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Chapter 1

Modules up to
pseudo-isomorphism

Let A be a commutative noetherian integrally closed domain. Let K be the
quotient field of A. Let P (A) = {℘ ∈ Spec(A) | ht℘ = 1} be the set of prime
ideals of A of height 1. Then for every ℘ ∈ P (A), A℘ is a discrete valuation
ring.

Theorem 1.1.
A =

⋂
℘∈P (A)

A℘.

Proof. See [7, Theorem 11.5, page 81]. This is a well known theorem about
normal noetherian domains.

For an A-module M , we let

M+ := HomA(M,A).

Thus there is a pairing

M+ ×M → A, (α,m) 7→ α(m)

which induces a homomorphism of A-modules ϕM : M →M++.

Definition 1.2. An A-module M is called reflexive if the canonical map

ϕM : M −→M++ = HomA(HomA(M,A), A)
m 7−→ (ϕM (m) : α 7→ α(m))

is an isomorphism.

Remark. M+ is always torsion free, thus M is reflexive implies that M is
torsion free.
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Assume M is a finitely generated torsion free A-module, then

M ↪→M℘ ↪→M℘ ⊗A℘ K = M ⊗A K := V

and
M+ ↪→ (M+)℘ ↪→ (M+)℘ ⊗A℘ K = M+ ⊗A K = V ∧

where V ∧ = HomK(V,K) is the dual of V . One has

M+ = {λ ∈ V ∧ | λ(m) ∈ A for all m ∈M},

(M+)℘ = {λ ∈ V ∧ | λ(m) ∈ A℘ for all m ∈M℘} = (M℘)+,

where M℘ is regarded as an A℘-module.

Lemma 1.3. Let M be a finitely generated torsion free A-module, then
(1) M+ =

⋂
℘∈P (A)

M+
℘ .

(2) M++ =
⋂

℘∈P (A)

M℘.

(3) M is reflexive if and only if M =
⋂

℘∈P (A)

M℘.

Proof. (1) ⊆ is trivial. If λ ∈
⋂

℘∈P (A)

M+
℘ , then for all m ∈ M , λ(m) ∈ A℘ for

℘ ∈ P (A), hence λ(m) ∈ A and λ ∈M+.
(2) since M℘ = M++

℘ for ht℘ = 1 (A℘ is a discrete valuation ring).
(3) follows from (2).

Corollary 1.4. If M is a finitely generated A-module, then M+ is reflexive.

Definition 1.5. A finitely generated A-module M is called pseudo-null if the
following two equivalent conditions are fulfilled:

(1) M℘ = 0 for all prime ideals ℘ in A of height ht(℘) ≤ 1, i.e., Supp(M) =
{℘ ∈ Spec(A) |M℘ 6= 0} ⊆ {℘ ∈ Spec(A) | ht(℘) ≥ 2}.

(2) If ℘ is a prime ideal with annA(M) ⊆ ℘, then ht(℘) ≥ 2. Recall that
annA(M) = {a ∈ A | aM = 0}.

Remark. (i) For the equivalence of the two conditions: M℘ = 0 if and only if
there exists s ∈ A\℘, such that sM = 0, which is equivalent to annA(M) * ℘.

(ii) A pseudo-null module is torsion since M(0) = M ⊗A K = 0.
(iii) If A is a Dedekind domain, then M is pseudo-null if and only if M = 0.
(iv) If A is a 2-dimensional noetherian integrally closed local ring with finite

residue field, then M is pseudo-null if and only if M is finite.
Indeed, let m be the maximal ideal of A, if M is finite, there exists r ∈ N

such that mrM = 0, thus Supp(M) ⊆ {m}. On the other hand, if Supp(M) ⊆
{m},then there exists r ∈ N such that mrM = 0, thus mr ⊆ annA(M), therefore
M is a finitely generated A/mr-module, hence finite.
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Definition 1.6. Let f : M → N be a homomorphism of finitely generated A-
modules M and N . f is called a pseudo-isomorphism if both ker f and coker f
are pseudo-null, equivalently, if the induced homomorphisms

f℘ : M℘ −→ N℘

are isomorphisms for all ℘ ∈ P (A)
⋃
{0}. We write a pseudo-isomorphism f as

f : M ≈−→ N or f : M ∼ N .

Lemma 1.7. Let M be a finitely generated A-torsion module, if 0 6= α ∈ A
such that Supp(A/αA) is disjoint to Supp(M) ∩ P (A), then

α : M −→M, m 7−→ αm

is a pseudo-isomorphism.

Proof. This is clear since α is a unit of A℘ for every ℘ ∈ Supp(M) ∩ P (A).

From now on, we set

TA(M) : the torsion submodule of M ;
FA(M) = M/TA(M) : the maximal torsion free quotient of M.

Proposition 1.8. Let M be a finitely generated A-module. Then
(1) There exists a pseudo-isomorphism

f : M ≈−→ TA(M)
⊕

FA(M).

(2) There exists {℘i}i∈I ⊆ P (A), ni ∈ N, and a pseudo-isomorphism

g : TA(M) ≈−→
⊕
i∈I

A/℘ni
i

where {℘i, ni} are uniquely determined by TA(M) up to re-numbering.

Proof. (1) Let {℘1, · · · , ℘h} = Supp(M) ∩ P (A). If h = 0, then TA(M) is
pseudo-null, the homomorphism

f : M
(0,can)−−−−→ TA(M)

⊕
FA(M)

is a pseudo-isomorphism.
If h > 0, let

S =
h⋂
i=1

A\℘i = A
∖ h⋃
i=1

℘i.

then S−1A is a semi-local Dedekind domain with maximal ideals S−1℘i, i =
1, · · · , h. Thus S−1A is a principal ideal domain by the approximation theorem,
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and S−1TA(M) is a direct summand of S−1M and is the torsion module of
S−1M . Since M is finitely generated, then

HomS−1A(S−1M,S−1TA(M)) = S−1 HomA(M,TA(M)).

Thus there exists f0 : M → TA(M) and s0 ∈ S such that

f0
s0

: S−1M −→ S−1TA(M)

is the projection of S−1M onto S−1TA(M), hence

f0
s0
|S−1TA(M) = IdS−1TA(M) .

Thus there exists s1 ∈ S, f1 = s1f0 such that f1|TA(M) = s1s0 IdTA(M). Let

f = (f1, can) : M −→ TA(M)⊕ FA(M)

by the commutative diagram

0 −−−−→ TA(M) −−−−→ M −−−−→ FA(M) −−−−→ 0yf1|TA(M)

yf ∥∥∥
0 −−−−→ TA(M) −−−−→ TA(M)⊕ FA(M) −−−−→ FA(M) −−−−→ 0

By Lemma 1.7, f1|TA(M) is a pseudo-isomorphism, the snake lemma implies that
f is also a pseudo-isomorphism.

(2) By the structure theorem of finitely generated modules over a principal
ideal domain, there exists an isomorphism

g0 : S−1TA(M)
∼=−→ S−1E = S−1

 h⊕
i=1

ri⊕
j=1

A/℘
nij

i


for some uniquely determined

E =
h⊕
i=1

ri⊕
j=1

A/℘
nij

i .

Using
HomS−1A(S−1TA(M), S−1E) = S−1 HomA(TA(M), E),

again we obtain g : TA(M)→ E and s ∈ S, such that g = sg0. Again using the
previous lemma, g is a pseudo-isomorphism.

Remark. (i) If M , N are torsion modules, then f : M ≈→ N implies that there
exists g : N ≈→M .
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In general, this is not true. For example, let A = Zp[[T ]] = Λ, N = Λ and

M = ker (N → Z/pZ). Then M ≈→ N but N
6≈→M .

(ii) If the exact sequence of finitely generated A-torsion modules

0 −→M ′ −→M −→M ′′ −→ 0

satisfies that the associated sets of prime ideals of height 1 of M ′ and M ′′ are
disjoint. Then M ≈→M ′ ⊕M ′′.

Proposition 1.9. Let M be a finitely generated torsion free A-module. Then
there exists an injective pseudo-isomorphism of M onto a reflexive A-module
M ′.

Proof. Consider the homomorphism ϕM : M →M++. One notes that:
(1) M℘

∼= M++
℘ for ht℘ ≤ 1. In particular, kerϕM ⊗AK = 0, hence kerϕM

is torsion. As M is torsion free, kerϕM = 0;
(2) M++ is reflexive.

Proposition 1.10. Let A be an n-dimensional regular local ring, 2 ≤ n < ∞.
Let {p1, · · · , pn} be a regular system of parameters generating the maximal ideal
of A. Let p0 := 0. Then for a finitely generated A-module M , the following two
assertions are equivalent:

(1) For every i = 0, · · · , n− 2, the A/(p0, · · · , pi)-module M/(p0, · · · , pi)M is
reflexive.

(2) M is a free A-module.

In particular, a reflexive A-module M over a 2-dimensional regular local ring A
is free.

Proof. We only need to show (1)⇒ (2).
From (1), M is reflexive, hence torsion free. Let ϕ : Ar � M be a minimal

free presentation of M . Consider the diagram

0 −−−−→ Ar
p1−−−−→ Ar −−−−→ (A/p1)r −−−−→ 0yϕ yϕ yϕ̃

0 −−−−→ M
p1−−−−→ M −−−−→ M/p1M −−−−→ 0

Assume M/p1 is a free A/p1-module, then by Nakayama Lemma and the mini-
mality of r, ϕ̃ is an isomorphism. Hence p1 : kerϕ → kerϕ is an isomorphism.
By Nakayama again, kerϕ = 0. We get M is a free A-module. Thus we only
need to show

(*) M/p1 is a free A/p1-module

Note that

(i) A/p1 is a regular local ring of dimension n− 1;
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(ii) Let p̃i = pi + p1A, then {p̃2, · · · , p̃n} is a regular system of parameter of
A/p1.

Thus (1) holds for (A/p1,M/p1). By induction, we only need to check (*) for
n = 2. In this case, A/p1 is regular of dimension 1, hence a discrete valuation
ring and an integral domain. Thus HomA(M+, A/p1) is torsion free, therefore

M/p1 = M++/p1 = HomA(M+, A)⊗A/p1 ↪→ HomA(M+, A/p1)

is also torsion free over the discrete valuation ring A/p1, which must be free.

Theorem 1.11 (Structure Theorem). Let A be a 2-dimensional regular local
ring and M be a finitely generated A-module. Then there exists finitely many
primes ℘i of height 1, natural numbers ni for each i, nonnegative integer r and
a pseudo-isomorphism

f : M ≈−→ Ar ⊕
⊕
i∈I

(A/℘ni
i ) ,

℘i, ni and r are uniquely determined by

r = dimKM ⊗A K, {℘i|i ∈ I} = SuppM ∩ P (A).

6



Chapter 2

Iwasawa modules

In this chapter, we let K be a finite extension of Qp and let O be the ring of
integers of K, let π be a uniformizing parameter of O. Let k = O/(π) be the
residue field of O. Then k is a finite extension of Fp. As a convention, we write
Λ = Zp[[T ]].

For f(T ) = a0 + a1T + · · ·+ aiT
i + · · · ∈ O[[T ]], f 6= 0, set

µ(f) = min{ordπ(ai)}, λ(f) = min{i : ordπ(ai) = µ(f)}.

Lemma 2.1 (Division Lemma). Suppose f = a0 + a1T + · · · ∈ O[[T ]] but π - f ,
i.e. µ(f) /∈= 0. Let n = λ(f). Then any g ∈ O[[T ]] can be uniquely written as

g = qf + r

where q ∈ O[[T ]], and r ∈ O[T ] is a polynomial of degree at most n− 1.

Proof. First we show the uniqueness. If qf + r = 0, we need to show that
q = r = 0. If not, we may assume that π - q or π - r. But 0 = qf + r mod π
implies that π | r and therefore π | qf . Since π - f , we have π | q, contradiction!

For the existence, we have two proofs.

First proof: We let τn = τ be the O-linear map

∞∑
i=0

biT
i 7−→

∞∑
i=n

biT
i−n.

Note that
(i) τ(Tnh) = h for h ∈ O[[T ]].
(ii) τ(h) = 0 if and only if h is a polynomial of degree ≤ n− 1.

Write f = πP (T ) + TnU(T ), where P (T ) is a polynomial of degree at most
n− 1 and U(T ) is a unit in O[[T ]]. For any g ∈ O[[T ]], let

q(T ) =
1
U

∞∑
j=0

(−1)jπj
(
τ ◦ P

U

)j
◦ τ(g) ∈ O[[T ]].
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Then
τ(qf) = τ(πqP ) + τ(TnqU) = πτ(qP ) + qU

and

πτ(qP ) =τ

πP
U

∞∑
j=0

(−1)jπj
(
τ ◦ P

U

)j
◦ τ(g)


=

∞∑
j=1

(−1)j−1πj
(
τ ◦ P

U

)j
◦ τ(g)

=τ(g)− qU.

Thus τ(qf) = τ(g).

Second proof: Note that k[[T ]] is a discrete valuation ring, it has a simple
division algorithm. We let ḡ(T ) be the reduction of g(T ) modulo π. Since
f̄(T ) = Tn · (unit) in k[[T ]], we have

ḡ(T ) = q̄(T )f̄(T ) + r̄(T )

for suitable q̄(T ) ∈ k[[T ]] and r̄(T ) ∈ k[T ] of degree ≤ n − 1. Let q1(T ) ∈
O[[T ]], r1(T ) ∈ O[T ] (of the same degree of r̄(T )) be liftings of q̄(T ) and r̄(T )
respectively. Then

g(T ) = f(T )q1(T ) + r1(T ) + πg1(T )

for some g1(T ) ∈ O[[T ]]. Apply the same procedure for g1, we get

g(T ) = f(T )q1(T ) + r1(T ) + π(f(T )q′2(T ) + r′2(T ) + πg2(T ))

= f(T )q2(T ) + r2(T ) + π2g2(T )

where q2 = q1 mod π, r2 = r1 mod π. Repeat the process, we get

g(T ) = f(T )qn(T )+rn(T )+πngn(T ), qn+1 = qn mod πn, rn+1 = rn mod πn.

By taking the limits, the desired result is obtained.

Corollary 2.2. If π - f ∈ O[[T ]] (i.e., µ(f) = 0), then O[[T ]]/(f) is a free
O-module of rank n = λ(f) with basis {T i : i < n}.

Definition 2.3. A distinguished polynomial (or Weierstrass polynomial) F (T ) ∈
O[T ] is a polynomial of the form

F (T ) = Tn + an−1T
n−1 + · · ·+ a0, ai ∈ (π).

We note that an Eisenstein polynomial is an irreducible distinguished polyno-
mial.
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Corollary 2.4. Let F be a distinguished polynomial, then

O[T ]/FO[T ]
∼=−→ O[[T ]]/FO[[T ]].

Theorem 2.5 (Weierstrass Preparation Theorem). Let f ∈ O[[T ]], f 6= 0.
Then f can be uniquely written as

f = πµP (T )U(T )

where µ = µ(f), P (T ) is a distinguished polynomial of degree n = λ(f), U(T )
is a unit in O[[T ]]. As a consequence, O[[T ]] is a factorial domain.

Proof. One may assume π - f . Write f = a0 + a1T + · · · + anT
n + · · · with

π - an and π | ai for i < n. By the division lemma, Tn = q(T )f(T ) + r(T )
with deg r < n and q(T ) ∈ O[[T ]]. One has r(T ) = 0 mod π. Therefore
f(T )q(T ) = Tn − r(T ) := P (T ) = Tn mod π, we have q(T )an = 1 mod π and
q(T ) := 1

U(T ) ∈ (O[[T ]])×. Thus in this case f(T ) = U(T )P (T ). The uniqueness
follows from the division lemma, since Tn = U(T )−1f(T ) + (Tn − P (T )).

Remark. For π - f , thenO[[T ]]/(f(T )) ∼= O[T ]/(P (T )). Thus P (T ) is the char-
acteristic polynomial of the linear transformation T : O[[T ]]/(f)→ O[[T ]]/(f).

Corollary 2.6. There are only finitely many x ∈ Cp, |x| < 1 such that f(x) = 0.

Proof. This is an easy exercise.

Lemma 2.7. Let P be a distinguished polynomial. If g(T )
P (T ) ∈ O[[T ]], g(T ) ∈

O[T ], then g(T )
P (T ) ∈ O[T ].

Proof. Let g(T ) = P (T )f(T ), f ∈ O[[T ]]. For any root x ∈ Cp of P (T ),
0 = P (x) = xn + multiple of π, one has |x| < 1, hence f(x) converges and
g(x) = 0. Continue this process, we get P (T ) | g(T ) as polynomials, hence
f(T ) ∈ O[T ].

Let Γ = Zp = lim←−n Z/pnZ. As a profinite group, Γ is compact and pro-
cyclic. Let γ be a topological generator of Γ, i.e., Γ = 〈γ〉. Let Γn = 〈γpn〉 be
the unique closed subgroup of index pn of Γ, then Γ/Γn is cyclic of order pn

generated by γ + Γn. One has an isomorphism

O[Γ/Γn]
∼−→ O[T ]/

(
(1 + T )p

n

− 1
)

γ mod Γn 7−→ (1 + T ) mod (1 + T )p
n

− 1

Moreover, if m ≥ n ≥ 0, the natural map Γ/Γm → Γ/Γn induces a natural map
φm,n : O[Γ/Γm]→ O[Γ/Γn], which is compatible with the isomorphism. We let

O[[Γ]] = lim←−
n

O[Γ/Γn] = lim←−
n

O[T ]/
(
(1 + T )p

n

− 1
)
.
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Note that O is a topological ring, compact and complete with π-adic topology,
so are the rings O[Γ/Γn], thus O[[Γ]] is endowed with the product topology of
π-adic topology, it is also compact and π-complete. The ring O[[Γ]] is called the
Iwasawa algebra and its modules are called Iwasawa modules.

Theorem 2.8. One has a topological isomorphism

O[[T ]] −→ O[[Γ]], T 7−→ γ − 1

where O[[T ]] is a compact topological ring complete with (π, T )-topology.

Proof. Write ωn(T ) = (1+T )p
n−1. ωn is a distinguished polynomial. Moreover,

ωn+1(T )
ωn(T )

= (1 + T )p
n(p−1) + · · ·+ (1 + T )p

n

+ 1 ∈ (p, T ) ⊆ (π, T ),

thus ωn(T ) ∈ (p, T )n+1 for n ≥ 0.
By Corollary 2.4, for every n ∈ N, we have a projection

O[[T ]] � O[[T ]]/(ωn)
∼→ O[T ]/(ωn)

∼→ O[Γ/Γn]

which is compatible with the transition map. By the universal property of
projective limits, then we have a continuous homomorphism

ε : O[[T ]]→ O[[Γ]], T 7→ γ − 1.

On one hand ker ε ⊆
⋂
n(ωn) ⊆

⋂
n(p, T )n+1 = 0, thus ε is injective. On the

other hand, O[[T ]] is compact, hence the image is closed, it is also dense since
at every level the map is surjective, hence ε is also surjective.

From now on let O = Zp and Λ = Zp[[T ]]. Let m = (p, T ) be the maximal
ideal of Λ. We identify Zp[[Γ]] and Λ by the above Theorem, though we should
keep in mind that this isomorphism depends on the choice of the topological
generator γ of Γ. Write ωn(T ) = (1 + T )p

n − 1 and νn,e(T ) = ωn(T )/ωe(T ).

Lemma 2.9. If f and g are relatively prime to each other, then |Λ/(f, g)| <∞.

Proof. Let h ∈ (f, g) be of minimal degree. we show that h = ps(up to Z∗p).
If not, h = psH for degH ≥ 1. By the division algorithm, f = Hq + r, thus
psr ∈ (f, g), contradiction!

Proposition 2.10. The prime ideals of Λ are

(0), m = (p, T ), (p), (P )

where P are irreducible distinguished polynomials in Λ.

Proof. First all in the list are prime ideals. Let ℘ be a prime ideal of Λ and
h ∈ ℘ be of minimal degree. Then h = psH with H = 1 or distinguished (up to
Z∗p). If H 6= 1, then it must be irreducible by minimality. Then (f) ⊆ ℘ where
f = p or an irreducible distinguished polynomial. If (f) = ℘, we are done. If
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not, there exists g ∈ ℘ such that f, g are relatively prime. By the above lemma,
|Λ/℘| ≤ |Λ/(f, g)| <∞. Therefore pN ∈ ℘ for N � 0, which implies p ∈ ℘ since
℘ is prime; also there exists a pair i < j, such that T i − T j ∈ ℘, as 1− T j−i is
a unit, T i ∈ ℘, hence T ∈ ℘. Thus (p, T ) ⊆ ℘.

Theorem 2.11 (Structure Theorem for Iwasawa modules). For any finitely
generated Λ-module M ,

M
≈→ Λr ⊕

s⊕
i=1

Λ/pmi ⊕
t⊕

j=1

Λ/Fnj

j

where r = rankM , mi(i = 1, · · · s), Fj and nj (j = 1, · · · , t) are uniquely
determined by M .

Definition 2.12. FM =
t∏

j=1

F
nj

j is called the characteristic polynomial of M .

If M is a torsion module, we define the Iwasawa invariants of M by

λ(M) =
s∑
i=1

mi, µ(M) =
∑
j

nj degFj = degFM .

Remark. The isomorphism of Zp[[Γ]] and Zp[[T ]] depends on the choice of γ.
Therefore if a finitely generated Iwasawa moduleM is considered as a Λ-module,
the corresponding Fj and FM depend on the choice of γ, but λ(M) and µ(M)
are independent invariants.

Lemma 2.13 (Topological Nakayama’s Lemma). Let M be a compact Λ-module.
Then the following are equivalent:

(1) M is finitely generated over Λ;
(2) M/TM is a finitely generated Zp-module;
(3) M/(p, T )M is a finitely dimensional Fp-vector space.

Proof. (1)⇒ (2)⇒ (3) are easy. Assuming (3), let x1, · · · , xn generateM/(p, T )M
as Fp-vector space. Let N = Λx0 + · · ·+ Λxn ⊆M , then

M

N
=
N + (p, T )M

N
= (p, T )

M

N
.

Thus M/N = (p, T )nM/N for all n > 0.
Consider a small neighborhood U of 0 in M/N . Since (p, T )n → 0 in Λ,

for any z ∈ M/N , there exists a neighborhood Uz of z and some nz such that
(p, T )nzUz ⊆ U . But M/N is compact, then (p, T )nM/N ⊆ U for n� 0, hence
M/N = ∩(p, T )nM/N = 0 and M = N is finitely generated over Λ.

Theorem 2.14. Let X be a compact Λ-module. Then
(1) X = 0 ⇔ X/TX = 0 ⇔ X/mX = 0.
(2) X is a finitely generated Λ-module ⇔ X/TX is a finitely generated

Zp-module ⇔ X/mX is a finite dimensional Fp-vector space. Moreover, for
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a finitely generated Λ-module X, the minimal number of generators of X is
dimFp

(X/mX).
(3) If X/TX is finite, then X is a torsion Λ-module.
(4) If we replace T by any distinguished polynomial in (1), (2) and (3), the

corresponding assertions still hold.

Proof. (1) and (2) are Nakayama’s Lemma.
For (3), by (2), X is a finitely generated Λ-module. Let x1, · · · , xd be a set

of generators. Suppose X/TX has exponent pk, then pkxi ∈ TX for 1 ≤ i ≤ d.
Write

pkxi =
d∑
j=1

Taij(T )xj ,

and let A = (pkδij − Taij(T ))i, j and g(T ) = detA. Then g(T )xi = 0 for all
i = 1, · · · , d but g(0) = pdk 6= 0, hence X is torsion.

(4) follows similarly.

Lemma 2.15. Let g be a distinguished polynomial of degree d prime to ωn/ωe
for every n > e. Then for n� 0,

|Λ/(g, ωn)| = pdn+O(1).

Proof. We know Λ/(g, ωn) is finite for n � 0 by Lemma 2.9. Write V =
Λ/(g(T )). Since T d = pQ(T ) mod g, by induction, then for k ≥ d, T k =
p · poly. mod g. Therefore for pn ≥ d,

(1 + T )p
n

= 1 + p · poly. mod g

and
(1 + T )p

n+1
= (1 + p · poly.)p = 1 + p2 · poly. mod g,

ωn+2(T )
ωn+1(T )

=
(1 + T )p

n+2 − 1
(1 + T )pn+1 − 1

=(1 + T )(p−1)pn+1
+ · · ·+ (1 + T )p

n+1
+ 1

=p(1 + p · poly.) mod g.

Thus ωn+2(T )
ωn+1(T ) acts as p · unit on V for pn ≥ d.

For n0 > e, pn ≥ d and n ≥ n0, then ωn+2V = ωn+2(T )
ωn+1(T ) (ωn+1V ) = pωn+1V ,

and

|V/ωn+2V | =|V/pV | · |pV/pωn+1V | = |V/pV | · |V/ωn+1V |
=pd(n−n0+1)|V/ωn0+1V | = pnd+c.

This finishes the proof.
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Lemma 2.16. For a Λ-module M , let MΓ = M/TM and MΓ = Mγ=1. If
there is exact sequence

0 −→M ′ −→M −→M ′′ −→ 0,

then there is a long exact sequence

0→M ′Γ →MΓ →M ′′Γ →M ′
Γ →MΓ →M ′′

Γ → 0.

Proof. Apply the snake lemma to the commutative diagram

0 −−−−→ M ′ −−−−→ M −−−−→ M ′′ −−−−→ 0

γ−1

y γ−1

y γ−1

y
0 −−−−→ M ′ −−−−→ M −−−−→ M ′′ −−−−→ 0

with exact rows.

Remark. If replacing γ by γp
n

, we shall have corresponding results.

Proposition 2.17. Let M be a finitely generated torsion Λ-module such that
M/ωnM is finite for all n ≥ 0. Then for n� 0, |M/ωnM | = pµ(M)pn+λ(M)+O(1)

where λ(M) and µ(M) are Iwasawa invariants.

Proof. By the above lemma, we can replace M by a torsion Λ-module of the
form

⊕s
i=1

(
Λ/pki

)
⊕
⊕t

j=1 (Λ/fj(T )mj ). Now just apply Lemma 2.15.

13



Chapter 3

Zp-extensions

Definition 3.1. A Zp-extension is a Galois extension K∞/K whose Galois
group is isomorphic to the ring of p-adic integers Zp.

Proposition 3.2. There are exactly one sub-extension Kn of K inside K∞
with Galois group Gal(Kn/K) ∼= Z/pnZ cyclic of order pn.

Proof. This follows easily from the fundamental theorem of Galois Theory, as
the only closed subgroups of Zp are 0 and pnZp for n ∈ N.

Proposition 3.3. Let K be a number field, then Zp-extensions over K are
unramified outside p.

Proof. Let v be a prime of K not lying above p. We need to show the inertia
subgroup I of v is 0. if not, I = pnZp for some n ∈ N. By local class field
theory, UKv

� I = pnZp is surjective, but UKv
= finite groups × Za` for a ∈ N

and ` 6= p, this is impossible.

Lemma 3.4. Let K be a number field. Then there exists at least one prime
ramified in K∞/K, and there exists n ≥ 0 such that every prime which is
ramified in K∞/K is totally ramified in K∞/Kn.

Proof. This is an easy exercise.

Suppose K is a number field. Let E = O×K be the group of global units. Let

E1 = {x ∈ E | x ≡ 1 mod ℘ for all ℘ | p}.

Let U1,℘ be the group of local units congruent to 1 mod ℘. Then we have an
injective diagonal map

ψ : E → U =
∏
℘|p

U℘, ε 7→ (ε, · · · , ε)

such that ψ(E1) ⊆ U1 =
∏
℘|p U1,℘.

14



Lemma 3.5. (1) ψ(E1) = U1 ∩K×∏
v-p
Uv.

(2) ψ(E) = U ∩K×∏
v-p
Uv.

Proof. (1). ⊆ is easy. For ⊇, we write Un =
∏
v|p
Un,v, where Un,v is the group of

local units congruent to 1 mod vn, then

K×
∏
v-p

Uv =
⋂
n

(K×
∏
v-p

UvUn), ψ(E1) =
⋂
n

ψ(E1)Un.

It suffices to show that U1∩K×∏
v-p UvUn ⊆ ψ(E1)Un. For any element xu′un ∈

U1 ∩K×∏
v-p UvUn where x ∈ K×, u′ ∈

∏
v-p Uv and un ∈ Un, we have x ∈ E1

and for v - p, (xu′)v = 1. Then xu′un = ψ(x)un ∈ ψ(E1)Un.
The proof of (2) is similar to (1).

Conjecture 3.6 (Leopoldt Conjecture). rankZ E1 = rankZp E1⊗ZZp = rankZp ψ(E).

Leopoldt Conjecture is true for abelian number fields.
Let δ = rankZ E1 − rankZp

E1 ⊗Z Zp. Then δ ≥ 0 and δ = 0 if Leopoldt
Conjecture holds.

Example 3.7. Note that 7, 13 are independent over Z, but log3 13/ log3 7 ∈ Z3,
thus 〈7, 13〉Z3 = 〈7〉Z3 .

Theorem 3.8. Let K̃ be the composite of all Zp-extensions of K inside Kab.
Then

Gal(K̃/K) ∼= Zr2+1+δ
p

where r2 is the number of complex embeddings of K and δ is the Leopoldt defec-
tion.

Proof. Since K̃/K is unramified outside p, we first consider the maximal abelian
extension F of K unramified outside p. Let H be the maximal unramified
abelian extension of K inside F , i.e. the Hilbert class field of K. Write Jk the
group of ideles of K and IK the ideal class group of K. By Class field theory,
then

Gal(F/K) = JK/K×
∏
v-p

Uv,

Gal(H/K) ∼= IK = JK/K
×
∏
v

Uv.

Write V = K×∏
v-p Uv. We have

Gal(F/H) = K×
∏
v

Uv/V = UV/V ∼= U/(U ∩ V ).

15



Note that U = U1 × (finite group), then U/U ∩ V and U1/(U1 ∩ V ) differ by a
finite group. Note that U1

∼= (finite group)× Z[K:Q]
p , then by Lemma 3.5

U1/U1 ∩ V = U1/ψ(E1) ∼= finite× Zr2+1+δ
p .

Thus
K×

∏
v

Uv/K×
∏
v-p

Uv ∼= finite× Zr2+1+δ
p

and hence
Gal(F/K)
Zr2+1+δ
p

= finite.

Suppose the quotient is of order N . Write J ′ = Gal(F/K) = Jk/V . Then

NZr2+1+δ
p ⊆ NJ ′ ⊆ Zr2+1+δ

p ,

thus NJ ′ ∼= Zr2+1+δ
p as Zp-modules. Let J ′N = {x ∈ J ′ | Nx = 0}, then

J ′/J ′N
∼= NJ ′. J ′N is a finite group with order ≤ N : otherwise, there exist

distinct elements x, x′ ∈ J ′N with the same image at J ′/Zr2+1+δ
p , then x− x′ ∈

Zr2+1+δ
p and N(x− x′) = 0, contradiction!

By definition, the fixed field of J ′N must be K̃ and we get the Theorem.

Theorem 3.9 (Iwasawa). Let K = K0 ⊆ · · · ⊆ Kn ⊆ K∞ be a tower of Zp-
extensions. Let pen be the exact p-power dividing h(Kn), the order of ideal class
group of Kn. Then there exist integers λ ≥ 0, µ ≥ 0 and ν such that

en = λn+ µpn + ν

for n sufficiently large.

Let Gal(K∞/K) = Γ. We fix a topological generator γ0 of Γ.
For every n ∈ N, let Ln be the maximal unramified abelian p-extension of

Kn. By the maximality, Ln/K is Galois. Let L =
⋃
n≥0

Ln. Then L/K is also

Galois. Write Xn = Gal(Ln/Kn), X = Gal(L/K∞) and G = Gal(L/K). We
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have the following diagram:

L

K∞

X

fffffffffffffffffffffffffffffffffff

Ln

�����������������

Kn

Γn

Xn

jjjjjjjjjjjjjjjjjjjjj

L0

������������������

K

Γ/Γn

zzzzzzzz

Γ

G

For n � 0, then all primes which are ramified in K∞/K are totally rami-
fied in K∞/Kn. Then for n � 0, Kn+1 ∩ Ln = Kn and Xn = Gal(Ln/Kn) ∼=
Gal(LnKn+1/Kn+1), thus a quotient ofXn+1. MoreoverXn

∼= Gal(LnK∞/K∞)
and

lim←−Xn = Gal(
⋃
LnK∞/K∞) = Gal(L/K∞) = X.

Since Xn is an abelian p-group, there is an Zp-action on Xn, since Gal(Ln/K)
is Galois, Xn is also equipped with an Γ/Γn-action: let γ ∈ Γ/Γn, let γ̃ be any
lifting of γ in Gal(Ln/K), then for x ∈ Xn, xγ = γ̃xγ̃−1 is independent of the
choices of the lifting. Then Xn is a Zp[Γn]-module. Passing to the limit, we see
X = lim←−Xn is a compact lim←−Zp[Γn] = Zp[[Γ]] = Λ-module.

We make the following assumption at first:

(*) All primes ramified in K∞/K are totally ramified.

Let ℘1, · · · , ℘s be primes of K which ramify in K∞/K. Fix ℘̃i of L lying above
℘i, let Ii ⊆ G be the inertia group. Since L/K∞ is unramified,

Ii ∩X = 1.

Since K∞/K is totally ramified at ℘i, Ii ∼= G/X = Γ, thus

G = IiX = XIi, i = 1, · · · , s.

We identify I1 with Γ. Let σi be a topological generator of Ii, then σi = aiσ1

for some ai ∈ X.

Lemma 3.10. With the assumption (*). Then G′ = [G,G] = Xγ0−1 = TX.
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Proof. Let a = αx, b = βy for α, β ∈ Γ and x, y ∈ X. Then

aba−1b−1 =αxβyx−1α−1y−1β−1 = xααβyx−1α−1y−1β−1

=xααβyx−1β−1α−1βy−1β−1 = xα(yx−1)αβ(y−1)β

=xα(1−β)yβ(α−1).

Let β = 1 and α = γ0, then yγ0−1 ∈ G′, hence Xγ0−1 ⊆ G′. On the other hand,
write β = γc0 for c ∈ Zp, then

xα(1−β) = xα(1−γc
0) ∈ Xγ0−1

since 1 − γc0 = 1 − (1 + T )c = 1 −
∑(

c
n

)
Tn ∈ TΛ. Similarly yβ(α−1) ∈ Xγ0−1,

hence G′ ⊆ Xγ0−1.

Lemma 3.11. With the assumption. Let Y0 = 〈TX, a2, · · · , as〉. Let νn =

ωn/ω0 = (1+T )pn
−1

T and let Yn = νnY0. Then

Xn
∼= X/Yn

for n ≥ 0.

Proof. For n = 0, L0/K is the maximal unramified abelian p-extension of K,
thus the maximal abelian unramified extension inside the Galois extension L/K,
by Galois theory, Gal(L/L0) is the closed subgroup generated by Ii for 1 ≤ i ≤ s
and G′, i.e., Gal(L/L0) = I1Y0 and

X0 = G/I1Y0 = I1X/I1Y0 = X/Y0.

For general n, just replace K by Kn, γ0 by γp
n

0 and Y0 by Yn.

Theorem 3.12. X is a finitely generated torsion Λ-module.

Proof. First with the assumption. To show thatX is finitely generated is equiva-
lent to showing that Y0 is finitely generated. But Y/ν1Y is finite and ν1 ∈ (p, T ),
by Nakayama’s Lemma, Y is a finitely generated Λ-module. Moreover Y and
X are torsion by Theorem 2.14.

In general, suppose all primes ramified in K∞/K are totally ramified in
K∞/Ke. Replace K by Ke, then for n ≥ e,

Xn = X/νn,eYe

where νn,e = ωn/ωe and Ye is the corresponding Y0 for the extension K∞/Ke.
Similarly we can show that Ye is finitely generated and hence X is finitely
generated.

Lemma 3.13. Let M1 ∼ M2 be two finitely generated Λ-modules with a given
pseudo-isomorphism. If |M1/νn,eM1| <∞ for all n ≥ e. Then there exist some
constant c and some n0 ≥ e, such that

|M1/νn,eM1| = pc|M2/νn,eM2|

for n ≥ n0.
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Proof. Consider the diagram

0 −−−−→ νn,eM1 −−−−→ M1 −−−−→ M1/νn,eM1 −−−−→ 0

φ′n

y φ

y φ′′n

y
0 −−−−→ νn,eM2 −−−−→ M2 −−−−→ M2/νn,eM2 −−−−→ 0

by the snake lemma, we have an exact sequence

0→ kerφ′n → kerφ→ kerφ′′n → cokerφ′n → cokerφ→ cokerφ′′n → 0.

We have
(1) |kerφ′n| ≤ |kerφ|;
(2) | cokerφ′′n| ≤ | cokerφ|;
(3) | cokerφ′n| ≤ | cokerφ|;
(4) |kerφ′′n| ≤ |kerφ|| cokerφ|.

Now for m ≥ n, we have
(a) |kerφ′n| ≥ |kerφ′m|;
(b) | cokerφ′′n| ≤ | cokerφ′′m|;
(c) | cokerφ′n| ≥ | cokerφ′m|.

(3) and (c) needs a little more explanation, others are easy. For (c), let νm,ey ∈
νm,eM2, let z ∈ νn,eM2 be a representative of νn,ey in cokerφ′n. Then νn,ey−z =
φ(νn,ex) for νn,ex ∈ νn,eM1 and νm,ey is represented by νm,nz in cokerφ′m. The
proof of (3) is similar.

By (2) and (b), the sizes of cokerφ′′n’s are non-decreasing with an upper
bound | cokerφ|, when n � 0, | cokerφ′′n| will be stable. Similarly the sizes of
kerφ′n and cokerφ′n will be stable when n� 0, hence also the size of kerφ′′n by
the long exact sequence.

Proof of Theorem 3.9. By Theorem 3.12,

X ∼ E =
s⊕
i=1

(
Λ/pki

)
⊕

t⊕
j=1

(Λ/fj(T )mj )

where fj(T )’s are irreducible distinguished polynomials.
By the above lemma 3.13, |Xn| = |X/νn,eY0| is equal to |E/νn,eE| up to a

bounded factor. Note that

|Λ/(pki , νn,e| = pki(p
n−pe) = pkip

n+c.

We have to compute |Λ/(νn,e, fj(T )mj )|.
Let g be a distinguished polynomial of degree d. Write V = Λ/(g(T )). As

in the proof of Lemma 2.15, for n0 > e, pn ≥ d and n ≥ n0, then νn+2,eV =
ωn+2(T )
ωn+1(T ) (νn+1,eV ) = pνn+1,eV , and

|V/νn+2,eV | =|V/pV | · |pV/pνn+1,eV | = |V/pV | · |V/νn+1,eV |
=pd(n−n0+1)|V/νn0+1,eV | = pnd+c.
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Plug the above result in the case g = F
mj

j , we have when n� 0,

|E/νn,eE| = pµp
n+λn+c

with µ = µ(E) =
∑
ki and λ = λ(E) =

∑
mj degFj .

We just showed that the module X is a finitely generated torsion Λ-module.
Here we give more examples of Iwasawa modules. Hereafter we consider the
following special case: K = Q(ζp), Kn = Q(ζpn+1) and K∞ = Q(ζp∞). We let
∆ = Gal(Q(ζp)/Q) ∼= (Z/pZ)×. Then Gal(K∞/Q) = ∆× Γ.

Let En be the group of global units of Kn and Cn be the subgroup generated
by ζpn+1 and ζpn+1 − 1 as Gal(Kn/Q)-module, which is called the group of
cyclotomic units. We recall the map ψ maps En into the finitely generated
Zp[Kn/Q]-module

∏
℘|p

UKn℘
. Let En = ψ(En) and Cn = ψ(Cn). Let

E∞ = lim←−
n∈N

En, C∞ = lim←−
n∈N

Cn

with the transition maps given by the norm map. Then E∞ and C∞ are finitely
generated Zp[[Gal(K∞/Q)]] = Λ[∆]-modules. For any character χ : ∆ → Z×p
and a Λ[∆]-module M , let Mχ = eχM be the χ-part of M . Then Eχ∞, Cχ∞ and
(E∞/C∞)χ are finitely generated Λ-modules. Recall En/Cn are finite for all
n ∈ N, and En/Cn = E∞/C∞

ωn(E/C) , then E∞/C∞ is Λ-torsion and so is (E∞/C∞)χ.
Similarly X is a Λ[∆]-module and Xχ is Λ-torsion. Then the Iwasawa Main

Conjecture is the following theorem of Mazur-Wiles:

Theorem 3.14 (Main Conjecture). If χ is even (i.e., χ(−1) = 1), χ 6= 1, then

(CharXχ) = (Char(E∞/C∞)χ).

The main conjecture has another equivalent form. By the proof of Theo-
rem 3.8, we know for any number field K, the maximal abelian pro-p extension
of K unramified outside p has Zp-rank r2(K) + 1 + δ(K). In a Zp-extension
K∞/K, let Mn (resp. M∞) be the maximal abelian pro-p extension of Kn (resp.
K∞) unramified outside p. Then K∞ ⊂Mn ⊂M∞. Let

Xn = Gal(Mn/K∞), X∞ = Gal(M∞/K∞).

Then X∞ is a finitely generated Λ-module since Xn = X∞/ωnX∞ is finitely
generated as Zp-module.

Back to the special case. Then δ(K) = 0 and X∞ is of Λ-rank r2(K) + 1,
and there is an action of ∆ on X∞. One can show that if χ is even, Xχ∞ is a
torsion Λ-module. On the other hand, the p-adic L-function Lp(s, χ) is given
by

Lp(1− s, χ) = g((1 + T )s − 1)

for some g(T ) ∈ Λ. Then

Theorem 3.15 (Equivalent form of Main Conjecture). For χ even, χ 6= 1,

(Char(Xχ∞)) = (g(T )).
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Chapter 4

Iwasawa theory of elliptic
curves

Let K be any number field. For an elliptic curve E defined over K, the theorem
of Mordell-Weil claims that the set of K-rational points E(K) of E is a finitely
generated abelian group, that is

E(K) = Zr ⊕ T

for T the torsion group of E(K) and r the rank of E(K). The study of r(E(K))
is a major problem in the arithmetic of elliptic curve. For example, the famous
Birch-Swinnerton-Dyer Conjecture claims that this rank equals the order of
zeroes of L(E, s), the L-function of E, at s = 0, and gives a conjectural relation
about the leading terms of L(E, s).

Let F∞/F be a Zp-extension and Fn be the n-th layer. Let E be an elliptic
curve defined over F . One can ask how rankE(Fn) varies as n varies. We shall
study this question in this chapter. First let us introduce the definitions of
Selmer groups and Shafarevich groups.

Let L be a field of characteristic 0 and E be an elliptic curve defined over
L. Let L be an algebraic closure of L. Let GL = Gal(L/L). We write Hi(L,−)
for the cohomology group Hi(GL,−).

For the exact sequence

0 −→ E[n] −→ E
[n]−→ E −→ 0,

taking the Galois cohomology, one has

(4.1) 0 −→ E(L)
nE(L)

κ−→ H1(L,E[n]) −→ H1(L,E)[n] −→ 0,

where the Kummer map κ is defined as follows: For b ∈ E(L), choose a ∈ E(L)
such that na = b, then κ(b) is the cohomological class associated to the cocycle

κ(b)(σ) = aσ − a, ∀σ ∈ GL.
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Let v be a place of L, then we get a local exact sequence analogue to (4.1). If
we regard GLv

as a subgroup of GL, then the restriction maps from H1(L,−)
to H1(Lv,−) yield the following commutative diagram:

0 −−−−→ E(L)
nE(L)

κ−−−−→ H1(L,E[n]) −−−−→ H1(L,E)[n] −−−−→ 0y y y
0 −−−−→ E(Lv)

nE(Lv)

κη−−−−→ H1(Lv, E[n]) −−−−→ H1(Lv, E)[n] −−−−→ 0

The n-th Selmer group of E over L is the group

SelE(L)[n] =
⋂
v

ker (H1(L,E[n])→ H1(Lv, E(Lv))[n]).

The Shafarevich-Tate group of E over L is the group

XE(L) =
⋂
v

ker (H1(L,E(L))→ H1(Lη, E(Lv)).

Easily by diagram chasing, these two groups and the Mordell-Weil group are
related by the following important fundamental exact sequence

(4.2) 0→ E(L)/nE(L)→ SelE(L)[n]→XE(L)[n]→ 0.

For every pair (n,m) such that n ≤ m, we have the following commutative
diagram

0 −−−−→ E(L)
nE(L) −−−−→ H1(L,E[n]) −−−−→ H1(L,E)[n] −−−−→ 0y y y

0 −−−−→ E(L)
mE(L) −−−−→ H1(L,E[m]) −−−−→ H1(L,E)[m] −−−−→ 0

where the vertical maps are natural injections. Furthermore, the local analogue
of the above diagram also holds and the restriction maps are compatible with
the diagrams. Passing to the limit, we have

0 −−−−→ E(L)⊗Q/Z κ−−−−→ H1(L,E(L)tors) −−−−→ H1(L,E) −−−−→ 0y y y
0 −−−−→ E(Lv)⊗Q/Z κv−−−−→ H1(Lv, E(Lv)tors) −−−−→ H1(Lv, E) −−−−→ 0

The Selmer group of E over L is the group

SelE(L) =
⋂
v

ker (H1(L,E(L)tors)→ H1(Lv, E(Lv))).

One has the exact sequence

(4.3) 0→ E(L)⊗Q/Z→ SelE(L)→XE(L)→ 0.
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Let p be a prime number, then the p-primary Selmer group is given by

SelE(L)p =
⋂
v

ker (H1(L,E[p∞])→ H1(Lv, E(Lv))[p∞])

=ker

(
H1(L,E[p∞]→

∏
v

H1(Lv, E[p∞])
Im κv

)

and one has an exact sequence

0→ E(L)⊗Qp/Zp → SelE(L)p →XE(L)p → 0.

Put

HE(Lv) =
H1(Lv, E[p∞])

Im κv
,

Denote by PE(L) the product of HE(Lv) for all primes v of L. Then

SelE(L)p = ker (H1(L,E[p∞])→ PE(L)).

Put
GE(L) = Im (H1(L,E[p∞])→ PE(L)),

then one has an exact sequence

(4.4) 0→ SelE(L)p → H1(L,E[p∞])→ GE(L)→ 0.

Suppose furthermore that the extension L/F is a Galois extension. Write
G = Gal(L/F ). For every intermediate field F ′ of L/F , write G(L/F ′) =
Gal(L/F ′). One has the following commutative diagram with exact rows

0 // SelE(F ′)p //

sL/F ′

��

H1(F ′, E[p∞]) //

hL/F ′

��

GE(F ′) //

gL/F ′

��

0

0 // SelE(L)G(L/F ′)
p

// H1(L,E[φ∞])G(L/F ′) // GE(L)G(L/F ′)

where the vertical maps sL/F ′ , hL/F ′ and gL/F ′ are natural restrictions. The
snake lemma then gives the exact sequence:

(4.5) 0→ ker sL/F ′ → kerhL/F ′ → ker gL/F ′ → coker sL/F ′ → cokerhL/F ′ .

Theorem 4.1 (Mazur’s Control Theorem). If F∞/F is a Zp-extension, assum-
ing that E has good ordinary reduction at all primes of F lying over p. Let Fn
be the n-th layer of the Zp extension. Then the natural maps

sn = sF∞/Fn
: SelE(Fn)p −→ SelE(F∞)Γn

p

have finite kernels and cokernels, whose orders are bounded as n→∞.

We first give some consequences of Mazur’s Control Theorem:
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Corollary 4.2. Suppose E is an elliptic curve defined over F such that E
has good, ordinary reduction at all primes lying above p. If E(F ) and XE(F )
are both finite, then SelE(F∞)p is Λ-cotorison. Consequently, rankZ E(Fn) is
bounded as n varies.

Proof. Let X = Hom(SelE(F∞)p,Qp/Zp). Then X is an Λ-module. Moreover,

X/TX = Hom(SelE(F∞)Γp ,Qp/Zp)

is finite since SelE(F )p is finite, thus X is a finitely generated Λ-torsion module,
hence SelE(F∞)p is Λ-cotorison.

NowX/XZp-tors
∼= Zλp , thus (SelE(F∞)p)div

∼= (Qp/Zp)λ and (SelE(Fn)p)div
∼=

(Qp/Zp)tn for some tn ≤ λ. Since E(Fn) ⊗ Qp/Zp ↪→ (SelE(Fn)p)div through
the Kummer map, we have rankE(Fn) ≤ λ.

Corollary 4.3. Suppose E is an elliptic curve defined over F such that E has
good, ordinary reduction at all primes lying above p. If E(Fn) and XE(Fn) are
finite for all n, then there exist λ, µ ≥ 0, depending only on E and F∞/F , such
that

|XE(Fn)p| = pλn+µpn+O(1).

Proof. From the assumption, SelE(Fn)p are finite. LetX = Hom(SelE(F∞)p,Qp/Zp).
Then |X/ωnX| = |SelE(F∞)Γn

p | <∞ for all n, thusX is a finitely generated tor-
sion Λ-module. Apply Proposition 2.17, we get |X/ωnX| = pλ(X)n+µ(X)pn+O(1).
The result then follows.

Corollary 4.4. Suppose E is an elliptic curve defined over F such that E has
good, ordinary reduction at all primes lying above p. Let r = corankΛ(SelE(F∞)p)
= rankΛX, then

corankZp SelE(Fn)p = rpn +O(1).

Proof. Let X = Hom(SelE(F∞)p,Qp/Zp). Then X is a finitely generated Λ-
module, say pseudo-isomorphic to Λr × Y × Z for Y a free Zp-module of finite
rank and Z a torsion group of bounded components. Since X/ωnX is the
Pontragin dual of SelE(F∞)Γn

p , and the size of latter one differs from |SelE(Fn)p|
by a finite bounded value, then

corankZp SelE(Fn)p = rankZp X/ωnX = rpn +O(1).

We shall not give a complete proof of the control theorem here (cf. Green-
berg [3]). One has to use the exact sequence

0→ ker sn → kerhn → ker gn → coker sn → cokerhn,

then to study ker sn and coker sn, it suffices to study kerhn, cokerhn and ker gn.
The first two are easy by the inflation-restrction exact sequence, but the third
one needs more analysis. One needs to study the local restriction

rv :
H1(Fn,v, E[p∞])

Im κv
−→ H1(Lη, E[p∞])

Im κη
,
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for every place v. For v - p, it is easy. For v | p, it is more difficult. Here we only
prove Theorem 4.6, which will be key to the study of the local maps. One can
use Tate’s duality theorem for local fields to prove Theorem 4.6, but we give a
proof using methods of Iwasawa theory.

We first have:

Lemma 4.5. Let K be a finite extension over Qp and let F/K be a finite abelian
extension with Galois group ∆. Let χ : ∆ → Z∗p be a character of ∆. Let MF

be a maximal abelian p-extension over F . Then MF /K is Galois and

rankZp Gal(MF /F )χ =

{
[K : Qp] + 1, if χ = 1,
[K : Qp], otherwise.

Proof. MF /K is Galois since MF is maximal. By class field theory, the isomor-
phism

lim←−
n

F×/F×p
n

−→ Gal(MF /F )

is ∆-equivariant. Recall that

F× = 〈πF 〉 × UF ,

the p-completion of 〈πF 〉 is a copy of Zp, with a trivial action of ∆, the p-
completion of UF is isomorphic to OF = OK [∆]× µp∞(F ). Thus

rankZp
Gal(MF /F )χ =

{
[K : Qp] + 1, if χ = 1,
[K : Qp], otherwise.

Theorem 4.6. Let Kv be a finite extension of Qp. Suppose that A is a Gkv -
module and that A ∼= Qp/Zp as a group. Then H1(Kv, A) is a cofinitely gener-
ated Zp-module of Zp-corank

= [Kv : Qp] +

{
1, if A = µp∞ or A = Qp/Zp;
0, otherwise.

Proof. GKv acts on A ∼= Qp/Zp through a character ψ : GKv → Aut(Qp/Zp) ∼=
Z×P : for any g ∈ GKv and a ∈ A, ga = ψ(g)a. If A = Qp/Zp(i.e. ψ = 1)
or A = µp∞(i.e. ψ is the cyclotomic character), the theorem is easy to check
following from Lemma 4.5 and Kummer theory. We suppose now A is not Qp/Zp
or µp∞ , there are two cases:

(1) Im ψ is finite. Let H = kerψ, then G = GKv/H is finite. Let F = Kv
H

be the field fixed by H, then Gal(F/Kv) = G is a finite abelian group. We
consider the inflation-restriction sequence

0→ H1(G,A)→ H1(Kv, A)→ H1(H,A)G → H2(G,A).
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If p 6= 2, then Z×p is pro-cyclic, G is cyclic in this case and |H1(G,A)| =
|H2(G,A)|. Suppose G is generated by σ and ψ(σ) = a ∈ A, then H1(G,A) =
NA/(a − 1)A. Note that a 6= 1 and A/(a − 1)A is finite, so H1(G,A) and
H2(G,A) are both finite. If p = 2, then G = Im ψ = Z/2nZ× Z/2Z or Z/2nZ.
In each case one can verify that H1(G,A) and H2(G,A) are finite. Now H acts
trivially on A, then

H1(H,A) =Hom(H,A) = Hom(Gal(Kv/F )ab, A)
=Hom(Gal(MF /F ), A).

ThusH1(H,A)G = HomG(Gal(MF /F ), A) = Hom(Gal(MF /F )χ,Qp/Zp) where
χ is the restriction of ψ at G. The theorem follows from Lemma 4.5.

(2) Im ψ is infinite. Let F∞ = Kv
kerψ

and G = Gal(F∞/Kv), Note that
G ∼= Im ψ ↪→ Z∗p, one can write G ∼= ∆×Γ, where ∆ is a subgroup of Z/(p−1)Z
or Z/2Z if p = 2. Let F = FΓ

∞. Again we need to consider the inflation-
restriction sequence

0→ H1(G,A)→ H1(Kv, A)→ H1(F∞, A)G → H2(G,A).

First consider the spectral sequence Hp(∆,Hq(Γ, A)) ⇒ Hp+q(G,A). For n =
p + q = 2, as Zp has cohomological dimension 1, H2(Γ, A) = 0. If prime
p 6= 2, the order of ∆ is prime to p, H1(Γ, A) and Aγ are p-groups, hence
H1(∆,H1(Γ, A)) = 0 and H2(∆, AΓ) = 0, thus H2(G,A) = 0. If p = 2 and ∆
trivial, again H2(G,A) = 0; if ∆ = Z/2Z, one can get H2(G,A) ∼= Z/2Z, but
easy to see it is finite. For n = p + q = 1, for ∆ = 1, easily to see H1(G,A) =
H1(Γ, A) is finite; for prime p 6= 2 or ∆ = 1, we have H1(∆,H0(Γ, A)) = 0 and
H0(∆,H1(Γ, A)) = 0; for p = 2 and ∆ ∼= Z/2Z 6= 1, both are again finite. Thus
H1(G,A) is finite. So we have

corankZp
H1(Kv, A) = corankZp

H1(F∞, A)G.

Let Fn = FΓn
∞ . Fix an algebraic closure Qp of Qp. Let Mn be the maximal

abelian pro-p extension of Fn and M∞ be the maximal abelian pro-p extension
of F∞. Let X = Gal(M∞/F∞) and Xn = Gal(Mn/Fn). By Lemma 4.5,

Gal(Mn/Fn)χ = [Kv : Qp]pn +

{
1, χ = 1;
0, χ 6= 1.

Hence
Gal(Mn/F∞)χ = [Kv : Qp]pn.

Write ψ∆ and ψΓ the restrictions of ψ on ∆ and Γ. Then

corankZp
H1(Kv, A) = corankZp

H1(F∞, A)G = corankZp
Hom(Gal(Qp/F∞), A)G

=corankZp
HomG(X,A) = rankZp

Xψ

=rankZp
(Xψ∆)ψΓ

=rankZp

Xψ∆

(γ0 − ψ(γ0))
= rankZp

Xψ∆

T − b
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where b = ψ(γ0) − 1 ∈ pZp. We need to study X, Xψ∆ . Note for p 6= 2,
Xψ∆ = eψ∆X for eχ the idempotent element of χ.

Note that Mn is the maximal abelian sub-extension inside M∞/Fn, thus

Gal(M∞/Mn) = Gal(M∞/Fn)′.

By the exact sequence

1 −→ X −→ Gal(M∞/Fn) −→ Γn → 1

then any element in Gal(M∞/Fn) is of the form αx for α = γ̃p
nm

0 and x ∈ X.
Let αx, βy ∈ Gal(M∞/Fn), then

αxβyx−1α−1y−1β−1 = xα(1−β)y(α−1)β ,

we have Gal(M∞/Fn)′ = ωnX. SinceX is compact, ωnX is closed and Gal(M∞/Mn) =
ωnX and

Gal(Mn/F∞) = X/ωnX.

By Nakayama Lemma, X is a finitely generated Λ-module of rank [Kv : Qp]|∆|.
Moreover, X/ωnX is ∆-equivariant,

Gal(Mn/F∞)χ = (X/ωnX)χ = Xχ/ωnX
χ,

then Xχ is a finitely generated Λ-module of rank [Kv : Qp].
By Class field theoy, since p∞ | [F∞ : Qp], GF∞ has p-adic cohomological di-

mension 1, henceH1(F∞,Qp/Zp) is a divisible group. ThusX = H1(F∞,Qp/Zp)∧
is torsion free as Zp-module. Thus X has no nonzero finite Λ-submodules. Let
Y = XΛ−tors and W = X/Y . Then W is torsion free and

0 −→ Y

ωnY
−→ X

ωnX
−→ W

ωnW
−→ 0

is exact by snake lemma. W has Λ-rank [Kv : Qp]|∆| and hence W/ωnW has
Zp-rank Kv : Qp]|∆|pn, the same as the Zp-rank of X/ωnX. Therefore Y/ωnY
is finite and must be isomorphic to a subgroup of (X/ωnX)Zp−tors = µp∞(Fn).

On one hand, if µp∞(F∞) is finite, then Y = lim←−n Y/ωnY is finite and hence
Y = 0. On the other hand, if Y is infinite, then Y = lim←−n Y/ωnY is pro-cyclic
and therefore ∼= Zp as a Zp-module.

Suppose W → Λr is a quasi-isomorphism, then 0 → W → Λr → B → 0
is exact and B is a finite Λ-module, by snake lemma again, (W/ωnW )Zp−tors
is bounded by ker (ωn : B → B), which equals B when n � 0. Therefore if
µp∞(Fn) is unbounded, then Y/ωnY is also unbounded and Y is infinite. Hence
if µp∞ ⊂ F∞, then Y ∼= Tp(µp∞).

Now we can finish the proof of the Theorem. We have

corankZp
H1(Kv, A) = rankZp

Xψ∆/(T − b)

for T − b a distinguished polynomial of degree 1. As X is quasi-isomorphic to
Λ[Kv :Qp]|∆| if µp∞ ( F∞, or Tp(µp∞)⊕Λ[Kv :Qp]|∆|. In the latter case, µp∞ ⊆ F∞
and ψ∆ gives the action of ∆ on µp∞ . As we assume ψ is not the cyclotomic
character, Tp(µp∞)ψ = 0 and Xψ∆/(T − b) is of Zp-rank [Kv : Qp].
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