. (1) The map Iy, : (mp,®r) — P,jfl,
() =Y p " (7.33)
nez

is an isomorphism, where x ®ry = I'(z,y) is the Lubin-Tate group law.
(2) Vi, is 1-dimensional Qyn-representation of G and the sequence

0— Vi — P 50 —0 (7.34)
is exact. As a consequence, H(P}j:d) =C for everyd e N, d > 1.

Proof. We first check that I (x) is a well defined element in P,j: | for z € mp.

Suppose = = (2(™),cy € mp, we can certainly write it as © = (z(™),cz by
setting 2(") = (z("*1)P for n < 0. There exist ny € Z such that (") € pO¢.

noh [u]™

For u = 2P’ , then - € Acris for every n € N and the series
+ + nh
= —np, p"* _ = (pnh)| [u]p A
Zp [ ]= n ( nh)l € Aecris-
n=0 n=0 p p
Thus

n=no n=0
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Since 71 __p~ n[uP™"] converges in W (R),
no— 1
> opa Zp "] € BE,.
n=-—o0o n=-—oo

Therefore Ij,(z) is a well defined element in BJ
©"(11,(x)) = plp(z) and hence I, (z) € Ph,l'
Let ¢ = p. We see that

ris- It is easy to see that

Uz) =Ip([2) + D) [ "]p" = lim p"ip([+" ")), (7.35)

n—-+oo
n=0

which implies [ is a group homomorphism. Note that

F(OC> Homcont E— alg( [[ H OC) mc

with the addition law = & y = I'(x,y). Moreover, I'(O¢) is a Z,-module via
the action
a-x=|alp(x).

For z € m¢, Ip(z) € C. Furthermore, by the method of Newton polygon, we
know I : I'(O¢) — C' is surjective and clearly Iio;(O¢) is in the kernel. On
the other hand, if [ (x) = 0, then I (a-z) = 0 for all @ € Z,,. Pick a close to 0
such that v(a-z) > 2, then compare the valuations of z¢" /p", by lp(a-z) = 0,
we must have a -z = 0 and x € I, (O¢). Thus we have an exact sequence

0 — Lo (Oc) — T(0c) “55 ¢ — 0

where [0, (O¢) = Qq/Z4 by the Lubin-Tate theory.
Suppose V(I') = Homgz, (Qq, I'(O¢)), then we have an exact sequence

00— V(Lior(Oc)) —= V(') == C ——>0

0 Qq V() —~—=C——0.

An element in V(I') is of the form v = (v,),v, = v(p~™) € m¢, such that
Vp = [plr(Vns1) = vl mod p. The map 7 is just

7(v) = lp(vg) = 7"l (vy,) for any n € N.

Let 9, = v, modp in O¢/p, then 9} | =04, and ¥ = (Un)nen € mg = I'(R).
By this way, we can identify V(I") and mg, and the map 7 is nothing but fol:

V(F) =mp — C
z = () — Oc(1(x)).
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Thus 6 : P, — C is surjective.

Since BSX = Ky, (PF)6x ={z € Ko | "(z) = pz} = 0, but CYx #£ 0,
and since the map 6 commutes with Galois action, # can not be bijective.
Therefore Vj, # 0. By Lemma 7.33, dimg, Vj, = 1. The bijection of I, in (1)
then follows from the above exact sequence and this fact.

For ¢ € C, we can find z,y € P;:l such that 6(z) = ¢ and 6(y) = 1, then

zy®! € P, and O(zy?!) = c. Hence 0(P;7,) = C.

For r > 1, if x € Vj,, then z¢"(z) - ¢"""V(z) € V}, and the map
Vir — Vi, @ = z"(x) - - "7~ (z) is onto. Consequently, we can give the
following definition:

Definition 7.36. The Lubin-Tate elements {t; }ren is a compatible system of
elements in Bj;is such that Vi, = Qpnty and
(i) @"(tn) = ptn, O(tn) = 0 if h #0;

(11) to =1 and tl = t,’

(iii) For r > 1, tpe@"(thy) - "D (t,) = ty,.

By definition,

Proposition 7.37. The Lubin-Tate elements {t,} satisfy the following prop-
erties

(1) ty, is invertible in Beyis-

(2) For h > 2, t, € Fil' Bqr — Fil? Bar is a uniformizing parameter of
(Bix,var), and ¢™(t,) € Fil® Bar — Fil' Bar for 1 <n <h —1.

(3) For every d, Pp 4= hBet‘,iL is a free "B.-module of rank 1.

Definition 7.38. For h > 1, set

Bep={z € B%="| 3deN such that ot¢ € BE._}. (7.36)

cris cris

One can see easily that the definition of B, ; is independent of the choice
of tp. If h =1, B is nothing but B.. By definition, B, j is a subring of hp,.
Moreover, since ¢"(t,)/t, and t/th € B. p,

"Be = Be [t /t] = Ben[(tn/¢" (th))1<n<h—1] (7.37)

is contained in the fraction field of B, .
By the same method used in the proof of Theorem 7.28, we have

Proposition 7.39. Suppose h > 1 is an integer, then

(1) P}«J:o = Qun and for every d <0, P,jfd =0.
(2) The sequence
O‘)Qphth_)P};‘:li)O_)O

s exact.
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(3) Suppose u € P[Il and u ¢ Qpnty, then for d >0,
By ={aoty ' +ayuty T + - cagqu®t [0 € P} (7.38)
(4) The sequence
0 — Qun — By @ Big — Bar — 0 (7.39)
s exact.

Remark 7.40. We call this sequence (7.39) the fundamental exact sequence of
B, p.

7.4 The Fundamental Lemma of Colmez

7.4.1 The statement.

Recall U = {u € Beis | ¢(u) = pu} N B = P Set By = B,/ Fil* Byr.
We have a commutative diagram

0 Qp(1) U C 0
incll l Idl
0 c(1) B,—scC 0
where all rows are exact and all vertical arrows are injective.
Suppose h is an integer > 2. Suppose A1, Ag, ..., \p € C are not all zero.
Set

Y := {(u1,us,...,uy) € UM | Ic € C such that for all i,0(u;) = c)\;}. (7.40)

Suppose by, ba,...,b, € Ba, not all zero, such that 2?:1 Ai0(b;) = 0. Then
the map

h
p:Y = By, (ur,...,up) = Y biu (7.41)
i=1

has image in C(1), as 9(2?21 biui) = > 0(b;)0(u;) =¢>0(bi)\; = 0.

Theorem 7.41 (Fundamental Lemma). Assume the above hypotheses.
Then Imp C C(1) and

(1) either Tm p = p(Q,(1)"') and hence dimg, Im p < h,
(2) or Im p = C(1) and dimg, Ker p = h.

The following proof is an improvement of the proof in the thesis of
Plat [Pli09], written up by Yi Ouyang, Shenxing Zhang and Jinbang Yang.
In particular, the proof of Proposition 7.42, Proposition 7.44 and Proposi-
tion 7.46 contains a great deal of ideas from [P1G09].
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7.4.2 Technical preparation for the proof

Proposition 7.42. Suppose g, ..., pun—1 € C are not all zero. Let § : P,il —
C be defined by

h—1
5(2) = 3 wib(p'e).
=0
Then ¢ is onto and dimg, Kerd = h.

Proof. Throughout the proof we write ¢ = p”*. Recall that the map
lp :mp — thl, T~ Zp_”[x]p"h
nez

is bijective, to prove § is surjective, it suffices to show that § o} is surjective.
We write § = d o l;, for simplicity. Then

h—1
6(x) = Zﬂz‘ prnﬂf(nhﬂ), z = (z'")pez € mp.
1=0 neEZ

Note that the result is true for ¢ if and only if it is true for o ¢* for any one
i € Z. Suppose i € {0,...,h — 1} such that v(x;) + 7 is minimal, let

r_ Mi-l—je(p)v lfOSJSh_Z_L
M7 N pigson ifh—i<j<h-—1;

then § o "% = Z;:g 110 0 @7 such that

j T j i+j—h
o)+ 3 > wlu) + 7+ 3 — T = ()
holds for every j. Thus we may assume
po=1, vl z—% for 0 <i<h—1. (7.42)

Define pjynn =p "p; forn € Z and 0 < i < h — 1, then

§(z) = Z,uix(_i).

i€L
Write fi(z) = 5 piz? € C[[X]], then

1

1 , -
fi(z) =g(x) + Y;f+(xq)7 with g(x) = @ + ua? + -+ ppa?

For n € N,z € mp, set d,(x) = Zizfnh piz(~9 | then
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i

P= -DNL  p 2?2 o ll)hi—l hi
1
|
|
|
|

on(z?") = p i (2), forallm € N, z € mg.

Let b € O¢. By the Newton polygon method, the equation fi(z) = b has
a solution of valuation equal to v(b) if v(b) > p := ﬁ and has ¢’ solutions

of valuation at least ¢~ %p if v(b) > p — i.
For b € O¢, v(b) > p, we construct by recursion a sequence (z;);en of O¢
such that
(i) fy(zi)=p7'b;
J

(ii) the limit lim;_, oo 27

; exists for every i € N.

Suppose x; has been constructed, choose y such that y? = x;, then f(y) =

g(y) + p~1b with v(y) = %’U(:L‘i) > 0. We want to construct x;11; = y + 2,
then

f++2) = f+(y) = —g(y).
Note that

p" k .
Frly+2) = Fr@) =D m Y (Z; )zjy”’J

k>0 =1

k
=3 X ()
j21 pk>j J
= Z vzl = F(2).
jz1
For j = mp®, (m,p) = 1, note that p*~¢ || (75;) and v(ug) > —%, then v(v;) >

—#. If m =1 and e = nh, then v(v,nn) = f"—,{‘ = —n. Thus

vlg(y) = | min  (v(y) +p'0(y))

. v 1
= Ogrjngl}ll_l(v(ug) + ;v(xz)) > =14
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Then the Newton polygon of F(z) + g(y) is above the segment connecting
(0,—1+ %) and (g, —1), thus there exist exactly ¢ roots z whose valuation is
greater than qih. Choose one such z, let z; 11 = y+2, then fy(z;41) = p~ i tb.
By construction,

1
v(aly i = zigy) = vy +2)" —y") 2 qu(z) > 5,

g+1 j
U(x?Jerrl - x1q+j)

v

qj
ﬁa

the sequence (xgj_j)jeN is Cauchy and the limit exists. Let z} be its limits,
then (2, ,)? = z}. We get an element @ € mp such that 2(**) = 2/ and

Jj—1

F(@ly) =07 = Pglwig) o~ pe(all,).

Since f4 is continuous,

5n(3€) = P"f+($(nh)) = Pnf+(3311)
=b— jggloop"(pjg(wn+j) o +pg($i:;))

=b+ (valuation > n terms).

Thus §(z) = b and ¢ is surjective.
To compute Kerd in P,i 1> note that it is clearly a Q,-vector space, it
suffices to show that A/pA is of cardinality ¢ = p" for a fixed lattice A of
Kerd. Let

A={x e Kerd|v(z)>1/h},

then
pA ={z € Kerd | v(z) > q/h}.

We want to find z; € Og (i > 1) such that f, (z;) = 0 and v(x; —2) > 1/h.
Let z = x; — 20" then f, (z(") + 2) =0, f (M) + F(2) = 0 where F(z)
is the power series above with y replaced by z(**). Note

Fi () = Z“J‘ (2P’ = Zﬂjx(ih_j)

J=0 Jj=0

Z prinsra ™ =p~ Z e
k>—ih k>—ih

Z:P_i Z px =)

k<—ih

and if k < —ih,

k k 1
v (,ukac(_k)) > ~7 + pPo(z) > —7 +ple>i+ 7
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thus v(f4 (x(#))) > 1/h and there exists a solution z such that v(z) > 1/h.

From the constructlon of x;, we have xg = 0,x; = 22‘21 zgjﬂ and then
z(h) = Zjocf ;1 . Since
(ih) q 1
v(w; — ") = vzl + 2], + )>q—h,
then v(z;) > qih. Since
+oo
J
2@ =29 ¢ Z 2l = 2{ modpA
j=2
1
and we have exactly ¢ — 1 different nonzero z, with + > =y 1)h > v(z1) > 7,

then A/pA has exactly ¢ elements.

Remark 7.43. If the p;’s can be arranged such that pu; € O¢ for 0 <i < h—1
and pg is a unit in O¢, then there is an easier proof for the above proposition.
In this situation, applying Lemma 7.34, then f(X) = ' o f1(X) = poX +
higher terms € O¢[[X]] and there is a commutative diagram of Z,-modules

5
0 —— Ker f1 mg —— C 0
fi fJ/ Idl
0 ——Ker lf mg i C 0

which is exact in the bottom row. Since f : mg — mg is an isomorphism,
the first row is also exact, and f : Ker f; = Ker Ip. Now apply the functor
Homgz, (Qq, —) to the diagram, by the fact that the induced map by f; on

Homgz, (Qq, m¢) = mp — Homgz, (Q,,C) =C

is just §(x) and by the exact sequence

0— Vh — Mp ﬂ) C—=0
in Proposition 7.35, we obtain the proposition.

Proposition 7.44. Suppose A1,..., \, € O¢, whose images modulo m¢e are
linearly independent over F,,. Then

n: (B — C"
h

(@1, zn) = (D Xb(@" (20))o<r<nt
i=1

is surjective and its kernel is a Q,n-vector space of dimension h.
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Proof. Write ¢ = p". Since I, : mp — P}tl is a bijective, it suffices to show
the map

f=noll:mh — Ch
h

=1

is surjective. Let

S:{(ml,...,xh)Em%M(Jsi)Z1}a

q
Pl
T:{(xl,...,xh)60h|v($i)> q—l}'

One can verify that f(S) C T. It suffices to show f: S — T is surjective and
the kernel is a Z,r-module of rank h.

Let H be the Q,»-division algebra generated by ¥ where o = pdr =
@(x)0 for any x € Q,n, then H acts as automorphisms on (P}j:l)h and mh,
with the action of 9 being . Similarly, H acts as automorphisms on C”, the
action of ¢ is O(zg,...,xp—1) = (21,...,Zp—1,pTo). Then n is compatible
with H-action, so is f, thus Ker f is an H-module.

Let H be the maximal order of H, then it is separated and complete for the
p-adic topology, ¥ is a uniformizer of H and H/9H = F,n. Moreover, S and T'
are sub-H-modules of R" and C" respectively, ¥(S) = (S) and 9(T) = OT.
It suffices to show that

f:8/p(S) —T/OT
is surjective and the kernel is an F,-vector space of dimension 1.
h

. 1 _ p
Since 1 + 1= 1

%

OT = {(x1,...,a) € C" | v(a;) = qu}.

ForzeS, r=0,...,h—1,
nh+r
Doy olp(x)=> p0(lx"""]) =D p(aTh).

neEZ nezZ

Since vg(x) > q%,

v (pfnx(fnhfr)) = _n _’_pthrr,U(m) > p

which is at least % unless
—1 r+1
— forr = 0,n = —1, the valuation > 1+Zj(2 ’;j unless p = ¢,r = h—1);
1

n = 0, the valuation > %1; n = 1, the valuation > 45 — 1 = —5;
q q q



182 7 Bearis and its properties

— for 1 <r <h-—2,n=0, the valuation > qp_—rl;

— forr = h—1,n = 0, the valuation > Zh%ll; n = —1, the valuation > 1—1—2’%11.
Then f(x1,...,14) can be written as
h 1. h h P h—1
(Z Mo+ ol D YoMl SN S Al + ) ))
i=1 i=1 i=1 i=1 (743

Suppose j\i,ﬁ € R such that 5\1(-0) = )\; and p(©) = p. The surjectivity of f can
be reduced to show that the lifting equations

~ h
S Ai(wi+ 577 ) = bo,
> Nt =b,, r=1...,h-2 (7.44)
N 1 h—
S Nipa? +al ) = by,
for any bg,...,bp—1 € R, v(b.) > qp_—l has a solution (x1,...,z5) € S". Let

¢ € R such that ¢P(4=1) =, then S = ((PR)". Let x; = (Cy;)P, i € R, then
the above equations are reduced to

S hl? ) = (Pho
~ Zr+l ' 7'+1,
Z)\zyf =¢? b, r=1,...,h =2, (745)

~ h h
S AP Dy, ) = by

~ —h
Let p; = AP, then we can linearize the equations to

>l y; e, r=1,...,h—2,
phfl ph
Zﬂih (yi +yi ) =1 (7.46)
Sl (P, 4y = ¢,
for ¢ = (c1,...,cn) € R

We need a lemma:

Lemma 7.45. Suppose X;(i = 0,--- ,n — 1) are indeterminants over an in-
tegral domain of characteristic p, then

. n—1
det(X? )i=0..n1 = [[D aiXa), (7.47)

ael i=0
where I C F) — {0} such that the first nonzero component a; of a € I is 1.

Proof (Proof of Lemma 7.45). Assume a; = 1, then replacing X; in the matrix
by — Zﬁéi a; X, the determinant of the matrix is certainly 0, hence ) a; X is

a factor of det(X? ’ ). Now we just need to check that the degrees and leading
coefficients in both sides of (7.47) agree with each other.
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i

By Lemma 7.45, the matrix (u? )i<i,j<n is invertible in R since the \;’s
are linearly independent modulo m¢. Let

Zuf_lyi =C-1, Zﬂiyi = Co,

ph—l o g
le‘ih Yi = Ch—1 C_q, (748)
Sty = C—(p—l)(q—l)(ch —cl).

i—2

Let A = (aij)1<i,j<n be the inverse of (u? )i<i,j<h, then a;; € R and

then

(Y1,92,- - yn) = (c—1,¢0,+ ycp—1)AT

is uniquely determined by (c_1,¢o). Plug y; = Z;.l:l a;;cj—o into (7.48), then
we get

h—1
{Ei py oY== 5bici2 = cn1 —cly, (7.49)

S i = = b = (PO (e, — ),

h ph71 / h ph
where b; = — > . pf  aj and b = —3 75,y aj; € R Let
a=bsc + - +bpch_o, B=0sci 4+ bhcn_a, (= C(P—l)('l—l),

then (7.46) is reduced to the following equations on ¢ and ¢_1

(7.50)

bic1 +bacg+a+cp_1 — c‘il =0,
bie_1 +bheo + B+ Lg% =0,

which in turn is reduced to the equation on ¢

b _
(e — en) = ¢'(Bheo + B))"—(artbaco)VYC 447 ( heo + B+ = CO) v =0.

by ¢’
(7.51)
The left hand side of the above equation is a monic polynomial of ¢y with
coefficients in R, so all the roots ¢y are in R. We can work similarly for c¢_;.
Then there are ¢> compatible pairs (cp,c_1) € R? and therefore ¢* distinct
solutions (y1,...,yn) € R". Let Z, denote the corresponding (x1,...,z,) € S.
It remains to prove that the kernel of f is 1-dimensional over Fpn. First
we show that Ker f = Ker f. Let @ € Ker f,a € S, then f(a) € OT. By the
fact that f : S — T is surjective, let b € S such that f(a) = Of(b) = f(eb),
then f(a— pb) =0, a— b € Ker f and a € Ker f.
Since 8(b) = 0 € O¢ for y € R if and only if b = 0, the kernel of f is
Zo/¢(S). Thus we only need to show that Zy/¢(S) has ¢ points. There is a
short exact sequence of F,-vector spaces

0— ZoN(S) — Zo — Zp/e(S) — 0,



184 7 Bearis and its properties

thus it suffices to show that ZyNp(S) has exactly ¢ distinct points. By v(¢) =

ﬁ, let y; = (P~ 1z, then (7.46) is reduced to
Sz —0, r=1,..,h-2,
Sy (z 4 (DTN =0, (7.52)
Sl (ot 2D) =0,

We then have ¢y = (¢’c?; — bic_1)/be and
¢'ey + (—1)b] — b5 "¢ )eLy + (bubh — bab) )b o = 0.
Since
r—2 h-1 —1
by =det(y; )iy = H(Z aip; )
a€l i=0
is a unit in R,
v((=1)7bF — b5 105¢") = 0, v((bibly — bab1)b ) > (g — )u(b),
by Newton polygon method, there are exactly ¢ — 1 nonzero distinct ¢_; such
that v(c_1) > v(b2). In this case ¢g = (¢!, — bic_1)/ba € R. Hence we have

exactly ¢ distinct solutions (c_1,co) € R? and then exactly ¢ distinct solutions
(21,...,2n) € R", that is to say, Zo N o(S) has exactly ¢ distinct points.

Proposition 7.46. Assume A1, ..., A\, € C are linearly independent over Qp,
then

n: (P;fl)h — Ch
h
(@1, n) — (Y 0@ (@))o<r<n—1

i=1
is surjective and the kernel is a Qpn-vector space of dimension h.
For the proof, we first need two lemmas:

Lemma 7.47. Suppose s > 2, ng =0 < n3 < --ng < -+ < ng = h are
integers, and 0 < v] < vy < -+- < wvg < 1 and vy = vs — 1. Suppose p1,- - ps
are defined by

(7.53)
s —p1=vi—vs + 1.

{Pj —pirr=p (v —vy), (1<ji<s—1),
Then for 1 <j<s-—1,
vj + P p=vj41 + D" pjy1, and v +p1+1=0v,+p'p,.  (7.54)

For1<j,j’<sandnjy_1 <r<mny—1,
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(i)ifn>2o0rn< -2,
vy =+ " > 0 4 (7.55)
(ii) if n =0 or £1,
i =+ P p; > v+ p7pje, (7.56)
and the equality holds if and only if j = 7' and n = 0.
Proof. By direct calculation.
Lemma 7.48. Suppose Py,--- , P, are polynomials in R[ X1, -, X,] defined
by

2

P X, X¢ X4
=M | |4+ | -M2] ], (7.57)
P, X, X4 X

n n

where My, Mo are n X n matrices with entries in mg and det My # 0. Then for
any (by,--- ,b,) € R", the equations (P; = by,--+ , P, = by,) has ¢" distinct
solutions in R™.

Proof. For a matrix A = (a;;), set A@ = (aj;) and v(A) = min{v(a;;)}.
Suppose v(Mp) and v(Ms) > ¢ > 0. Let X = (Xy,---,X,)T and b =
(by,- -+ ,b,)T, The equations (P, = by,--- , P, = b,) is equivalent to

X@ = MyX + My X0 b, (7.58)

Take g-th power in both side of (7.58) and then plug the resulting X@ into
(7.58), we get

X =(My + My MP Mo) X + MyM{? M, X (@)
+ Mo MP X 4 (Mo MPb + Mob@b).
By recursion, the solutions of the original equations satisfy
X@ = pMx+ (7.59)

with v(M) = v(Mpy) and det(M) # 0. The classical p-adic differential equation
theory tells us that (7.59) has ¢™ distinct solutions.
On the other hand, from X(@ = M X + b, Then

(I+ M’M(q))X(q) — MX + M'X0@) 4p— M'pD
Given My and Ms, by repeatedly using the relations
M= I+ MMMy, M = I+ M MD)Ms,,

we obtain M and M’. Then X9 = MX + b implies that X(@ = MyX +
2
M, X(4) 4 b/, This tells us that (7.57) has ¢" solutions.
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Proof (Proof of Proposition 7.46). Let V' be the sub-Q,-vector space of C
generated by A1,..., An. Let A be a lattice of V, then A/(V NmcA) is an F-

vector space of dimension h, so we can choose the basis (A1,...,Ay) of V such
that there exist 0 < vy < --- < vs < 1 and integersng =0 < --- < ng = h such
that v(X\;) = v; for n;_1+1 < i < ny;. Then the images of Ay, 11,..., Ay, are
linearly independent modulo the ideal of O¢ of valuation v;. Fori =1,--- , h,

let m(i) = j if v(\;) = v, in particular m(n;) = j. If s = 1, the results have
already been proved in the previous proposition, thus we may assume s > 2.

Let f = noll : ml — C" For elements in S = {(z1,...,2,) € mf |
VR(T3) > pm(iy}, and for r =0,...,h —1,

h h
U(Z Aze(@r(lh(z‘z)))) = U(Z Z Aip—’nxz(_*nhfr))
=t i=1 ncZ
> @igh(“(/\i) + " yp(2) — n)

>VUp(r41) + P Pm(r+1) (by Lemma 7.47).
Thus

F(8) €T = {(x0,.-,2n-1) € C" [0(2;) = Vnrsr) + 2 pmgrin) }-

As in the proof of the previous proposition, (P,tl)h, m% and C" are H-
modules and 7 is H-linear. Moreover, by (7.54),

oT = {(zo,...,zh-1) € ch | v(2r) 2> V(i) +PT+1Pm(r+1)}-
Consequently, we just need to show
f:8/p(S) —T/OT
h
—n (—nh—r (7.60)
(@1, ) — (> Aip oy N ocr<n1
1=1 neZ
is surjective and the kernel is an F,-vector space of dimension 1.
By (7.55), if n > 2 or < —2,
U()\ip—nngnh*ﬂ) Z vm(r+1) +pr+1pm(r+1)7
thus

hoo1
flay, ... mp) = (Z Z Aip_nffg_nh_r))ogrghfy (7.61)

i=1n=-—1

Let &1,...,& € R such that

©) \?" )1t
Lj — L”“ and ( g ))p = ;D)\n1 .
5(0)

j+1
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Then v(¢;) = p; and

rz@(R/&f‘lRW"f-l—>S/¢(S>, (Yi)1<i<h — (Emyyi)  (7.62)

is bijective. Let z; = {5 Y-
For nj_1 +1 <i<mnj, let \; be an element in R such that 9(5\1) = )\; and
ti = Ai/An;, then p; € R* and the images of pin, ,11,...,tn, are linearly

h—r

independent over F,. Let ¢, = AP fgl(ﬂ_l),

Tln(r+1)

h 1
Q=Y fprxr (7.63)

i=1n=-—1

and
P=c'Qr(EmyY, 7§m(h)Yh)ph7T € R[Y1, -+, Y] (7.64)

Then to show f o 7 is surjective, it suffices to show the equations (P, =
bo, ..., Pn_1 = by_1) has a solution in R" for any b € R". Note that P, is of

the form
h

Po(Yi,- Ya) = Y (@Y + b Y + e Y) (7.65)
=1
with

Qi = czl(j‘iﬁ)ph77l§m(i)7 bir = Cr_lj‘?h_rggn(iy Cir = c;l(j‘ip_l)phiré-g:(i)'

By (7.56), v(a;), v(cir) > 0, and v(b;) > 0 with v, = 0 if and only if
m(i) = m(r+1). Let My = (a;), M1 = (bi) and M = (¢;r.), then My, Ms €
My (mp), det My # 0 and My € GLj(R). By change of variables we may
assume that M; is the identity matrix, hence we are now in the situation of
Lemma 7.48. Hence the equations (Py = by, ..., P,_1 = bs_1) has exactly ¢"
distinct solutions. In particular, f is surjective.

It remains to prove that the kernel of f is 1-dimensional over Fon. Let Zg
be the solutions of Qg = --- = Qx—1 = 0. Then argument above tells that Z,
has ¢" distinct points. Similar to the previous proposition, it suffices to show
that Zo N ¢(S) has exactly ¢"~! distinct points. Note that Zy N ¢(S) is the

solutions of Qoo =+ =Qu_109=0,Qroe=QV  for 0 <r <h-—1,
and
hoo 1 .
Qn=Qn10p=>_ Y Xp "X7 . (7.66)
1=1 n=—1

Let ¢, = J\hgg, and

hoo1
Py =" Qnmm Y1, &) Yn) = ¢ Z Z m(l Yq . (7.67)
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Then ZyNe(S) has the same cardinality of the solutions of P, = --- = P, = 0.
By calculation,

s ntl
v(Aip "y ) = v(N) + " py — > 05+ gps = 1+ v1 + p,

with equality only at the terms A;p & for m(i) = 1 and A&, for m(i) = s.
Then o
Py, = Z WY+ ¢ Z wiY;
m(i)=s m(i)=1
where ¢ = (A, P &1)/(An€?). By similar argument of Lemma 7.48, one knows

that the equations P, = --- = P, = 0 has exactly ¢"~! distinct solutions.

Corollary 7.49. Suppose Ai,...,An € C are linearly independent over Q,.
Then there exist ay,...,ap € P,ffl such that

(1) S0 \ib(97(a;)) =0 for j=0,1,...,h —1;
(2) let A = (aij)1<ij<n with a;j = ¢~ (a;), then det A # 0.

Proof. Suppose a = (a1, --ap) € Kern C (P;'l)h is a generator of the 1-
dimensional H-module Kern, then {a,¢(a), - ,¢"(a)} is a Q,n-basis of
Kern and the Q»-linear map u,q : th — Kern,

Ug(tos ... th1) = toa+tip(a) + -+ th_1¢"1(a)
is an isomorphism. Then ay, - - - aj, satisfy (1) and (2).

Suppose A is given as in the above corollary. Write d = det A. Then
¢(d) = (—=1)""1d. We can write d = st with k € Q2 Suppose A" € My(BL)
such that A’A = AA’ = tI. In particular, det A’ = k= 1th—1.

For any lifting (5\1, e ,5\;,) of (A1, , ) in BX,, then

cris?’

AN Ag, o )T = (881, tB2, - t8n) T
(where 7 means the transpose of a matrix), thus
(A1, Az, oo, An) T = A'(Br, Bay - Br)” -
If varying X, we then get an identity of matrices
Pi=(N)=A(B]):=A'B (7.68)

with A a lifting of \; for every 1 < j < h. If we let X = A; 4 §;;¢ with
0;; the Kronecker symbol. Then det P = (5\1 R t)th=1, det B is a
unit in B, and B’ € GLy(BZ,,). We have a decomposition A’ = PB with

P e My(BX,.) and B = (B')~* € GLy(BL,).

cris
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7.4.3 The proof

Proof (Proof of Theorem 7.41). Our proof is divided into two steps:

(1) Suppose Ay, - - - , Ap, are linearly independent over Q,,. Choose aq, - - - ,a,
as in Corollary 7.49, as define A and A’ = PB as above. We shall define an
isomorphism

h
a:Y%PJl, y:(ul,uo,uh)»—)x:Zai%. (7.69)
i=1

First ¢"(z) = px since ¢"(a;) = pa; and p(u;/t) = u;/t. To see that x €
P,jl, we just need to show = € BI.. However, tx = Y au; € Bl , by

cris® cris?

Theorem 7.26(1), it suffice to show 6(p’(tz)) = 0 for all j € N, or even
h

for 0 < j < h — 1. In this case, /(tz) = p/ > ¢’(a;)u; and O(p?(tx)) =
i=1

' 3% 00 (@) =0,

i=1
We define a map o : Ph+1 — Y and check it is invertible to «. Note that
A(%a %7 Tty uTh)T = (l‘, @(‘r)a o a@h_l(x»T' Set

a/(x) = (LC, QP("E)’ T ’@h_l(x))AlT = (xv <,0({L‘), tee v@h_l(z))BTPT'

It is clear to see that o/(x) € Y. From the construction one can check o and
o/ are inverse to each other.

—1
The composite map th1 25 Y 2 C(1) then sends x € Ph+,1 to
(blﬂ T 7bh)A/(‘r7 gD(l‘), T 790h_1(x))T

h
:(bh o 7bh>PB(x7 gO(.Z'), e ’(ph_l(x))T = ZngOj_l(m).

Since §((b1,--- ,bn)P) =0, 6(c;) = 0. Thus the composite map is nothing but

= E}L:G(Ctj)Q(goh_l(x)).
j=1

By Proposition 7.42, p is either identically zero, or is onto and Kerp is a
Qyp-vector space of dimension h.

(2) Suppose A1,..., A, are not linearly independent over Q,. We sup-
pose A1, ..., Ap are linearly independent and Ap/41,..., A are generated by
Al,..., Ap. Suppose

Y
)\j = Zaij)\i, ai; € Qp. (770)

i=1
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h/
Write vj = uj — Z a;ju; for j > b/, then 0(v;) = 0 and v; € Q,(1).

Let Y’/ be the correspondlng Y for Ay,- -+, Aps. One checks easily that the
map Y — Y’ & Q,(1)"~ LS

(Ugy.ooyup) —> (U1, Upry Oprg1, - UR) (7.71)
is a bijection. Now
' h h
p(r) = Z(bz + > bjaij)uz' + 3 by (7.72)
i=1 Jj=h'+1 j=h'+1

For 1 S ) S h/, let C; = 61 —+ Z;:s’-&-l bjal-j.

If ¢; are not all zero, then by (7.70),

h’ h’
i=1 i=1

i=1 j=h'+1
B’ h
=D X0+ Y Noby) =
i=1 j=h'+1
we are in situation (1), thus the map
plo Y = By, (ur,-uw) = Y i (7.73)

is surjective, and then p is surjective. Since Kerp/Kerp =~ @p(l)h*h/,
dimg, Ker p = dimg, Ker p’ + h — h/ = h.
h
If for all 1 < ¢ < A/, ¢; = 0, then p(x) = > bv;, thus Imp =
J=h/+1
p(Q,(1)""") and dimg, Im p < h.

7.4.4 Application: B, is an almost Euclidean domain.

Recall that an Fuclidean domain is an integral ring B such that there
exists a map deg : B — NU {—o0}, called an Fuclidean stathme, satisfying:

(i) deg(ab) > deg(a) + deg(b) and deg(a) = —oo if and only if a = 0;
(ii) if a,b € B and a # 0, there exist unique ¢, € B such that b = ga +r and
deg(r) < deg(a).

It is well known that an Euclidean domain is automatically a principal
ideal domain.
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Definition 7.50. An almost Euclidean domain is an integral ring B such
that there exists a map deg : B — N U {—o0} satisfying the following three
conditions:

(i) deg(ab) > deg(a) + deg(b) and deg(a) = —oo if and only if a = 0;
(ii) if a,b € B and a # 0, there exist q,r € B such that b = qa + r and
deg(r) < deg(a);
(iii) if a,b € B and deg(a) = deg(b) # —oo, then either there exists x € B
such that b = ax, or there exists x,y € B such that —oco < deg(ax + by) <
deg(a).

The above map deg is called an almost Euclidean stathme.
It is clear from the definition an Euclidean domain is almost Euclidean.
Proposition 7.51. An almost Euclidean domain is a principal ideal domain.

Proof. Suppose I is a non-zero ideal of an almost Euclidean ring B, we need
to show [ is principal. Let d = d(I) = min{deg(b) : b € I,b # 0}, then by
(ii), I is generated by elements b € I such that deg(b) = d. Let a € I and
deg(a) = d. For any b € I and deg(b) = d, by (iii), if b # ax, there exists
x,y € B such that deg(az+by) < deg(a) = d and ax+by # 0, a contradiction
to the minimality of d, hence b = ax. As a consequence, I = (a) is principal.

Definition 7.52. Suppose B is an integral ring and B, its field of fractions.
An almost Euclidean degree over B is an almost Fuclidean stathme over B
satisfying

(0) there exists a valuation v over B,, such that deg(b) = —v(b) for allb € B;
(iv) one can choose x,y with degree <1 in (iii) of the above definition.

We prove the following important result using the Fundamental Lemma:

Theorem 7.53. The map deg = deg., given in (7.29) is an almost Fuclidean
degree over the ring B, hence B, is almost Fuclidean and principal.

Proof. We only have to check the conditions (ii) and (iv).

For (ii), suppose a,b € B, and deg(a) = r # —oo and deg(b) = s. We may
assume r < s, otherwise, just let ¢ = 0 and r = a. It suffices to find ¢ € B,
such that deg(b — qa) < s.

Write a = t™"ag and b = ¢t~ °by, then 6(ag) and 6(by) are both not zero.
Suppose qg € Pfs—m 0(qo) = 6(bo)/0(ap), and g = t" ¢, then ¢ € B, and
deg(b — qa) < s. (ii) is proven.

For (iv), let degz = degy = d > —o0, g = xt?, yo = yt? € B, . Use the
Fundamental Lemma (Theorem 7.41), let b = T and by = g in Bsg, then
there exist uq,us € U such that byuq + bous = 0 and xouq + yous € Fil? Bar,

u u
:C()Tl + yo% S Fll1 Bgr.

Thus deg(zuy /t + yuz/t) < d and uy /t,uz/t € B, are of degree < 1.
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Remark 7.54. By a generalization of the Fundamental Lemma, one can show
B, j, and hB, are almost Eucliean and hence principal.
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Bg; and semi-stable representations

8.1 B and semi-stable representations

8.1.1 By and its properties.

Definition 8.1. The ring of semi-stable periods or log-crystalline periods By
is the ring Beris[u], the sub-Beis-algebra of Bagr generated by u = log[w].

Remark 8.2. Historically Bg; is called the ring of semi-stable periods. However,
in light of current development, the ring of log-crystalline periods seems to be
a more appropriate name.

Since u is transcendental over C.,is (Proposition 7.14), we have

Theorem 8.3. The homomorphism of Beyis-algebras
Bgis[tr] — By, zr+—u
is an isomorphism.

Clearly By and Cy = Frac By are stable under the action of Gk (even of
Gk,).

Theorem 8.4. (1) The map
t: K ®k, Bst — Bar, A®b— b
1S injective.
(2) (Cxt)9% = Ko, hence
(Be;

cris

)GK = (Bcris)GK = (Bst)GK = KO-

Proof. By Proposition 7.8, K®, Beris C Bar is a domain and thus Frac(K®g,
Beis) is a finite extension over Cpgus, and u is still transcendental over
Frac(K ®k, Beris)- Therefore
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K ®K0 Bst =K ®K0 Bcris[u” = (K ®Ko Bcris)[u} C BdR
and (1) is proved.
For (2), we know that

Ky C (B+ )GK - (BcriS)GK - (Bst)GK - (Cst)GK

cris

and by (1),
(Cst)GK R K, K C (BdR)GK =K.

Thus C$* must be K.

Bg is also endowed with two operators: the Frobenius ¢ and the mon-
odromy operator N. By the definition of the logarithm map, we extend
¢ @ Beris = Beris to an endomorphism of By by requiring

¢(u) = pu. (8.1)
Then ¢ commutes with the action of Gx. One sees that ¢ : By — By is
injective.
Definition 8.5. The monodromy operator

N : Bst — Bst

bou® — — 3 nb,u™!
>
neN n>1

is the unique Beis-derivation such that N(u) = —1.

Proposition 8.6. The monodromy operator N is a nilpotent operator satis-
Jying
(1) the sequence

0 — Beis— Byt — By —» 0 (8.2)
18 exact;
(2) gN = Ng for every g € Gk, ;
(3) No =ppN.

Proof. (1) is clear from definition.
(2) Since g(u) = u+n(g)t, but 1(g)t € Beris and N(n(g)t) = 0, we have

N(gb) = g(Nb), for all b € Bg,g € Gg,.
(3) Since
Ne(Y buu™) =N (Y o(bn)p"u")

neN neN

==Y np(by)p"u" !

neN

:p@N(Z bnun)v

neN

we have Ny = ppN.
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8.1.2 Crystalline and semi-stable representations

Proposition 8.7. The rings Beis and By, are (Q,, G )-regular, which means
that

(1) ch and B are domains,

(2) Bgfs = BG* = 05~ = Ko,

(3) If b € Beyis (resp. Be), b # 0, such that Qub is stable under G, then b
is invertible in Beis (resp. Bs).

Proof. (1) is immediate, since Beyis C Bgt C Bar.

2) is just Theorem 8.4 (2).
For (3), we know Bes contains Py = W(k)[=].

(
% Let P be the algebraic
closure of Py in C, then Bgg is a P-algebra.

If b € Bag, b # 0, such that Qb is stable under G i, multiplying b by ¢ ~* for
some i € Z, we may assume b € BS'R but b ¢ Fil' Bygr. Suppose g(b) = n(g)b.
Let b = 6(b) be the image of b € C. Then Qpb = Q,(n) is a one-dimensional
Qp-subspace of C stable under Gk, by Sen’s result (Corollary 4.45), this
implies that n(I) is finite and b € P C Biz. If &/ = b—1b # 0, then V' €
Fil’ Bqr —Fil'™" By for some i > 1. Note that Qpb' is also stable by Gk whose
action is defined by the same 7. Then the Gk-action on Q,0(t ~') is defined
by X~ n where y is the cyclotomic character and x ~'n(Ix) is finite. However,
X" 'n(Ix) and n(Ix) can not be both finite, hence ¥’ = 0 and b=b € P.

Now since ¢ is always invertible in Be.s C Bst, it suffices to show PN By, =
Py C Beis. Indeed, suppose PN By = Q 2 Py. Then Frac(Q) contains a
nontrivial finite extension L of Py. Note that Ly = Py and by (2), BgL =Py,
but Frac(Q)%t = L, which is a contradiction!

Remark 8.8. The proof implies that if b € Bar such that Q,b is stable by the
G -action, then b = Y’ for some i € Z and b’ € P.

For any p-adic representation V', we denote
Dy (V) := (Bt ®g, V)%, Deis(V) := (Bewis ®g, V). (8.3)
Note that D¢ (V) and De,is(V) are Ko-vector spaces and the maps
ast(V) : Bt ®K, Dst(V) = Bt ®q, V
eris(V) ¢ Beris @k Deris(V) = Beris ®q, V'
are always injective.

Definition 8.9. For a p-adic representation V of G,

(i) V is called semi-stable or log-crystalline if it is By -admissible, i.e., if the
map ast (V) is an isomorphism;

(ii) V is called crystalline if it is Beris-admissible, i.e., if the map aeis(V) is
an isomorphism.
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Clearly, for any p-adic Galois representation V', D.s(V) is a subspace of
Dg (V) and hence

dimKO Dcris(V) < dimKO Dst (V) < dlme V.
Therefore we have

Proposition 8.10. (1) A p-adic representation V is semi-stable (resp. crys-
talline) if and only if dimg, Dgt (V') = dimg, V' (resp. dimg, Deis(V) =
dime V)

(2) A crystalline representation is always semi-stable.

Suppose V is a p-adic representation of Gk. ince K ®p, Bst — Bar is
injective (Theorem 8.4), we see that
K ©x, Dt (V) = K ®k, (B ®g, V)*
= (K ®k, (Bst ®q, V)
= (K @K, By) ®g, V)"
< (Bar ®g, V)% = Dar(V).

Thus K ®k, Dt (V) C Dgr (V) as K-vector spaces.
Assume furthermore that V' is semi-stable, then

dimg K XK, Dg (V) = dime V < dim DdR(V) < dime \%4
implies that
dim DdRV = dime ‘/,
i.e., V is de Rham. Thus we have

Proposition 8.11. If V is a semi-stable p-adic representation of Gy, then it

is de Rham, and
Dir(V) = K ®k, Dst (V).

Suppose V' is a p-adic representation of Gx. On Dg (V) there are a lot of
structures because of the maps ¢ and N on Bg,. We define two corresponding
maps ¢ and N on By ®q, V' by

p(b®v)=pb@v
Nb®v)=Nb®wv

for b € By, v € V. The maps ¢ and N commute with the action of G and
satisfy Ny = ppN, and ¢ is injective.

Lemma 8.12. D = Dy (V) is a finite dimensional Ky-vector space of dimen-
ston < dim@p V', such that

(1) D is stable under ¢ and N, N is Ko-linear and nilpotent, ¢ is o-semi-
linear and bijective, and Np = ppN on D;
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(2) D = K ®k, Dst(V) C Dgr(V) is a filtered K-vector space with the
induced filtration

Fil' Di = Dg (| Fil' Dar(V).

(3) Deris(V) = Dn—o, hence V is crystalline if and only if V is semi-stable
and N =0 on Dg (V).

Proof. The bijectivity of ¢ : D — D follows from that D is finite dimensional
and ¢ is injective. The rest is clear.

8.2 (¢, N)-modules and filtered (¢, N)-modules

8.2.1 (¢, N)-modules over Kj.

Definition 8.13. The category of (¢, N)-module over Ky (or over k), denoted
by Modg, (¢, N), is the following category:

i) An object in Modg, (¢, N) is a finite dimensional Ky-vector space D
] ol¥
equipped with two maps
o,N:D— D

satisfying the following properties:
(a) ¢ is bijective and semi-linear with respect to the absolute Frobenius o
on Ko,
(b) N is a Ky-linear map,
(¢) No =peN.
(ii) A morphism n: D1 — D4 between two (¢, N)-modules is a Ky-linear map
commuting with ¢ and N.

Definition 8.14. The category of p-module over Ky, denoted by Mod, (),
is the full sub-category Modg,(p, N = 0) of Modg, (¢, N). An object of it
is also called a p-isocrystal of k.

Remark 8.15. (a) Take E = k and £ = Ky, the definition of ¢-module is
slightly stronger than the one in §3.3. Here we require

dimg, D < oo and ¢ is bijective,

the latter is equivalent to that
D:D,=Ky,0x, D= D, P(A®d) = Ip(d)

is an isomorphism of Ky-vector spaces. However, these conditions are sat-
isfied for étale p-modules over Kj.

(b) In analogue of isocrystals, we may also call a (¢, N)-module over Ky a
log-p-isocrystal of k.

(c) The forgetful functor from Mod g, (¢, N) to Modg, (¢) is exact.
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The category Modg, (¢, N) of (¢, N)-modules is an abelian category. In
fact, it is the category of left modules over the non-commutative ring generated
by Ky and two elements ¢ and N with relations

eA=0c(A)p, NA=AN, forall A e Ky
and
Ny =ppN.
Moreover, there exist tensor products, unit and dual objects in Mod g, (¢, N).
(i) For Dy and Dy in Modg, (v, N), the tensor product D1 ® Dy = D1®k, D2
with

(p(d1®d2):(pd1 ®<pd2, N(d1®d2):Nd1®d2+d1®Nd2

(ii) Ko has a structure of (¢, N)-module by ¢ = o and N = 0. Moreover
Ko D=D® Ky=D,

therefore Ky is the unit object in Modg, (¢, N).
(iii) If D is an object Modg, (¢, N), the dual object D* = £(D, Ky) of D is
the set of linear maps n: D — Ky with ¢ and N given by

p(m)=conoyp™', N(n =-noN.

Remark 8.16. If in the definition of (¢, N)-modules, we drop the condition
that

dimg, D < oo and ¢ is bijective,

we get an abelian category which has tensor product and unit object, of which
Modg, (¢, N) is a full sub-category. However, there is no dual object.

Proposition 8.17. The operator N is nilpotent.

Proof. If N is not nilpotent, let h be an integer such that N"(D) =
NMY(D) = ... = N™(D) for all m > h. Then D' = N"(D) # 0 is in-
variant by N, and by ¢ since N = p"@N"™ for every integer m > 0. Thus
D’ is a (¢, N)-module such that N and ¢ are both bijective.

Pick a basis of D’ and suppose under this basis, the matrices of ¢ and
N are A and B respectively. Then A and B must be both invertible by the
bijectivity of ¢ and N. By the relation Ny = ppN we have BA = pAo(B).
Consequently v,(det(B)) = dim D’ + v,(det(c(B))) = dim D’ + v,(det(B)),
hence det(B) = 0, which is impossible.
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8.2.2 tn (D) and Theorem of Dieudonné-Manin.

Assume D is a p-module over Ky (i.e, a p-isocrystal over k). We associate
an integer t (D) to D in two steps. Note that this extends naturally to (¢, N)-
modules by setting ¢ (D) = ty(F(D)) where F is the forgetful functor.

Step one: assume first that dimg, D = 1. Then D = Kod with ¢d = Ad, for
d+#0€ D and ) € Kj. ¢ is bijective implies that A # 0.
Assume d’' = ad, a € Ky, a # 0, such that ¢d’ = Xd'. One can compute
easily that
o(a)

pd = o(a)\d = T)\d’,

hence
)\/ — )\U(a)
Pt

As 0 : Ky — K is an automorphism, v,(A) = v,(\') € Z is independent of
the choice of the basis of D. We define

Definition 8.18. If D is a w-module over Ky of dimension 1, set
tn(D) = v,(A) (8.4)
where X\ € GL1(Ko) = K is the matriz of ¢ under some (any) basis.

Remark 8.19. The letter N in the expression ¢ty (D) stands for the word New-
ton, not for the monodromy map N : D — D.

Step two: assume dimg, D = r is arbitrary. The r-th exterior product /\;{0 D
is a one-dimensional Kjy-vector space with induced ¢-module structure by
tensor product.

Definition 8.20. If D is a w-module over Ky of dimension r, set
tn(D) := tn( /\KO D). (8.5)

Suppose {e1,--- ,e,} is a basis of D over Ko, then p(e;) = >27_, ajje;.
the matrix of ¢ under this basis is A = (ai;)1<ij<r € GL,(Kp). Suppose
{€},- -+ ,el.} is another basis and A’ the matrix of ¢ under this basis, suppose
the transformation matrix of these two bases is P, then A = o(P)A’P~!. By

linear algebra, then we have

Proposition 8.21.
tn(D) = vp(det A). (8.6)
Proposition 8.22. One has

(1) If0 = D' = D — D" — 0 is a short exact sequence of p-modules, then
tN(D) = tN(D/) + tN(DH).
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(2) tN(Dl (24 DQ) = dimKD(Dg)tN(Dl) + dimKO(Dl)tN(Dg).
(3) tn(D*) = —tn(D).

Proof. (1) Choose a Ky-basis {e1, -+ ,e~} of D' and extend it to a basis
{e1,--+ ,er} of D, then {€. 11, -+ ,&.} is a basis of D”. Under these bases,
suppose the matrix of ¢ over D’ is A, over D" is B, then over D the matrix
of pis (4 5). Thus

tn(D) = vy(det(A) - det(B)) =ty (D) + tn(D").

(2) If the matrix of ¢ over D to a certain basis {e;} is 4, and over D3 to
a certain basis {f;} is B, then {e; ® f;} is a basis of Dy ® Dy and under this
basis, the matrix of ¢ is A ® B = (a;, i, B), the Kronecker product of A and
B. Thus det(A ® B) = det(A)%™ P2 det(B)4m D1 and

tN(Dl ® Dg) = vp(det(A (9 B)) = dimKO(Dg)tN(Dl) + dimKO(Dl)tN(D2).

(3) If the matrix of ¢ over D to a certain basis {e;} is A, then under
the dual basis {e}} of D*, the matrix of ¢ is o(A™1), hence ty(D*) =
vp(deto(A™1)) = —v,(det A) = —tn (D).

Definition 8.23. The slope of a nonzero p-module D over Kq 1is defined to

be (D) = gixp.
A p-module D is called pure of slope u if there exists a W -lattice M of D

such that p~2p"(M) = M where u = %, d,h€Z and h > 1.

Remark 8.24. (a) A p-module pure of slope 0 is nothing but an étale p-module
over Kj.

(b) Suppose D = Kpe1 @ -+ ® Kpep, @(e;) = e;41 for 1 < i < n—1 and
o(en) = pe1, then D is pure of slope %

The following theorem of Dieudonné-Manin (see [Man63]) classifies all -
modules.

Theorem 8.25 (Dieudonné-Manin). For a p-module D over Ky, then
D= @ Dy,
neQ

where D, is the part of D pure of slope j1 and D,, = 0 for all but finitely many
w. Hence pdimg, D, € Z and

tn(D) = pdimg, D,,. (8.7)
reQ

Imitating the theory of étale p-modules for k in Chapter 3 (especially
Lemma 3.21, Theorem 3.22 and Proposition 3.33), one can get
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Corollary 8.26. Suppose k is algebraically closed.

(1) If D is pure of slope p = % withd,h € Z,h > 1, then D = K0®Qph Dh—pa.
(2) A short exact sequence of p-modules always splits.

The rest of this subsection is devoted to the proof of Dieudonné-Manin’s
Theorem as given in Ding-Ouyang [DO12]. One can skip the details here.

Suppose D is a p-module. For h,d € Z and h > 1, we write pp g = p~doh.
Then ¢ q is bijective in D. Let M be a W-lattice of D, we set My q =
MNn>0py, q(M) and D* = Mh,d[%}] where u = d/h € Q. Clearly by definition
My, q is a sub-W-module of M stable under ¢ 4.

Proposition 8.27. Suppose D is a p-module over Ky, u = % € Q. Then

(1) D* is independent of the choices of the lattice M and the pair (h,d).

(2) x € D" if and only if the W-module Wz, ppa(z) -+ ,¢p 4(x),---] is a
finite module, in particular D" is a p-submodule of D.

(3) {D"}cq forms a decreasing filtration of D which is separate and exhaus-
tive, in other words,
() if p < p!, then D* > DM ;
(if) D* = D for p < 0 and D* =0 for u>> 0.

Proof. (1) Suppose M’ = TM is another lattice of D where T' € GL(D). We
choose k € N such that TM > pFM. For x € Mh’d[%], suppose p®x € Mp, q,
then o} 4(p®x) € M for all n € Nand ¢ ,(p"+*x) € pPM C M’ for all n € N,
thus p®*tkz € M; 4 and x € M}'hd[%]. This proves the independence of M.

Now for (h',d") = (kh,kd), we let M’ = ﬁogjgk—1<ﬂi7d(M)- Then M’ is
a lattice in D and M,’Ch’kd = My, 4. Thus Mkh,kd[%] = Méh,kd[%} = Mh,d[%].
This proves the independence of the pair (h, d).

(2) Let p = % Suppose M is a lattice in D. Then z € D* means that
there exists k € N, pFz € My, 4, or equivalently Lpﬁyd(pkx) € M forn € N, so
Wou o, ena(x) -, oF 4(x), -] D p~¥M is a finite W-module. Conversely, if
the W-module W1z, go;;,d(x) o ¢h a(x), -] is a finite W-module, we extend
it to a W-lattice M of D, then = € My, 4 C D*.

(3) If d < d’, then by definition M}, 4 D My g4, this proves (i). Suppose
p®2 M C o(M) C p® M, then for d > da, My 4 = 0 and for d < dy, My 4 = M,
this proves (ii).

Lemma 8.28. Suppose 0 = D1 — D — Dy — 0 is a short exact sequence of

p-modules, then

(1) the sequence 0 — D' — D" — DY is exact;
(2) if moreover Dy=D"0 for some g, then 0 — DY — DF — Dy — 0 is
exact.

Proof. (1) follows easily from Proposition 8.27(2).
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(2) The case p > o follows from the case p = pp. So we need only to
prove the exactness in the case p < pg. We first show the case p = o, which
is equivalent to the claim (D/D#H0)#0=0. We assume D = D>, jip = % and
A=4

V\}}e claim there exists a W-lattice M in D such that M is stable under
©n,q and M N Do is stable under ¢y, 4,. To see this, we first find a W-lattice L
in D which is stable under ¢y, 4, then the image of L in D/DH° is a W-lattice.
Suppose it is generated by é1, éo, - - - €,. For each i, take a preimage of €; in L,
denoted by e;. Choose a W-lattice Lo in D*0 which is stable under ¢y, 4,. Then
there exists N € N, such that L N D# C p~NL,. Take €rt1,€r42," " €n aS a
basis of p~V Ly. (Note that p~ L is still stable under ¢y, 4, ). Then the lattice
M generated by eq, ez, - - e, is what we need. That’s because ¢, 4(e;) € L C
M when i <7, and ¢p q(e;) = p¥ %oy a,(ei) € p~NLo C M when i > r + 1.

If (D/D#o)#o 3£ 0, then there exists x € D,z & D, p ; (z) € M + DHo
for any n. For n > 1, let k, be the smallest integer such that ¢} ,; (z) =
T, + p~Fny, where z,, € M, y, € M N DHo (if ©h do (x) € M, let k,, =0). In
fact, ky is also the smallest integer such that ¢j; ; (x) € p~*n M.

We have Ph,do (xn +p_k"yn) = Tp+1 +p_k"+1yn+1 = Ph,do (xn) +p "2y,
where z, € M N DHo. Since pp q,(M) C p~(do—d) N[ it’s easy to see kpt1 <
max(ky,dy — d). Take N = max(k1,dy — d), then k, < N is bounded. This
implies that pNa € ﬁnZOSD};ZO (M). Hence pNx and & € D*0, a contradiction.
Thus we have shown (D/DHo)Ho=().

Now for the case p < po, if D* = D, then by (1), D/D#° D (D/D#o)* D
DH#/(DHo)¥ = D/DHo so all must be equal. In the general case, the exact
sequence

—k

0 — D*/D#o — D/D* — D/D* — 0.
and the fact (D/D*)* = 0 implies that (D#/DHo)# = (D/DHo)#. Together
with (D#/DH#o)t = DF/DHo  we get (D/DHo)k = D# /DHo,

For i € Q, we let D>* be the union of all D for ;i > p and D<* be the
intersection of all D* for u/ < p.

Lemma 8.29. (1) For any u, there exists p' < p, DH' = DF. In particular,
the ﬁltratzon {D"} is left continuous, i.e., D<M = Dr.
(2) For p = ¢ and dimg, D" =l, if D* = D>“ then D*' = DM where i

ld+1
lh

Proof. (1) By Lemma 8.28(2), we can replace D by D/D* and assume D* = 0.
Let p = £. Take a lattice M in D, then ()32, ¢n.a(M) =0, and there exists
k such that ﬂz Ogohd(M) C p?M. One can show easily that ﬂz Ogohd(M)
C p*N M for N > 1 by induction. ‘

Let L be the lattice ﬂz 0<phd( ), Then ¢, ,(L) = NG <p,;fi(M)

i=kj
and
k(j+1)

ﬂ CnpaL) = (1] (M) S PV,
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So we have

J J J
n Prenka—1 (L) = mpﬂ%ﬁi,kd([’) < ﬂpﬂ%;ﬁ,kd@) Cp'M.
i=0 i=0 i=0

As a consequence ()52 ¢ur a1 (L) = 0, which implies that D* = 0 for
= ka1 ’
KR -
(2) By Lemma 8.28(1), we can replace D by DN D and assume D = DH.

ad+1

The fact D”#* = D implies that there exists @« € N, D7an = D. Therefore
we have a lattice M which is stable under ¢qh ad+1, and consequently stable
under @qp,ad- It’s easy to see oy, 4(M) = 04y, 041 (P"M) — 0 as n — oo.
Therefore for any lattice L stable under ¢y 4, @Z@(L) — 0 as n — oo; in
particular, ¢ ;(L) C pL when n is sufficiently large.

If L is stable under ¢, 4, then o, 4(L) D <p§:rdl (L), and there exists a chain
of sub-k-vector spaces of L/pL
P (L) h.a(l) Phia (L)

) )

¢ha(L)NPL = ¢ (L) pL ~ @it (L) NpL

L5
Lo

¢h.a(L) o Pha L)

s = dlmk Lp;:rdl (L)ﬁpL’
S"i_d(L)
ga{hd(L)ﬂpL
large, the fact dimg pLL = [ implies that 802,51(]4) C pL. This means that L is

It’s easy to check that if dimy, ”

@h.a(L)NPL then dimy, p~

J
h,d(

. i (L
dlmk SDﬁﬁh,d( )

AR = 0 when j is sufficiently

for any j > i. Since dimyg

stable under ¢;5 14+1 and hence DTt = D.

Corollary 8.30. Let a = sup{\ € Q : D* = D}, then a is a rational number
and D* = D.

Proof. Suppose dimg, D = [. If a is not rational, by Dirichlet’s Approximation
Theorem, there exist infinitely many pairs of integers (p,q) such that % <

a < % + q%. Choose ¢ > [ and let (p,q) = (d,h). By the above Lemma,

D&+t = D = D and hence % + ﬁ < a, a contradiction.
The second part of the corollary follows from Lemma 8.29(1).

Proposition 8.31. Set gr, D = D"/D~>", then gr,D is pure of slope p.

Proof. By Lemma 8.28, we can replace D by D*/D~># and assume D" = D
and D># = 0.

Let p = %, then there exists a W-lattice M of D* = D which is stable
under ¢y, 4. The filtration of sub-k-vector spaces
oy a(M) c oy a(M)

)

. C C
T pp(M)NpM T o J(M)NpM

M
. C =
= oM

L/’i,d(L) _
L)npL
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of M/pM is stable since dimy M/pM = dimg, D is finite.

‘pﬁ],d(]\/j)
It oy J(M)NpM

for all n € N, which implies that M C N,>00x7 vqpq (M). This is not possible
since D”* = 0. As a consequence, when N is sufficiently large, we have a

N (M
bijection of the nonzero k-vector space Nw"’d( ) _ {0 itself

ep g (M)NpM

o @ﬁd(M) . ‘P}]Xd(M)
o @,]Xd(M)ﬂpM SD}[Xd(M)ﬂPM

= 0 when N is sufficiently large, then ¢}, y (M) C p"M

for n € N. Replace (h,d) by (Nh, Nd) and still denote it by (h,d), then we
get a bijection

n o Pna(M) . ©n,a(M)

Phd : ond(M)NpM  @nqa(M)NpM

for any n € N.

If op.q : M — M is not bijective, then there exists ;1 satisfying ¢p q4(x1) €
pM and z1 ¢ pM. Indeed, if @5 4 : M — M is not surjective, we can find an
element x € M and x ¢ ¢, ¢(M). Since @y, q(M) is still a W-lattice in D, we
can find k € N such that p*z € ¢p, (M), and p* 1z ¢ ¢y o(M). Then take
x, € M to be the preimage of pFz.

We now construct by induction a sequence (x,) such that x, — x,—1 €
p" 1M and @Z,d(fn) € p'M for any 1 < i < n. Suppose z1,Zy---x, have
been constructed and @Z,d(xn) =p"z,. Let z,41 = 2, + p"y. It’s easy to see
goz7d(;vn+1) €p'M for 1 <i <nifye M. Since SOZ;ZI(.T”+1) = p™(n,d(zn) +
ept (), to have @pt! (2 41) € p"TIM, it’s sufficient to find y € M such

that @p a(zn) + <PZ:§1 (y) € pM, but this is guaranteed by the bijection
no_enaM) o pna(M)

Phid * gDhyd(M) NpM Soh,d(M) ﬂpM.

Take x = lim,, .o T, then x € M, x # 0. It’s easy to see apﬁyd(x) ep"M
for any n > 0, so © € Np>0y, 441 (M) which contradicts to D># = 0.

Since D is of finite dimension, gr,D = 0 for all but finitely many u.
Suppose 1 > p2 > -+ > u, are all the p’s such that gr,D # 0. In fact we
can take p; = sup{\ € Q : D* # 0} and p; = sup{\ € Q : D* D D*i-1} when
i > 1. By Lemma 2.3 (1), D* 2 DHi-1 | and if pi; > p > pti1, then DF=D#Hi .
We have
Proposition 8.32. Suppose D is a p-module. Then the filtration

0GC D" =gr,, DG D" G- C D' =D

is the Harder-Narasimhan filtration of D, i.e., the unique filtration --- C
D; € Diy1 C -+ of w-modules such that the D;/D;_1’s are pure of strictly
decreasing slopes.
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Proof. The existence follows from Proposition 8.31. For the uniqueness, by
Lemma 8.28, for a Harder-Narasimhan filtration 0 = Do C D1 € --- C Dy =
D of D, then D* = 0 for u > p(D;) and D*(P1) = Dy #£ 0. We also have
DH* =0 for p > py and D#* # 0. Thus u(D1) = p1 and Dy = D1, Now the
rest follows from induction on the length of the filtration.

Proposition 8.33. Suppose 0 — D; — D — Do — 0 is a short exact se-
quence of p-modules, then for every u € Q, 0 — DY — D* — D5 — 0 is also
exact.

Proof. We prove by induction on the dimension of D. The case dimD =1 is
trivial. In general, suppose dim D > 2 and D; is a non-zero proper sub-object
of D. We assume D’ is the second to last term of the Harder-Narasimhan
filtration of D, and D" = D/D’, then for the exact sequence 0 — D' — D —
D" — 0 and p € Q, the complex 0 — D'* — DF — D"HF — 0 is always exact.
We have the following commutative diagram with exact rows and columns:

0 0 0
| | |

0 D; D' D} 0
| | [

0 D, D Dy 0
l l l

0 D} —2 D" DY 0
I
0 0 0

where D] = D;ND" and D} = D'/D} and DY = D, /D], the injections i; and
io are defined by diagram chasing, and D4 = D" /D{ = D, /D), is obtained by
snake lemma. Now take the p-invariant of the above diagram, by induction,
we have exact sequences in all rows and columns except the middle row, then
the middle row must also be exact by diagram chasing.

Proof (Proof of Theorem 8.25). We are now ready to prove the theorem of
Dieudonné-Manin. Suppose D is a p-module over k, such that

0=DyCD1C---CD._1CD. =D

is the Harder-Narasimhan filtration of D, suppose u; = u(D;/D;_1). Since ¢
is bijective on D, replace ¢ and o by ¢! and ¢!, then D can be regarded
as a ¢~ '-module and we can develop the Harder-Narasimhan filtration for D
as a ¢~ '-modules, i.e., D possesses a unique filtration
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/ / / /
0=Dy Dy & & Dy &G Dg=D

such that D}/D)_, are pure of slope p; = p/(¢=1, D}/D._;) as ¢~ '-modules
and pl’s are strictly decreasing. By definition we see that a ¢~ !-module pure
of slope p is nothing but a ¢-module pure of slope —pu, thus 0 = Dy C D] C
-+ C DLy € D. = D is the unique filtration of D such that the sequences
w(D}/D;_,) = —p are strictly increasing.

It suffices to show that D = &(D;/D;_1). We show it by induction on
the length s of the (p~!)- Harder-Narasimhan filtration of D. The case s = 1
is trivial. In general, we have D* = 0 for p > p; and D** = Dy # 0. By
Proposition 8.33 and induction hypothesis, we also have D* = 0 for p > —p/,
and D~# =~ D/D!_ | # 0, thus gy = —p), and D; = D/D’_| is a direct
summand of D. By induction, this finishes the proof of the theorem.

8.2.3 Filtered (¢, N)-modules over K.

We have defined Filg, the category of filtered K-vector spaces in § 6.2.4,
and Modg, (¢, V), the category of (¢, N)-modules over Ky in § 8.2.1.

Definition 8.34. The category of filtered (p, N)-modules over K, denoted by
MFg (o, N), is the following category:

(1) An object of MF i (¢, N) is a pair D = (D, Dg), where
(i) D is a (@, N)-module over Ky, i.e.,
D is a finite dimensional Ky-vector space equipped with two
maps ¢ and N, such that ¢ is bijective and semi-linear, N is
linear and Ny = ppN;
(11) D = Ky R K, D e FilK, i.e.,
Dy is equipped with a decreasing filtration of K-vector spaces
-+ CFil' Dg C Fil'" Die C -+ such that (), Fil' D = 0
(aka. separated) and \J;., Fil' D = Dy (aka. exhaustive).
(2) A morphism n : D1 — Dy between two filtered (¢, N)-modules is a
morphism of (¢, N)-modules such that the induced K-linear map ng :
K ®kg, D1 =+ K ®k, D2 is a morphism of Filg, i.e.,

nk (Fil' D ) C Fil' Dok, for alli € Z.

Similar to the category Filg, the category MF i (p, N) is also an additive
category with kernels and cokernels. Let 5 : D; — Dy be a morphism of
MF i (¢, N), then (Kern)x and (Coker n) x are the kernel and cokernel of ng
as filtered K-vector spaces.

Exercise 8.35. Suppose 1 : D1 — D5 is a morphism of (¢, N)-modules over
K. Then the induced morphism from colm 7 to Im 7 is an isomorphism if and
only if ng is a strict morphism. In this case we call n a strict morphism of
(p, N)-modules.
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Again similar to Filx and Modg, (¢, N), there exist tensor products, unit
and dual objects in MF g (p, N):

(i) For two filtered (¢, N)-modules Dy and Dy, the tensor product
Dy ® Dy = Dy ®K, D2
as (p, N)-module over Ky, with the filtration on
(D1®D2)k = K&k, (D1®K,D2) = (K®k,D1)®(K®K,D2) = DixQ@x Dar

defined by
Fil'(D1x @k Dax) = »_ Fil" Dig ® Fil? Dyg.
i1+i2=1
(if) Ko can be viewed as a filtered (p, N)-module with ¢ = ¢ and N = 0, and
. i <0
Fit i = 10 1S O
0, i > 0.

Then for any filtered (¢, N)-module D, Koy ® D ~ D® Ky ~ D. Thus Ky
is the unit element in the category.

(iii) The dual object D* of D is the dual of D as (¢, N)-module with the
filtration given by

(D*)K = K®K0 D* = (DK)* ~ X(DK,K),
Fil'(D*) g = (Fil "™ Dg)*.
8.2.4 ty (D).

Definition 8.36. Suppose A € Filk is a finite dimensional filtered K -vector
space.

(1) If dimg A =1, define
tg(A) == max{i € Z : Fil' A = A}. (8.8)

Thus it is the integer i such that Fil' A = A and Fil't™ A = 0.
(2) If dimg A = h, define

t(4) = tn(\| ). (8.9)

where /\};( A is the h-th exterior algebra of A with the induced filtration.
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Suppose
S
grA:@grifA, 1 < e < g
t=1

Take any basis of Fil'* A, expanding successively to a basis of Fil*~* A, -- -,
A = Fil"" A. Then we get a basis {ey,--- , e, } of A over K which is compatible
to the filtration, i.e., if we define §; € Z by the condition e; € Fil% A —
Fil% ! A for 1 < j < h, then

Fil'(4) = €P Ke;.

55 >i

This means
S

tp(A) = Zéj = Zit dim gr't A.

j=1 t=1
Consequently

Proposition 8.37.

tu(A) = i-dimggr' A, (8.10)
=
Proposition 8.38. (1) If 0 - A" - A — A” — 0 is a short exact sequence
of filtered K -vector spaces, then

tg(A) =ty (A") +ty(A").

(2) tH(Al ® AQ) = dimK(Ag)tH(Al) + dimK(Al)tH(Az),
(3) tu(4A%) = —tu(4).

Proof. (1) If 0 — A" - A — A” — 0 is exact, then 0 — gr' A" — gr' A —
gri A" — 0 is exact for all i € Z, thus (1) follows from Proposition 8.37.

(2) Let {e1, - ,er} and {f1,---, frv} be bases of A; and A, respectively,
compatible with the filtration. Then {e; ® f; |1 <i <7, 1 <j<r'}isa
basis of A; ® As, compatible with the filtration. Then (2) follows from an
easy computation.

(3) follows from definition.

8.2.5 Admissible filtered (¢, N)-modules.
Let D be a filtered (p, N)-module D over K, we set
tH(D) = tH(DK). (811)

Then D is associated with two invariants: ¢ (D) which depends only on the
Frobenius map ¢ on D and tg (D) which depends only on the filtration on
Dg.
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Definition 8.39. A filtered (¢, N)-module D over K is called admissible if

(i) tu (D) = tn (D),

(ii) For any sub-object D' of D, i.e. a sub Ky-vector space D' stable under
(¢, N)-action and with induced filtration, tg(D") < ty(D').

Denote by MF’}(d(go,N) the full sub-category of MF g (p, N) consisting of
admissible filtered (¢, N)-modules.

Remark 8.40. The additivity of ty and ty
tn(D) ZtN(D/)—FtN(DN), ty (D) ZtH(D/)—FtH(DH)

implies that the admissibility is equivalent to that

(i) tu (D) = tn (D),
(ii) tg (D") > tn(D"), for any quotient object D” of D in MFg (¢, N).

Proposition 8.41. The category MFﬂd(gp,N) is an abelian category. More
precisely, if D1 and Dy are two objects of MF‘}?(Q@,N) andn: Dy — Ds is a
morphism, then

(1) The kernel Kern = {x € Dy | n(x) = 0}, with the obvious (¢, N)-
module structure over Ko and with the filtration given by Fil’ Ker NK =
Kerng ﬂFili D1k for ng : Dix — Dok and Kerng = K Q, Kern, is
an admissible filtered (o, N)-module.

(2) The cokernel Cokern = Dy /n(D1), with the induced (p, N)-module struc-
ture over Ko and with the filtration given by Fil* Coker ng = Im(Fil" Dok )
for Cokerng = K ®g, Cokern, is an admissible filtered (o, N)-module.

(3) Im(n) = Colm(n).

Proof. We first prove (3) assuming Im(n) and Colm(n) are admissible. Since
Im(n) and Colm(n) are isomorphic in the abelian category of (¢, N)-modules,
and since 7k is strictly compatible with the filtrations, Im(n) = Colm(n) in
MF (¢, N).

To show (1), it suffices to show that tgy(Kern) = tp(Kern). We have
ty(Kern) < tp(Kern) as Kern is a sub-object of Dy, we also have ty(Imn) <
tp(Imn) as Imn = Colmyn is a sub-object of Dy, by the exact sequence of
filtered (¢, N)-modules

0— Kern — Dy — Imn — 0,
we have
tg(Dy) =tg(Kern) +tg(Imn) < tp(Kern) +tp(Imn) = tp(Dq).
As tg(Dy) = tp(D1), we must have
ty(Kern) =tp(Kern), tyg(Imn)=tp(Imn)

and Ker 7 is admissible.
The proof of (2) is similar to (1) and we omit it here.
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Remark 8.42. (a) If D is an object of the category MF4% (¢, N), then a
sub-object D’ in MF4(p, N) is a sub-object in MF g (@, N) satisfying
ty (D) = tn(D'), which is isomorphic to Ker (n : D — D) for another
admissible filtered (¢, N)-module Ds.

(b) The category MF$ (¢, N) is Artinian: an object of this category is simple
if and only if it is not 0 and if D’ is a sub Kp-vector space of D stable
under (p, N) and such that D’ # 0, D’ # D, then ¢ty (D) < ty(D’).

We give an alternative description of the admissibility condition. Let D
be a filtered (¢, N)-module over K. We associate two convex polygons: the
Newton polygon Py (D) and the Hodge polygon Py (D) whose origins are both
(0,0) in the usual Cartesian plane.

Definition 8.43. For a @-module D over Ko, suppose D = @ D, where
=1
0 # D, is the part of D of slope aj € Q and oy < ag < ---ay,. The

Newton polygon Py (D) of D is the convex polygon with break points (0,0)
and (vi + -+ +vj, 0101 + -+ + azv;) for 1 < j < m where v; = dimg, Do, .
Thus the end point of Py (D) is just (dim D,ty(D)).

(dim D, tx (D))

V1 v1 + v2
1 1

(0,0)

Q
(o]

Fig. 8.1. The Newton Polygon Py (D)

As adimg, D, € Z, the break points of Py (D) have integer coordinates.

Definition 8.44. For A € Filg, suppose gr A = @), grii A with iy < --- <
im and gr' A a nonzero K -vector space of dimension h;. The Hodge polygon
Py (A) of A is the convex polygon with break points (0,0) and (hy + --- +
hj,ithy + -+ +i;h;) for 1 < j < m. Thus the end point of Py (A) is just
(dim Aty (A4)).
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(dim A, tr(A))

hi h1 —h ho

(0,0)

i2

Fig. 8.2. The Hodge Polygon Py (A)

Clearly the brak points of Py (A) have integer coordinates.

For a filtered (p, N)-module D, we let Py(D) be the Newton polygon
of D regarded as ¢g-module, and let Py(D) = Py(Dg). The definition of
admissibility can be rephrased in terms of the Newton and Hodge polygons:

Proposition 8.45. Let D be a filtered (¢, N)-module over K such that
dimg, D is finite and @ is bijective on D. Then D is admissible if and only if
the following two conditions are satisfied:

(1) For any sub-object D' in MF (¢, N), tg(D’) < tn(D').
(2) Py (D) and Py(D) end up at the same point.

8.3 Statement of Theorem A and Theorem B

8.3.1 de Rham implies potentially semi-stable.

Let B be a Qp-algebra on which Gk acts. Let K’ be a finite extension of
K contained in K. Assume the condition

(H) B is (Qp, Gg)-regular for any K’
holds.

Definition 8.46. Let V' be a p-adic representation of Gi. V is called poten-
tially B-admissible if there exists a finite extension K' of K contained in K
such that V is B-admissible as a representation of Gy, i.e.

B®pe, (B®g, V)°< — B®g, V
s an isomorphism, or equivalently,

dim o, (B ®g, V)“x" = dimg, V.
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It is easy to check that if K C K’ C K" is a tower of finite extensions of
K contained in K, then the map

BGK// ®BGK/ (B ®Qp V)GKN N (B ®@p V)GK/

is always injective. Therefore, if V' is admissible as a representation of G,
then it is also admissible as a representation of G k.

Remark 8.47. The condition (H) is satisfied by B = K, C, Byr, Bar, Bs-
The reason is that K is also an algebraic closure of any finite extension K’ of
K contained in K, and consequently the associated K, C, Byr, Bgr, By for
K’ are the same one for K.

For B = K, C, By, and Bgg, then B is a K-algebra. Moreover, BEx’ =
K. In this case, assume V is a p-adic representation of G which is potentially
B-admissible. Then there exists K’, a finite Galois extension of K contained

in K, such that V is B-admissible as a G g/-representation.
Let J = Gal(K'/K), h = dimg, (V'), then

A= (B®g, V)

is a K’'-vector space, and dimg: A = h. Moreover, J acts semi-linearly on A,
and
(B®g, V)9 = A7

By Hilbert Theorem 90, A is a trivial representation, thus K/ @ x A7 — A is
an isomorphism, i.e.

dimg A7 = dimg: A = dimg, V,
and hence V is B-admissible. We have the following proposition:

Proposition 8.48. Let B = K, C, Byy or Bgr. Then potentially B-
admissible is equivalent to B-admissible.

However, the analogy is not true for B = By.

Definition 8.49. (i) A p-adic representation of G is called K'-semi-stable
if it is semi-stable as a G -representation.

(ii) A p-adic representation of Gk is called potentially semi-stable if it is
K'-semi-stable for a suitable K', or equivalently, it is potentially Bg-
admissible.

Let V be a potentially semi-stable p-adic representation of G, then V
is de Rham as a representation of Gk for some finite extension K’ of K.
Therefore V is de Rham as a representation of G by Proposition 8.48.

The converse is also true.
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Theorem A. A de Rham representation of Gi is always potentially semi-
stable.

Remark 8.50. Theorem A was known as the p-adic Monodromy Conjecture.
The first proof was given by Berger ([Ber02]) in 2002. He used the theory of
(p, I')-modules to reduce the proof to a conjecture by Crew in p-adic differ-
ential equations. Crew Conjecture has three different proofs given by André
([And02a]), Mebkhout([Meb02]), and Kedlaya([Ked04]) respectively.

Remark 8.51. Assume V is a de Rham representation of Gx of dimension h,
and let A = Dgr(V). Then there exists a natural isomorphism

Bar ®x A = Bgr ®q, V.

Let {v1,--- ,vp} be a basis of V over Q,, and {01,--- ,dx} a basis of A over
K. We identify v; with 1 ® v;, and §; with 1 ® §;, for 4 = 1,--- ,h. Then
{v1,--- ,on} and {61, -+ ,0n} are both bases of Bqr ®x A = Byr ®q, V' over
BdR- Thus

h
(5j = Zbijvi with (b”) € GLh(BdR).
i=1
Since the natural map K'® k) Bst — Bar is injective, Theorem A is equivalent

to the claim that there exists a finite extension K’ of K contained in K such
that (bi;) € GLu(K' ®k; Bst).

8.3.2 Weakly admissible implies admissible.

Let V be any p-adic representation of G'x and consider Dy (V') = (Bs ®q,
V)¢5, We know that Dy (V) is a filtered (o, N)-module over K such that
dimg, Dgt (V) < 0o and ¢ is bijective on Dg(V'), and

Dst : Repr (GK) — MFK(SO7 N)

is a covariant additive Q,-linear functor.

On the other hand, let D be a filtered (¢, N)-module over K. We can give
Bgt ® D the filtered (¢, N)-module structure, where the tensor product is in
the category of filtered (¢, N)-modules:

Bst®D:Bst®K0 D>
p(b®d) = pb® @d,
N(b®d) = Nb®d+be Nd,

and K ®, (Bst ® D) is equipped with the induced filtration from Bgg ® xk Dk
by the inclusion

K ®k, (Bst ® D) = (K ®k, Bst) ®x Dx C Bar @k Dk



214 8 Byt and semi-stable representations
We identify B ® D with its image in K ®g, (Bst ® D) by  — 1 ® x and set
Fil'(By, ® D) = Fil'(K @, (Bt ® D)) N (By ® D).
The group Gk acts on By ® D by
gb®d) =g(b)®d,
which commutes with ¢ and N and is compatible with the filtration.

Definition 8.52. For a filtered (¢, N)-module D over K, set

V(D) :={v € B4 ® D | pv = v, Nv = 0,v € Fil’(By, ® D)}
={veByw®D|pv=0v,Nv=0,1®v € Fil"(K ®, (Bs ® D))}.

Then Vg, (D) is a sub Qp-vector space of By, ® D, stable under Gg.

Theorem B. (1) If V is a semi-stable p-adic representation of Gk, then
D (V) is an admissible filtered (o, N')-module over K.

(2) If D is an admissible filtered (@, N)-module over K, then V(D) is a
semi-stable p-adic representation of Gk .

(3) The functor D : Repap(GK) — MF%(p,N) is an equivalence of
categories and Vg : MF (o, N) — Reprfp (Gk) is a quasi-inverse of
Dy:. Moreover, they are compatible with tensor product, dual, etc.

Remark 8.53. Repap (Gk) is a sub-Tannakian category of Repg (Gk), and
as an exercise, it’s easy to check that

- Dst(vl & VQ) = Dst(vl) & Dst(V2);
- Dst(v*) = Dst<v)*7
- Dst(@p) = KO'

Therefore by Theorem B, MF‘I‘(d(go,N ) is stable under tensor product and
dual.
On the other hand, without assuming Theorem B.

(a) One can prove directly that if Dy, Dy are admissible filtered (¢, N)-
modules, then Dy ® Dy is again admissible. But the proof is far from
trivial. The first proof is given by Faltings [Fal94] for the case N = 0 on
D; and Ds. Later on, Totaro [Tot96] proved the general case.

(b) Tt is easy to check directly that if D is an admissible filtered (¢, N)-module,
then D* is also admissible.

The proof of Theorem B splits into two parts: Proposition B1 and Propo-
sition B2.

Proposition B1. If V is a semi-stable p-adic representation of G, then
D (V) is admissible and there is a natural (functorial in a natural way)
isomorphism

V = Vi (D (V).
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Exercise 8.54. If Proposition B1 holds, then
D, : Rep} (Gx) — MF§(p, N)
is an exact and fully faithful functor. It induces an equivalence
D, : Repf (Gx) — MFjc(p,N)

where MF (¢, N) is the essential image of Dy, i.e, for D a filtered (¢, N)-
module inside it, there exists a semi-stable p-adic representation V' such that
D 2 Dg(V), and

Vi : MFi (¢, N) — Repj (Gk)
is a quasi-inverse functor.

Proposition B2. For any object D of MF$(p, N), there exists an object V
of Repap(GK) such that Dy (V) = D.

Remark 8.55. The first proof of Proposition B2 is given by Colmez and
Fontaine ([CF00]) in 2000. It was known as the weakly admissible implies
admissible conjecture. In the old terminology, weakly admissible means ad-
missible in this book, and admissible means ? as in Exercise 8.54.

Finally we give some complements about Theorem A and Theorem B.

Assume V is a de Rham p-adic representation of G of dimension h. By
Theorem A, it is K’-semi-stable for some finite Galois extension K’ of K.

Let J = Gal(K'/K). Let K| = Frac(W(k')), where k' is the residue field
of K'. Let I(K'/K) be the inertia subgroup of J, then J acts on K, through
the isomorphism Gal(K(/Ky) = J/I(K'/K)

By Theorem B, then

D' =Dy i (V) = (Bo @g, V)
is an admissible filtered (¢, N)-module over K’ of dimension h, and
Dar,x/ (V) = (Bar ®q, V)% 2 K' @, D'.
The group J acts on D' = Dy g+ (V') semi-linearly with respect to the action
of Jon Kj:if 7 € J, A € Kj and § € D', then 7(\0) = 7(A\)7(d). Then
J = Gk /Gk acts naturally on (Bqr®q, V)%x’ on one hand, and on K/®K6 D'

by T(A®d) = 7(A\) @ 7(d') for A € K’ and d' € D’. These two actions are
equivalent, inducing the isomorphism

Dyr(V) = (Dar, (V)7 = (K’ QK D'y’

We identify Dar (V) and (K’ ®g; D')” by this isomorphism.
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Definition 8.56. A filtered (p, N, Gal(K'/K))-module over K is a finite di-
mensional K{)-vector space D' equipped with actions of (¢, N, Gal(K'/K)) and
a structure of filtered K-vector spaces on (K' ®@p; D) Gal(K'/K),

We get an equivalence of categories between K'-semi-stable p-adic repre-
sentations of G and the category of admissible filtered (p, N, Gal(K'/K))-
modules over K.

By passage to the limit over K’ and using Theorem A, we get

Theorem 8.57. There is an equivalence of categories between de Rham rep-
resentations of Gx and admissible filtered (¢, N, Gx)-modules over K.

This is an analogy result for potentially semi-stable p-adic representations
to Theorem 2.30 in Chapter 2 for potentially semi-stable ¢-adic representa-
tions.
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Proof of Theorem A and Theorem B

This chapter is devoted to the proof of Theorem A and Theorem B.

9.1 Certain General Facts

9.1.1 Unramified representations and modules with trivial
filtration.

Definition 9.1. A filtered K-vector space A is said to have trivial filtration

if
Fil® A = A and Fil' A = 0.

We claim that

Lemma 9.2. A filtered (¢, N)-module D over K with trivial filtration is ad-
missible if and only if D is pure of slope 0. In this case N = 0.

Proof. If the filtration on Dk is trivial, then the Hodge polygon Py (D) is a
straight line from (0,0) to (h,0). In particular, ¢z (D’") = 0 for any sub-object
D’ of D.

Assume that D is admissible. Then tx(D’) > 0 for any sub-object D, in
particular all slopes of D are > 0. But t5(D) = 0, hence D must be pure of
slope 0. Since Ny = ppN, we have N(D,) C D,_1, in this case then N = 0.

Conversely, assume that D is pure of slope 0. Then for any sub-object
D’ of D, D’ is also pure of slope 0, hence ty(D') = tn(D') = 0 and D is
admissible.

If V is an unramified representation of G of dimension h, by Theo-
rem 3.35, we know

D =D(V) = (Py®q, V) = (Py ®q, V)"
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is an étale p-modules over Ky of dimension h, hence a p-module pure of slope
0, and
Py®q, V =Py ®k, D.

The inclusion Py C B;is C Byt implies that V is crystalline and semi-stable,
and Dgis(V) = Dg (V) = D. Hence N = 0 on D. Since Py C Bctis -
Bix\ Fil' B, D is also of trivial filtration. Hence D = D(V) is an admissible
filtered (¢, N)-module of dimension h with trivial filtration.

On the other hand, suppose D is an admissible filtered (¢, N)-module of
dimension h with trivial filtration. Then D is pure of slope 0 and N = 0,

hence D is an étale p-module over K. Again by Theorem 3.35,
V=V(D) = (P ®k, D)p=1

is a p-adic representation of Gy of dimension h, hence a unramified p-adic
representation of Gg of dimension h, and

D=D(V) = (P ®q, V)% = (P, @q, V)¥.
By the identification Py ®q, V = Iy ®k, D, we have

FﬂO(BdR ®K D) :B(;FR Rk, D = BIR ®p, (Po ®r, D)
=Bir @r, (P ®q, V) = Big @q, V;

and

(Bst @Ko D)p=1,N=0 = (Bst ®q, V)p=1,n=0 = Be ®q, V,
hence

V(D) = (B ®g, V) N (B ®g, V) = V.
In conclusion, we have the following result:

Proposition 9.3. Every unramified p-adic representation of G is crystalline
and Dg; induces an equivalence of categories between Rep&; (Gk), the cat-
egory of unramified p-adic representations of Gk (equivalently Repg, (Gk))

and the category of admissible filtered (¢, N)-modules with trivial filtration
(equivalently, of étale p-modules over Kj).

9.1.2 Change of filtrations and residue fields.

Recall for V' a p-adic representation and i € Z, the Tate twist V(i) is the
representation V(i) = V ®q, Q,(4). For filtered (y, N)-modules, we can also
define the Tate twists.

Definition 9.4. Suppose D is a filtered (@, N)-module. For i € Z, the i-th
Tate twist D (i) of D is the following filtered (@, N)-module:

(i) D(i) = D as Ky-vector spaces,
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(ii) Fil"(D(i)) x = Fil"™* Dy forr € Z;
(iii) the - and N-actions are given by

Nlpuy = Nlp, ¢lpu =p "¢lp. (9.1)

Lemma 9.5. (1) A p-adic representation V of Gk is de Rham (resp. semi-
stable, crystalline) if and only if any Tate twist V(i) is de Rham (resp.
semi-stable, crystalline).

(2) A filtered (¢, N)-module D is admissible if and only if any Tate twist D (i)
is admissible.

(3) Fori € Z, Dgt(V (i) — Dy (V) (i).

Proof. (1) and (2) are clear. We only prove (3).

For D = Dg(V) = (Bg ®g, V)95 and D' = Dy(V(i)) = (Bs ®q,
V(i))9x, let t be a generator of Z,(1), then t' is a generator of Q,(i) and
V(i) = {v®t | v € V}. Then the isomorphism D{(i) — D’ is given by

A= by@v,—d = byt '@, ®t") = (" @t')d
where b,, € By, v, € V.

In many occasions, the study of representations would be easier if the
residue field £ is algebraically closed. Recall I is the inertia subgroup of Gk
and the sequence

1— Ik -G — G — 1

is exact.

Proposition 9.6. (1) V is de Rham as a representation of G if and only if
V' is de Rham as a representation of I .

(2) V' is semi-stable as a p-adic representation of Gy if and only if it is
semi-stable as a p-adic representation of Iy .

Proof. (1) Let P be an algebraic closure of P = PyK = K™ inside of C. Then
P C B(TR and IK = Gal(P/P) Note that BdR(P/P) = BdR(K/K) = BdRa
then BIX = P.
If V is a p-adic representation of G,
DdR’p(V) = (BdR ®Qp V)IK
is a P-vector space with

dimp Ddep(V) g dime V,

and V is a de Rham representation of [k if and only if the equality holds.
Note that Dar p(V) is a P-semilinear representation of G and moreover, it
is trivial, since

P ®k (Dar,p(V))“* — Dar,p(V)
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is an isomorphism by Proposition 3.32. However
(Dar.p(V))“* = Dar(V) = (Bar ®q, V),

we have (1).
(2) For Dy p(V) = (By ®q, V)%, since B = Py, Dy p(V) is a Py-
semilinear representation of Gy, again by Proposition 3.32,

Py @k, (Dse,p(V))* — Dy p(V)
is an isomorphism, and Dy (V) = (Dg, p(V))".
Proposition 9.7. Let V' be a p-adic representation of G, associated with
p:Gg — Autg, (V).

Assume p(Ik) is finite, then

(1) V is potentially crystalline (potentially semi-stable) and hence de Rham.
(2) The following three conditions are equivalent:

(a) V is semi-stable.

(b) V is crystalline.

(c) p(Ik) is trivial, i.e., V is unramified.

Proof. Because of Proposition 9.6, we may assume k = k, equivalently K = P,
or IK = GK.

(2) = (1) is obvious. (¢) = (b) is by Proposition 9.3. The only thing left
to prove is: (a) V is semi-stable = (¢) p(Ix) is trivial.

Let H = Ker p be an open normal subgroup of Ik, then K" = Lis a finite
Galois extension of K. Write J = Gx/H. Then

Dy (V) =(By ®q, V)% = ((Bs ®g, V)")’
=(BY ®g, V)’ = (Ko ®q, V)’ = Ko g, V’

since Bsbt[ = Lo = Ky. Therefore
V is semi-stable < dimg, D (V) = dimg, V*/ = dimg, V < V' =V,

which means that p(Ix) is trivial.

9.1.3 Admissible filtered (¢, N)-modules of dimension 1.

Let D be a filtered (¢, N)-module of dimension 1 over Ky. Write D = Kd.
Then ¢(d) = Ad for some A € K and N must be zero since N is nilpotent.
Thus ty (D) = vp(N).

Since Dg = D ®k, K = Kd is 1-dimensional over K, there exists i € Z
such that
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D fi <1
Fil' D = 4 % Fr =
0, for r > 1.

Then ty (D) = i. Therefore D is admissible if and only if v,(X) = i.
Conversely, suppose A € K, we can associate to it an admissible filtered
(¢, N)-module D) of dimension 1 given by

Dk, ifr <w,(N),

0, if 7> vp(N). (9.2)

Dy =Ky, ¢ =\o, N =0, Fil’"DK—{

Theorem 9.8. Any admissible (¢, N)-module over K of dimension 1 is of the
form Dy for some X\ € K. Moreover,

(1) Dy = Dy if and only if there exists u € W such that N = X - #
(2) In the special case that K = Ko = Q, and o =1d, Dy = Dy if and only
A=\,

Proof. (1) and (2) are easy exercises.

9.1.4 Representations of dimension 1.

Let V' be a p-adic representation of Gk of dimension 1. Write V' = Qpv,
then g(v) = n(g)v where

n:Gr — Q)
is a character (i.e. a continuous group homomorphism). Moreover, we can
make 7 factors through Z.
Definition 9.9. n is called B-admissible if V' is B-admissible.
By definition, we have

(i) n is C-admissible if and only if n is P-admissible, or if and only if n(If)
is finite (see Proposition 4.44).
(ii) Recall
Dy (V) = @(O(_Z) ®Q, V)GK-
i€z
Then V (and 7) is Hodge-Tate if and only if there exists a unique i € Z
such that (C(—i) ®g, V)“% # 0. Because

(C(=i) ®g, V)9 = (C ®q, V(=i))°¥,

the Hodge-Tate condition is also equivalent to that V' (—4) is C-admissible.
By Sen’s Theorem (Corollary 4.45), this is equivalent to that ny ~*(Ix) is
finite where y is the cyclotomic character. In this case we write 7 = nox’.

Proposition 9.10. Suppose 1 : Gx — Z, is a continuous homomorphism.
Then
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(1) n is Hodge-Tate if and only if n is of the form n = nox’ where i € Z and
no(Ix) is finite.
(2) n is de Rham if and only if n is Hodge-Tate.
(3) The followings are equivalent:
(a) n is semi-stable.
(b) n is crystalline.
(c) There exist g : Gk — Z, which is unramified and i € Z such that

n=mnox".

Proof. We have proved (1). As for (2), V' is de Rham implies that V' is Hodge-
Tate, n is de Rham implies that n is Hodge-Tate, therefore the condition is
necessary. On the other hand, if 7 is Hodge-Tate, V (—i) is P-admissible and
hence de Rham, so V = V(—i)(7) is also de Rham.

(3) follows from Proposition 9.7.

Theorem 9.11. The functor Dy gives a bijection of crystalline (equivalently
semi-stable) representations of Gi of dimension 1 with admissible filtered
(¢, N)-modules over Ky of dimension 1.

Proof. If V is crystalline of dimension 1, then V' = V(i) with ¢ € Z and V}
unramified by Proposition 9.10, hence Dy (V) = Dg(Vp)(¢) is an admissible
filtered (¢, N)-module over Ky of dimension 1.

On the other hand, if D is an admissible filtered (, N)-module over K of
dimension 1. Suppoose Fil' Dg = Dy and Fil'™ Dy = 0. Then D(i) is with
trivial filtration and Vo = Vg (D(i)) is unramified. Hence Vo(—i) = V(D) is
crystalline.

The following special case is extremely useful:

Lemma 9.12. If b € B.,is satisfies pb = Ab with A € Ky and v,(A\) =r, and
if b is also in Fil"™" Byg, then b= 0.

Proof. Let D = Kye be the one-dimensional filtered (¢, N)-module with pe =
%e, Ne =0, and
; K if § < —
Fill Dg =4 0 ="
0, if i > —r.

Then ty(D) =ty (D) = —r and D is admissible. Then D(—r) is admissible
with trivial filtration. Thus V(D) = Vg (D(—=r))(r) is a crystalline repre-
sentation of dimension 1. Then V(D) = Qpbo ® e for any pby = Abg, by # 0.
Thus by € Fil” Bqr but ¢ Fil"*" Byg.

9.1.5 Admissible filtered (¢, N)-modules of dimension 2.

Let D be a filtered (¢, N)-module of dimg, D = 2. Then there exists a
unique ¢ € Z such that
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Fil' D = Dy, Fil'™ Dy # D.
Replacing D by D(i), we may assume that ¢ = 0. There are two cases.

Case 1: Fil' Dg = 0. This means that the filtration is trivial. This case has
already been discussed this case in § 9.1.1.

Case 2: Fil' Dk # 0. Then Fil'! D = £ is a 1-dimensional sub K-vector
space of Dy . Hence there exists a unique r > 1 such that

DK7 1f.7§07
Fi Dx =4 ¢ if1<j<r,.
0, if j>r

So the Hodge polygon Py (D) is as Fig. 9.1.

(2,7)

Fig. 9.1.

Consider the special case K = Q,. Then Ky = Q,, D = Dk, 0 =1d and
¢ is bilinear. Let P,(X) be the characteristic polynomial of ¢ acting on D.
Then
P(X)=X?>+aX +b= (X —\)(X - o)

for some a, b € Q,, A1, A2 € Q. If v,(\1) # vp(\2), then P,(X) is reducible
over Q, and A, A2 € Qp.

We may assume vp(A1) < vp(A2). Then Py (D) is as Fig. 9.2

The admissibility condition implies that

vp(A1) > 0 and vy (A1) + vp(Ae) =7 (9.3)
We have the following two cases to consider:

Case 2A: N # 0. Recall that N(D,) C D4—1. Then
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(2,vp(M1) + vp(A2))

Fig. 9.2.

vp(A2) = vp(A1) + 1 # vp(A1).

In particular A1, A2 € Q. Let vp(A1) =m. Then m > 0 and r = 2m + 1.
Assume e, is an eigenvector for As, i.e.

@(62) = )\262.

Let e; = N(ez), which is not zero as N # 0. Applying Ny = ppN to e3, one
can see that e; is an eigenvector of the eigenvalue Ao /p of ¢, thus Ao = p);.
Therefore

D= Qpel D Qp627 )\1 S Zp - {0}

with

p(e1) = Areq, N(e) =0,
p(e2) = pAiea, N(ez) = e.

Now the remaining question is: what is £? To answer this question, we
have to check the admissibility conditions, i.e.

- tu(D) =ty (D);
- tg(D'") < tn(D') for any sub-object D’ of D.

The only non-trivial sub-object is D’ = Qpe;. We have

if L.=D"
tn(DY=m<r, tgD)=4" " o
0, otherwise.

The admissibility condition implies that tg(D’) = 0, i.e. £ can be any line
# D'. Therefore there exists a unique o € Q, such that £ = Q,(ez + aey).

Conversely, given A1 € Z, — {0}, € Q,, we can associate a 2-dimensional
filtered (¢, N)-module Dyy, o3 of @, to the pair (A, ), where
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D{)\l,a} = Qpel 2] Qpe2 (94)
with
p(e1) = Aieq, N(e) =0,
p(e2) = pAiea, N(ez) = e.
Dy, a) if j <0,
Fil/ Dpy, 0y = { Qulea +aer), if 1<5 < 20,(M\) +1,
0, otherwise.

Exercise 9.13. D{y, o} = D) oy if and only if A\; = A} and a = o,
To conclude, we have

Theorem 9.14. The map
(i, )\1, a) — D{/\l,a} <Z>

from Z x (Z, — {0}) x Q, to the set of isomorphism classes of 2-dimensional
admissible filtered (¢, N)-modules over Q, with N # 0 is a bijection.

Remark 9.15. We claim that Dyy, 3 is irreducible if and only if v, (A1) > 0.
Indeed, Dy, o} is not irreducible if and only if there exists a nontrivial
subobject of it in the category of admissible filtered (¢, N)-modules. We have
only one candidate: D' = Qpe;. And D’ is admissible if and only if ¢ty (D) =
tn(D'). Note that the former number is 0 and the latter one is v,(A1).

Case 2B: N = 0. By the admissibility condition, we need to check that
for all lines D’ of D stable under ¢, tg(D’) < ty(D’). By the filtration of D,

the following holds:
0, ifD #L
tH (D/) — ) T # )
r, if D' =L.
Again there are two cases.

(a) If the polynomial P,(X) = X? 4 aX + b is irreducible on Q,[X].
Then there is no non-trivial sub-object of D. Let £ = Qpeq, ¢(e1) = ez, then
p(ez) = —bey —aez and D = Qpe1 & Qe is always admissible and irreducible,
isomorphic to D, in the following exercise.

Exercise 9.16. Let a, b € Z, with r = v,(b) > 0 such that X? + aX + b is
irreducible over Q. Set
Da,b = Qpel D Qpez (95)

with

@(61) = €2, N =0,
p(e2) = —bey — aeq,
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Da,ba lf.j S 01
Fil! Doy = { Qper, if1<j <,
0, otherwise.

Then D, is admissible and irreducible.

(b) If the polynomial P,(X) = X?+aX +b = (x—\1)(x— \2) is reducible
on Q,[X], suppose v,(A1) < vp(A2), ¥ = vp(A1) +vp(A2). Let e1 and eg be the
eigenvectors of A\; and Ay respectively. Then D = Qpe; ® Qpe2 and Qpe; and
Qpe2 are the only two non-trivial sub-objects of D. Suppose D is not a direct
sum of two admissible (¢, N)-modules. Check the admissibility condition, then
L is neither Qpe; or Qpez. By scaling e; and ep appropriately, we can assume
L = Qp(e1+e2). Then D is isomorphic to Di\l)q in the following easy exercise.

Exercise 9.17. Let A1, Ay € Z, — {0}, A1 # A2, and v,(A1) < vp(A2). Let
T =vp(A1) + vp(A2). Set

Dg\l,,\Q = Qpel @ Qp€2

with
=
90(61) 1€1, N = O,
p(e2) = Azez,
. D’AM\27 if 7 <0,
Fil’ Df\h)\2 =¢Qpler+ez), if1<j<r,
0, otherwise.

Then D} ,, is admissible. Moreover, it is irreducible if and only if v,(A1) > 0.
To conclude, we have

Theorem 9.18. Suppose D is an admissible filtered (¢, N)-module over Q,
of dimension 2 with N = 0 such that Fil® D = D, and Fil' D ¢ {D,0}. If
D is not a direct sum of two admissible (p, N)-modules of dimension 1, then
either D = Dy, for a uniquely determined (a,b), or D = D)\ for a uniquely
determined (A1, A2).

9.2 Reduction of Theorem B and outline of the proof

9.2.1 Proof of Proposition B1
We shall prove

Proposition B1. If V is a semi-stable p-adic representation of G, then
D (V) is admissible and there is a natural (functorial in a natural way)
isomorphism

V — Vg (Dgt (V).
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Proof. Let V be a semi-stable p-adic representation of G of dimension h.
Let D = D (V). Our proof is divided into two steps.

I. Construction of the natural isomorphism V = V(D):

The natural map
(7T Bst ®Ko D — Bst ®Qp Vv

as defined in § 8.1.2 is an isomorphism. We identify them and call them X.

Let {v1,--- ,vp} be a basis of V over Q, and {d1,---,d5} be a basis of D
over Ky respectively. Identify v; with 1®wv; and §; with 1®4d;, then {vy, -+ ,vn}
and {01, -+, 0} are two bases of X over Bg.

An element of X can be written as a sum of the form b® § where b € B,
6 € D and also a sum of the form ¢ ® v, where ¢ € By, v € V. The actions of
Gk, ¢, and N on X are listed below:

Gr-action:  g(b® d) = g(b) ® 4, glc®v=yg(c)® 9( )

p-action:  @(b®d) = (b) ® p(d), plc®v) =¢(c) ®

N-action: NO®J§)=Nb)®5+bN(), N(c®v)=DN()Qu.
We also know that X is endowed with a filtration. By the map z — 1 ® x,
one has the inclusion

X C X4qr = Bar Q@ By, X = Bgr ®k Dk = Bar Xq, V.
Then the filtration of X is induced by
Fil' Xqr = Fil’ Bar ®q, V = Z Fil" Bqr @k Fil® Dk.
r+s=1
Recall the definition of Vg in Definition 8.52:
V(D) ={z € X | p(z) = 2, N(z) = 0,z € Fil" X'}
={z e X | )=z N(x) =0,z cFil’ X4r}.

Note that V' C X satisfies the conditions in the right hand side. We only need
to check that V(D) =V.

h
Write z = Y b, ® v, € Vg (D), where b,, € Bg.
n=1
h
(a) First N(z) =0,1ie. Y, N(b,)®vy, =0, then N(b,) =0forall1 <n <h,
n=1

which implies that b,, € B, for all n.

(b) Secondly, the condition ¢(z) = x means

h

h
Z ®'Un—zb & V.

n=1

Then ¢(b,) = by, which implies that b, € B, for all 1 <n < h.
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(¢) The condition = € Fil° X4g implies that b, € Fil® Bygg = Bj for all
1<n<h.

Applying the fundamental exact sequence (7.27)

0 — Qp — B — Bar/Biz — 0,
we have that b, € Q,. Therefore x € V, which implies that V' = V(D).
II. Admissibility of D.

Let D’ be a sub Ky-vector space of D stable under ¢ and N. It suffices to
prove

ty(D") < tn(D). (9.6)

(1) Assume first that dimg, D’ = 1. Let {v1,--- , v} be a basis of V over
Qp. Write D’ = K0, then

5=\,  \e K[

Thus
tn(D') =v,(A\) =r and N§ =0.

h
Write § = Y b; ® v;. Then

=1

h h
pd = ngbﬂ@vi and N§ = ZNbi(X)Ui,
i=1 i=1
so pb; = Ab; and Nb; = 0 for all 1 <4 < h, which implies that b; € Beyis.
Assume ty(D') = s. Then & € Fil*(Bar ®g, V) but ¢ Fil*™' (Bar ®g, V).
The filtration
Fil® (BdR ®Qp V) = Fil® Bgr ®Qp 14
implies that b; € Fil® Bqr for all i. Pick any nonzero b;, then Lemma 9.12
implies that s < r.
Furthermore, we see that if D = D’ is of dimension 1, then t (D) = ¢ (D).

(2) General case. Let dimg, D' = m. We want to prove ¢ty (D") < ty (D),
and the inequality becomes an equality if m = h.

Let V4 = A™V, which is a quotient of V ®---®V (m copies). The tensor
product is a semi-stable representation, so V; is also semi-stable. Then

Dy (V1) = /\ D, (V) = . D.
Now A" D' € A" D is a subobject of dimension 1, and

tH(/\m D' =ty(D"), tN(/\m D) = tx(D),

the general case is reduced to the one dimensional case.
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9.2.2 Reduction of Proposition B2.

Lemma 9.19. Let F be a field. Let J be a subgroup of the group of auto-
morphisms of F and E = F”. Let A be a finite dimensional E-vector space,
and

A = F Qg A.

J acts on Ap through
JA®0) =N ®6, ifjeJ, NeF, 6 €A.

By the map 6 — 1 ® 6, we identify A with 1 @ A = (Ap)”. Let L be a sub
F-vector space of Ar. Then there exists A, a sub E-vector space of A such
that L = F Qg A’ if and only if g(L) = L for all g € J, i.e., L is stable under
the action of J.

Proof. The only if part is trivial. If L is stable under the action of J, then we
have an exact sequence of F-vector spaces with J-action

0—L—Ap — Ap/L — 0,
Taking the J-invariants, we have an exact sequence of E-vector spaces
0— L) — A— (Ap/L)’.
Then
dimp A = dimp Ap = dimp L + dimp(Ap/J) < dimg L7 + dimg(Ap/L)7,

but
dimg L7 < dimp L, dimg(Ar/L)’ < (Ap/J),

we must have dimg LY = dimp L and A’ = L7 satisfies L = F @ A'.

Proposition 9.20. Let D be an admissible filtered (¢, N)-module over K of
dimension h > 1. Let V = V(D). Then dimg, V < h, V is semi-stable and
Ds (V) C D is a subobject.

Remark 9.21. The above proposition implies that, if D is admissible, the fol-
lowing conditions are equivalent:

(a) D = D (V) where V is some semi-stable p-adic representation.

(c) dimg, V(D) = h.

Proof. We may assume V # 0. Apply the above Lemma to the case
A=D, F=Cy=FracBy,J = Gk, E = C{* = K,,

Then
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Ap =Cs ®ky D D By @k, D D V.

Let L be the sub-Cg;-vector space of Cgy @k, D generated by V. The actions
of p and N on By extend to Cy, thus L is stable under ¢, N and G g-actions.
By the lemma, there exists a sub Ky-vector space D’ of D such that

L = Cst ®K0 D/.

The fact that L is stable by ¢ and N implies that D’ is also stable by ¢ and
N.

Choose a basis {v1,---,v.} of L over Cy consisting of elements of V.
Choose a basis {dy,--- ,d.} of D’ over Ky, which is also a basis of L over Cj;.
Since V' C By ®k, D,

Vi = Zbijdj, bij € Bgt.

J=1

By the inclusion By ®k, D' C By ®k, D, we have

/\;St (Bt ®k, D) C /\;St(Bst ®K, D),
equivalently,
By O, /\;O D' C By ®k, /\:(o D.
Let b = det(b;;) € Bg. Let
vo=v1 AU A~ Av., do=dy Nda A ---ANd,,

then dy is a basis of /\;(0 D', and vg = bdy hence b # 0. Since N = 0 in
Nk, D', b € Beris. Suppose ¢(do) = Ado, then ty (A, D) = vp(A) = 7.
Now since ¢(b) = A7'b, by Lemma 9.12, b € Fil™® Bgr for —s < —r. Then
do = b~y € Fil® Byg for some s > r. Thus

tu(\ D) =tn(\ D).
The admissibility condition tz(D’) < tx(D’) then implies ty (A" D') =
ty(A" D), thus A" D’ is an admissible filtered (p, N)-module of dimen-

sion 1, and V(A" D’) is a crystalline representation of dimension 1. Since
v; € Vg (D') and hence vy € Vg (A" D’), we have

Va(\ D) = Qyuo.

T
For any v € Vg (D') =V, write v = Y, ¢;v; with ¢; € Cy, 1 < i < r, then
i=1

T r /
’U1/\'~~/\1)¢_1/\’()/\U¢+1/\"'/\1}T:Ci’UoE/\QVCVSt(/\ D):@pvo,
P
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therefore ¢; € Q,. Thus V as a Q,-vector space is generated by {v1,---,v,}
and
r = dlmKo _D/ < dlmKo D.

Because
V(D) =V and Dg (V) = D',

V is also semi-stable.

9.2.3 Outline of the Proof.

By Proposition 9.20, to prove Theorem A and Theorem B, it suffices to
prove

Proposition A (Theorem A). Let V be a p-adic representation of G
which is de Rham. Then V is potentially semi-stable.

Proposition B. Let D be an admissible filtered (p, N )-module over K. Then
dimg, V(D) = dimg, D.

Let Dk be the associated filtered K-vector space, where

) Dar(V), Case A,
B K ®g, D, CaseB.

Let d = dimg Dg and let the Hodge polygon

Py(V), CaseA,

Pu(Dx) = {PH(D), Case B.

We shall prove Proposition A and Proposition B by induction on the com-
plexity of Py. The proof is divided in several steps.

Step 1: Py is trivial. i.e. the filtration is trivial.

Proof (Proposition A in this case). From the following exact sequence:
0 — Fil' Bqg — Fil’ Bqr = Bjy - C — 0,

®V and then take the invariant under G, we have
0 — Fil' Dg — Fil’ D — (C ®q, V)“%.

Because the filtration is trivial, Fil' D x = 0and Fil° D x = Dk, then we have
a monomorphism Dy = Fil® Dg — (C ®g, V)%, and

dimg (C ®g, V)% > dimg Dk = dimg, V,

thus the inequality is an equality and V' is C-admissible. This implies that
the action of I is finite, hence V is potentially semi-stable (even potentially
crystalline, cf. Proposition 9.7).
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Proof (Proposition B in this case). We know that in this case, D ~ Dy (V)
where
V= (PO QK, D)@:l

is an unramified representation.

Step 2: Show the following Propositions 2A (however, we only prove it in
the finite residue case) and 2B and thus reduce to the case that V and D are
irreducible.

Proposition 2A. If0 - V' —V — V" — 0 is a short exact sequence of p-
adic representations of Gy, and if V', V"' are semi-stable and V is de Rham,
then V is also semi-stable.

Proposition 2B. If0 - D' — D — D" — 0 is a short exact sequence of
admissible filtered (@, N )-modules over K, and if
dimg, Vg (D') = dimg, D',  dimg, Vg (D") = dimg, D",
then dime Vst (D) = dimKo D.
Step 3: Reduce the proof to the case that ty = 0.

Step 4: Prove Proposition A and Proposition B in the case tg = 0.

9.3 Proof of Proposition 2A and Proposition 2B

9.3.1 Hg1 = Hslt when k is finite.

Proposition 2A in the finite residue field case is due to Hyodo [Hyo88]. The
original proof of Hyodo, using decomposition of iso-crystals and unramified
representations, was never published. Proposition 2A in the arbitrary residue
field case is due to Berger [Ber01, Chapitre VI], using the theory of (¢, I')-
modules. In [Ber02] he also gave a proof of Proposition 2A as a corollary of
Theorem A. However Berger’s proof was much more involved. Here we give a
proof of Hyodo’s result just using Galois cohomology and Tate duality.

In this subsection, the cohomology is the continuous cohomology. We set
Byr = BdR/B and, for all b € Bqg, we denote b its image in Bgr.

Let V be a p-adic representation of Gk . Let D = Dy (V).

Definition 9.22. Kato’s filtration for H'(K,V) is the sub-Q,-vector spaces
0C H)(K,V)CH}K,V)CHL(K,V)C H)(K,V)C H(K,V)

where
H(K,V):=Ker (H'(K,V) — H'(K,B. ®q, V)), (9.7)
Hi(K,V):=Ker (H'(K,V) — H'(K, Beis ®g, V)), (9.8)
HL(K,V) :=Ker (H'(K,V) — H'(K, By ®g, V)), (9.9)
H,(K,V):=Ker (H(K,V) — H'(K,Bar ®q, V)). (9.10)
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Definition 9.23. The tangent space of V' is the K-vector space
ty = H'(K, Bar ® V).
We now compute these cohomology groups.

(1) HY(K,V). Tensoring the fundamental exact sequence with V, we get a
short exact sequence

0—>V—>BG®V—>§dR®V—>O,
which induces a long exact sequence
0— H°(K,V) = Dn—g.p=1 = tv — HY(K,V) —0 (9.11)
where

Dn—gp—1 =H(K,B.®V)={x €D |Nz=0, ¢(z) =z}

2) HY(K,V). Consider the map Beyis — Beris ® Bar sending b to (¢b — b, b).
f

By the fundamental exact sequence and 0 — Byis — Bsgt ﬁ) Byt — 0, we get
the exactness of

0 — Qp — Beris — Beris ® Bar — 0. (9.12)
Tensoring with V', we get a short exact sequence
0—V — Buic®V — (Beris @ V) @ (Bar @ V) — 0
which induces a long exact sequence

0— H°K,V)— Dn—g — Dn—o @ty — HLHK,V) — 0. 9.13
f

(3) HL(K,V). Let
Bl = {(z,y) € (Bst)? | ppx — v = Ny}.

If z € By, then (Nz,pz — z) € Bl,. We denote ¢ : Byt — Bl, @ Byg the map
2z ((Nz,0z — 2),2).

Lemma 9.24. The sequence
0 — Q, — By — B, ® Bqr — 0 (9.14)

is exact.
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Proof. It is clear that Ker () = BY=%¢=! N Biz = Q,. We only need to
show ¢ is surjective. Let ((x,y),w) € Bl ® Buyr. By surjectivity of N : By —
By, there is a 21 € By such that Nz; = 2. We have N(y — (pz1 — 21)) =
ppr —x — N(pz1 — 21) = 0, i.e. y — (pz1 — 21) € Beyis. By surjectivity of
@ —1: Beyis — Beris, there is a zo € Beyis such that ¢zo — 20 =y — (p2z1 — 21
By surjectivity of B, — EdR, there is a z3 € B, such that Z3 = w — (£1 + 22
Let z = 21 + 22 + 23 € By, then we have «(z) = ((z,y), w).

).
).

Tensoring (9.14) with V', we get a short exact sequence
0—V—By®V — (B, oV)® (Bar®V) — 0,
which induces a long exact sequence
0— HYK,V) =D —=D &ty — HLK,V) —0 (9.15)
where D' = H°(K, B.,).
Moreover D’ can be easily computed from D:

Proposition 9.25. Denote x — T the projection of D onto D/ND and con-
sider the maps

to:Dneog — D® Do, w+ (w,—pw+w),
t1:D@®Dno—=DPD, (u,v)— (Nu,pou—u+wv),
to: D" = D/ND , (z,y)—=.

The image of 11 is contained in D', the image of 15 is contained in (D/ND),—p, -
and the sequence

0— Dy—o —= D& Dy_og — D' -2 (D/ND),—p-1 — 0
1$ exact.
Proof. The inclusions
Im(¢1) € D" and Im(2) C (D/ND)yep
are obvious. We have
D' ={(z,y) € D* | ppz —x = Ny} .

If z € D lifts s € (D/ND),—,-1, then there exists y € D such that Ny =
ppx —x and (z,y) is in D’ and such that t5(z,y) = s, hence 15 is onto.

If (u,v) € D@ Dn=g, we have t2(t1(u,v)) = t2(Nu,ou —u + v) = 0.
Conversely, if (z,y) € D’ lies in the kernel of o, it means there exists u € D
such that Nu = z. Hence (z,y) —t1(u,0) is an element of D’ of the form (0, v)
and Nv = 0. Hence (z,y) = t1(u,v) and the image of ¢; is the kernel of ¢s.

If w € Dn—g, then ¢1 (,o(w)) = t1(w, —pw+w) = (Nw, pw—w—pw+w) =
0. Conversely, if (u, v) lies in the kernel of ¢, we have Nu = 0 and v = —pu+u,
hence (u,v) = to(u).

The map ¢( is obviously injective and it concludes the proof.
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The following result is now obvious:

Proposition 9.26. The quotient Q,-vector spaces H}(K, V)/HY(K,V) and
HL(K,V)/HL(K,V) are finite dimensional:

dimg, H}(K,V)/H}(K,V) = dimg, Dn—o,s-1 (9.16)
dimg, Hy,(K,V)/H;(K,V) = dimg, (D/ND),_,-1. (9.17)

Moreover, we have a commutative diagram

0——= HYK,V) D D' @ty — HL(K,V) —=0.

From now on in this subsection we assume that k is finite, i.e. K is a

finite extension of Q,. Recall the following result of Bloch and Kato ([BK90],
prop.3.8):

Theorem 9.27. Suppose K is a finite extension of Q, and V is semi-stable.
Under the perfect pairing of class field theory

HYK,V)x HYK,V*(1)) — H*(K,Q,(1)) 5 Q,,

given by the cup-product, we have

(1) Hy(K,V*(1)) = Ho (K, V)",
(2) Hy (K, V*(1)) = Hy (K, V)™,
(3) H}(K,V*(1)) = H{(K,V)*.

We have Hyodo’s celebrated result (cf. [Hyo88]):
Theorem 9.28. For a potentially semi-stable representation V.,
H,(K,V)=Hy(K,V). (9.18)

Proof. (I) We first reduce the proof to the semi-stable case.
By definition, we have the following commutative diagram with exact rows:

0 — HL(K,V) — HY(K,V) —X S(ag) ———0

l \Lu lﬁks(w{)

OHH;(va) HHI(Kav) HHI(KaBdR(@V)
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By the Snake Lemma, we know that H (K,V) = H,(K,V) is equivalent to
the injectivity of Bx|im(ax)-
Consider the commutative diagram

HY(K,V) —** HY(K, By ® V) —%> HY(K, B @ V')

i res lres i res

HY(L,V) —"% H'(L, By ® V) — %> H'(L, Bar @ V)

where L is a finite extension of K. The vertical arrows are injective by the
relation Corores = [L : K|. Then the injectivity of 8r|im(a,) implies the
injectivity of Bk |tm(ax)-

(IT) Assume V is semi-stable. By Bloch-Kato’s Theorem, then
dimg, H,(K,V)/H}(K,V) = dimg, Hj(K,V*(1))/H}(K,V*(1)).
By Proposition 9.26, the latter one is equal to
dimg, Dst(V* (1)) N=0,p=1 = dimg, Dst (V") N=0,p=p-1-
By duality, this is equal to
dimg, ((D/ND)")#="" = dimg, (D/ND)*=*"",

which is equal to dimg, Hg (K, V)/H}c (K, V) by using Proposition 9.26 again.
This concludes the proof.

Let X and Y be p-adic representations of Gg. Recall an extension of X
by Y is a p-adic representation E such that

0=-Y—-E—=-X—=0
is exact. The isomorphism classes of all extensions of X by Y form the group
Ext(X,Y), which is identified with Extj(X,Y) = Extg (g, (X,Y). For =
ur, f,st or g, we let Ext}(’*(X7 Y') be the isomorphism classes [E] such that F

is an unramified, crystalline, semi-stable or de Rham representation (which
we call a *-representation).

Lemma 9.29. Under the isomorphism Extj (X,Y) = Ext}(Q,, Hom(X,Y)) =
H'(K,Hom(X,Y)), then Extl ,(X,Y) = HI(K, Hom(X,Y)).

Proof. We first give the isomorphism Extj (X,Y) = Ext}(((@p’Hom(X, Y)).
Suppose 0 - Y — F — X — 0 is an extension of X by Y. Then

0 —» Hom(X,Y) —» Hom(X, E) — Hom(X, X)
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is exact. Take the pullback of the lime Q,1x C Hom(X,X), then we get
an extension of Q, by Hom(X,Y). Conversely, from an extension 0 —
Hom(X,Y) = E' — Q, — 0, we have

0— X®Hom(X,Y) > X®FE — X —0.

Then the pushout of X ® Hom(X,Y) — Y gives an extension of X by Y.
As we know, the sub-quotients, tensor product and Hom of x-representations

are still x-representations, the correspondence gives the bijection Ext}(’* (X,Y)
H!(K,Hom(X,Y)).

Hyodo’s Theorem and Lemma 9.29 imply Proposition 2A under the con-
dition that k is finite:

Proposition 2A. If 0 - V' -V — V" — 0 is a short exact sequence of
p-adic representations of Gk where K is a finite extension of Qp, and if V',
V" are semi-stable and V is de Rham, then V is also semi-stable.

Corollary 9.30 (Proposition 6.36(3)). Suppose V is a non-trivial exten-
sion of Qu(1) by Qp, then V is not de Rham.

Proof. If not, then V is semi-stable and

0 — Dyt (Qp) = Dt (V) = Dt (Qp(1)) = 0
is exact. However, there is no non-trivial admissible filtered (p, N)-module of
dimension 2 which is an extension of D¢ (Q,(1)) = Ko(1) by Dg(Q,) = K.
9.3.2 The fundamental complex of D.

To prove Proposition 2B, we need to introduce the so-called fundamental
complex of D. Set

V% (D) :={b€ By @k, D| Nb =0, ¢b=b}, (9.19)
V(D) := Bar ®x Di/Fil’(Bar ®x Dx) (9.20)
where

Fil’(Bar ®x D) = Y _Fil' Bar ® Fil 7' Dy.
€L

There is a natural map VS (D) — V1 (D) induced by
By ®k, D C Bar @k D — Vi (Dk).
Then we have an exact sequence
0= Va(D) = V(D) = Vi (D),

which is called the fundamental complex of D.
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Proposition 9.31. If 0 — D’ — D — D" — 0 is a short ezact sequence of
filtered (p, N )-modules over K, then for i = 0,1, the sequence

0— V(D) = V. (D)= V.(D") =0 (9.21)
is exact.

Proof. For i = 1. By assumption, the exact sequence 0 — D% — Dg —
D%, — 0 implies that the sequences

0 — Bgqr ®k Dy — Bar ®x Dk — Bar ®x D — 0
and
0 — Fil' Bir®@xFil ™" D) — Fil' Baqr@gFil ™" Dc — Fil' Bqr@rFil™* D — 0

are exact. Thus we have a commutative diagram (where we write Bqr ® D
for Bgr ®k Dk)

0 0 0

0 —= Fil’(Bgg ® D') — Fil®(Bar ® D) — Fil’(Bgr ® D") —= 0

00— B r®D' ————— Bir®D —— > Bjr @ D" —0

0

V(D)

V(D)

Va(D") ——0

0 0 0

where the three columns and the top and middle rows of the above diagram
are exact, hence the bottom row is also exact and we get the result for i = 1.

For ¢+ = 0, note that
V% (D) = {z € By ®k, D | Nz =0, pz = z}.

Let
Vgris(D) = {y € Bais ®k, D | oy =y}

Recall that u = log[w],

d
Byt = Boyis[u], N = ~u and pu = pu.
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With obvious convention, any x € Bst ®k, D can be written as

—+oo
T = § xnunv Ty € Bcris ®K0 D

n=0

and almost all x,, = 0. The map
T — g

defines a Q,-linear bijection between V& (D) and VY, (D) which is functorial

(however, which is not Galois equivalent). Thus it suffices to show that

0—-V2% (D)— V2 (D)= V2% (D) =0

cris cris cris

is exact. The only thing which matters is the structure of ¢-isocrystals. There
are two cases.

(a) k is algebraically closed. In this case, the exact sequence
0D —-D—=D"—0

splits as a sequence of p-isocrystals as a consequence of Dieudonné-Manin
Theorem (Corollary 8.26). Then D ~ D'@® D" and V2. (D) = VY. (D) &
VO, (D).

cris

(b) k is arbitrary. Then

Vi%is(D) = {y € Bais®x, D | oy = y} = {y € Baris®p, (Po®x, D) | oy =y}

with Py = FracW (k) and Beis D Py D Ko. Py @k, D is a g-isocrystal
over Py whose residue field is k, thus the following exact sequence

0— Py®k, D' = Py®, D — Py @k, D" — 0
splits and hence the result follows.
Proposition 9.32. If V is semi-stable and D = Dg(V'), then the sequence
0= V(D) = V&(D) = VL(D) =0 (9.22)
1s exact.
Proof. Use the fact
By ®q, V = Bst ®k, D C Bar ®q, V = Bar ®k Dk,

then
V&(D) ={z € B4®q, V | Nz =0, oz = z}.

As N(b®v) = Nb®@wv and ¢(b® v) = pb® v, then
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V(D) = B, Rq, V-
By definition and the above fact,
V(D) = (Bar/Bjr) ®q, V-
From the fundamental exact sequence (7.27)
0 — Qp = Be = Bar/Biz — 0
tensoring V' over Q,, we have
0—V = B.®q, V— (Bar/Bjr) ®g, V — 0
is also exact. Since V = Vg (D),
0= V(D) = V&(D) = VL(D) =0
is exact.

We now prove Proposition 2B:

Proposition 2B. If0 - D' — D — D" — 0 is a short exact sequence of
admissible filtered (¢, N )-modules over K, and if

dimg, Vi (D) = dimg, D', dimg, Vit (D") = dimg, D",
then dimg, V(D) = dimg, D.

Proof. The short exact sequence 0 — D’ — D — D” — 0 induces the
following commutative diagram

0 0 0
0 ——= V(D) —= V(D) —— V(D) ——0

0 —— V(D) —— Vg (D) —— V(D)

0 —— V(D) —= V4(D") —= V§(D") —0

0 0

which is exact in rows and columns by Propositions 9.31 and 9.32. A di-
agram chasing shows that V(D) — Vg (D”) is onto, thus dimg, D =
dimg, V(D).
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9.4 Reuction to tgy =0

9.4.1 Qpr-representations and filtered (", N)-modules.

Let r € N, r > 1. The Galois group Gal(Q,-/Q) is a cyclic group of order
r generated by the restriction of ¢ to Q,-, which is just o, and

Q,- C Py C B, C By

cris
is stable under G- and @-actions.

Definition 9.33. A Q,--representation of Gx is a finite dimensional Qpr-
vector space on which Gy acts continuously and semi-linearly:

g(v1 +v2) = g(v1) + g(v2), g(Av) = g(N)g(v).

A Qpr-representation of G is de Rham (semi-stable, crystalline, etc.) if
it is de Rham (semi-stable, crystalline, etc.) as a p-adic representation.

We note that if V' is a Qpr-representation of dimension h, then V is of
dimension rh as a QQp-representation.
Suppose V is a Q,r-representation. Then we have a decomposition

r—1
By ®q, V = By ®q,. (Qur ®q, V) = @) Bst om®@q,. V,
m=0

where o®q, - 18 the twisted tensor product by ¢™. Each component of this
decomposition is stable by the G'g-action, and

@7 ¢ Byg om ®q,r V = Bst w770, V

is a bijection, where 0 < m + j < r is the remainder of m + j by r. By the
same reason, we also have

r—1

BdR ®Qp V = @ BdR om ®@p,,, V,

m=0

with each component stable by the G i-action, and
1® ng : BdR om ®QPT V= BdR (®BSt (Bst o™ ®Qpr V) — BdR (,TH@QPT Vv
is a bijection.

Definition 9.34. For a Qp,--representation V, 0 < m < r, set

D" (V) := (By ,n®q,, V)OF, (9.23)
D) (V) := (Bar .n®q,, V)X, (9.24)

Set Dyt (V) := D)

st,r

(V) and DdR,T(V) = Dt(iOFg,r(V)
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Then D(m)(V) (0 <m < r) are Ky-vector spaces, stable by the actions of

st,r

¢" and N, and
EBQ@ (9.25)

and Dgg?r(V)) (0 <m < r) are filtered K-vector spaces,

DdR @ DdRT (926)

Moreover, one has the injection
K ®x, D{)(V) < DR (V).
We thus have
Proposition 9.35. For 0 < m < r, the maps ¢’ : D(m)(V) — Délnrﬂ)(V)

st,r
and 1® @7 D(m) (V) — Déﬁtj)(V) is bijective and

dimg, D" (V) = dim, Dy, (V) < dimg,, V

st,r

dimKO DEIR)T(V) = dimKU DdR,r(V) < dim@p'" V.

Consequently,

(1) V is semi-stable if and only if dimg, D (V) = dimg,, V', and in this
case for every m,

D). (V) = K @k, DY) (V) = K ,n®x, Dar(V). (9.27)
(2) V is de Rham if and only if dimg, Dgr (V) = dimg,, V.

Definition 9.36. A filtered (¢", N)-module over K is a Kg-vector space A
equipped with two operators

', N: A= A
such that N is Kg-linear, ©" is 0" -semi-linear and bijective, and
Ne" =p"¢"N,
and there is a structure of filtered K wvector space on
Agm =K Qg Ay = K jm®@y, A

for each m =0,1,2,--- ;v — 1, where Ap, := Ky ;m @y, A.



9.4 Reuction to tg =0 243

Definition 9.37. Suppose A is a filtered (¢", N)-module over K, the associ-
ated filtered (o, N)-module over K is the module

r—1

D := @p[<p] ®Qp[wr] A= Z A,

m=0
A is called admissible if the associated D is admissible.

By Proposition 9.35, if V' is a semi-stable Q,--representation of Gk, set
A = Dy (V), then A has a natural structure of a filtered (¢", N)-module

over K, A, = D(m)(V) and Ag m = Dgg?r(V), and the associated admissible

st,r

filtered ¢, N)-module D = Dy (V),

Example 9.38. For the trivial Q,--representation Q,-, the associated (¢, N)-
module Dg; (Q,r) = K¢ where ¢ = ¢, N = 0, and all filtrations are trivial.

Proposition 9.39. Let Repaﬂ (GKk) denote the category of semi-stable Qpr-

representations of Gx and MF?(d(goT,N) denote the category of admissible
filtered (¢, N)-modules over K. Then the functor

Dy, : Repy , (Gk) — MF3 (¢, N)
is an exact and fully faithful functor.
Proof. This follows from the above association and the fact that
D, : Repjj (Gx) = MF§ (¢, N)
is an exact and fully faithful functor.

For a filtered (¢", N)-module A, one can then define the Galois, ¢"-, N-
actions on By ® A, and the filtration on

K ®k, (Bst ® A) — Bar ®x Ak.
We identify v € Byt ® A with 1 @ v € K ®p, (Bst ® A).
Definition 9.40. Set
Ve (A) i= (Bsy @ A)prr, =0 NFil’(K ®, (Bs @ A)). (9.28)

Since the Gk-action commutes with ¢"- and N-actions, Vg (A) is a Qpr-
vector space with a continuous action of G .

Proposition 9.41. If V is a semi-stable Q,--representation, then
Vst,r(Dst,r(V)) =V

Proof. Analogous to the proof of Vg (Dg(V)) = V in § 9.2.1, just applying
the fundamental exact sequence (7.39) of the ring Be .
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Let V4 and V5 be two Q,r-representations. Then V3 ®q,,. V2 is also a
Qpr--representation. If Vi and V, are both semi-stable, then Vi ®q, V2 is a
semi-stable Q,-representation, thus V1 ®q,, V2, as a quotient of V; ®q, Va2, is
also semi-stable. Therefore in this case, for every m =0,--- ,r — 1,

D" (V1) @k, DA (Va) — DL (Vi @q, Va)

st,r st,r st,r

is an isomorphism. Similarly, if V; and V3 are both de Rham, then V1 ®q,, V2
is also de Rham and

D7) (Vi) ©x D{R) (V) — DY) (Vi ®q,. Va)

,T

is an isomorphism.
Let A and A’ be two filtered (¢", N)-modules. Then A®g, A’ is naturally
equipped with the actions of ¢” and N satisfying N¢" = p"¢" N. Moreover,

(A ®K0 A,)K,m ; AK,m ®K A/K,m
as filtered K-vector spaces. Thus A @k, A’ is a filtered (", N)-module.

Proposition 9.42. (1) If V is a de Rham Q,r-representation, set Ay, =
DR (V) and tym(V) =t (Axm), then ty(V) = S0 tim(V).

(2) If Vi and V, are de Rham Q- -representations of Q,r-dimension hy and
ho respectively, let V = V1 ®q,» V2. Then

tg(V) = haty (V1) + hatu (Va). (9.29)

In particular, if s = rb is a multiple of v and V is a de Rham Qyr-
representation, then

t(Qpe ©q,. V) = bt (V). (9.30)

Proof. (1) Clear.

(2) Suppose V; and V; are two de Rham Q,,--representations, of dimension
hy and hy respectively. Let V' = V1 ®q,, V2. Then V is de Rham and A ,,, =
(A1) k,m @K (A2) k,m and hence by Proposition 8.38,

tH,nL(V) - h2tH,m(V1) + hltH7TTL(‘/2)~ (931)
The special case is clear.

Ezample 9.43. We compute the tgy-value of the Lubin-Tate representation
V, = (B;rris)“"rzpﬁFil1 Bgr. We know in §7.3.2 that V;. is a Q,r-representation
of dimension 1 generated by the Lubin-Tate element ¢, satisfying (i) ¢,
is invertible in Beis, (ii) t, € Fil' Baqg — Fil> Bar and (iii) ¢™(t,) €
Fil’ Bqr — Fil' Bag for 1 < m < r. Thus V, is a crystalline representation.
Let e = t;' ®@t,. € Dg (V) and e, = ™ (871 @ ¢, = ™ (e) € Dilnr)(VT)
Then D = Dg,is(V;) is a Kp-vector space with basis {e,, | 0 < m < r}, and
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D(m)

st,r

Then A = Dy (V,) = Koe, and

(V) = Koem, ¢ em =p ‘em, Ne=0.

Agm =K om@y, Koe = Kep,, e, =1®e=¢"(e)

form=20,1,--- ,r—1. If m > 0, then

‘ <0
Fill A, = Ke,,, 1f% <0
’ 0, if 1 > 0.
If m =0, then
; Kegy if i <0;
Fil' Ao = ’ ’
oK {0, ifi>0.

Thus tg0(Vy) = —1 and tg,m (V) =0 for m # 0, and ti(V,) = —1.
Furthermore, for a € Z, set

T

va Sym(‘épr Ve, if a > 0;
Lo, (V7% Qpr), ifa<O.

Then V,? is a Q,r-representation of dimension 1 generated by t%, and Dg;n 2 (V%)
is generated by ™ (¢, * ® t%) = ¢™ (%) ® t%. By the same computation as
for V,., we have tyo(V,*) = —a and tg ,(V,*) = 0 for 0 < m < r, hence

ta (V") = —a.

9.4.2 Reduction to tg = 0.
Case A.

In this case D = Dgr (V) and tg (V) =ty (Dk).

For any ¢ € Z, we know that V is de Rham if and only if V(i) is de
Rham. Let d = dimg Dk, then t g (V(i)) = tg(Dk) —i-d. Choose i = #,
then tg(V (i)) = 0. If the result is known for V (i), then it is also known for
V =V (i)(—i). However, this trick works only if # eZ.

Definition 9.44. If V is a p-adic representation of Gk, let r > 1 be the

biggest integer such that we can endow V with the structure of a Qpr-

representation, then the reduced dimension of V' is defined to be the integer

e, Vo dimg,, V.
¥

We have
Proposition 9.45. For h € N, h > 1, the following are equivalent:

(1) Any p-adic de Rham representation V of Gx of reduced dimension < h
and with ty (V) = 0 is potentially semi-stable.
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(2) Any p-adic de Rham representation of Gk of reduced dimension < h is
potentially semi-stable.

Proof. We just need to show (1) = (2). Let V' be a p-adic de Rham represen-
tation of Gi of reduced dimension h, we need to show that V is potentially
semi-stable.

There exists an integer r > 1, such that we may consider V as a Qp--
representation of dimension h. For s > 1 and for any a € Z, let V; be the
Lubin-Tate Qps-representation as given in § 7.3.2, then V? is also a Qps-
representation of dimension 1. Choose s = rb with b > 1 and a € Z, and
let

V=V ®q,r Vi

S

it is a QQps-representation of dimension h. Since V; is crystalline, it is also de
Rham, thus V2 is de Rham and V"’ is also de Rham.
By (9.29) and the fact ¢ (V) = —a, then

tH(V/) = dim@pr V. tH(VSa) + dimeT ‘/sa . tH(V) = th(V) — ah.

Choose a and b in such a way that tz(V') = 0. Applying (1), then V' is
potentially semi-stable. Thus

V' ®q,. Vi =V ®q, Qp DV

is also potentially semi-stable.

Case B.

Definition 9.46. If D is a filtered (¢, N)-module over K, let r > 1 be the
biggest integer such that we can associate D with a filtered (¢", N)-module A
over K, i.e. D = A®q, 1, Qple], then the reduced dimension of D is defined

dimg, D

to be the integer -

= dimKO A.
We have

Proposition 9.47. For h € N, h > 1, the following are equivalent:

(1) Any admissible filtered (v, N)-module D over K of reduced dimension < h
and with tg (D) = 0 satisfies dimg, V(D) = dimg, (D).

(2) Any admissible filtered (v, N)-module D over K of reduced dimension < h
satisfies dimg, V(D) = dimg, (D).

Proof. We just need to show (1) = (2). Let D be an admissible filtered
(¢, N)-module D over K of reduced dimension h and of dimension d = rh.
Let A be the associated (¢, N)-module. We need to show dimg, V(D) =
dimg, (D) = rh.

By Proposition 2B, we may assume that D is irreducible. Then N = 0,
otherwise Ker (N : D — D) is a nontrivial admissible sub-object of D.
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Moreover, for any nonzero x € D, D is generated as a Ky-vector space
by {z,¢(x), - ,¢0"" 1 (x)} and A is generated as a Ky-vector space by
{z,0"(x), -, """ (z)}. Indeed, let D(z) be generated by ¢*(z), then D(x)
is invariant by ¢ and D is a direct sum of ¢-modules of the form D(z), thus
D(z) is admissible and it must be D by the irreducibility of D.

Let a = tH(D), b= h. Let Drh = Dst(‘/ﬁl), and let A(rh) = Dst,rh(v;a;l)
which is one-dimensional. We also have N = 0 in this case. We consider the
tensor product D' = D ®yr-module D(rh) as p"-module. Then D’ is associated
with the ¢""-module A’ = A ®q, o] A(rn) and is of reduced dimension < h.
Moreover, let {e1,--- ,en} be a Ko-basis of A, f be a generator of A, then
Al (m=0,1,--- ;rh—1) is generated by {¢™(e1 @ f), -, (en® f)}. We
claim that D’ is admissible and ¢ty (D’) = 0.

The second claim is easy, since by the above construction and the definition
of ty, we have ty(D") = h(tg (D) — a) = 0.

For the first claim, for z # 0, x € D, let D, be the Ky-subspace of D
generated by ¢ (z) for i € N, let D', be the Ky-subspace of D’ generated by
0™ (2@ f) for all z € D,. Then D/, is the minimal sub-object of D’ containing
x ® f and every sub-object D] of D’ is a direct sum of D!. However, we
have tH(D;) = dimg, Dy - tH(D(rh)) + hty(D,) and tN(D/I) = dimg, Dy -
tN(Drpy) + hty(Dy), thus the admissibility of D implies the admissibility of
D'

Now by (1), D' satisfies dimg, V(D) = dimg, D', which means V' =
V(D) is a semi-stable Q,n-representation. Thus W = V'®q_, V,,," is also
semi-stable, whose associated (¢"", N)-module is given by A’ ®Q, [»™] Az‘rh).
One sees that D is a direct factor of Dg(TV), hence is also semi-stable and
(2) holds.

9.5 End of the proof

Let r, h € N*. By Propositions 9.45 and 9.47, we are reduced to show

Proposition 3A. Let V be a de Rham Qp--representation of dimension h
with ty (V) =0, then V is potentially semi-stable.

Proposition 3B. Let A be an admissible filtered (p", N)-module over Ky of
Ky-dimension h, D be the associated filtered (p, N)-module with tg(D) = 0.
Then

dimg,, V(D) = h.

9.5.1 Application of the Fundamental Lemma.

Recall U = {u € Beyis | p(u) = pu} DB(]LR = Pffl and By = BIR/ Fil%2 Byg.
If V is a finite dimensional Q,-vector space, we let Vo = C®q, V. By tensoring
the diagram at the start of § 7.4.1 by V(—1), we have a commutative diagram
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0 1% U(-1) ©g, V. —— Vo(=1) — 0
inclJ{ inclJ{ Idl
0 Ve By(—1)®g, V —2— Vo(~1) —— 0

where all rows are exact and all the vertical arrows are injective.

Proposition 9.48. Suppose dimg, V' = h > 2. Suppose there is a surjective
By-linear map 1 : Bo(—1) ®q, V — Bz(—1) which passes to the quotient map
7 : Vo(=1) = C(=1). Suppose X is a sub-C-vector space of dimension 1 of
Vo (=1) and X its inverse image of U(—1) ®q, V', i.e. we have a diagram

X U(~1)q, Ve By(~1)g,V ——= By(~1)

T

X Vo (1) =—— Vo (~1) — > O(~1).

If X C Ker?, then the restriction nx : X — Ba(—1) of n factors through
X — C. Moreover, if n(V) # n(X), then nx is surjective and its kernel is a
Qp-vector space of dimension h.

Proof. Suppose {e1, €2, e} is a basis of V over Q,. Then {e/, =t~ '®e,}
forms a basis of the free By-module By(—1) ®q, V. Write n(e},) = b, @ t!
with bn S Bg.

The images €, of e}, in Vo(—1) forms a basis of it as a C-vector space.
Suppose A = 22:1 An€,, is a nonzero element of X. The fact that X C Kern
implies that > A\,0(b,) = 0, hence 6 o n(X) = 0 and nx factors through
X —=C.

Let Y and p be given by (7.40) and (7.41) corresponding to (Ay,) and (by,).
The map v : U" — U(—1) ®g, V which sends (uy,u2, -+ ,up) to Y (up, ®
t~1) ® e, is bijective and its restriction vy on Y is a bijection from Y to X.
One thus have a commutative diagram

y —2— c(1)

o | =

X =, ¢

whose vertical lines are bijection. The proposition is nothing but a reformu-
lation of the Fundamental Lemma (Theorem 7.41).

Proposition 9.49. Let Vi be a Q,-vector space of finite dimension h > 2
and Ay = B(TR ®q, Vi. Suppose Ay is a sub-BiR-module of A1(—1) such that
(A14A2) /Ay and (Ay + As)/ As are simple B, -modules. Let X be the inverse
image of Ay + Ag in U(—1) ®q, V1 and
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p: U(—l) ®Qp V1 — /11(—1)//12

be the natural projection. Then

(1) either dimg, p(X) < h and Ker (p) is not finite dimensional over Q,;
or p is surjective and Ker (p) is a Q,-vector space of dimension h.
9 o is surjecti d Ker (p) is 0 Q, i o h

Proof. Since Bg‘R is a discrete valuation ring whose residue field is C, the
hypotheses indicate that (A; + Az2)/A; and (A; + A2)/ A2 are C-vector spaces
of dimension 1. Then we can find elements {e1, ez, - ,e,} in Ay such that

A = B;_R -e1 P B;R -eg D AQ, Ay = B:IR . t71€1 D B:ii_R -tes @D Ag

h

where Ay = @ BJe;. One thus has two commutative diagrams, which are
i=3

exact on the rows:

0 17 X A +Ao 0

0 ——Vi——=U(-1)®q, Vi yn 0
A1 (—1) A (—1)
Ai4+Ax T A+As
A (=1
0 X U(-1) ®g, V1 Aoy 0
| |
(A1+A42) A (=1) Ai(=1)
0 Ag Aa Ar+Az 0.

Let ¢; denote the image of t~'e; in By(—1) ®q, Vi = A1(—1)/A1(1), then
{e1 |1 <i < h}is a basis of A1(—1)/A;(1) as a free Ba-module of rank h.

We denote by 1 : Ba(—1) ® Vi — By(—1) the map which sends ) . a;e; to
ast~'. The image of the restriction nx of n on X is contained in C' and the
diagram above induces the commutative diagram with exact rows

A (—1)

0—> X —>U(-1)®q, Vi T 0
A (=1 A (=1
0—C e e —o.

where C' — A;(—1)/As is the map ¢ — ct~les.
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One can see that the image X of X in A;(—1)/A; = (C ® V;)(-1) is
a C-vector space of dimension 1 contained in the kernel of 77, and X is the
inverse image of X in U(—1) ® Vi. Applying the precedent proposition, if
n(V1) = n(X) we are in case (1); otherwise, nx is surjective, so is p and
Ker (p) = Ker (nx) is of dimension h over Q,.

9.5.2 Recurrence of the Hodge polygon and end of proof.

We are now ready to prove Proposition 3A (resp. 3B), and thus finish the
proof of Theorem A (resp. B).

We say V (resp. A or D) is of dimension (r,h) if V' (resp. A) is a Q,r-
representation (resp. a (¢", N)-module) of dimension h. From now on, we
assume that V' (resp. A) satisfies tg (V) = 0 (resp. tg(D) = 0.

We prove Proposition 3A (resp. 3B) by induction on h. Suppose Propo-
sition 3A (resp. 3B) is known for all V' (resp. A’) of dimension (r/, k') with
h' < h and ' arbitrary, we want to prove it is also true for V' (resp. A) of
dimension (7, h).

Consider the set of all convex polygons with origin (0,0) and end point
(hr,0). The Hodge polygon Py of V' (resp. D) is an element of this set. By
Step 1, we know Proposition 3A (resp. 3B) is true if Py is trivial. By induction
to the complexity of Py, we may assume Proposition 3A (resp. 3B) is known
for all V' (resp. A’) of dimension (r, h) but its Hodge polygon is strictly above
Py (V) (resp. above Py (D)). By Proposition 2A (resp. 2B), we may assume
V (resp. D) is irreducible.

Recall D = Dgr(V) (resp. D = D Qg, K). For V, we let Ak, =
Dg}r{?T(V). Then in both cases,

r—1 r—1

Dy = @ Agom, Fil' Dy = @ Fil' Dg N Agc .
m=0 m=0

We can choose a K-basis {J; | 1 < j < rh} of Dg which is compatible with the

. r—1
filtration {Fil" Dk} and the decomposition Dg = € Akg,,,. To be precise,

m=0

(a) If let .
ij :=max{i € Z | ¢; € Fil' Dg},

then the set {d; | i; > i} is a K-basis of Fil' Dg for every i € Z.
(b) For every 0 < m < r, Ag,m has a K-basis {0; | 6; € Ag m}.

By this way, then

hi = dimg Fil' D/ Fil'™ D = #{1 < j <rh|i; =i}, (9.32)

rh
ty = i;=0. (9.33)
j=1
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Since Py is not trivial, by changing the order of §;, we may assume that
i9 > i1 + 2.
We fix such a basis of Dg.

Proof of Proposition 3B.

We consider the (¢", N)-module A" defined as follows:

(i) the underlying (", N)-module structure is the same as of A;
(ii) since D% = Dk, for the basis {¢; | 1 < j < rh} of Dk, the filtration is
given as follows:

iy =11+ 1, iy =iy — 1, %y =i for j > 2.

Then A’ is a filtered (", N)-module of dimension h. Let D’ be the associated
(¢, N)-module. Then tg(D') = tg(D)—14+1=ty(D) =0 and ty(D’) =
tn (D). Moreover, let E’ be any sub-object of D" as (p, N)-module, different
from 0 and D’, then it is identified with a sub-object E of D as (¢, N)-module,
different from 0 and D. Then one has ty(E') = tn(E), and tg(E') = tg(E)+e
with € € {—1,0,1}. Since D is admissible and irreducible, tg(E) < ty(E)
and we have ty(E') < ty(E’), which implies that D’ is an admissible (¢, N)-
module.

Let V1 = Vg (D') and V5 = V(D). We need to show dimg, V2 > rh.

Since the Hodge polygon of D’ is strictly above that of D, by induction
hypothesis, we have dimg,,. V1 = h, which means that V} is semi-stable and
Dy (V1) = D'. Then By ®k, D = By ®q, V1 and

V(D) = V(D) ={z € B4 ®k, D | p(z) =2, Nz =0} = B, ®q, Vi.

Suppose W = Byr @k Dx = Bar @k D), A1 = Fil’(Bqr @k DY) =
> ez Fil ™" Bar @ Fil' D and Ay = Fil’(Byr ® x D). Then we have exact
sequences

0—V; = V%D) = W/A

for ¢« = 1, 2. Since V; is semi-stable,
Ay = Fil’(Bar ®x DY) =2 Fil’(Bar ®g, V1) = Bjg ®q, V1.
In this case, by Proposition 9.32, one has an exact sequence
0— Vi = V(D) = W/Ay = V(D) — 0.

Note that Ay is a sub-Bj;-module of A;(—1) and that (A; + As)/A; and
(A1 + A2)/ Ay are simple Bj;-modules. We can apply Proposition 9.49. By
the inclusion U(—1) C B, we have a commutative diagram
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0 KT,O U(-1) ®g, Vi —— Ai(~1)/ Ay —0
0 Vs B, ®qg, Vi W/ A,.

where Ker p C V5, implies p must be surjective. Thus Ker p must be of finite
dimension rh, as a result dimg, V2 > rh and Proposition 3B is proved, so is
Theorem B.

Proof of Proposition 3A.
Lemma 9.50. There exists no G g -equivariant Qp,-linear section of By to C.

Proof. Suppose Vj is a nontrivial extension of Q,(1) by Q,. We know it exists
and is not de Rham by Corollary 9.30. Thus dimg Dgr(Vh) = 1 and hence
Dyr(Vy) = Homg, (g, (Vo, Bar) is also of dimension 1.

Assume the Lemma is false and there is a G'x-equivariant Q,-linear section
s:C — By. Let B; = B(TR/ Fil’ Byg for i > 2. By the exact sequence

O—)C(i)—)BH_l—)BZ‘—)O,

and the fact H' (K, C(i)) = 0 (see Proposition 4.46), then Homg, (¢,(C, Biy1) —
Homg, (¢ (C, B;) is surjective. By induction, the section s extends to a G'x-
equivariant Q,-linear section C' — B(J{R = @D ) B;.

We now construct two linearly independent maps of Qp[GKk]-modules from
Vo to Bgr and thus induce a contradiction. The first one is the composi-
tion Vo — Q,(1) — Bggr. For the second one, since Ext(l@p[GK}(Qp(l),C) =
H} . (K,C(—1)) = 0 (again see Proposition 4.46), we have an exact sequence
Homg, [ ,1(Vo, C) — Homg, ¢](Qp, C) — 0, thus the inclusion Q, — C is
extendable to Vy — C. Composing it with the section C' — B;R, we get an-
other G g-equivariant Q,-linear map from Vj to B:{R — Bgr. It is clear that
thees two maps constructed are independent.

Definition 9.51. A Bg‘R—represen‘cation of Gk is a B;R—module of finite type
endowed with a linear and continuous action of Gx. It is called Hodge-Tate
if it is a direct sum of B:{R—representations of the form

By, (i) := Fil' Bar/ Fil'"™ Bar = (B /t" Biz)(4)
form € N— {0} and i € Z.

Remark 9.52. The category RepB:R(GK) of all B;R—representations, with
morphisms being G g-equivariant B;“R—maps, is an abelian category.

(a) Moreover it is artinian: By, (%) is an indecomposable object in this category.



9.5 End of the proof 253

(b) The sub-objects and quotients of a Hodge-Tate B;j,-representation is still
Hodge-Tate.

Lemma 9.53. Suppose
0—->W W —=W"—0

is an ezxact sequence of Hodge-Tate B;’R—representations. For this sequence
to be split, it is necessary and sufficient that there exists a G g-equivariant
Qp-linear section of the projection of W to W".

Proof. The condition is obviously necessary. We now prove that it is also
sufficient. We can find a decomposition of W = @2:1 W, as a direct sum
of indecomposable B, (i)’s, such that W/ = W' N W, and W' = @' _, W/,
then W” is a direct sum of W,,/W/. By this decomposition, we can assume
t = 1. It suffices to prove that for r,s,i € Z with r,s > 1, there exists no
G k-equivariant section of the projection B,4(i) to By(i). If not, the section
B, (i) — By4s(i) induces a Gi-equivariant map

tiJr’r‘le;rR ti+’r’71Bé‘rR ti+r71B3_

R _ . _
tiJrrB('iFR - ti+r+sBé"R - ti+r+1B(-iFR =Ba(i+r—1)

Cli+r—1)=

which is a section of the projection Ba(i 47 —1) to C(i+r — 1). By tensoring
Zy(1 —r — i), we get a Gx-equivariant Q,-linear section of By to C, which
contradicts the previous lemma.

We now apply Proposition 9.49 with V3 = V. Since V is de Rham, we let
A = B:R ®q, V = FilO(BdR ®K Dg). This is a free B;{R—module with a basis
{e; =t7% ®6; | 1 < j <rh}. Suppose

e =t7ter, e =tey, and ¢ = e; for all 3 < j < rh.

The sub-Biz-module Ay of A;(—1) with a basis {e | 1 < j < rh} satisfies
the hypotheses of Proposition 9.49. With notations of that proposition, the
quotient (A; + Az)/Ay is a C-vector space of dimension 1 generated by the
image of ¢/ =¢~%71 ® §; and is isomorphic to C(—i; — 1). One has an exact
sequence

0-V—->X—-C(—ip—1)—0. (9.34)
This sequence does not admit a G g-equivariant Qp-linear section. In fact, one
has an injection X — U(—1) ® V' — Ba(—1) ® V = A;(—1)/A1(1). The last
one is a free By-module of basis b; the image of t~h-l @ 0;. The factor with
basis b is isomorphic to By(—i; — 1) and the projection parallel to this factor
induces a G g-equivariant commutative diagram

0—— V. — X — s CO(—iy—1) —— 0

l ! 4l

0 — C(—i1) — By(—i;—1) —— C(~i1—1) —— 0
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whose rows are exact. If the sequence at the top splits, so is the one at the
bottom, which contradicts Lemma 9.50.

Note that V' = V; is not contained in the kernel of p: otherwise V is
contained in A, and it is also contained in the sub-Biz-module of A;(—1)
generated by V; which is A7, which is not the case.

Since the map p is G g-equivariant and since V is irreducible, the restric-
tion of p on V is injective. We have p(V') # p(X) (otherwise, X =V @& Ker p,
contradiction to that (9.34) is not split). Therefore dimg, p(X) > rh. By
Proposition 9.49, p is surjective and its kernel V5 is of dimension rh over Q,,.
We see that V5 is actually a Q,--representation of dimension h.

Lemma 9.54. The B(YR-linear map B(J{R(XJQP Vo — Ag induced by the inclusion
Vo — As is an isomorphism.

Proof. Since both B(TR ® Vo and A are free BGTR—modules of the same rank, it
suffices to show that the map is surjective. By Nakayama Lemma, it suffice to
show that, if let Ay, be the sub—Bg'R—module of Ay generated by Vo and tAs,
then /1\/2 = AQ.

By composing the inclusion of U(—1) ® V' to A;(—1) with the projection
of A;(—1) to A1(—1)/Ay,, we obtain the following commutative diagram

0 —— Vo —— U(-1)®@V —— Ay(—-1)/A3 —— 0

| l i

0 —— Ay/Ay, —— M (-1)/Ay, —— Ay(—-1)/As —— 0

with exact rows, which implies that there exists a Q,-linear G'x-equivariant
section of the last row. Since A;(—1)/Ay,, as a quotient of A;(—1)/42(1), is a
Hodge-Tate B;rR—representation, by Lemma 9.53, the last row exact sequence
splits as B;“R—modules.

If, for 1 < j < rh, let u; (resp. W;) denote the image of t~%~! @ §;
in A;(=1)/Ay, (resp. Ai1(—1)/A3), then @ = 0, tu; = 0 for j > 3, and
A;(—1)/As is the direct sum of the free Bs-module with basis @e and the
C-vector space with basis {u; | j > 3}. Since A3/ Ay, is killed by ¢, one then
deduces that t?uy = t?(us — u2) = 0 and tu; = 0 for j < 3, then t~27! ® &,
and t~% ®d; for j > 3 are contained in Ay,. Hence Ay, contains the sub-Bj;-
module generated by those elements and t~** ®d;, which is nothing but A;NAs.
Since As/(A; N Az) is a simple Biz-module, it suffices to show that Ay, #
A1 N Ay, or V3 is not contained in A;. This follows from (U(-1)@V)NA; =V
and V NV, = 0 since the restriction of p at V' is injective.

By inverting ¢, from the above lemma, we have an isomorphism of Byr ®q,
Vo to Bar ®q, V' which is Gi-equivariant. We thus have an isomorphism
D = Dgr(V2) to D = Dgr(V') and hence V5 is a de Rham representation.
Write i} =iy +1, it = i — 1, and i}, = i; for 3 < j <rh. By Bjz ®q, V = A
and BQ'R ®q, Vo = Aa, for every i € Z, we have
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Fil' Di = @P K4;, and Fil' Dy = @ K6;.

2 <
15 2>1 ’LJ-ZZ

It follows that the Hodge polygon of V5 is strictly above that of V. The
inductive hypothesis then implies that V5 is potentially semi-stable. Replacing
K Dby a finite extension, we may assume that V5 is semi-stable.

We regard V' and V5 as Qp-subspaces of Bgr-vector space W = Bggr ®q, V-
Suppose A € GL,;(Bgr) is the transition matrix from a chosen basis of V5
over Q, to a chosen basis of V' over Q,. Since ¢t (V) = tg(V2) = 0, det(A)
is a unit in BJg. Since Vo C U(—1) ® V, the matrix A is of coefficients in
U(—1) C Be. As B.N Bz = Q,, det A is a nonzero element in Q, and hence
A € GL,p(Be). Thus the inclusion of V5 C U(—1)®V induces an isomorphism
of B, ® V5 to B, ® V, hence a fortiori of Bgy ® Vo to Byt ® V. By taking the
G k-invariant, we get an isomorphism of D (V3) to Dg (V). Since V5 is semi-
stable, then dimg, Dy (V) = rh = dimg, (V) and V is also semi-stable. This
completes the proof of Proposition 3A and consequently of Theorem A.






10

Overconvergent rings and overconvergent
representations

10.1 The generalized Tate-Sen’s method.

The method of Sen to classify C-representations in § 4.3 is generalized to
the following axiomatic set-up by Colmez.

10.1.1 Tate-Sen’s conditions (TS1), (TS2) and (TS3).

Suppose Gy is a profinite group and x : Go — Z, is a continuous group
homomorphism with open image. Set n(g) = v,(log x(g)) and Hy = Ker x.

Suppose Aisa Z,-algebra and
v: A — RU{+o0}

satisfies the following conditions:

(i) v(z) = 400 if and only if 2 = 0;
(i) v(zy) > v(z) +v(y);
(iif) v(z +y) = min(v(z), v(y));
(iv) v(p) > 0, v(pz) =v(p) + v(x).
Assume A is complete for v, and G acts continuously on A such that v(g(z)) =
v(z) for all g € Gp and z € A.

Definition 10.1. The Tate-Sen’s conditions for the quadruple (Go,x,/I,’U)
are the following three conditions:

(TS1). For any Cy > 0, for all Hy C Hy C Hy open subgroups, there exists
an a € AH with

v(a) > —C1 and Z (o) = 1. (10.1)

TEH/Hy

(In Faltings’ terminology, A/ A™0 is called almost étale. )
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(TS2). Tate’s normalized trace maps: there exists a constant Co > 0 such that
for all open subgroups H C Hy, there exist n(H) € N and (Agn)n>n(m), an
increasing sequence of sub Zy-algebras of A and maps

Ryp: A7 — Ag .,

satisfying the following conditions:

(a) if Hy C Ho, then Am, ,, = (AHl,n)H% and Ry, n = Ry, n on /IHz;
(b) for all g € Gy, then

9(Aun) = Agrg-—1, and go Ry = Ryprg—1. 0 g;

(¢) Run is Am pn-linear and is equal to identity on Ay y;
(d) v(Rygn(z)) > v(x) — Cy if n >n(H) and x € AH;

(e) nEI-&r-loo Ry n(z) = .

(TS 3). There exists a constant Cs, such that for all open subgroups G C Gy,
H = G N Hy, there exists n(G) > n(H) such that if n > n(G), v € G/H and
n(y) = vp(log x(7)) < n, then v — 1 is invertible on Xp, = (Rgn — 1)A7
and

o((y — 1) tr) > wv(z) - Cs (10.2)

forxz € Xgp.
Remark 10.2. Ry, 0 Ry = R, 50 AP = Aprpy ® X .

Ezample 10.3. In § 4.3, we are in the case A = C, Gy = Gk, v = Up, X being
the character Go — " =2°, /i
In this case we have Hy = Gal(K/K,). For any open subgroup H of Hy,

let Lo = FH, then L., = LK for L disjoint from K, over K, for n > 0.
Let Ay, = L, = LK,, and Ry, be Tate’s normalized trace map. Then all
the axioms (TS1), (TS2) and (TS3) are satisfied from results in § 1.4.2.

10.1.2 Almost étale descent

Lemma 10.4. If A satisfies (TS1), a > 0, and o — U, is a continuous
1-cocycle from H, an open subgroup of Hy, to GL4(A), and

v(U, — 1) > a for any o € H,
then there exists M € GLg(A) such that

v(M—-1) > v(M 'Uyo(M) —1) >a+1.

Nl
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Proof. The proof is parallel to Lemma 4.16, imitating the proof of Hilbert’s
Theorem 90.

Fix Hy C H open and normal such that v(U, — 1) > a + 1+ a/2 for
o € Hj, which is possible by continuity. Because A satisfies (TS1), we can
find o € A1 such that

v(a) > —a/2, Y 7(a)=1

TEH/H,

Let S C H be a set of representatives of H/Hq, denote Mg = > o(a)U,, we

o€S
have Mg —1= 3 o(a)(U, —1), this implies v(Mg — 1) > a/2 and moreover
o€S
+oo
Mgt =Y "(1- Ms)",
n=0

so we have v(Mg') > 0 and Mg € GLg(A).

If 7 € Hy, then Uy, — U, = U,(c(U;) — 1). Let S’ C H be another set of
representatives of H/Hy, then for any o’ € S’, there exist a unique o € S and
Ts € Hy such that ¢/ = o7,, so we get

Ms — Mg = Z U(a)(Ua - UO'TU) = Z O'((X)Ug(l - U(Ura))a
oces oc€eS

thus
v(Mg —Mg)>a+1+a/2—a/2=a+1.

For any 7 € H,

U.r(Ms) =Y 70(a)Urm(Uy) = M.
€S

Then
MG'U.7(Ms) =1+ Mg'(M,s — Ms),

with v(Mg'(M,s—Mg)) > a+1. Take M = Mg for any S, we get the result.

Corollary 10.5. Under the same hypotheses as the above lemma, there exists
M € GL4(A) such that

v(M —1)>a/2, M~'U,0(M) =1,for alloc € H.

Proof. Repeat the lemma (a+—a+1+—a+2~— ---), and take the limit.
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10.1.3 Decompletion.

Lemma 10.6. Given constants § > 0, b > 2Cy + 2C3 + 4, V' > b. Suppose
H is an open subgroup of Hy. Suppose n > n(H), v € G/H with n(y) < n,
U =1+ U; + Uy such that

U € My(Amn), v(Uy)) >b—Cy —Cs
Uy € Mg(A™), v(Us) > ¥ > b.
Then, there exists M € GLq(A"), v(M — 1) > b— Cy — C5 such that
M=IUA(M) =14 Vi + Va,
with
Vi € Ma(Agy), v(Vi) >b—Cy — Cs,
Vo € My(A™), v(V) > b+ 4.
Proof. Using (TS2) and (TS3), one gets Us = Ry, (Uz) + (1 — )V, with
V(R n(U2)) > v(Us) — Co, v(V)>wv(Us) — Cqy — Cs.
Thus,

A+V)WUAA+V)=(1=V+ V2= )1+ U+ Up)(1+4(V))
=14+U1+ (y — 1)V + Uz + (terms of degree > 2)

Let Vi = U1 + Ry n(Usz) € My(Ap ) and W be the terms of degree > 2. Thus
v(W)>b+b —2C, — 203 > b + 4. So we can take M =1+ V, Vo =W.

Corollary 10.7. Keep the same hypotheses as in Lemma 10.6. Then there
exists M € GL4(A"),v(M — 1) > b — Cy — C3 such that M~1U~v(M) €
GL4(Amp)-

Proof. Repeat the lemma (b b+ +— b+ 26 — ---), and take the limit.

Lemma 10.8. Suppose H C Hy is an open subgroup, i > n(H), v € G/H,
n(y) <i and B € Mgy (A®). If there exist V; € GL4(Amy), Vo € GLg(Am )
such that

v(Vi—1)>Cs, v(Va—1)>Cs, ~(B)=V1BV;,
then B € des(AH,i)~

Proof. Take C = B — Ry ;(B). We have to prove C' = 0. Note that C' has
entries in Xg; = (1 — Ry ;)A, and Ry ; is Ay -linear and commutes with
~. Thus,

(C) = C=ViCVa = C = (V1 = 1)CVa + ViC(Va — 1) = (Vi = 1)C(Va — 1)

Hence, v(v(C) — C) > v(C) + Cs. By (TS3), this implies v(C) = +o0, i.e.
C=0.
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10.1.4 Applications to p-adic representations.

Proposition 10.9. Assume that A satisfies (TS1), (TS2) and (TS3). Sup-
pose o — Uy is a continuous cocycle from Gy to GLd(/I), If G C Gy is an
open normal subgroup of Go such that v(Uy —1) > 4Cy 4+ 4C5 for any o € G.
Set H = G N Hy, then there exists M € GLg(A) with v(M — 1) > Cy + Cs
such that

or—V, =M 'U,o(M)

satisfies Vo € GLa(Agn(e)) and Vo =1 if o € H.

Proof. Let o — U, be a continuous 1-cocycle on Gy with values in GL4(A).
Choose an open normal subgroup G of G such that

;ggv(Ug —1) > 4(Cs + Cs).

By Corollary 10.5, there exists My € GLg(A), v(M; — 1) > 2(Cy 4+ C3) such
that o — U, = M; 'U,o(M,) is trivial in H = G' N Hy. In particular, U/, has
values in GLg(AH).

Now we pick v € G/H with n(y) = n(G). In particular, we want n(G) big
enough so that + is in the center of Gy/H. Indeed, the center is open, since
in the exact sequence:

1— H()/H — G(]/H—> Go/H() — ].7

Go/Hy = Z,, x (finite) is abelian, and Hy/H is finite. It is an easy exercise to
show that if A is a finite normal subgroup of a profinite group B such that
the quotient B/A = Z,,, then the center of B is open in B. So we are able to
choose such an n(G).

Then we have v(U, — 1) > 2(C2 + C3), and by Corollary 10.7, there exists

M, € GLy(AH) satisfying
v(My — 1) > Cy + C3 and My U, y(Ms) € GLa(Ap n(c))-
Take M = M; - M5, then the cocycle
oV, =M 1U,0(M)
is a cocycle trivial on H with values in GLq(AH), and we have
v(Vy —1) > Cy + C3 and V, € GLg(Agna))-

This implies V,, comes by inflation from a cocycle on Go/H.
The last thing we need to prove is V; € GLy(Ag () for any 7 € Go/H.
Note that y7 = 7 as = is in the center, so

Ver(Va) = Viy = Vaor = Vo (Vr)

which implies v(V;) = V.7 'V,7(V,). We now apply Lemma 10.8 with V; =
Vv_l, Vo = 7(V,,) to complete the proof.
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Proposition 10.10. Let T' be a Z,-representation of G of rank d. Suppose
k€N, v(pF) > 40y + 4C3, and suppose G C Gy is an open normal subgroup
acting trivially on T/p*T, and H = GN Hy. Let n € N,n > n(G). Then there
exists a unique Dy n(T) C A T, a free Ag n-module of rank d, such that:

(1) Do (T) is fived by H, and stable by Go;

(2) A ®AH,n DHJL(T) = A ®T;

(3) there exists a basis {e1,...,eq} of Dy over Ag., such that if v € G/H,
then v(V, — 1) > Cs, V,, being the matriz of .

Proof. This is a translation of Proposition 10.9, by the correspondence
A-representations of Gy up to isomorphism <— elements of H'(Gg, GLg(A)).

Let {v1,--- ,vq} be a Z,-basis of T', this is also regarded as a A-basis of /i(X)T7
which is a /i—representation of Gg. Let 0 — U, be the corresponding cocycle
from Go to GL4(Z,) < GLg(A). Then G is a normal subgroup of Gy such
that for every o € G, v(U, — 1) > 4C5 + 4C3. Therefore the conditions in
Proposition 10.9 are satisfied. Then there exists M € GLg(A), v(M — 1) >
Cy 4 C, such that o — V, = M~ 'U,0(M) satisfies that V, € GLa(Ap n(c))
and V, =1foroc € H.

Now let (e1,---eq) = (v1,--- ,vg)M. Then {ey,--- ,eq} is a basis of Ax T
with corresponding cocycle V,. For n > n(G), let Dy, (T) be the free Ay -
module generated by the e;’s. Clearly (1) and (2) are satisfied. Moreover, if

v€G/H,

o(Vy — 1) =o(M (U — )M + MU, (y— 1)(M — 1)
>v(M —1) > Cy + C5 > Cs.

For the uniqueness, suppose D; and Dy both satisfy the condition, let
{e1,--- ,eq} and {e],--- , €} be the basis of Dy and D, respectively as given
in (3). Let V, and W,, be the corresponding cocycles, let P be the base change
matrix of the two bases. Then

W, =P 'Vy(P) = ~(P)=V,'PW,.
By Lemma 10.8, then P € GL4(Ag n(g)) and Dy = Ds.

Remark 10.11. Hy acts through Hy/H (which is finite) on Dy ,,(T). If Ay, is

étale over Ag, ,, (the case in applications), and then Dy, ,(T) = Dy, (T)Ho/H)
is locally free over Ap, ,, (in most cases it is free), and
A ) Dy (T) =5 Dy (T). (10.3)

AHg,n

)
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10.2 Overconvergent rings

From now in this chapter, for convenience of our exposition, the following
notations are adapted for the rings defined in §5.3:

A= Og@CAb (R), BZ:(C/{GCBb = W(R)[%L
A= W (Fr R), B = Frac(A) W (Fr R)[%]

Here ? stands for bounded.

10.2.1 The valuations v, on B® = W(R)[% ]

Definition 10.12. Forz = Y p"[z,] € B® with z,, € R, set

n>>—oo
vp(x) = p-adic valuation of x, if = 00
vp(x) =1 . . ; (10.4)
Héf%{v(a:n) +nr} = InelIZl{U(Z‘n) +nr}, if0<r<oo.

Proposition 10.13. For 0 <r < oo, v, 1s a valuation on Bb. Moreover,

(1) vo(x) = Tl_i)r(1)1+ vp(2).

(2) too(w) = lim L2,
(3) vr(g(2)) = vr() for g € G-
(4) v ((2)) = po,(2).

Proof. We just check v, is a valuation, the rest is clear.
The case r = oo is trivial.
For » > 0, by Lemma 1.28, we immediately have

(a) vp(x) = 400 if and only if z =0,
(b) vr(z +y) > min{o,(2),v:(y)},
(€) vr(z-y) = vr(z) + 0p(y).

Moreover, suppose & = >, p"[Tn], y = > p"[yn). Write

Ty = Zp"[zn]

Then by Lemma 1.28(2), z, is a generalized polynomial of z; and y;, homo-
geneous of degree (1,1). Suppose

ng = min{n | v.(z) = v(z,) + nr}, mo = min{m | v.(y) = v(ym) + mr},

then
Zmo+ne = Amolng + terms whose valuation is bigger,
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hence v, (z - y) = vy (x) + v, (y).
For r = 0, then vo(z) = lim+ v.(x) if z € AP, Note that if x € Ab,
r—0

r > 1’ > 0, then v.(z) > v.(z). Thus vg| 4» is a valuation. Note that vy(p) = 0,
then vy is a valuation on BP.

Proposition 10.14. The function r — v.(z) (r > 0) is a concave function.
In particular, if 0 < Ry < r < R, then v,.(z) > min{vg, (), vr,(z)}.

Proof. For every n,
v(xn) > VR, () —nR1, v(xy) > vR,(T) — nRa.
Let r =tRy + (1 —t)Ry, 0 < t < 1, then
v(zy) > tug, (z) + (1 — t)vg, () — nr.
Hence v, (z) > tug, () 4+ (1 —t)vg,(x), and the function r — v,.(x) is concave
Definition 10.15. For xz =Y p"[z,] € A, define
wi(z) = min{v(z,) | 0 <n < k}. (10.5)

Remark 10.16. One checks easily that for a € Fr R, wi(z) > —v(a) if and
only if [a]z € W(R) + p*H1A.

Proposition 10.17. (1) For z € A® and r > 0,

vr(x) = inf(v(x,) + nr) = i%f(wn (x) + nr).

n

(2) The sets {x € A’ | wp(z) > A} (n > 0,4 > 0), as well as the sets
{x € A* | v.(z) > B} (r > 0,B > 0), form a basis of neighborhood of 0
for the natural topology on A®. Hence v, is continuous.

Proof. Exercise.

Remark 10.18. vy is NOT continuous in B’. For example, if z € mg\{0},
vo([l + 2] — 1) = 0, but v(0) = +oo.

10.2.2 The rings of overconvergent elements.

From now on assume 0 < r < 4+00. It would be great if we can extend the
—+o0

valuations v, to A and B. However, for an element z = 3. p"[z,] € 4,
n=0
vp(x) = l?elg(v(xk) +kr) = ]irelfN(wk(x) +kr) € RU{£oo}. (10.6)

To extend the valuation, one must exclude those = such that v,.(x) = —c0.
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Definition 10.19. The set of overconvergent elements with respect to r is

={z e A kgmoo( v(xy) + kr) = oo}

(10.7)
={z € A| lim (wg(x)+ kr) = +oo}.

For x € A,, set v,.(z) as in (10.6).

Proposition 10.20. /Nlr is a ring and v, defines a semi-valuation on Er sat-
isfying the following properties:
1) vp(z) = 400 & = 0;
vr(zy) = vr(z) + 0r(y);
r(x +y) = min(v(2), v, (y));
r(px) = ve(T) + 15
r([a]z) = v(a )+vr(x) if a € Fr R;
(9(z)) = vr(x) if g € G5
pr((2)) = por ().

Moreover, A, is complete under v,..

Proof. This is an easy exercise.

+oo ~

Lemma 10.21. For z = Y_ p*[z}] € A, the following conditions are equiva-
k=0

lent:

“+o00
(1) kzopk [z1] converges in Bjy.

X k0 '

(2) > p*xy” converges in C.
k=0

(3) lim (k+v(zk)) = +oo.
k— 400

(4) z € A;.
Proof. (3) < (4) is by definition of A;. (2) < (3) is by definition of v. (1) =
(2) is by continuity of 6 : Bj; — C. So it remains to show (2) = (1).
We know that
ar =k + [v(xg)] = o0 if k — +o0.

Write zj, = w® Fyy, then y, € R. We have

Pl = ([;)k w1l =5 (£ - 1)k )

By expanding (1 — z)® into power series, we see that
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f akfk
p* < - 1> € p™ W (R) + (Ker )™ !
p

for all m. Thus, ax — +oo implies that p¥[zy] — 0 € B;R/(Ker )™+ for
every m, and therefore also in B(J{R.

Remark 10.22. We just proved that ﬁl = BCTR N g, and we can use the iso-
morphism

_n ~ ~

"M Apn = Ay
to embed ﬁr in B(]LR for r < p™.
Definition 10.23. The ring of overconvergent elements

A= U A, ={z e A| o "(x) converges in Bi, for n>> 0}.
r>0

+00 ~

Lemma 10.24. An element x = 5. pFlag] is a unit in A, if and only if
k=0

zo # 0 and (=) > —kr for all k > 1. In this case, vy (z) = v(z) = v(2o).

Proof. The if part is an easy exercise.
“+o0 - +oo
Now if = Y p¥[z}] is a unit in A,., suppose y = >_ p¥[y;] is its inverse.

k=0 k=0
Certainly xgyo = 1 and x¢ # 0. We may assume xg = yg = 1. Suppose m, n

are maximal such that
U(Im) +mr = ’UT(I) < U(‘TO) =0, v(yn) +nr = Ur(y) < U(y()) =0.

We need to show m = n = 0. If not, then v,(z) < 0 and v,(y) < 0. Compare
the coefficients of p™*™ in the identity zy = 1, we get

xm—&-nyo + - + TmYn + e xoym.l,-n - Omodp.

Note that 2,y is of valuation v, (x) 4+ v,(y) — (m +n)r < 0, and other terms
in the left hand side is of valuation greater than v,(x) + v.(y) — (m + n)r,
impossible. Thus m = n = 0 and for k > 0, v(xy)+kr > v(xg) or equivalently,
v(3E) > —kr.

Definition 10.25. For 0 < r < oo, set

~ ~ 1 .
B, := A= |Jp "4,
p neN
endowed with the topology of inductive limit, and
Bt | B.
r>0

again with the topology of inductive limit.
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Bt is found to be a field, called the field of overconvergent elements:

Theorem 10.26. B is a subfield of E, stable by continuous ¢- and Gg,-
actions.

Proof. We only prove that non-zero elements are invertible in Bt. The conti-
nuity of ¢- and G, -actions is left as an exercise.

+oo ~
Suppose = >, pFlrr] € B, with xg, # 0, then = pko[zy, ]y with
k=ko
+o0 ~
y = > p*[yx] € B, and 3o = 1. It suffices to show that y is invertible in
k=0
Bt. Suppose vr(y) > —C for some constant C' > 0. Choose s > 0 such that
s—r > C. Then v(yx) + ks > v(yx) + kr + kC > 0 if k > 1. By Lemma 10.24,

y is invertible in Aj,.
Definition 10.27. Set

B .= Bf NB, AT = AtnB andA, = ZT N B.
Assume L is a finite extension of Ko and Hy, = Gal(K /LY¢).

(i) If A € {A, B, At, Bt At Bt A, B,}, set A := AHz.
(ii) If A € {A, B, A", Bt A,,B,} andn €N, set Ar,, .= ¢ "(AL) C B.

By definition, BT is a subfield of B stable by ¢- and Gk, -actions.

From now on in this chapter, we suppose L is a finite Galois extension of
K. Recall kf = kreve is a finite Galois extension of k. By Proposition 5.18.
Er = kS((7r)) where 71, is any uniformizer of Ey. Let F/ = F] = L¥°N
K§* = FracW(k$). We want to describe Ay, = A, N Og, more concretely.
We know that

n=—oo

+oo
A, = Og, = W((m)) = { Z AT | A € W, A, — 0 when n — —oo}7

and By, = VV/((?))[%], where = [¢] — 1.
Consider the extension Er,/Ey. There are two cases:

(i) If EL/Ep is unramified, then Ej, = k§ ((7)). Then

+oo
AL =0¢, = { Z AT Ay € Opr = W(k), Ay — 0 when n — oo} .

n=—oo

Let 77, = 7t in this case.

(ii) In general, let 7z, be a uniformizer of Ey, = k$((71)), and let Pp(X) €
Ep(X] = E$(())[X] be a minimal polynomial of 7. Let Pr(X) €
W (k$)[[7]][X] be a monic lifting of P;. By Hensel’s Lemma, there ex-
ists a unique 7y, € Ay, such that Pp(7r) = 0 and 7 = 71 mod p.



268 10 Overconvergent rings and overconvergent representations

Lemma 10.28. If we define

- 1, if in case (i), (10.8)
20(D), otherwise .

where D is the different of E/Ep:, then 7y, and Pj(7L) are units in AL,
forallr > rp.

Proof. We first show the case (i). We have 7t = [¢ — 1] + p[z1] + p*[z2] + - - -,

where z; is a polynomial in &” ~'—1 with coefficients in Z and no constant term.
Then v(z;) > v(e? —1) = W. This implies that 7 = [e — 1](1+ pla1] +
p?lag] + -+ +), with v(a1) = v(z1) —v(e —1) > —1 and v(a;) > —v(e —1) > —i
for i > 2. By Lemma 10.24, 7t is a unit in Ay, , for r > rp.

In general, by the construction of 7, from Hensel’s Lemma, we have 7, =

7o) + plon] + p?las] + -+ and v(Fp) = Lo(r) = L5 where e = [Ey, : Ep/]

is the ramification index. Then v(g+) > —v(7L) = —ﬁ. Thus 77, is a unit
Ap , for r > ﬁ. It is easy to check ﬁ >20(Dp, /B,

Similarly, Pj (7) = [?/L(ﬁL)] +plB1] + p?[B2) + -+ -, and

Bi .

v (/ — > —v(PL(TL)) = —v(DE,/E,. )
Pp(7L)

while the last equality follows from Proposition 1.80. Thus P; (7 ) is a unit

A, for r > 2U(ZDEL/EF,).

Let s: Ef, — Ap be the section of x — Zmod p given by the formula

s <Z ak7r]£> = a7t (10.9)

kEZ kEZ

For x € Ay, define {x,, }nen recursively by xg =  and 41 = %(:cn —s(z,)).
Then z = 372 p"s(%,). By this way,
Ap = {Z an@y | an € Op/, lim v(a,) = +oo} (10.10)
Lemma 10.29. Suppose x € Ay
(1) If k € N, then wk(%@) > min(wg11 (z), wo(x) — (k+ 1)ry).
(2) For the x,,’s defined above, v(Zy) > Or<ni£ (wi(z) = (n—i)rL).
<i<n

Proof. We first note that, since 7y, is a unit in Ay ., if y € £, and r > 7z,
then s(y) € A, and v,-(s(§)) = v(g). Thus

wy, (m—ps(x)) = wpi1(z — $(Z)) > min (wg41(z),v(T) — (k+ 1)rr) .
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Now (1) follows from the fact wo(z) = v(Z).

By (1), wi(xp+1) > min(wg1(xy,), wo(z) — (k+ 1)rz). By induction, one
has

wy(2,) > min (wk+n(m), 0<112n lwi(x) —(k+n-— i)rL> .
Take k = 0, then (2) follows.

Proposition 10.30. (1) If r > ry,, then

A, ={f(7L) = Zakﬁf | a € OF"kEIPOO(m(ak) + kv(Tp)) = 400}

kEZ
(10.11)
In this case, one has
v(f(7r)) = inf (rv(ag) + kv(TL)) - (10.12)

kEZ

(2) The map f — f(7L) is an isomorphism from bounded analytic functions
with coefficients in F' on the annulus 0 < vy(T) < Lv(7L) to the ring
By, .

Proof. (2) is a direct consequence of (1). Suppose z = Y, ., ;7. One can

write ap¥ in the form p®(®*)[7¥]u where u is a unit in the ring of integers

of A,. Hence v, (ay7%) = kv(Tr) + rv(ax). If . lim (rv(ag) + kv(7L)) = +o0,
——o0

then z = Y, ., ax7} converges in A, and v,(z) > ]icné(m(ak) + ku(TL)).
€

On the other hand, if x € A,, suppose (z,)nen is the sequence con-

structed as above, and suppose v, = Wog}ig (wi(x) + (i — n)ry). By
<i<n

Lemma 10.29, one can write Z, as > anx7y. Then x = >, ., a5, where
k>v,
ar = Y, p"lokn] € Opr and Iy = {n € N | v, < k}. The p-adic valuation
nely
of ay is bigger than or equal to the smallest element in . But by definition,

v, < k if and only if there exists ¢ < n such that w;(x) + (i — n)rp < kv(7TL),
in other words, if and only if there exists ¢ < n such that

wi(x) +ir+ (n—14)(r—rp) < kro(Tp) + nr.
One then deduces that

rv(ag) + kv(7p) > ogﬁlgn((wm) +ir)+ (n—1i)(r—rr)),
This implies kli}ry@(rv(%)—!—kv(f,;)) = 4ocand v.(z) < Iicrelg(rv(ak)—&—kv(ﬁL)).

Corollary 10.31. (1) AL , is a principal ideal domain;
(2) If L/M is a finite Galois extension over Ky, then Ar , is an étale extension
of Apy if v > 11, and the Galois group is nothing but Hy /Hy,.
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Define 7, = ¢~ "(7), Tr., = ¢~ "(71). Let L, = L(™) for n > 0.

Proposition 10.32. Suppose r, > p™. Then

(1) 0(7L,n) is a uniformizer of Ly,;
(2) Tr,n € Ln[[t]] C Big-

Proof. First by definition
T = [P =1 =eMe/?" —1 e Ko,[[t]] C B,

which implies the proposition in the unramified case.

For the ramified case, we proceed as follows.

By the definition of Ep, 7r,, = 0(7L,,) is a uniformizer of L, moda =
{z | vp(x) > %} Let wy, be the image of 7y, ,, in L,, mod a. So we just have to
prove 7y, € Ly,.

Suppose the minimal polynomial of 7y, is

d
Pu(x) = ai(m)a’, a;(m) € Op[[m]].
=0
Write 7, = 0(7,,). Define
d —n .
Prn(z)=> af "(m)a,
=0

then Pr, o (7r.n) = 0(¢(Pr(7r))) = 0. Then we have v(Pr ,(wy)) > = and

D=

1 _ 1 1. n
v(Py, ,(wn)) = 2;v(Pi(?TL)) = EU(DEL/EO) < % ifrp >p™

Then one concludes by Hensel’s Lemma that 7y, ,, € Ly,.
For (2), one uses Hensel’s Lemma in L, [[t]] to conclude 7y, € L,[[t]].

Corollary 10.33. If r > ry, and r > p", ¢ "(AL,) C L,[[t]] € Bii.
For L = Ky, we have the following results:

Lemma 10.34. If r > p" and i € Z,;, then [e]" — 1 is a unit in A, , and
v ([e]?" = 1) = pou(n).

Proof. We know that 7t = [¢] — 1 is a unit in Ag, , for r > 1, then [¢]?" —1 =
©"(m) is a unit in Ak, , for r > p™. In general,

Wi_l:i N ¢ P — 1)k
=1 +,;<k+1>(” Y

is a unit in Ag,, hence we have the lemma.
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Lemma 10.35. Let v € I'k,, suppose x(v) = 1 +up" € Z; with u € 7).
Then for r > p™,

(1) ve(y(7) — ) = p"o(m);
(2) ve(y(z) — ) > ve(w) + (p" — Dv(7) for x € Ay

Proof. We have y(7t) — 7t = [¢]([e]*?" — 1). By Lemma 10.34, []*?" — 1 is a
unit in Ag, . for 7 > p”, then v, (y(7) — 1) = v,.([g]*?" — 1) = p"v(r). This
finishes the proof of (1).

For (2), write = >, ax7® where rv(ag) + kv(r) — +o00 as k — +oc.
We know, by the proof of Proposition 10.30, that v,(x) = ming{ngv(r) + kr}
where ny = min{n | v(a,) = k}. Now

y(mF) — b =¥ <@c _ 1)

<2002

therefore

and

vr(y(@) — @) 2 p"o(m) + min{(ng — Do(m) + kr} = ve(z) + (p" — o ().

This finishes the proof of (2).

10.3 Overconvergent representations

The aim of this section is to prove the result of Cherbonnier-Colmez [CC98]
that all p-adic representations are overconvergent by the generalized Tate-

Sen’s method.
If V' is a free Z,-representation of rank d of G g, we studied the associated

(¢, (IN-module D(V) of V in § 5.3, which is a free Ax-module of rank d. Let
D, (V) = (A, ®z, V)" ¢ D(V) = (A®g, V)"¥. (10.13)

This is an A ,-module stable by I'x-action. Moreover, the Frobenius map ¢
sends D,.(V) to D, (V).
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Definition 10.36. A free Z,-representation V of Gg is called an overcon-
vergent representation over K if there exists an ry > rix > 0 such that

Ak® . D (V) = DV),

Ak,ry

A p-adic representation of Gk is called overconvergent if it has an over-
convergent G -stable Zy-lattice.

Remark 10.37. One may replace K by any finite extension L of Ky to get
overconvergent representations of L.

Suppose V is a free Z,-representation. If V' is overconvergent, by definition,
then for all r > ry,

Dr(V) = Ax,r ® D,, (V)

AK,TV
We choose a basis {e1,---,eq} of D,,,(V) over Ak, , for r/p > ry, then
x € D, (V) can be written as ), z;¢(e;), we define the valuation v, by
vp(x) = min vy (25). (10.14)

One can see that for a different choice of basis, the valuation differs by a
bounded constant.

Lemma 10.38. Suppose V' is an over-convergent Z,-representation over L.
If{e1,--- ,eq} is a basis of D,.(V) over Ar, and e; € o(D(V)) for every i,
then x =Y z;e; € D,.(V)¥=C if and only if x; € A%TO for every i.

Proof. One sees that ¢(x) = 0 if and only if (¢ (x)) = 0. As e; € p(D(V)),

e(¥(e;)) = e; and p(Y(x)) = >, ¢(¥(x;))e;. Therefore 1(x) = 0 if and only
if (¢ (x;)) = 0 for every i, or equivalently, ¢ (x;) = 0 for every i.

Proposition 10.39. If V is overconvergent over L, then there exists a con-
stant Cy such that if v € T'r, n(y) = v,(log(x(7))) and r > max{pry, p"},
then v — 1 is invertible in D, (V)¥=C and

v ((y = 1)712) > v (z) — Oy — p"Mo(r). (10.15)

Remark 10.40. (a) Since through different choices of bases, v, differs by a
bounded constant, the result of the above proposition is independent of
the choice of bases.

(b) We shall apply the result to A%jo.

Proof. First, note that if replace V' by Indgfo V', we may assume that L = K.
Suppose r > pry, pick a basis {e1, - ,eq} of D,-1,(V) over A, ,-1,,
then {p(e1), - ,¢(eq)} is a basis of D, (V) over Ag, . By Lemma 10.38,
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p=1
every z € D,.(V)¥=° can be written uniquely as x = Y [e]’p(z;) with x; =
i=1

d
'21 zije; € Dy, (V). Suppose x(v) = 1+ up”™ for u € Z); and n = n(y).
J:

Then
(v = Dz =Y [ o(y(w) = Y el ()
:Z[E]l‘p ([E]iupni v(@i) $2> = [e]" ¢ fi(xi)
i=1 i=1

We claim that the map f : 2 ~ []*?"y(z) — @ is invertible in A, for
r > max{ry,p"} for u € Z) and n is sufficiently large. Indeed, as the action
of vy is continuous, we may assume v,.((y—1)e;) > 2v(w) for every j =1,--- ,d
for n sufficiently large. Then

fl@) g™

e =1 [ -1

(v(z) —2) + 2=~y + =,
and
d d
@)=z =Y (V) = 2)v(e) + > wi(v(es) — ¢5),
j=1 j=1

therefore by Lemma 10.35,
0r(y) > 0(2) + 20(r)
for every z € D,.(V). Thus

+o00
g(@) = (""" =17 Yyt
k=0
is the inverse of f and moreover,

vy (9(50) -

By the above claim, we see that if n > 0, r > max{pry,p"}, then v — 1
p=1
has a continuous inverse Y. [¢]'¢ ™' o f;! in D,.(V)¥=" and
i=1

) > v(2) + (7).

7 =1

vr((v = 1) 7)) = v (@) = p"o(m) = Cv

for some constant Cy. In general, if 47 — 1 is invertible in D,.(V)¥=° for
r > max{pry,p"t1}, we just set

(V=D7M@) =9 o (" = DTHA 4+ ") (e(@),

which is an inverse of v — 1 in D,.(V)¥=° for 7 > max{pry, p"}. The propo-
sition follows inductively.
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Theorem 10.41. The quadruple

A= gl, v=w1, Go =Gk, An,, =¢ "(ArL1)
satisfies Tate-Sen’s conditions.
Proof. We need to check the conditions (TS1) — (TS 3).

(TS1). Let L D M D Ky be finite extensions. Suppose

a=[m)( Y T(E)

TEHNM/HL

then for all n,

Yo TeTM@) =1,

TEHN /Hy
and
lim v (p " (a)) =0.

n—-+oo

(TS2). First Ag, » = ¢ "(Ar1). Suppose rp > p™. We can define Ry, ,, by
the following commutative diagram:

Ry, AVL,l ¢ ™(Ar1)
/ow’“;"*’“
@_7L_k(AL,1)

One verifies that ™™ o ¥ 0 ™% does not depend on the choice of k, using
the fact 1 = Id. By definition, for z € (J,>q¢ " *(AL,1), we immediately
have: B

(a) RL,n o RL,n+m - RL,n;

(b) If x € 9" (AL 1), Ron(z) = x5
(¢) Rppnis gp’”*k(ALyl)—linear;
(d)

nll)r-&r-loo RL’n(.’E) =

Furthermore, for z = p™""*(y) € o™ 7% (AL 1),
Rpn(2) =9 " (0" (y)) = 7" (" 0™ (y)).

Write y uniquely as Zfial[s]igok(yi), then by Corollary 5.30, ¥*(y) = vo.
Thus
V(R (7)) = vi(e" (%)) = vi(p” " *(y)) = vi(@).

By the above inequality, Ry, , is continuous and can be extended to A as
Urso © " F(Ap 1) is dense in A1 and the condition (TS2) is satisfied.
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(TS3). Let R} ,(z) = Rp nt1(x) — Rpn(z), then

Rj . (2) = ¢ " (1= o) (* () € 7" AT,
thus
R; () € o " HAYT) N Ay =" (AT N Apuia)
=D (AY70L).

L,pntt

For an element x such that Ry, ,,(z) = 0, we have
“+o00
* * — i+1 =0
T = ZRL,nJri(I)? where RL,nJri(x) €y (tit1) (Af7p—<n+7t+1>) :
i=0

Apply Proposition 10.39 on A%jﬂ(nﬂﬂ), then if n is sufficiently large, one

can define the inverse of v — 1 in (Ry, , — 1A as
+oo , )
(v=1D7M2) =D o T = )TN E"TIRY, (@)
i=0

and for x € (R, — 1)4,
v((y =1)7'2) > v(2) - C,
thus (TS3) is satisfied.

Theorem 10.42 (Cherbonnier-Colmez [CC98]). All free Z,- and p-adic
representations of Gg are overconvergent.

Proof. One just needs to show the case for free Z,-representations. The p-adc
representation case follows by ®z,Q,.

For (/T7U7G0,/1HL,n) as in the above Theorem, Sen’s method (§10.1, in
particular Proposition 10.9) implies that for any continuous cocycle o — U,
in HY . (Go, GL4(A)), there exists an n > 0, M € GLg4(A) such that V,
GL4(¢ ™ (Ak,1)) for x(o) > 0 and V is trivial in Hf,.

If V is a Zy-representation of G, pick a basis of V over Z,, let U, be
the matrix of o € Gk under this basis, then o — U, is a continuous cocycle
with values in GL4(Z,). Now the fact V(D(V)) = V means that the image
of HY «(H},GLa(Zy)) — HL . (H,GL4(A)) is trivial, thus there exists
N € GL,4(A) such that the cocycle o — W, = N~1U,0(N) is trivial over H};.
Let C = N7'M, then C~'V,0(C) = W, for 0 € Gg. As V,, and W, is trivial
in Hj., we have C~'V,v(C) = W,,. Apply Lemma 10.8, when n is sufficiently
large, C € GL4(¢ " (Ak,1)) and thus M = NC € GL4(¢p™ " (AKk,1)).

Translate the above results to results about representations, there exists
an n and an ¢~ "(Ak 1)-module Dk, C A; Q V such that
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Ay ®¢77L(AK71) DK,n = AL @V.

Moreover, one concludes that Dk, C ¢~ "(D(V)) and ¢"(Dk,) C D(V) N
" (A1 Q@V) = Dpn (V). We can just take ry = p™.
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weighted E-linear representation of
WDk, 64
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