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Chapter 1

Modules up to
pseudo-isomorphism

Let A be a commutative noetherian integrally closed domain. Let K be the
quotient field of A. Let P(A) = {p € Spec(A4) | ht p = 1} be the set of prime
ideals of A of height 1. Then for every p € P(A), A, is a discrete valuation
ring.

Theorem 1.1.

Proof. See [7, Theorem 11.5, page 81]. This is a well known theorem about
normal noetherian domains. O

For an A-module M, we let
M™ :=Homu (M, A).

Thus there is a pairing

Mt x M — A, (o, m) — a(m)
which induces a homomorphism of A-modules @y : M — M™TT.
Definition 1.2. An A-module M is called refiexive if the canonical map

orr M — MTT = Hom s (Homa (M, A), A)

m— (par(m) : a— a(m))

is an isomorphism.

Remark. M7 is always torsion free, thus M is reflexive implies that M is
torsion free.



Assume M is a finitely generated torsion free A-module, then
M — M, — M, 24, K=M®s K:=V

and
Mt — (M*)p — (M*)p ®a, K = MTesK=V"

where V" = Homg (V, K) is the dual of V. One has
M*T={\eV"| X(m) € Afor all m € M},

(MT), ={A€e V" | X(m) € A, for all m € M} = (M,)",
where M, is regarded as an Ag-module.

Lemma 1.3. Let M be a finitely generated torsion free A-module, then
(1) M* = () M}.
PEP(A)
(2) Mt = (O M,.
pEP(A)
(3) M is reflexive if and only if M = (| M.
pEP(A)

Proof. (1) C is trivial. If A € D(A) Mg, then for all m € M, \(m) € A, for
pe
p € P(A), hence A(m) € Aand A € M.
(2) since My, = MS* for ht p = 1 (A, is a discrete valuation ring).
(3) follows from (2). O

Corollary 1.4. If M is a finitely generated A-module, then M is reflexive.

Definition 1.5. A finitely generated A-module M is called pseudo-null if the
following two equivalent conditions are fulfilled:

(1) M, = 0 for all prime ideals p in A of height ht(p) < 1, i.e., Supp(M) =
{p € Spec(A) | M, # 0} C {p € Spec(A) | ht(p) > 2}.

(2) If p is a prime ideal with anns(M) C p, then ht(p) > 2. Recall that
anng(M) ={a € A|aM = 0}.

Remark. (i) For the equivalence of the two conditions: M, = 0 if and only if
there exists s € A\p, such that sM = 0, which is equivalent to anns (M) ¢ p.

(ii) A pseudo-null module is torsion since M) = M ®4 K = 0.

(iii) If A is a Dedekind domain, then M is pseudo-null if and only if M = 0.

(iv) If A is a 2-dimensional noetherian integrally closed local ring with finite
residue field, then M is pseudo-null if and only if M is finite.

Indeed, let m be the maximal ideal of A, if M is finite, there exists r € N
such that m"M = 0, thus Supp(M) C {m}. On the other hand, if Supp(M) C
{m},then there exists € N such that m"M = 0, thus m" C ann 4 (M), therefore
M is a finitely generated A/m"-module, hence finite.



Definition 1.6. Let f : M — N be a homomorphism of finitely generated A-
modules M and N. f is called a pseudo-isomorphism if both ker f and coker f
are pseudo-null, equivalently, if the induced homomorphisms

fo: My — Ny

are isomorphisms for all p € P(A)J{0}. We write a pseudo-isomorphism f as
f:M-=Norf:M~N.

Lemma 1.7. Let M be a finitely generated A-torsion module, if 0 # o € A
such that Supp(A/aA) is disjoint to Supp(M) N P(A), then

a:M— M, m+—— am
18 a pseudo-isomorphism.
Proof. This is clear since « is a unit of A, for every p € Supp(M) N P(A). O
From now on, we set

Ta(M) : the torsion submodule of M;
Fa(M)= M/T4(M) : the maximal torsion free quotient of M.

Proposition 1.8. Let M be a finitely generated A-module. Then
(1) There exists a pseudo-isomorphism

fiM =5 Ta(M) @D Fa(M).
(2) There exists {p;}ic1 C P(A), n; € N, and a pseudo-isomorphism

g:Ta(M) = P A/o}"
icl
where {p;,n;} are uniquely determined by Ta(M) up to re-numbering.

Proof. (1) Let {p1, - ,0n} = Supp(M) N P(A). If h = 0, then T4 (M) is
pseudo-null, the homomorphism

f:MMTA(M)@FA(M)

is a pseudo-isomorphism.
If h >0, let

h h
S = mA\@z‘ZA\U@Zw
i=1 i=1

then S™'A is a semi-local Dedekind domain with maximal ideals S~ 'p;, i =
1,---,h. Thus S~'Ais a principal ideal domain by the approximation theorem,



and S~T4(M) is a direct summand of S~™'M and is the torsion module of
S=1M. Since M is finitely generated, then

Homg-14(S™ M, S™'T4(M)) = S~ Homa (M, Ta(M)).
Thus there exists fo: M — T4(M) and sg € S such that
fo

:STIM — STITA (M)
So

is the projection of S~*M onto S~1T4 (M), hence

;2|S*1TA(M) = Ids-11,(ar) -
Thus there exists s; € S, fi = s1fo such that fi|r, ) = s150 Idg, (ar). Let
f=(f1,can) : M — Ta(M) & Fa(M)
by the commutative diagram

0 —— Ta(M) —— M —— Fy(M) —— 0

i |

0 —— TA(M) —_ TA(M)EBFA(M) _ FA(M) — 0

By Lemma 1.7, fi|r, ) is a pseudo-isomorphism, the snake lemma implies that
f is also a pseudo-isomorphism.

(2) By the structure theorem of finitely generated modules over a principal
ideal domain, there exists an isomorphism

h r;
9o : S—ITA(M) i g-lp— g1 @@A/W?N

i=1 j=1

for some uniquely determined

h i

E = @@A/p?”

i=1 j=1

Using

Homg-14(S™'Ta(M),S™'E) = S~ ' Homa(Ta(M), E),
again we obtain g : T4(M) — E and s € S, such that g = sgo. Again using the
previous lemma, g is a pseudo-isomorphism. O

Remark. (i) If M, N are torsion modules, then f : M Z N implies that there
exists g : N = M.



In general, this is not true. For example, let A = Z,[[T]] = A, N = A and

M =ker (N — Z/pZ). Then M = N but N 2 M.
(ii) If the exact sequence of finitely generated A-torsion modules

0— M — M-—M'—0

satisfies that the associated sets of prime ideals of height 1 of M’ and M" are
disjoint. Then M = M’ & M".

Proposition 1.9. Let M be a finitely generated torsion free A-module. Then
there exists an injective pseudo-isomorphism of M onto a reflexive A-module
M.
Proof. Consider the homomorphism ¢y : M — M™T. One notes that:

(1) M, = M+ for ht p < 1. In particular, ker ppr ®4 K = 0, hence ker ¢y

is torsion. As M is torsion free, ker s = 0;
(2) M*T is reflexive. O

Proposition 1.10. Let A be an n-dimensional regular local ring, 2 < n < oco.
Let {p1, - ,pn} be a reqular system of parameters generating the maximal ideal
of A. Let pg := 0. Then for a finitely generated A-module M, the following two
assertions are equivalent:

(1) For everyi=0,--- ,n—2, the A/(po,- - ,pi)-module M/(po,- -+ ,p;)M is
reflexive.

(2) M is a free A-module.

In particular, a reflexive A-module M over a 2-dimensional regular local ring A
18 free.

Proof. We only need to show (1)= (2).
From (1), M is reflexive, hence torsion free. Let ¢ : A" = M be a minimal
free presentation of M. Consider the diagram

0 A P oa4r (A/p1)" —— 0
el Ik
0 M 2 M M/pyM —— 0

Assume M/p; is a free A/p;-module, then by Nakayama Lemma and the mini-
mality of r, ¢ is an isomorphism. Hence p; : ker ¢ — ker ¢ is an isomorphism.
By Nakayama again, ker p = 0. We get M is a free A-module. Thus we only
need to show

(*) M/p, is a free A/p;-module
Note that

(i) A/py is a regular local ring of dimension n — 1;



(ii) Let p; = p; + p14, then {ps, - ,Pn} is a regular system of parameter of
Alpr.

Thus (1) holds for (A/p1, M/p1). By induction, we only need to check (*) for
n = 2. In this case, A/p; is regular of dimension 1, hence a discrete valuation
ring and an integral domain. Thus Hom (M ™, A/p;) is torsion free, therefore

M/py = M* /p; = Homa(M ™, A) @ A/p; — Homs(M™, A/p;)
is also torsion free over the discrete valuation ring A/p;, which must be free. O

Theorem 1.11 (Structure Theorem). Let A be a 2-dimensional regular local
ring and M be a finitely generated A-module. Then there exists finitely many
primes g; of height 1, natural numbers n; for each i, nonnegative integer r and
a pseudo-isomorphism

fiMZ Ao PAa/er),
el

©i, N and r are uniquely determined by

r=dimg M ®4 K, {p;|i € I} =Supp M N P(A).



Chapter 2

Iwasawa modules

In this chapter, we let K be a finite extension of @, and let O be the ring of
integers of K, let m be a uniformizing parameter of O. Let k = O/(x) be the
residue field of O. Then £ is a finite extension of F,,. As a convention, we write
A = Z,[[T1). |

For f(T)=ao+ a1 T+ +a;T"+--- € O[T]], f #0, set

u(f) = minford,(a;)},  A(f) = mini : orde(a;) = u(f)}.

Lemma 2.1 (Division Lemma). Suppose f = ag+a1T+--- € O[[T]] but = 1 f,
i.e. p(f) ¢=0. Let n = X(f). Then any g € O[[T]] can be uniquely written as

g=qf +r
where ¢ € O[[T]], and r € O[T is a polynomial of degree at most n — 1.

Proof. First we show the uniqueness. If ¢f +r = 0, we need to show that

g = r = 0. If not, we may assume that 7 qor mtr. But 0 =¢f +r mod 7

implies that 7 | r and therefore 7 | ¢ f. Since 71 f, we have 7 | g, contradiction!
For the existence, we have two proofs.

First proof: We let 7,, = 7 be the O-linear map

i bT" — i b T
1=0 i=n

Note that

(i) 7(T™h) = h for h € O[[T7)].

(ii) 7(h) = 0 if and only if h is a polynomial of degree < n — 1.
Write f = #P(T) + T"U(T), where P(T) is a polynomial of degree at most
n—1and U(T) is a unit in O[[T]]. For any g € O[[T], let

o) = (1w (o 1) orla) € O[T
=0



Then
7(qf) = 7(mqP) + 7(T"qU) = wr(¢P) + qU

and

=0
_ i(ww <T 0 P)] o(g)
Z;_g) —qU.

Thus 7(q¢f) = 7(g)-

Second proof: Note that E[[T]] is a discrete valuation ring, it has a simple
division algorithm. We let g(T) be the reduction of ¢g(T") modulo 7. Since

f(T) =T"™ - (unit) in k[[T]], we have

g(T) = q(T) f(T) +r(T)

for suitable q(T) € K[[T]] and 7(T) € k[T] of degree < n — 1. Let ¢;(T) €
O[[T]], 11 (T) € O[T] (of the same degree of 7#(T)) be liftings of g(T') and 7(T")
respectively. Then

g(T) = f(T)q1(T) +r1(T) + 7g1(T)
for some ¢1(7T") € O][[T]]. Apply the same procedure for g;, we get

9(T) = f(T)qu(T) + ri(T) + 7 (f(T)g5(T) + r5(T) + mga(T))
= J(T)q2(T) + r2(T) + w?ga(T)

where ¢ = ¢ mod 7, 75 =r; mod 7. Repeat the process, we get
g(T) = f(T)QR (T)+Tn (T)+7Tngn(T)v Gn+1 = ¢n mod 7", Tny1 =7, mod 7"
By taking the limits, the desired result is obtained. O

Corollary 2.2. If m t f € O[[T]] (i.e., u(f) = 0), then O[[T]]/(f) is a free
O-module of rank n = \(f) with basis {T" : i < n}.

Definition 2.3. A distinguished polynomial (or Weierstrass polynomial) F(T') €
O|[T] is a polynomial of the form

F(T) :Tn—|—an_1T"71—|—---—|—a0’ a; € (7‘(’)

We note that an Eisenstein polynomial is an irreducible distinguished polyno-
mial.



Corollary 2.4. Let F be a distinguished polynomial, then
O[T]/FOI[T] — O[[T]}/FO[[T]].

Theorem 2.5 (Weierstrass Preparation Theorem). Let f € O][T]], f # 0.
Then f can be uniquely written as

f=m"P(T)U(T)

where p = p(f), P(T) is a distinguished polynomial of degree n = X(f), U(T)
is a unit in O[[T]]. As a consequence, O[[T]] is a factorial domain.

Proof. One may assume 7 { f. Write f = ag + a1T + -+ + a, T™ + - -+ with
7t a, and 7 | a; for i < n. By the division lemma, T" = ¢(T)f(T) + r(T)
with degr < n and ¢(T) € O[[T]]. One has r(T) = 0 mod w. Therefore
fMe(T)=T"—r(T):=P(T)=T" mod m, we have ¢(T)a, =1 mod 7 and
q(T) := ﬁ € (O[[T]])*. Thus in this case f(T) = U(T)P(T). The uniqueness
follows from the division lemma, since 7" = U(T) = f(T) + (T™ — P(T)). O

Remark. For 71 f, then O[[T]]/(f(T)) =2 O[T]/(P(T)). Thus P(T) is the char-
acteristic polynomial of the linear transformation T': O[[T]/(f) — O[[T]]/(f)-

Corollary 2.6. There are only finitely many x € C,, |z| < 1 such that f(z) = 0.
Proof. This is an easy exercise. O

Lemma 2.7. Let P be a distinguished polynomial. If % e O[[T]], ¢(T) €

(T)
O[T], then F75 € O[T].
Proof. Let ¢(T) = P(T)f(T), f € O[[T]]. For any root = € C, of P(T),
0 = P(z) = 2™ + multiple of 7, one has |z| < 1, hence f(z) converges and
g(z) = 0. Continue this process, we get P(T) | g(T) as polynomials, hence
f(T) € O[T). O

Let I' = Z, = lﬂln Z/p"Z. As a profinite group, I' is compact and pro-
cyclic. Let v be a topological generator of T, i.e., I' = (7). Let T', = (77") be
the unique closed subgroup of index p" of I', then I'/T', is cyclic of order p”

generated by v+ I';,. One has an isomorphism
orr/r,] = o)/ (1 +1)" - 1)
v modT, — (1+7T) mod (1+T)"" —1

Moreover, if m > n > 0, the natural map I'/T",,, — I'/T,, induces a natural map
Omn 2 OI'/Ty,] — O['/T,,], which is compatible with the isomorphism. We let

O[[T]] = lim O[T/T",] = lim O[T}/ ((1 F T - 1) .

:.m
i
n



Note that O is a topological ring, compact and complete with 7-adic topology,
so are the rings O[I'/T,], thus O[[T']] is endowed with the product topology of
m-adic topology, it is also compact and 7-complete. The ring O[[I'] is called the
Twasawa algebra and its modules are called Twasawa modules.

Theorem 2.8. One has a topological isomorphism
o[r)] —o[r]], Tw—~y-1
where O[[T]] is a compact topological ring complete with (mw,T)-topology.

Proof. Write w, (T) = (1+T)?" —1. w, is a distinguished polynomial. Moreover,

wnt1(7T)

— (12T e-D 1T 11 T C(n,T
Sy = (TP b (T L (T € (),

thus w,(T) € (p, T)"*! for n > 0.
By Corollary 2.4, for every n € N, we have a projection

O[[T]] - O[[T]]/(wn) = O[T]/(wn) = O[L/T4]

which is compatible with the transition map. By the universal property of
projective limits, then we have a continuous homomorphism

e: O[T — O[], T ~—1.

On one hand kere C ), (wn) € ), (p, )" = 0, thus € is injective. On the
other hand, O[[T]] is compact, hence the image is closed, it is also dense since
at every level the map is surjective, hence € is also surjective. O

From now on let O = Z, and A = Z,[[T]]. Let m = (p,T") be the maximal
ideal of A. We identify Z,[[I']] and A by the above Theorem, though we should
keep in mind that this isomorphism depends on the choice of the topological
generator y of T'. Write w,(T) = (1 +T)?" — 1 and vy, o(T) = w,(T) /we(T).

Lemma 2.9. If f and g are relatively prime to each other, then |A/(f, g)| < co.

Proof. Let h € (f,g) be of minimal degree. we show that h = p*(up to Zy).
If not, h = p*H for deg H > 1. By the division algorithm, f = Hgqg + r, thus
pr € (f,g), contradiction! O

Proposition 2.10. The prime ideals of A are

©0), m=@T), (@, @P)
where P are irreducible distinguished polynomials in A.

Proof. First all in the list are prime ideals. Let o be a prime ideal of A and
h € p be of minimal degree. Then h = p*H with H = 1 or distinguished (up to
Zy). If H # 1, then it must be irreducible by minimality. Then (f) C p where
f = p or an irreducible distinguished polynomial. If (f) = p, we are done. If

10



not, there exists g € p such that f, g are relatively prime. By the above lemma,
|A/o| < |A/(f,g)| < co. Therefore pV € @ for N > 0, which implies p € p since
@ is prime; also there exists a pair i < j, such that T" —T7 € p, as 1 — T~ % is
a unit, 7% € p, hence T' € p. Thus (p,T) C p. O

Theorem 2.11 (Structure Theorem for Iwasawa modules). For any finitely
generated A-module M,

s t
MEANo@PAp™ o PAF
=1

J=1

where r = rank M, m;(i = 1,---s), Fj and n; (j = 1,---,t) are uniquely
determined by M.

¢
Definition 2.12. Fy; = [] F;Lj is called the characteristic polynomial of M.
j=1

If M is a torsion module, we define the Twasawa invariants of M by

AM) = me (M) = an deg F; = deg Fy.
i=1 7

Remark. The isomorphism of Z,[[I']] and Z,[[T]] depends on the choice of ~.
Therefore if a finitely generated Iwasawa module M is considered as a A-module,
the corresponding F; and Fj; depend on the choice of «, but A(M) and p(M)
are independent invariants.

Lemma 2.13 (Topological Nakayama’s Lemma). Let M be a compact A-module.
Then the following are equivalent:

(1) M is finitely generated over A;

(2) M/TM is a finitely generated Z,-module;

(8) M/(p, T)M is a finitely dimensional IF,,-vector space.

Proof. (1) = (2) = (3) are easy. Assuming (3),let z1,- - ,x, generate M/(p,T)M
as F,-vector space. Let N = Azg + -+ Az, C M, then

M N+ (@pT)M M
N N (p, T)

N
Thus M/N = (p, T)"M/N for all n > 0.

Consider a small neighborhood U of 0 in M/N. Since (p,T)" — 0 in A,
for any z € M/N, there exists a neighborhood U, of z and some n, such that
(p, T)"=U, CU. But M/N is compact, then (p,T)*"M/N C U for n > 0, hence
M/N =n(p,T)"M/N =0 and M = N is finitely generated over A. O

Theorem 2.14. Let X be a compact A-module. Then

(1) X=0 & X/TX=0 & X/mX =0.

(2) X is a finitely generated A-module & X/TX is a finitely generated
Zyp-module < X/mX is a finite dimensional Fp-vector space. Moreover, for

11



a finitely generated A-module X, the minimal number of generators of X is
dimp, (X/mX).

(3) If X/TX is finite, then X is a torsion A-module.

(4) If we replace T by any distinguished polynomial in (1), (2) and (3), the
corresponding assertions still hold.

Proof. (1) and (2) are Nakayama’s Lemma.

For (3), by (2), X is a finitely generated A-module. Let z1,--- ,z4 be a set
of generators. Suppose X/TX has exponent p¥, then pFz; € TX for 1 <i <d.
Write

d
pkxi = Z Taij (T)(Ej7
j=1

and let A = (p6;; — Tai;(T))i, ; and g(T) = det A. Then g(T)z; = 0 for all
i=1,---,dbut g(0) = p?* # 0, hence X is torsion.
(4) follows similarly. O

Lemma 2.15. Let g be a distinguished polynomial of degree d prime to wy, /we
for every n > e. Then for n >0,

A/ (g,wn)| = pP O

Proof. We know A/(g,w,) is finite for n > 0 by Lemma 2.9. Write V =
A/(g(T)). Since T¢ = pQ(T) mod g, by induction, then for k > d, T* =
p-poly. mod g. Therefore for p™ > d,

(1 —|—T)pn =1+p-poly. modg

and
(1+ T)pn+1 = (1+p-poly.)? =1+ p?-poly. mod g,

wn2(T) (1 4T)P

n42

1

wn+1(T) (1+ T)pn+1 1

=14+T)P " 1+ TP 41
=p(1+p-poly.) mod g.

Thus L"’(;) acts as p- unit on V for p” > d.

wnt1(T)
For ng > e, p* > d and n > ng, then w, oV = ::ﬁg; (Wn1V) = pwp1V,

and

V/wn2VI =[V/pV] - [pV/pon V] = [V/pV] - [V/wn i1 V]

:pd(n—n0+1) |V/wn0+1V| — pnd-&-c.

This finishes the proof. U

12



Lemma 2.16. For a A-module M, let My = M/TM and M" = M7=t If
there is exact sequence

0— M — M — M" —0,
then there is a long exact sequence
O—>M'F—>MF—>M”F—>M1’~—>MF—>M1L/—>O.

Proof. Apply the snake lemma to the commutative diagram

0 —— M M M 0
vfll vfll vfll
0 —— M M M 0
with exact rows. O

Remark. If replacing v by 77", we shall have corresponding results.

Proposition 2.17. Let M be a finitely generated torsion A-module such that
M /wn, M is finite for alln > 0. Then forn > 0, |M/w, M| = pt@Dp"+2(M)+0(1)
where N\(M) and p(M) are Twasawa invariants.

Proof. By the above lemma, we can replace M by a torsion A-module of the
form @;_, (A/p*) @ @5:1 (A/f;(T)™s). Now just apply Lemma 2.15. O

13



Chapter 3

Zp-extensions

Definition 3.1. A Z,-extension is a Galois extension K.,/K whose Galois
group is isomorphic to the ring of p-adic integers Z,,.

Proposition 3.2. There are exactly one sub-extension K, of K inside K.,
with Galois group Gal(K,,/K) = Z/p™Z cyclic of order p™.

Proof. This follows easily from the fundamental theorem of Galois Theory, as
the only closed subgroups of Z, are 0 and p"Z, for n € N. O

Proposition 3.3. Let K be a number field, then Z,-extensions over K are
unramified outside p.

Proof. Let v be a prime of K not lying above p. We need to show the inertia
subgroup I of v is 0. if not, I = p"Z, for some n € N. By local class field
theory, Ux, — I = p"Z, is surjective, but Uk, = finite groups x Zj for a € N
and ¢ # p, this is impossible. O

Lemma 3.4. Let K be a number field. Then there exists at least one prime
ramified in Ko /K, and there exists n > 0 such that every prime which is
ramified in Ko /K is totally ramified in Ko/ K,,.

Proof. This is an easy exercise. O
Suppose K is a number field. Let E = O be the group of global units. Let
Ei={z€E|z=1 mod g forall p|p}.

Let U;,, be the group of local units congruent to 1 mod g. Then we have an
injective diagonal map

w:E—>U:HU@7 e (& ,¢€)

plp

such that w(E1) g U1 = lep ULKJ.

14



Lemma 3.5. (1) ¢(Ey)=U; N K*[[U,.
vip
(2) ¢(E) =UNK~ HU1)~
vip
Proof. (1). C is easy. For D, we write U,, = [[ U,,,, where U, , is the group of
vlp
local units congruent to 1 mod v”, then

K[, = & [0, $(ED) = (B

vip n vip n

It suffices to show that Uy NK > Hv*p U, U, C ¢(E1)U,. For any element zu'u,, €
Uy nKX* ijm U,U,, where z € K*, u' € vap U, and u,, € U,, we have z € F;
and for v {p, (zu'), = 1. Then zu'u, = Y(z)u, € Y(E1)U,.

The proof of (2) is similar to (1). O

Conjecture 3.6 (Leopoldt Conjecture). rankz Ey = rankz, F1®z7Z, = rankz, (E).

Leopoldt Conjecture is true for abelian number fields.
Let 0 = rankz By — rankz, F1 ®z Z,. Then ¢ > 0 and § = 0 if Leopoldt
Conjecture holds.

Example 3.7. Note that 7,13 are independent over Z, but logs 13/ logs 7 € Zs,
thus (7,13)z, = (7)z,.

Theorem 3.8. Let K be the composite of all Zyp-extensions of K inside K9,
Then R
Gal(K/K) = 77>1+0

where 9 is the number of complex embeddings of K and ¢ is the Leopoldt defec-
tion.

Proof. Since K /K is unramified outside p, we first consider the maximal abelian
extension F' of K unramified outside p. Let H be the maximal unramified
abelian extension of K inside F', i.e. the Hilbert class field of K. Write Jj the
group of ideles of K and [k the ideal class group of K. By Class field theory,
then

Gal(F/K) = Jx /K* [ Us,
vfp

Gal(H/K) = I = J /K" [ Ub.
Write V' = K> ][, Uy. We have

Gal(F/H) = K* [[U.,/V =UV/V =U/(UNV).
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Note that U = Uy x (finite group), then U/U NV and Uy /(U; N V) differ by a
finite group. Note that U; = (finite group) x ZLK:Q}7 then by Lemma 3.5

Uy /U NV =U, /Y(E,) = finite x Z;2+1+5,

Thus
KX [[Us/E* [ Uy = finite x Zp> 1+
v vip
and hence Gal(F/K)
a .
W = ﬁnlte.

Suppose the quotient is of order N. Write J' = Gal(F/K) = J,/V. Then
NZP+Ye C N C Z>
P = ="p ’

thus NJ' & Zr>t149 as Z,-modules. Let Jy = {x € J' | Nz = 0}, then
J'/Jy =2 NJ'. Jj is a finite group with order < N: otherwise, there exist
distinct elements x, 2’ € Jj with the same image at J’/Z;2+1+5, then x — 2’ €
Zy2 T and N(z — 2') = 0, contradiction!

By definition, the fixed field of Jj must be K and we get the Theorem. [
Theorem 3.9 (Iwasawa). Let K = Ko C --- C K,, C K be a tower of Z,-

extensions. Let p be the exact p-power dividing h(K,,), the order of ideal class
group of K. Then there exist integers A > 0, i > 0 and v such that

en =M+ up” +v
for n sufficiently large.

Let Gal(K./K) =T. We fix a topological generator vy of T'.
For every n € N, let L, be the maximal unramified abelian p-extension of

K,. By the maximality, L, /K is Galois. Let L = |J L,. Then L/K is also
n>0

Galois. Write X,, = Gal(L,,/K,), X = Gal(L/K) and G = Gal(L/K). We
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have the following diagram:

For n > 0, then all primes which are ramified in K. /K are totally rami-
fied in Koo /K. Then for n > 0, K,,y1 N L, = K, and X,, = Gal(L,/K,,) &
Gal(L, K;+1/Kp+1), thus a quotient of X,,11. Moreover X,, = Gal(L, K /Ko)
and

lim X, = Gal(| ) LnKoo/Koo) = Gal(L/Ky) = X.

Since X, is an abelian p-group, there is an Z,-action on X,,, since Gal(L,/K)
is Galois, X, is also equipped with an I'/T',,-action: let v € T'/T,,, let 4 be any
lifting of v in Gal(L,,/K), then for z € X,,, 7 = 277! is independent of the
choices of the lifting. Then X, is a Z,[I'y]-module. Passing to the limit, we see
X =1lim X,, is a compact lim Z,[I',,] = Z,[[I']] = A-module.
p— p—
We make the following assumption at first:

(*) All primes ramified in K,/K are totally ramified.

Let g1, -, ps be primes of K which ramify in K, /K. Fix @; of L lying above
©i, let I; C G be the inertia group. Since L/K, is unramified,

ILNX =1
Since Ko /K is totally ramified at p;, I; 2 G/X =T, thus
G:IiX:XIi, izl,--'78.

We identify I; with I'. Let o; be a topological generator of I;, then o; = a;01
for some a; € X.

Lemma 3.10. With the assumption (*). Then G' = [G,G] = X"~ =TX,

17



Proof. Let a = ax, b= Py for a, 5 €T and z,y € X. Then
aba ™o =axByrta"ly T8 = a%apyr oy

—z®afyz ' B e By T = 2 (ya )Py

=g(1=8)yBla=1)
Let 3 =1 and a = 7, then y?~! € G’, hence X"~! C G’. On the other hand,
write 3 =~ for ¢ € Zy,, then

2@(1=0) — pa(l=7) & x70-1
since 1 =46 =1—(1+7T)°=1-3(5)T™ € TA. Similarly y?(@=Y € X701,
hence G’ C Xvo—1, O
Lemma 3.11. With the assumption. Let Yy = m. Let v, =
wn/wo = % and let Y,, = v,Yy. Then
X, 2 X/Y,

forn > 0.

Proof. For n = 0, Lo/K is the maximal unramified abelian p-extension of K,
thus the maximal abelian unramified extension inside the Galois extension L/ K,
by Galois theory, Gal(L/Lg) is the closed subgroup generated by I; for 1 <1i < s
and G', i.e., Gal(L/Lg) = IY) and

Xo=G/LhYy=LX/,Y, = X/Y,.
For general n, just replace K by K., 7o by 'ygn and Yy by Y. O

Theorem 3.12. X is a finitely generated torsion A-module.

Proof. First with the assumption. To show that X is finitely generated is equiva-
lent to showing that Yj is finitely generated. But Y/11Y is finite and vy € (p, T),
by Nakayama’s Lemma, Y is a finitely generated A-module. Moreover Y and
X are torsion by Theorem 2.14.

In general, suppose all primes ramified in K,,/K are totally ramified in
K. /K.. Replace K by K., then for n > e,

Xn = X/Vn,e}/e

where v, . = wy,/we and Y, is the corresponding Yy for the extension Ko, /K.
Similarly we can show that Y. is finitely generated and hence X is finitely
generated. O

Lemma 3.13. Let My ~ My be two finitely generated A-modules with a given
pseudo-isomorphism. If | My /vy, Mi| < 0o for alln > e. Then there exist some
constant ¢ and some ng > e, such that

|M1/l/n,eM1| = pc|M2/Vn,eM2‘

forn > ny.

18



Proof. Consider the diagram

0 —— Vn,eMl Ml Ml/yn,eMl —F 0
o 5| o |
0 —— Vn,eM2 M2 M2/Vn7eM2 — 0

by the snake lemma, we have an exact sequence
0 — ker ¢, — ker ¢ — ker ¢! — coker ¢!, — coker ¢ — coker ¢!/ — 0.

We have

(1) frer 6| < [ker o]

(2) | coker ¢| < | coker @|;

(3) | coker ¢!, < | coker @;

(4) |ker ¢!'| < |ker ¢|| coker ¢|.

Now for m > n, we have

(a) [ker o] > [ker @, |

(b) | coker ¢!'| < | coker @' |;

(c) | coker ¢,| > | coker @ |.

(3) and (c) needs a little more explanation, others are easy. For (c), let v, .y €
Vm,eMa, let z € v, M5 be arepresentative of v, ¢y in coker ¢/,. Then v, .y—2z =
O(Vn,ex) for vy, e € vy, My and vy, oy is represented by v, 2 in coker ¢f,. The
proof of (3) is similar.

By (2) and (b), the sizes of coker ¢!’s are non-decreasing with an upper
bound | coker ¢|, when n > 0, |coker ¢!'| will be stable. Similarly the sizes of
ker ¢}, and coker ¢), will be stable when n > 0, hence also the size of ker ¢, by
the long exact sequence. O

Proof of Theorem 3.9. By Theorem 3.12,

t

X~E= @A) e@0/HT)m)
i=1

j=1
where f;(T)’s are irreducible distinguished polynomials.

By the above lemma 3.13, |X,,| = | X /v, (Y| is equal to |E /v, E| up to a
bounded factor. Note that

|A/(pkiayn,e

We have to compute [A/(vpe, f;(T)™)].
Let g be a distinguished polynomial of degree d. Write V.= A/(g(T)). As

in the proof of Lemma 2.15, for ng > e, p® > d and n > ng, then vy42 .V =
wn+2(T)
w1 (T)

_ ki(p"—p°%) _ kip"+c
phi(P"=p%) = phip"te

(Vn-i-l,ev) = an-‘rl,eVy and

V/Vny2, VI =IV/pV]- pV/prai1 V] = [V/PV] - [V/vpga, V]

o R | IR (il
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Plug the above result in the case g = ijj, we have when n > 0,
|E/Vn,cE| — pup"+>\n+c
with pp = p(E) =" k; and A = A(E) = >_m; deg F). O

We just showed that the module X is a finitely generated torsion A-module.
Here we give more examples of Iwasawa modules. Hereafter we consider the
following special case: K = Q((p,), K, = Q({pn+1) and Koo = Q((pee ). We let
A = Gal(Q(¢)/Q) = (Z/pZ)*. Then Gal(K/Q) =A xT.

Let E,, be the group of global units of K,, and C,, be the subgroup generated
by (pn+1 and (pne1 — 1 as Gal(kK,/Q)-module, which is called the group of
cyclotomic units. We recall the map ¥ maps F,, into the finitely generated
Zp| Ky /Q]-module [] Uk, . Let E, = ¢(E,) and C,, = ¢(Cy). Let

plp

Eoo:liilEru OoozanOn
neN neN

with the transition maps given by the norm map. Then E, and C are finitely
generated Zp[[Gal(K /Q)]] = A[A]-modules. For any character x : A — ZJ
and a A[A]-module M, let MX = e, M be the x-part of M. Then EX, CX and
(Ex/Cs)X are finitely generated A-modules. Recall E,,/C,, are finite for all
neN,and E,/C, = %, then E /Cs is A-torsion and so is (Foo/Coo)X.

Similarly X is a A[A]-module and XX is A-torsion. Then the Iwasawa Main
Conjecture is the following theorem of Mazur-Wiles:

Theorem 3.14 (Main Conjecture). If x is even (i.e., x(—1) =1), x # 1, then
(Char XX) = (Char(Fo /Cs)X).

The main conjecture has another equivalent form. By the proof of Theo-
rem 3.8, we know for any number field K, the maximal abelian pro-p extension
of K unramified outside p has Z,-rank ro(K) + 1 + §(K). In a Z,-extension
Ko /K, let M, (resp. M) be the maximal abelian pro-p extension of K, (resp.
K) unramified outside p. Then K., C M,, C M. Let

X = Gal(M,/Koo), Xoo = Gal(Mu/Ko).

Then X is a finitely generated A-module since X,, = Xoo/wy X is finitely
generated as Zy,-module.

Back to the special case. Then §(K) = 0 and X is of A-rank ro(K) + 1,
and there is an action of A on X. One can show that if x is even, XX is a
torsion A-module. On the other hand, the p-adic L-function Ly (s, x) is given
by

Ly(1=s,x)=9((1+T)" - 1)
for some ¢g(T') € A. Then

Theorem 3.15 (Equivalent form of Main Conjecture). For x even, x # 1,
(Char(X%,)) = (9(T))-
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Chapter 4

Iwasawa theory of elliptic
curves

Let K be any number field. For an elliptic curve E defined over K, the theorem
of Mordell-Weil claims that the set of K-rational points E(K) of E is a finitely
generated abelian group, that is

E(K)=7Z"&T

for T the torsion group of E(K) and r the rank of E(K). The study of r(F(K))
is a major problem in the arithmetic of elliptic curve. For example, the famous
Birch-Swinnerton-Dyer Conjecture claims that this rank equals the order of
zeroes of L(E, s), the L-function of F, at s = 0, and gives a conjectural relation
about the leading terms of L(FE, s).

Let Foo/F be a Zy-extension and F), be the n-th layer. Let E be an elliptic
curve defined over F. One can ask how rank E(F,) varies as n varies. We shall
study this question in this chapter. First let us introduce the definitions of
Selmer groups and Shafarevich groups.

Let L be a field of characteristic 0 and E be an elliptic curve defined over
L. Let L be an algebraic closure of L. Let G, = Gal(L/L). We write H(L, —)
for the cohomology group H*(Gp, —).

For the exact sequence

0— Eln] —ELE 0,

taking the Galois cohomology, one has

E(L)

(4.1) 0— B D)

5 HY(L, E[n]) — HY(L, E)[n] — 0,

where the Kummer map & is defined as follows: For b € E(L), choose a € E(L)
such that na = b, then x(b) is the cohomological class associated to the cocycle

k()(o) =a —a, Yo € Gy

21



Let v be a place of L, then we get a local exact sequence analogue to (4.1). If
we regard Gz, as a subgroup of G, then the restriction maps from H!(L,—)
to H'(L,,—) yield the following commutative diagram:

0 ,gfg) * . HY(L,E[n]) —— HYL,E)[n] — 0
0 Bl "™, {Y(L,, En)) —— H'(Ly, E)jn] —— 0

The n-th Selmer group of E over L is the group

Selg(L)[n] = ﬂker (H'(L,E[n])) — H'(L,, E(L,))[n]).

v

The Shafarevich-Tate group of E over L is the group
Mlg(L) = (\ker (H'(L, E(L)) — H'(Ly, E(L,)).
Easily by diagram chasing, these two groups and the Mordell-Weil group are
related by the following important fundamental exact sequence
(4.2) 0 — E(L)/nE(L) — Selg(L)[n] — Ulg(L)[n] — 0.

For every pair (n,m) such that n < m, we have the following commutative
diagram

0 L HY(L,E[n])) —— HYL,E)[n] —— 0
0 L HY(L,E[m]) —— HY(L,E)[m] —— 0

where the vertical maps are natural injections. Furthermore, the local analogue
of the above diagram also holds and the restriction maps are compatible with
the diagrams. Passing to the limit, we have

0 —— EL)®Q/Zz —2— HYL,E(L)wrs) —— HY(L,E) —— 0

! ! !

0 —— E(Lv)®Q/Z L’ Hl(LvaE(fv)tors) . Hl(LmE) — 0

The Selmer group of E over L is the group

Selp(L) = (\ker (H' (L, E(L)ors) — H' (Ly, B(Ly))).-

One has the exact sequence

(4.3) 0 — E(L)® Q/Z — Selg(L) — HIg(L) — 0.
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Let p be a prime number, then the p-primary Selmer group is given by

Selp(L), =("\ker (H' (L, E[p™]) — H"(L,, E(L,))[p™])

_ o0 H'(L,, E[p>])
=ker (Hl(L,E[p }HIZ[IIMU>

and one has an exact sequence
0— E(L)®Q,/Z, — Selg(L), — Ulg(L), — 0.
Put
H'(Ly, E[p])

Im &,

HE(L’U) = 3
Denote by Pg(L) the product of Hg(L,) for all primes v of L. Then
Selp(L), = ker (H' (L, E[p™]) — Pr(L)).

Put
Gr(L) = Im (H' (L, E[p™]) — Pr(L)),

then one has an exact sequence
(4.4) 0 — Selg(L), — H' (L, E[p™]) — Gg(L) — 0.

Suppose furthermore that the extension L/F is a Galois extension. Write
G = Gal(L/F). For every intermediate field F’ of L/F, write G(L/F') =
Gal(L/F"). One has the following commutative diagram with exact rows

0

Selp(F")p H'(F', E[p>]) Ie(F)

isL/F/ th/F/ \LgL/F’

00— Selp(L)f M/ —— H(L, B[¢™)) S/ F) —— (L) S/

0

where the vertical maps sy, p/, by, ' and gy p are natural restrictions. The
snake lemma then gives the exact sequence:

(4.5) 0—kersy g — kerhy p — kergp g — coker sy p — cokerhp p.

Theorem 4.1 (Mazur’s Control Theorem). If F,/F is a Zy-extension, assum-
ing that E has good ordinary reduction at all primes of F lying over p. Let F,
be the n-th layer of the Z, extension. Then the natural maps

Sn = 5p_/F, : Selp(Fh)p — SelE(Foo)zl:"
have finite kernels and cokernels, whose orders are bounded as n — oo.

We first give some consequences of Mazur’s Control Theorem:
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Corollary 4.2. Suppose E is an elliptic curve defined over F such that E
has good, ordinary reduction at all primes lying above p. If E(F) and g (F)
are both finite, then Selg(Fw)p is A-cotorison. Consequently, ranky, E(F,) is
bounded as n varies.

Proof. Let X = Hom(Selg(Fx)p, Qp/Zp). Then X is an A-module. Moreover,
X/TX = Hom(Selg(Fu),, Qp/Zy)

is finite since Selg(F'), is finite, thus X is a finitely generated A-torsion module,
hence Selg(F ), is A-cotorison.

Now X/ X7, tors = Zj, thus (Selg(Fso)p)aiv = (Qp/Zp)* and (Selp(Fp)p)div =
(Qp/Zy)' for some t, < . Since E(F,) ® Qp/Z, — (Selg(F,),)div through
the Kummer map, we have rank E(F,,) < A. O

Corollary 4.3. Suppose E is an elliptic curve defined over F such that E has
good, ordinary reduction at all primes lying above p. If E(F,) and I g(F,) are
nite for all n, then there exist A, u > 0, depending only on E and F./F, such
; ;1> 0, depending only ,
that
[ (Fy)p| = pr e +O).,

Proof. From the assumption, Selg(F,,), are finite. Let X = Hom(Selg(Fx)p, Qp/Zy).
Then | X /w, X| = | Selp(Fso )} | < oo for all n, thus X is a finitely generated tor-
sion A-module. Apply Proposition 2.17, we get | X /w, X | = p*(X)n+r(X)p"+0(1)
The result then follows. O

Corollary 4.4. Suppose E is an elliptic curve defined over F' such that E has
good, ordinary reduction at all primes lying above p. Letr = coranky (Selg(Foo)p)
=rankp X, then

corankz, Selg(F,), = mp" + O(1).

Proof. Let X = Hom(Selg(Fw)p, Qp/Zp). Then X is a finitely generated A-
module, say pseudo-isomorphic to A" x Y x Z for Y a free Z,-module of finite
rank and Z a torsion group of bounded components. Since X/w,X is the
Pontragin dual of Selp(Fu )}, and the size of latter one differs from | Selg (F,),|
by a finite bounded value, then

corankz, Selg(F),), = rankz, X/w,X = rp" + O(1).
O

We shall not give a complete proof of the control theorem here (cf. Green-
berg [3]). One has to use the exact sequence

0 — kers,, — ker h,, — ker g, — coker s,, — coker h,,,

then to study ker s,, and coker s,,, it suffices to study ker h,,, coker h,, and ker g,.
The first two are easy by the inflation-restrction exact sequence, but the third
one needs more analysis. One needs to study the local restriction

H'Fun Ep™))  H(Ly, Ep™))

Ty -

Im &, Im &, ’
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for every place v. For v { p, it is easy. For v | p, it is more difficult. Here we only
prove Theorem 4.6, which will be key to the study of the local maps. One can
use Tate’s duality theorem for local fields to prove Theorem 4.6, but we give a
proof using methods of Iwasawa theory.

We first have:

Lemma 4.5. Let K be a finite extension over Q, and let F//K be a finite abelian
extension with Galois group A. Let x : A — Zj be a character of A. Let Mp
be a mazimal abelian p-extension over F. Then Mp/K is Galois and

[K:Qp]+1, ifx=1,

kz Gal(Mp/F)X =
rankz, Gal(Mr/F) {[K:Qp], otherwise.

Proof. Mp/K is Galois since M is maximal. By class field theory, the isomor-
phism ’
@FX/FXP — Gal(Mp/F)

is A-equivariant. Recall that
F* = <7TF> X UF,

the p-completion of (7r) is a copy of Z,, with a trivial action of A, the p-
completion of Up is isomorphic to Op = Ok [A] X pipes (F'). Thus

(K :Qy)+1, ifx=1,

kz, Gal(Mp/F)X =
rankz, Gal(Mr/F) {[K:@p], otherwise.

O

Theorem 4.6. Let K, be a finite extension of Qp. Suppose that A is a Gy, -
module and that A= Q,/Z, as a group. Then H'(K,, A) is a cofinitely gener-
ated Z,-module of Zy,-corank

:[Kv:Qp]"_{l’ ifA:Hpoo or A= Qp,/Zy;
0, otherwise.
Proof. G, acts on A = Q,/Z, through a character ¢ : G, — Aut(Q,/Z,) =
Z}: for any g € Gk, and a € A, ga = ¢Y(g9)a. If A = Q,/Zy(i.e. ¢ = 1)
or A = ppee(ie. 9 is the cyclotomic character), the theorem is easy to check
following from Lemma 4.5 and Kummer theory. We suppose now A is not Q,/Z,
or ppe, there are two cases:

(1) Im o is finite. Let H = ker), then G = Gy, /H is finite. Let F = K,
be the field fixed by H, then Gal(F/K,) = G is a finite abelian group. We
consider the inflation-restriction sequence

0— HYG,A) — H'(K,,A) — H'(H, A)Y — H*(G, A).
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If p # 2, then ZY is pro-cyclic, G is cyclic in this case and |H'(G,A)| =
|H?(G, A)|. Suppose G is generated by o and ¢(0) = a € A, then H' (G, A) =
~NA/(a —1)A. Note that a # 1 and A/(a — 1)A is finite, so H}(G, A) and
H?(G, A) are both finite. If p = 2, then G = Im ¢ = Z/2"Z x Z/2Z or Z/2"Z.
In each case one can verify that H!(G, A) and H%(G, A) are finite. Now H acts
trivially on A, then

H'(H,A) =Hom(H, A) = Hom(Gal(K,/F)®, A)
=Hom(Gal(Mr/F), A).

Thus H'(H, A)¢ = Homg(Gal(Mp/F), A) = Hom(Gal(Mp/F)X,Q,/Z,) where
X is the restriction of ¢ at G. The theorem follows from Lemma 4.5.

(2) Im 9 is infinite. Let Foo = Ekew and G = Gal(Fw/K,), Note that
G = 1Im ¢ — Zy, one can write G = A xTI', where A is a subgroup of Z/(p—1)Z
or Z/2Z if p = 2. Let F = FL. Again we need to consider the inflation-
restriction sequence

0— HY(G,A) — H' (K, A) — H' (Foo, A)¥ — H*(G, A).

First consider the spectral sequence H?(A, H4(T', A)) = HP*1(G, A). For n =
p+q = 2, as Z, has cohomological dimension 1, H*(I',A) = 0. If prime
p # 2, the order of A is prime to p, H'(I', A) and AY are p-groups, hence
HY(A,HY(T,A)) =0 and H?(A, AT) =0, thus H}(G,A) =0. If p =2 and A
trivial, again H2(G, A) = 0; if A = Z/2Z, one can get H?(G, A) = Z/2Z, but
easy to see it is finite. For n = p+ ¢ = 1, for A = 1, easily to see H!(G, A) =
H(T', A) is finite; for prime p # 2 or A = 1, we have H'(A, H(T, A)) = 0 and
H°(A,HY(T', A)) = 0; for p =2 and A = Z/27Z # 1, both are again finite. Thus
H(G, A) is finite. So we have

corankz,, HY(K,,A) = corankz,, H(F, A)C.
Let F,, = Fl». Fix an algebraic closure @p of Q. Let M, be the maximal

abelian pro-p extension of F;, and M., be the maximal abelian pro-p extension
of Fo. Let X = Gal(Mw/Fw) and X,, = Gal(M,,/F,). By Lemma 4.5,

_ ) n 1, x=1L
Gal(M,,/F,)X = [K, : Q,]p" + {0) (AL

Hence
Gal(M,,/Foo )X = [K, : Qpp".

Write YA and ¢r the restrictions of ¢ on A and I". Then
corankz, H'(K,, A) = corankgz, H? (Foos A)G = corankz, Hom(Gal(@p/Foo)7 A)G
= corankz, Homg (X, A) = rankz, X v

=rankyz, (XVa)¥r
. X¥a . X¥a
=ran Zp T N =ran Zp
(0 — ¥ (70)) T-b
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where b = ¥(yy) — 1 € pZ,. We need to study X, X¥2. Note for p # 2,
X¥a = ey, X for e, the idempotent element of .
Note that M, is the maximal abelian sub-extension inside M, /F,,, thus

Gal(Mao/M,,) = Gal(Mu [ F, ).
By the exact sequence

1— X — Gal(My/F,) — T, —1

then any element in Gal(Mu,/F,) is of the form az for a = 52 ™ and z € X.
Let ax, By € Gal(M/Fy,), then

azfyzr oty ATl = g Aylem B

we have Gal(Mo/F,,)" = wp, X. Since X is compact, w, X is closed and Gal(Mo /M,,) =
w,p, X and

Gal(M,,/Fs) = X/wn X.
By Nakayama Lemma, X is a finitely generated A-module of rank [K, : Q,]|Al.
Moreover, X/w, X is A-equivariant,

Gal(M,/Fuo)X = (X/wp, X)X = XX /w, XX,

then XX is a finitely generated A-module of rank [K, : Q,].

By Class field theoy, since p™° | [Fo : Q,], GF,, has p-adic cohomological di-
mension 1, hence H'(Fu, Q,/Z,) is a divisible group. Thus X = H*(Fuo, Q,/Zp)"
is torsion free as Zy,-module. Thus X has no nonzero finite A-submodules. Let
Y = XA_tors and W = X/Y. Then W is torsion free and

Y X w

0— — — — 0

wrY wn X wp,W

is exact by snake lemma. W has A-rank [K, : Qp]|A| and hence W/w, W has
Zp-rank K, : Qp]|Alp™, the same as the Z,-rank of X/w,X. Therefore Y/w,Y
is finite and must be isomorphic to a subgroup of (X/w,X)z, —tors = pipe (Fr).

On one hand, if py,e (Fi) is finite, then ¥ = linn Y/w,Y is finite and hence
Y = 0. On the other hand, if Y is infinite, then Y = lﬂln Y/w,Y is pro-cyclic
and therefore = Z,, as a Z,-module.

Suppose W — A" is a quasi-isomorphism, then 0 — W — A" - B — 0
is exact and B is a finite A-module, by snake lemma again, (W/w,W)z, _tors
is bounded by ker (w, : B — B), which equals B when n > 0. Therefore if
Kpes (F) is unbounded, then Y/w, Y is also unbounded and Y is infinite. Hence
if ppee C Foo, then Y = T (pipoo ).

Now we can finish the proof of the Theorem. We have

corankz, H'(K,, A) = rankz, X¥* /(T —b)

for T — b a distinguished polynomial of degree 1. As X is quasi-isomorphic to
AFC@NALIE oo C Fly, or Ty (ppee ) @ A QAL Tn the latter case, pipe C Foo
and ¥ gives the action of A on p,~. As we assume 1 is not the cyclotomic
character, T),(up=)? = 0 and X¥2 /(T — b) is of Zy-rank [K, : Q).

O
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