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Given a polynomial Q(x1, · · · , xt) = λ1x
k1
1 + · · · + λtx

kt
t , 

for every c ∈ Z and n ≥ 2, we study the number of solu-
tions NJ (Q; c, n) of the congruence equation Q(x1, · · · , xt) ≡
c mod n in (Z/nZ)t such that xi ∈ (Z/nZ)× for i ∈ J ⊆ I =
{1, · · · , t}. We deduce formulas and an algorithm to study 
NJ (Q; c, pa) for p any prime number and a ≥ 1 any integer. 
As consequences of our main results, we completely solve: the 
counting problem of Q(xi) =

∑
i∈I

λixi for any prime p and any 

subset J of I; the counting problem of Q(xi) =
∑
i∈I

λix2
i in the 

case t = 2 for any p and J , and the case t general for any p
and J satisfying min{vp(λi) | i ∈ I} = min{vp(λi) | i ∈ J}; 
the counting problem of Q(xi) =

∑
i∈I

λixk
i in the case t = 2

for any p � k and any J , and in the case t general for any p � k
and J satisfying min{vp(λi) | i ∈ I} = min{vp(λi) | i ∈ J}.
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1. Introduction and main results

1.1. Introduction

Given a polynomial

Q(x1, · · · , xt) = λ1x
k1
1 + · · · + λtx

kt
t ∈ Z[x1, · · · , xt].

Let λ = (λ1, · · · , λt) ∈ (Z −{0})t and k = (k1, · · · , kt) ∈ Zt
≥1. For any c ∈ Z and n ≥ 2, 

and for a subset J of I = {1, · · · , t}, denote by ΓJ(c, n) = ΓJ(Q; c, n) = ΓJ(λ, k; c, n)
the set of solutions (x1, · · · , xt) of the congruence equation

Q(x1, · · · , xt) ≡ c mod n

such that xj ∈ (Z/nZ)× for j ∈ J , and by NJ(Q; c, n) the cardinality of ΓJ(Q; c, n). In 
particular, write Γ, N , Γ∗ and N∗ for Γ∅, N∅, ΓI and NI respectively. The problem to 
determine NJ(Q; c, n) has been studied by many authors extensively in various special 
cases:

(i) The linear case k = (1, · · · , 1). For J = I and λ = (1, · · · , 1), this is a problem 
proposed by H. Rademacher [7] in 1925 and answered by A. Brauer [2] in 1926, and 
recovered by many authors later from time to time. For J = I and λ = (λi) where 
the λi’s are divisors of n, this is the work of Sun and Yang [9] in 2014.

(ii) The quadratic case k = (2, · · · , 2). For J = ∅, this is studied in the work of Tóth [10]
in 2014. For t = 2 and λ = (1, 1), this is the work of Yang and Tang [11] in 2015. 
For t = 2, λ arbitrary and J = I, this is the work of Sun and Cheng [8] in 2016. For 
general t, λ = (1, · · · , 1) and J = I, this is the recent work of Mollahajiaghaei [6]. 
See also [3] for more development.

(iii) The case t = 2, λ = (1, 1) and k = (k, k). Partial results were obtained by Dea-
conescu and Du [4].

1.2. Notations

We first fix the following notations in this paper.
p is always a prime number and vp is the p-adic valuation, a is always a positive 

integer and I is the set {1, · · · , t}.
For a set X, #X or |X| means the cardinality of X. For two subsets X and Y of the 

set U , the difference set X − Y is the set {x ∈ U | x ∈ X, x /∈ Y }.
For the congruence equation

Q(x1, · · · , xt) = λ1x
k1
1 + · · · + λtx

kt
t ≡ c mod n, (c ∈ Z, n ∈ Z≥2)

we call t, k and n its dimension, degree and level respectively.
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For J a nonempty subset of I, the depth dp,J = dp,J(Q) = dp,J(λ, k) of Q at prime p
associated to J is defined by

dp,J =

⎧⎨
⎩

min
i∈J

{vp(λiki) + 1}, if p odd;

min
i∈J

{v2(λiki) + 2 if 2 | ki, v2(λiki) + 1 if 2 � ki}, if p = 2.

Write dp for dp,I and call it the depth of Q at p.
For J a nonempty subset of I, let λJ = (λi)i∈J , kJ = (ki)i∈J and QJ =

∑
j∈J

λjx
kj ∈

Z[xj : j ∈ J ]. Set Q∅ = 0 and

N∅(0; c, pa) = N∗(0; c, pa) =
{

1, if pa | c;
0, if pa � c.

If Q and (λ, k) are clear from the context, we may drop them in our notations.

1.3. Main results

Suppose n has the prime decomposition

n =
∏
p|n

pnp .

By Chinese Remainder Theorem, the set of solutions of Q(x1, · · · , xt) ≡ c mod n

is in one-to-one correspondence with the product set of solutions of the equations 
Q(x1, · · · , xt) ≡ c mod pnp for primes p | n. Moreover, x ∈ (Z/nZ)× if and only if 
x ∈ (Z/pnp)× for all p | n. Thus for any J ⊆ I, we have the product formula

NJ(Q; c, n) =
∏
p|n

NJ(Q; c, pnp). (1)

So to compute NJ(Q; c, n), it suffices to study the prime power case NJ(Q; c, pa). By 
simple argument (as seen in Proposition 2.1(2)), we may reduce Q to the case p � λi for 
some i ∈ I, which we call Q is reduced at p.

Our first main result, which we call the decomposition formula, is the following theo-
rem:

Theorem A. Given the polynomial Q. For subsets J1 � J2 ⊆ I, let

Bi(J1, J2; a) =
{
{0}, if i /∈ J2 − J1;
{0, · · · , a}, if i ∈ J2 − J1,

B(J1, J2; a) =
t∏

i=1
Bi(J1, J2; a).

For b ∈ B(∅, I; a), but b �= (a, · · · , a), let
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Jb = {i ∈ I | bi < a}, Qb =
∑
j∈Jb

λjp
kjbjx

kj

j , s(b) =
∑
j∈Jb

bj .

If b = (a, · · · , a), let Jb = ∅, Qb = 0 and s(b) = 0. Then we have the decomposition 
formula

NJ1(Q; c, pa) =
∑

b∈B(J1,J2;a)

p−s(b)NJ2∩Jb
(Qb; c, pa). (2)

Our next two results are consequences of the following lifting formula

NJ (Q; c, pa+1) = pt−1NJ(Q; c, pa) (3)

for a sufficiently large under various assumptions. We shall establish this formula by 
simple p-adic analysis, not by the more complicated exponential sum argument employed 
by other authors. More precisely, we have

Theorem B. Given the polynomial Q, and assume it is reduced at prime p. Then

(1) For a ≥ dp,J and c ∈ Z,

NJ (Q; c, pa) = p(t−1)(a−dp,J )NJ (Q; c, pdp,J ). (4)

(2) For a ≤ dp = dp,I , the map

ϕa : (Fp)t → Z/paZ, (a1, · · · , at) 
→ Q(α1, · · · , αt) mod pa,

where αi ∈ Z is any lifting of ai ∈ Fp, is well defined. Let ϕa,J be the restriction of 
ϕa on 

∏
i∈I−J

Fp ×
∏
i∈J

F×
p , then

NJ(Q; c, pa) = p(a−1)t#ϕ−1
a,J(c mod pa). (5)

In particular, if p = 2 and a ≤ d2,

#ϕ−1
a,J (c mod 2a) = #{T ⊆ {1, · · · , t} | T ⊇ J, v2(

∑
i∈T

λi − c) ≥ a}. (6)

Theorem C. Given polynomial Q and prime p. Let fp = max{vp(ki) + 1} (or 3 if p = 2
and max{v2(ki)} = 1). For integer c �= 0, let cp be the p-adic valuation of c. Then for 
any a ≥ 1, any J ⊆ I (empty or not), f ≥ fp and any x ∈ Z/paZ,

NJ (Q; c(1 + pfx), pa) = NJ (Q; c, pa). (7)

In particular, for a ≥ cp + fp,
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NJ(Q; c, pa) = p(t−1)(a−cp−fp)NJ(Q; c, pcp+fp). (8)

Thus NJ(Q; c, pa) as a varies is completely determined by NJ(c, pa) for a ≤ cp + fp.

Remark. For J = ∅, even if p �
t∏

i=1
ki, the formula for N(Q; 0, pa) is much more compli-

cated. In general we don’t always have N(0, pa) = pt−1N(0, pa−1) for a sufficiently large. 
For example, consider Q(x1, x2) = x3

1 + px3
2. Then N(0, p3a) = p4a, N(0, p3a+1) = p4a+1

and N(0, p3a+2) = p4a+2.

As a consequence of Theorems A, B and C, we will give a (theoretical) algorithm to 

effectively compute NJ(Q; c, pa) for all possible J , c and a if the prime number p �
t∏

i=1
ki. 

Moreover, except the case J = ∅ and c = 0, the number of steps to compute NJ(Q; c, pa)
is bounded by a constant independent of a.

Using the main theorems and the algorithm, we shall work on the example 
Q(x1, · · · , xt) = λ1x

k
1 + · · · + λtx

k
t . We obtain the following results:

(1) In the linear case (k = 1), we solve the counting problem in full generality (cf. [9]). 
Namely, for any prime p, we completely determine the value of NJ(Q; c, pa) for 
arbitrary J ⊆ I, c ∈ Z and a ≥ 1. Our result is stated in Theorem 4.1.

(2) In the quadratic case (k = 2), for any prime p, we completely determine the value 
of NJ(Q; c, pa) for any J ⊆ I satisfying min{vp(λi) | i ∈ I} = min{vp(λi) | i ∈ J}, 
and arbitrary c ∈ Z and integer a ≥ 1. In particular, we get the exact formula for 
N∗(Q; c, pa) for any c ∈ Z and a ≥ 1. Our result is stated in Theorem 4.4. This is a 
vast generalization of Yang–Tang [11], Sun–Cheng [8] and Mollahajiaghaei [6].

(3) In the general case, for prime p � k, we give a more detailed version of our algorithm 
in Theorem 4.2. We obtain formulas so that NJ(Q; c, pa) can be computed in finite 
steps independent of a except the case c = 0 and J = ∅.

(4) We study the case p � k and the dimension t = 2 in full generality. When k = 2, 
NJ(c, 2a) is also studied in full generality.

Finally we shall work on the example Q(x1, x2, x3) = 9x1 + 3x3
2 + x9

3 for p = 3, which is 
not covered by our algorithm, but the main theorems are still applicable.

As a final remark, let us make a comparison of our method with those methods by 
previous work. The majority of previous study was concentrated on the quadratic case. 
The exponential sum especially the quadratic Gauss sum was used in [3,9,8,10,11], which 
was the main tool to study this type of counting problem. In [6], a new combinatorial ap-
proach via spectral graph theory was used. In our paper, for the decomposition formula, 
we decompose the residue ring Z/paZ into pieces of the form pbZ/paZ −pb+1Z/paZ, and 
then use a simple counting argument to deduce the formula. The lifting formula is a con-
sequence of a simple fact from elementary number theory about pk-th power modulo pa. 
These two formulas and the Inclusion–Exclusion Principle reduce the general counting 
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problem (in most cases) to the counting problem of solutions of polynomials over finite 
fields with no restriction on variables, where the exponential sum is needed but much 
has been done in this subject (see for example [1,5]). All these results then are used in 
the application to count the solutions of Q(x1, · · · , xt) = λ1x

k
1 + · · · + λtx

k
t .

2. Preliminaries

2.1. Reduce Q to the reduced case

The following fact is obvious:

Proposition 2.1. Consider the number NJ(Q; c, pa) for p a prime number and J ⊆ I.

(1) (Lowering dimension.) If there exists j ∈ I such that vp(λj) ≥ a, then

NJ(Q; c, pa) =
{
paNJ (QI−{j}; c, pa) if j /∈ J ;
pa−1(p− 1)NJ−{j}(QI−{j}; c, pa) if j ∈ J.

(9)

(2) (Lowering level.) Let e = min{vp(λi) | i ∈ I} and vp(c) = cp. Then

NJ (Q; c, pa) =

⎧⎪⎪⎨
⎪⎪⎩
pteNJ (Q/pe; c/pe, pa−e) if e ≤ min{a, cp},
p(at−|J|)(p− 1)|J| if a ≤ min{e, cp},
0 if cp < min{e, a}.

(10)

(3) (Lowering degree.) If one has vp(ki) ≥ a, replace ki by ki/pvp(ki)−a+1. Then the new 
ki has p-adic valuation a and NJ (Q; c, pa) is unchanged.

Proof. The only thing needs to prove is (3), which follows from Euler’s Theorem that 
for x ∈ (Z/paZ)×, xps = xpa−1 for all s ≥ a − 1, and for x ∈ pZ/paZ, xps = 0 for all 
s ≥ a − 1 since pa−1 ≥ a for any prime p and integer a ≥ 1. �

Based on Proposition 2.1, to compute NJ(Q; c, pa), it suffices to consider the case 
that min{vp(λi)} = 0, max{vp(λi), vp(ki) | i = 1, · · · , t} < a and the depth dp ≤ a. In 
particular, we can always assume p � λi for some i ∈ I.

2.2. Formulas for N(Q; c, p)

We recall the classical formulas for N(Q; c, p). First recall for complex characters 
χ1, · · · , χt of the prime field Fp, the Jacobi sum J(χ1, · · · , χt) is defined by the formula

J(χ1, · · · , χt) =
∑

χ1(u1) · · ·χt(ut)

u1+···+ut=1
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and the Jacobi sum J0(χ1, · · · , χt) is defined by the formula

J0(χ1, · · · , χt) =
∑

u1+···+ut=0
χ1(u1) · · ·χt(ut).

Then the following theorem is well known:

Theorem 2.2.

(1) Suppose p is odd and λ1 · · ·λt �= 0 ∈ Fp. Then N(c, p), the number of solutions of

Q(x1, · · · , xt) = λ1x
k1 + · · ·λtx

kt = c

over the prime field Fp, is given by

N(0, p) = pt−1 +
∑

χ
ki
i =1, χi �=1
χ1···χt=1

χ1(λ−1
1 ) · · ·χt(λ−1

t )J0(χ1, · · · , χt), (11)

and

N(c, p) = pt−1 +
∑

χ
ki
i =1
χi �=1

χ1 · · ·χt(c)χ1(λ−1
1 ) · · ·χt(λ−1

t )J(χ1, χ2, · · · , χt) (12)

for c �= 0.
(2) If 2 � λi for some i ∈ I, then N(0, 2) = N(1, 2) = 2t−1.

Proof. Part (1) follows from Theorem 5 in § 8.7 in [5]. Part (2) is clear, since xk = x

in F2. �
3. Proof of the main theorems and the algorithm

3.1. The decomposition formula and its special cases

We now prove Theorem A.

Proof of Theorem A. Note that Z/paZ has a disjoint decomposition (assuming 
pa+1Z/paZ is the empty set)

Z/paZ =
a�

b=0
(pbZ/paZ− pb+1Z/paZ).

Suppose x = (x1, · · · , xt) ∈ ΓJ1(Q; c, pa), and if J1 = ∅ and J2 = I, suppose x �= 0. 
Then for j ∈ J2 − J1, xj ∈ pbjZ/paZ − pbj+1Z/paZ for some 0 ≤ bj ≤ a. Set bj = 0 for 
j /∈ J2 − J1. Let b = b(x) = (bj)j=1,··· ,t ∈ B(J2, J1; a) and Jb �= ∅.
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For j ∈ J2 ∩ Jb, the element x̃j = xj/p
bj is a well defined element in (Z/pa−bjZ)×. 

Let Cj = {x ∈ (Z/paZ)× | x ≡ x̃j mod pa−bj}. For j ∈ Jb − J2, let Cj = {xj}. Then

Cx =
∏
j∈Jb

Cj ⊆ ΓJ2∩Jb
(Qb; c, pa).

On the other hand, if Qb �= 0, then Jb as the set of j’s such that xj appears in Qb is 
not empty. For (yj)j∈Jb

∈ ΓJ2∩Jb
(Qb; c, pa), let x̃j ≡ yj mod pa−bj , then xj = pbj x̃j is 

a well defined element in pbjZ/paZ − pbj+1Z/paZ. Let xj = 0 for j /∈ Jb. Then x =
(xj) ∈ ΓJ1(Q; c, pa). In this way, one element x corresponds exactly to p

∑
j:bj<a bj = ps(b)

elements in ΓJ2∩Jb
(Qb; c, pa).

If J1 = ∅ and J2 = I, then 0 ∈ ΓJ1(Q; c, pa) if and only if pa | c, which is corresponding 
to the case b = (a, · · · , a) and Qb = 0.

In conclusion, (2) is proved. �
Special cases of the decomposition formula. We shall use the following special cases in 
this paper:

(1) The case J = J1 � I = J2. Then

NJ(Q; c, pa) =
∑

b∈B(J,I;a)

p−s(b)N∗(Qb; c, pa). (13)

This means that if we can determine N∗(Qb; c, pa) for all b ∈ B(J, I; a), then we get 
NJ (Q; c, pa).

(2) The case a = 1. Then

NJ1(Q; c, p) =
∑

T⊆J2−J1

NJ2−T (QI−T ; c, p). (14)

By the Inclusion–Exclusion Principle, (14) has the following inverse formula

NJ2(Q; c, p) =
∑

T⊆J2−J1

(−1)|T |NJ1(QI−T ; c, p). (15)

Take J1 = ∅ and J2 = J in (15), then we have

NJ(Q; c, p) =
∑
T⊆J

(−1)|T |N(QI−T ; c, p). (16)

This means that NJ(Q; c, p) is determined by N(QI−T ; c, p) for all T ⊆ J .

Remark. Another interesting question is to count the number NJ1,J2(Q; c, n) of solutions 
of Q(x1, · · · , xt) ≡ c mod n such that xi ∈ (Z/nZ)× for i ∈ J1 and xi /∈ (Z/nZ)× for 
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i ∈ J2. First one must keep in mind that no product formula exists in general for 
NJ1,J2(Q; c, n) if J2 �= ∅. However, by the Inclusion–Exclusion Principle, we have

NJ1,J2(Q; c, n) =
∑
T⊆J2

(−1)|T |NJ1∪T (Q; c, n). (17)

As a consequence, the values NJ(Q; c, n) for all J determine NJ1,J2(Q; c, n) for all disjoint 
pairs (J1, J2).

3.2. The lifting formula

We need the following lemma whose proof is an easy exercise of Newton’s Binomial 
Theorem and p-adic analysis:

Lemma 3.1.

(1) Let p be an odd prime. For integers x, y, k ≥ 1, and m ≥ 1, we have

(x + pmy)k − xk ≡ kxk−1ypm mod pm+vp(k)+1.

(2) For integers x and integer y, k ≥ 1, and m ≥ 1, then

(x + 2my)k − xk ≡
{

0 mod 2v2(k)+2, if k even and m = 1,
kxk−1y · 2m mod 2v2(k)+m+1, otherwise.

For odd integer x,

v2(xk − 1) ≥
{

1, if k odd,
2 + v2(k), if k even.

(3) Let U (i)
p,a = {1 + pix | x ∈ Z/paZ} ⊆ (Z/paZ)×. Then for f > 0, (U (i)

p,a)p
f = U

(f+i)
p,a

if (p, i) �= (2, 1) and (U (1)
2,a)pf = U

(f+2)
2,a .

We are now ready to prove Theorem B and Theorem C.

Proof of Theorem B. Write d = dp. Let ψa,b be the natural reduction map from ΓJ(c, pa)
to ΓJ (c, pb).

(1) First assume p is odd. Suppose that j satisfies vp(λjkj) = ej + fj = dj < a. By 
Lemma 3.1(1), if (x1, · · · , xj , · · · , xt) ∈ ΓJ(c, pa), then (x1, · · · , xj + pa−djyj , · · · , xt) ∈
ΓJ (c, pa) for any yi ∈ Z/paZ.

If a > dp,J , then a > dj + 1 for some j ∈ J . Let (a1, · · · , at) ∈ ΓJ(c, pa−1). Let 
u ∈ {0, · · · , p − 1}. Let xi ∈ Z/paZ be any lifting of ai. Then
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Q(x1, · · · , xj + upa−dj−1, · · · , xt) ≡ Q(x1, · · · , xt) + λjkj
pdj

x
kj−1
j upa−1 mod pa.

Thus there exists exactly one u ∈ {0, · · · , p − 1} such that (x1, · · · , xj + upa−dj−1, · · · ,
xt) ∈ ΓJ (c, pa), and ψa,a−1 is a pt−1-to-1 map. Thus we have the lifting formula

NJ(c, pa) = pt−1NJ (c, pa−1) (18)

for all a > dp,J .
Now assume p = 2. Assume a > d2,J . Then the assumption means that a > dj +2 for 

some j ∈ J with kj even or a > dj + 1 for some j ∈ J with kj odd. Let (a1, · · · , at) ∈
ΓJ (c, 2a−1). Let xi ∈ Z/2aZ be any lift of ai. Then

Q(x1, · · · , xj + 2a−dj−1, · · · , xt) ≡ Q(x1, · · · , xt) + 2a−1 mod 2a.

Thus one of (x1, · · · , xt) and (x1, · · · , xj + 2a−dj−1, · · · , xt) is a solution of Q(x1, · · · ,
xt) ≡ c mod 2a, and ψa,a−1 is a 2t−1-to-1 map. Again we have the lifting formula.

(2) Assume a ≤ d = dp,I . Suppose (a1, · · · , at) ∈ Ft
p, let αi ∈ Z be any lifting of ai. 

Then

λiα
ki
i ≡ λi(αi + pyi)ki mod pa

for any yi ∈ Z, and Q(α1, · · · , αt) mod pa is a fixed element in Z/paZ independent of 
the lifting, so the map ϕa is well-defined. Thus for (a1, · · · , at) ∈ ΓJ(c, p) ⊆ Ft

p,

#ψ−1
a,1(a1, · · · , at) =

{
p(a−1)t, if ϕa(a1, · · · at) = c mod pa;
0, if otherwise.

Assume furthermore that p = 2. For T ⊆ I, let eT = (eT,i)i∈I be the element in Ft
2

that eT,i = 1 for i ∈ T and eT,i = 0 for i /∈ T . Then ΓJ(c, 2) consists of elements eT
satisfying T ⊇ J and v2(

∑
i∈T λT −c) ≥ 1. Let 0 and 1 in Z be the liftings of 0 and 1 in F2

respectively. Then ϕa(eT ) =
∑
i∈T

λi mod 2a. This finishes the proof of Theorem B(2). �
Corollary 3.2. Given the polynomial Q(x1, · · · , xt). If at prime p one has dp ≥ t. Then 
there exists c ∈ Z such that N∗(Q; c, pdp) = 0.

Proof. This is because there are pdp conjugacy classes modulo pdp but there are only 
(p − 1)t points in F× t

p . �
Proof of Theorem C. Write ki = pfik′i such that (p, k′i) = 1. By Lemma 3.1, if f ≥ fp, 
then for any i ∈ I, 1 + pfx = (1 + pyi)p

fi for some yi ∈ Z/paZ. If a ≤ cp + f , the 
formula is certainly true. For a > cp + f , let ui, vi ∈ Z such that uik

′
i + pa−fivi = 1, 

then 1 + pfx = (1 + pyi)uiki = βki
i for some βi ∈ (Z/paZ)×. Thus we have a one-to-one 

correspondence
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ΓJ(c, pa) → ΓJ(c(1 + pfx), pa), (xi) 
→ (xiβi)

and hence NJ(c, pa) = NJ (c(1 + pfx), pa).
Now consider the natural map ψa+1,a : (Z/pa+1Z)t → (Z/paZ)t. For a > cp + fp, 

ψ−1
a+1,a(ΓJ (c, pa)) is the disjoint union of ΓJ(c + upa, pa+1) for u ∈ {0, · · · , p − 1}, but 

all ΓJ(c + upa, pa+1) are of the same cardinality NJ(c, pa+1), hence the lifting formula 
NJ (c, pa+1) = pt−1NJ (c, pa) holds. This finishes the proof of Theorem C. �
3.3. An algorithm to compute NJ(Q; c, pa) if p �

∏
i∈I

ki

By Theorems A, B and C, we then have the following algorithm to effectively compute 
NJ (Q; c, pa).

(1) Reduce Q to the reduced form at p (i.e., dp(Q) = 1) by Proposition 2.1. We suppose 
Q is reduced hereafter.

(2) Compute N(Q; c, p) for all Q by using formulas in Theorem 2.2.
(3) For J nonempty, compute NJ(Q; c, p) by the inverse formula (16) of the decompo-

sition formula. If dp,J = 1, use the relation NJ(Q; c, pa) = p(a−1)(t−1)NJ(Q; c, p) by 
Theorem B to get NJ(Q; c, pa), in particular, get N∗(Q; c, pa).

(4) For J nonempty and dp,J = b +1 > 1, use the decomposition formula (13) to compute 
NJ(Q; c, pa) for all 1 < a ≤ b + 1, then NJ(Q; c, pa) = p(a−b−1)(t−1)NJ(Q; c, pb+1)
for a ≥ b +1 by Theorem B. (Note: the assumption p �

∏
ki means the reduced form 

of Qb for any b in the right hand side of (13) is of depth 1, hence N∗(Qb; c, pa) can 
be computed as in the previous step.)

(5) If c �= 0, let cp = vp(c). Compute N(Q; c, pa) = N(Q; 0, pa) for a ≤ cp and 
N(Q; c, pcp+1) by the decomposition formula (13). Then for a > cp+1, N(Q; c, pa) =
p(a−cp−1)(t−1)N(Q; c, pcp+1) from Theorem C.

(6) Use the decomposition formula (13) to compute N(Q; 0, pa) for any given a.

Remark. We see that except the last step to compute the case J = ∅ and c = 0, the 
number of steps to compute NJ(Q; c, pa) is bounded by a constant independent of a.

In the case J is nonempty, let |J | = s. If cp = vp(c) < b, by Theorem C, one can 
furthermore get

NJ(Q; c, pb+1) = pb−cp+cps(p− 1)sN(QI−J ; c, pcp+1).

In particular, if p � c, i.e., cp = 0, then we just need formulas for N(QI−J ; c, p) in 
Theorem 2.2 to get NJ (Q; c, pa).

4. Applications of the main theorems

In this section, we shall apply the general formulas obtained in the previous section 
to compute NJ(Q; c, pa) in many special cases. Without loss of generality, we assume Q
is reduced, i.e., p � λi for some i because of (10).
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4.1. The linear case Q(x1, · · · , xt) =
t∑

i=1
λixi

Consider the linear congruence equation

λ1x1 + · · · + λtxt ≡ c mod pa.

Theorem 4.1. Suppose p � λi for some i ∈ I. For any subset J of I and prime p, let 
s = #J and sp = #Jp where Jp = {j ∈ J | p � λj}. Then

(1) The lifting formula holds for all a ≥ 1:

NJ (Q; c, pa) = p(a−1)(t−1)NJ(Q; c, p). (19)

(2) If there exists i /∈ J , p � λi, then

NJ(Q; c, p) = (p− 1)s p(t−s−1); (20)

if for all i /∈ J , p | λi, then

NJ (Q; c, p) = (p− 1)s p(t−s−1) + (−1)sp(p− 1)s−sp p(t−s−1)(pδc − 1) (21)

where δc = 1 if p | c and = 0 if p � c.

Proof. If there exists i /∈ J , p � λi, then one can choose all possible xj for j �= i, and 
then xi is decided by the xj ’s, so NJ (Q; c, pa) = pa(t−s−1) · ϕ(pa)s. Thus (20) holds, so 
does (19) in this situation.

If for all i /∈ J , p | λi, then there exists i ∈ J such that p � λi, so dp,J = 1 and 
(19) holds in this situation by Theorem B. Now one easily has NJ(Q; c, p) = pt−s(p −
1)s−spN∗(QJp

; c, p), and by (15),

N∗(QJp
; c, p) =

sp−1∑
i=0

(−1)i
(
sp
i

)
psp−i−1 + (−1)spδc

=1
p
(p− 1)sp + (−1)sp(δc −

1
p
).

The theorem is proved. �
4.2. The case Q(x1, · · · , xt) =

t∑
i=1

λix
k
i

In this subsection, we consider the congruence equation

λ1x
k
1 + · · · + λtx

k
t ≡ c mod pa.
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4.2.1. A general result
The following Theorem is a more detailed version of our algorithm:

Theorem 4.2. Suppose prime p � k and Q is reduced at p. For c �= 0, let cp be the p-adic 
valuation of c. Let Ip = {i ∈ I | p � λi} and tp = #Ip. For J a nonempty subset of I, let 
Jp = {i ∈ J | p � λi}, s = #J and sp = #Jp. Then

(1) For c �= 0, N(Q; c, pa) for all a ≥ 1 is completely determined by N(Q; 0, pa) for 
1 ≤ a ≤ cp and N(Q; c, pcp+1) through the formula

N(Q; c, pa) = p(a−cp−1)(t−1)N(Q; c, pcp+1), if a ≥ cp + 1. (22)

In particular, if p � c, then for a ≥ 1,

N(Q; c, pa) = p(a−1)(t−1)N(Q; c, p) = pat−a−tp+1N(QIp ; c, p) (23)

where N(QIp ; c, p) can be computed by the formulas in Theorem 2.2.
(2) If Jp �= ∅, i.e., sp �= 0 and dp,J = 1, then for any a ≥ 1, for any c ∈ Z,

NJ (Q; c, pa) = p(a−1)(t−1)NJ(Q; c, p), (24)

NJ (Q; c, p) = (p− 1)s−sppt−s+sp−tp ·NJp
(QIp ; c, p), (25)

and

NJp
(QIp ; c, p) =

∑
Ip−Jp⊆T⊆Ip

(−1)tp−|T |N(QT ; c, p) (26)

where N(QT ; c, p) can be computed by the formula in Theorem 2.2.
In particular, N∗(Q; c, pa) can be computed by the formulas above, in this case J = I

and Jp = Ip.
(3) If dp,J = b + 1 > 1, i.e., sp = 0, then for c ∈ Z,

NJ(Q; c, pa) = p(a−b−1)(t−1)NJ (Q; c, pb+1). (27)

If moreover, cp < b, then

NJ (Q; c, pa) =
{

(p− 1)spas−sN(QI−J ; c, pa), if a < cp + 1;
(p− 1)sp(a−cp−1)(t−1)+cpsN(QI−J ; c, pcp+1), if a ≥ cp + 1.

(28)

Here NJ(Q; c, pa) for a ≤ b + 1 and N(QI−J ; c, pa) for a ≤ cp + 1 can be computed 
by the decomposition formula (13).
In particular, if p � c, then for a ≥ 1,
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NJ (Q; c, pa) = (p− 1)spat−a−s−tp+1N(QIp ; c, p) (29)

where N(QIp ; c, p) can be computed by Theorem 2.2.

4.2.2. The quadratic case
In this case, we recall the following well-known result:

Proposition 4.3. Suppose Q(x1, · · · , xt) = λ1x
2
1 + · · ·+ λtx

2
t . For odd prime p, let 

( ·
p

)
be 

the Legendre symbol. If p �
t∏

i=1
λi, then

N(Q; c, p) =

⎧⎪⎪⎨
⎪⎪⎩
pt−1 +

(
cλ1···λt

p

)(−1
p

) t−1
2 p

t−1
2 , if t odd;

pt−1 − 1
p

(
λ1···λt

p

)(−1
p

) t
2 p

t
2 , if t even and p � c;

pt−1 + p−1
p

(
λ1···λt

p

)(−1
p

) t
2 p

t
2 . if t even and p | c.

(30)

Proof. This follows from §8.6 in [5], and can also be found in [1]. �
Remark. The above formula holds for I = ∅. In this case t = 0 and N(0; c, p) = 1 if p | c
and 0 if not.

Theorem 4.4. Suppose Q(x1, · · · , xt) = λ1x
2
1 + · · · + λtx

2
t and p � λi for some i ∈ I.

(1) For p odd, suppose p � λi for some i ∈ I. Let Ip = {i ∈ I | p � λi}, let tp = #Ip and 

rp = #{i ∈ I | λi is a quadratic non-residue modulo p}. Write p∗ = p ·
(

−1
p

)
, and 

for i ≥ j ≥ 0, write

Ap(i, j) = (
√
p∗ + 1)i−j(

√
p∗ − 1)j + (

√
p∗ − 1)i−j(

√
p∗ + 1)j

2 ,

Bp(i, j) = (
√
p∗ + 1)i−j(

√
p∗ − 1)j − (

√
p∗ − 1)i−j(

√
p∗ + 1)j

2 .

Then for a ≥ 1, we have

N∗(Q; c, pa) = p(t−1)(a−1)(p− 1)t−tpN∗(QIp ; c, p), (31)

where N∗(QIp ; c, p) is given by

1
p
(p− 1)tp +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)rP
(
Ap(tp, rp)√

p∗
( c
p

)
+ Bp(tp, rp)

p

)
, if 2 � tp and p � c;

(−1)rp−1
(
Ap(tp, rp)

p
+ Bp(tp, rp)√

p∗
( c
p

))
, if 2 | tp and p � c;

(−1)rp−1 (p− 1)Bp(tp, rp)
p

, if 2 � tp and p | c;

(−1)rp (p− 1)Ap(tp, rp)
, if 2 | tp and p | c.

(32)
p
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(2) Moreover, for J ⊆ I such that dp,J = 1, i.e., if there exists i ∈ J such that 
p � λj. Let Jp = {i ∈ J | p � λi}, let s = #J , sp = #Jp and rp,J = #{i ∈ J |
λi is a quadratic non-residue modulo p}. Then for a ≥ 1, we have

NJ(Q; c, pa) = p(t−1)(a−1)pt−tp−s+sp(p− 1)s−spNJp
(QIp ; c, p), (33)

where

NJp
(QIp ; c, p) =(p− 1)spptp−sp−1 + (−1)rp(

√
p∗)tp−sp

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ap(sp, rp,J)√

p∗
( c
p

)
+ Bp(sp, rp,J)

p

)
, if 2 � tp and p � c;(

−Ap(sp, rp,J)
p

− Bp(sp, rp,J)√
p∗

( c
p

))
, if 2 | tp and p � c;

(1 − p)Bp(sp, rp,J)
p

, if 2 � tp and p | c;
(p− 1)Ap(sp, rp,J)

p
, if 2 | tp and p | c.

(34)

(3) For p = 2, for J ⊆ I such that d2,J = 3, i.e. if there exists j ∈ J such that 2 � λj, 
then for a ≥ 3,

NJ(Q; c, 2a) = 2(t−1)(a−3)NJ(Q; 2, 8); (35)

and for 1 ≤ a ≤ 3,

NJ (Q; c, 2a) = 2(a−1)t · #{J ⊆ T ⊆ I | v2(
∑
i∈T

λi − c) ≥ a}. (36)

In particular, for J = I, let c′2 = v2(
∑
i∈I

λi − c). Then

N∗(Q; c, 2a) =

⎧⎪⎪⎨
⎪⎪⎩

2at−a−t+3, if a ≥ 3 and c′2 ≥ 3;
2(a−1)t, if a ≤ 3 and c′2 ≥ a;
0, in other cases.

(37)

Remark. For general Q (reduced or not), if we replace the assumption p � λi for some 
i ∈ J by the assumption min{vp(λi) | i ∈ I} = min{vp(λi) | i ∈ J}, along with 
Proposition 2.1(2), we get the formula for NJ(Q; c, pa) for all c ∈ Z and a ≥ 1.

Proof. Part (3) follows from Theorem B(2), Part (1) is a special case of (2), and (33)
follows from Theorem B(1), we just need to prove (34) in Part (2).

By the Inclusion–Exclusion Principle, we know

NJp
(QIp ; c, p) =

∑
(−1)|T |N(QIp−T ; c, p).
T⊆Jp
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We use (30) and the above formula to compute NJp
(QIp ; c, p). We compute the main 

term and the error term separately. The main term is
∑
T⊆Jp

(−1)|T |ptp−|T |−1 = (p− 1)spptp−sp−1.

For the error term, we need the following identities

∑
i even

(
n

i

)
xi = (1 + x)n + (1 − x)n

2 ,

∑
i odd

(
n

i

)
xi = (1 + x)n − (1 − x)n

2 .

In the case tp is odd and p � c, for the subset T of even order, suppose there are i
quadratic residues in {λm | m ∈ T} and j quadratic non-residues, the contribution of 
the error term in N(QIp−T ; c, p) is

(−1)rp
(
c

p

)
(
√
p∗)tp−1 × (−1)j(

√
p∗)−i−j .

So the contribution for all T of even order is (−1)rp
(

c
p

)
(
√
p∗)tp−1×

∑
i+j even

(
sp − rp,J

i

)(
rp,J
j

)
(−1)j(

√
p∗)−i−j

=
∑

i even

(
sp − rp,J

i

)
(
√
p∗)−i

∑
j even

(
rp,J
j

)
(
√
p∗)−j

+
∑
i odd

(
sp − rp,J

i

)
(
√
p∗)−i

∑
j odd

(
rp,J
j

)
(
√
p∗)−j ,

which is

(−1)rp(
√
p∗)tp−sp−1

(
c

p

)
Ap(sp, rp,J).

Similarly for all T of odd order, the error term contribution is

(−1)rp
p

(
√
p∗)tp

∑
i+j odd

(
sp − rp,J

i

)(
rp,J
j

)
(−1)j(

√
p∗)−i−j

=(−1)rp(
√
p∗)tp−sp

Bp(sp, rp,J)
p

.

The other three cases in (34) are obtained by the same method. �
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4.2.3. The case t = 2 and p � k
For this case, note that if p � λ1, let λ−1

1 be the p-adic inverse of λ1, then

NJ(λ1x
k
1 + λ2x

k
2 ; c, pa) = NJ (xk

1 + λ−1
1 λ2x

k
2 ;λ−1

1 c, pa).

Thus we may assume

Q(x1, x2) = xk
1 + λpexk

2

such that p � λ and e ≥ 0. We want to compute NJ(c, pa) for J = ∅, {1}, {2} and 
I = {1, 2}, c ∈ Z and a ≥ 1.

If p � c and e = 0, by Theorem 2.2 and note that J0(χ, χ−1) = (p − 1)χ(−1) if χ �= 1, 
= p if χ = 1, then

N(c, p) = p +
∑
χ1,χ2

χk
i =1,χi �=1

χ1χ2(c)χ2(λ−1)J(χ1, χ2), (38)

N(0, p) = 1 + (p− 1)
∑

χ: χk=1

χ(−λ). (39)

For J = {1} or I, then dp,J = 1. By Theorem B, we have NJ(c, pa) = pa−1NJ(c, p). 
Then by (16), we have

Proposition 4.5. Let Q(x1, x2) = xk
1 + λpexk

2 such that p � λk and e ≥ 0. Then

N{1}(c, pa) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pa−1(N(c, p) −
∑

χ: χk=1
χ(λ−1c)), if e = 0 and p � c;

pa ·
∑

χ: χk=1
χ(c), if e ≥ 1 and p � c;

pa−1(N(0, p) − 1), if e = 0 and p | c;
0, if e ≥ 1 and p | c.

(40)

N∗(c, pa) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pa−1(N(c, p) −
∑

χ: χk=1
(χ(c) + χ(λ−1c))), if e = 0 and p � c;

pa−1(p− 1)
∑

χ: χk=1
χ(c), if e ≥ 1 and p � c;

pa−1(N(0, p) − 1), if e = 0 and p | c;
0, if e ≥ 1 and p | c.

(41)

Here N(c, p) and N(0, p) are given by (38) and (39) respectively.

Remark. In the quadratic case, Theorem 4.4 gives more precise formulas for the cases 
J = {1} or I, or J = {2} and e = 0.
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For J = ∅ and {2}, the situation for NJ(c, pa) is much more complicated. We first 
have

Proposition 4.6. Let Q(x1, x2) = xk
1 +λpexk

2 such that p � λk and e ≥ 0. For c �= 0, let cp
be the p-adic valuation of c and c′ = c/pcp . For c = 0, let cp = +∞. Let J = {2} or ∅. 
Then

(1) NJ(Q; c, pa) = pa−cp−1NJ (Q; c, pcp+1) for c �= 0.
(2) If e ≥ a, then N{2}(Q; c, pa) = pa−1(p − 1)N(xk

1 ; c, pa) and N(Q; c, pa) =
paN(xk

1 ; c, pa), and

N(xk
1 ; c, pa) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
pa−� a

k �, if cp ≥ a;
pcp−

cp
k

∑
χ: χk=1

χ(c′), if k | cp < a;

0, if k � cp < a.

(42)

Here �x� meanings the smallest integer ≥ x.
(3) If e < a, N{2}(Q; c, pa) = pa−e−1N{2}(Q; c, pe+1).

Consequently, the study of NJ (Q; c, pa) for the set J = ∅ and {2} is reduced to the 
study of N(Q; upa, pa+1) for u ∈ {0, · · · , p − 1} and e ≤ a, and N{2}(Q; upe, pe+1) for 
u ∈ {0, · · · , p − 1}.

Proof. Part (1) follows from Theorem C and Part (3) follows from Theorem B. The first 
half of (2) follows from Proposition 2.1(1). For the second half of (2), the solutions of 
xk

1 ≡ 0 (mod pa) are of the form x1 = p�
a
k �x′

1 for x′
1 arbitrary. If cp < a, then xk

1 ≡ c

(mod pa) is solvable only if k | cp, in this case

N(xk
1 ; c, pa) = pcp−cp/kN∗(xk; c′, pa−cp) = pcp−cp/kN∗(xk; c′, p),

but N∗(xk; c′, p) = N(xk; c′, p) =
∑

χ: χk=1
χ(c′). �

For the quadratic case, we have

Proposition 4.7. Let Q(x1, x2) = x2
1 + λpex2

2 such that p � 2λ. Then

(1) For u ∈ {1, · · · , p − 1},

N{2}(upe, pe+1) =
{
p

3e+1
2 (1 +

(
λu
p

)
), if 2 � e;

p
3e
2 (p−

(−λ
p

)
−

(
u
p

)
− 1), if 2 | e.

(43)

For u = 0,
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N{2}(0, pe+1) =
{

0, if 2 � e;
p

3e
2 (p− 1)(1 +

(−λ
p

)
), if 2 | e.

(44)

(2) For u ∈ {1, · · · , p − 1} and a ≥ e,

N(upa, pa+1) = p
2a+e

2 ·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
p(1 +

(
u
p

)
), if 2 � e and 2 | a;

√
p(1 +

(
λu
p

)
), if 2 � e and 2 � a;

( (a−e)(p−1)
2 (1 +

(−λ
p

)
) + (p−

(−λ
p

)
)), if 2 | e and 2 | a;

(a− e + 1)(p− 1)
2 (1 +

(−λ
p

)
), if 2 | e and 2 � a.

(45)

For e < a,

N(0, pa) =

⎧⎪⎪⎨
⎪⎪⎩
p

2a+e−1
2 , if 2 � e;

p
2a+e

2 ( (a−e)(p−1)
2p (1 +

(−λ
p

)
) + 1), if 2 | e and 2 | a;

p
2a+e

2 ( (a−e+1)(p−1)
2p (1 +

(−λ
p

)
) + 1), if 2 | e and 2 � a.

(46)

Proof. We use the decomposition formula in Theorem A to count the number.
(1) Take J1 = {2} and J2 = I in Theorem A, then the decomposition formula for 

N{2}(Q; upe, pe+1) is

N{2}(Q;upe, pe+1) =
e∑

j=0
p−jN∗(p2jx2

1 + λpex2
2;upe, pe+1) + N∗(λpex2

2;upe, pe+1).

If j < e/2, N∗(p2jx2
1 + λpex2

2; upe, pe+1) = 0. If j > e/2,

N∗(p2jx2
1 + λpex2

2;upe, pe+1) =pe(p− 1)N∗(λpex2
2;upe, pe+1)

=p2e(p− 1)(1 +
(λu
p

)
).

If j = e/2, then

N∗(p2jx2
1 + λpex2

2;upe, pe+1) = p2e(p− 2 −
(−λ

p

)
−
(u
p

)
−

(λu
p

)
).

Combine the results we get the formula for N{2}(Q; upe, pe+1).
The decomposition formula for N{2}(Q; 0, pe+1) is

N{2}(Q; 0, pe+1) =
e∑

p−jN∗(p2jx2
1 + λpex2

2; 0, pe+1) + N∗(λpex2
2; 0, pe+1).
j=0
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If j �= e/2, N∗(p2jx2
1 + λpex2

2; 0, pe+1) = 0 and N∗(λpex2
2; 0, pe+1) = 0; for j =

e/2, N∗(p2jx2
1 + λpex2

2; 0, pe+1) = p2e(p − 1)(1 +
(−λ

p

)
). So we get the formula for 

N{2}(Q; 0, pe+1).
(2) Take J1 = ∅ and J2 = {2}, then the decomposition formula for N(Q; upa, pa+1)

is

N(Q;upa, pa+1) =
a∑

j=0
p−jN{2}(x2

1 + λpe+2jx2
2;upa, pa+1) + N(x2

1;upa, pa+1).

If j ≥ (a + 1 − e)/2, then

N{2}(x2
1 + λpe+2j ;upa, pa+1) = pa(p− 1)N(x2

1;upa, pa+1),

and N(x2
1; upa, pa+1) = pa/2(1 +

(
u
p

)
) if 2 | a and 0 if 2 � a, so

∑
j≥(a+1−e)/2

p−jN{2}(x2
1 + λpe+2jx2

2 ;upa, pa+1) + N(x2
1;upa, pa+1)

=

⎧⎨
⎩p

3a
2 +1−� a+1−e

2 �(1 +
(

u
p

)
), if 2 | a,

0, if 2 � a.

If j < (a − e)/2, then

N{2}(x2
1 + λpe+2jx2

2;upa, pa+1) = pa−e−2jN{2}(x2
1 + λpe+2jx2

2; 0, pe+2j+1).

If j = (a − e)/2, then

N{2}(x2
1 + λpe+2jx2

2;upa, pa+1) = N{2}(x2
1 + λpax2

2;upa, pa+1).

We now can just use results in (1) to obtain the formula for N(Q; upa, pa+1).
The decomposition formula for N(Q; 0, pa) is

N(Q; 0, pa) =
a−1∑
j=0

p−jN{2}(x2
1 + λpe+2jx2

2; 0, pa) + N(x2
1; 0, pa).

If j ≥ (a − e)/2, then

N{2}(x2
1 + λpe+2jx2

2; 0, pa) =pa−1(p− 1)N(x2
1; 0, pa)

=p2a−� a
2 �−1(p− 1).

If j < (a − e)/2, then e + 2j < a and

N{2}(x2
1 + λpe+2jx2

2; 0, pa) = pa−e−2j−1N{2}(x2
1 + λpe+2j ; 0, pe+2j+1)
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which is given by formulas in (1). Combine these results, we get the formula for 
N(Q; 0, pa). �
Remark. For completeness, let us study NJ(Q; c, 2a) for Q(x1, x2) = x2

1 + 2eλx2
2 and 

2 � λ. The cases J = {1} and {1, 2} are given in part (3) of Theorem 4.4. Here we give 
steps to compute NJ(Q; c, 2a) for J = {2} or ∅.

(1) We first compute N(x2
1; c, 2a). Assume that c = 2c2u with u odd for c �= 0. Then

• if c = 0 or c2 ≥ a, N(x2
1; 0, 2a) = 2a−� a

2 �;
• if a ≥ c2 + 3, N(x2

1; c, 2a) = N(x2
1; c, 2c2+3) (by Theorem C);

• if c2 + 1 ≤ a ≤ c2 + 3, N(x2
1; c, 2a) = 2a−

c2
2 −1 if 2 | c2 and u ≡ 1 (mod 2a−c2) or 

0 if otherwise.
(2) For J = {2}, if a > e + 3, by Theorem B, we have

N{2}(Q; c, 2a) = 2a−e−3N{2}(Q; c, 2e+3).

If a ≤ e + 3, since 2ex2
2 ≡ 2e (mod 2a) for any x2 ∈ (Z/2aZ)×,

N{2}(Q; c, 2a) = 2a−1N(x2
1; c− 2eλ, 2a)

with N(x2
1; c − 2eλ, 2a) be given in part (1).

(3) For J = ∅, by the decomposition formula in Theorem A, we have

N(Q; c, 2a) =
a−1∑
j=0

2−jN{2}(x2
1 + λ2e+2jx2

2; c, 2a) + N(x2
1; c, 2a),

where N{2}(x2
1 + λpe+2jx2

2; c, 2a) is given in part (2) and N(x2
1; c, 2a) is given in 

part (1).

For the general case, we have

Proposition 4.8. Let Q(x1, x2) = xk
1 + λpexk

2 such that p � λk and e ≥ 0. Let C =
N(xk

1 + λxk
2 ; u, p) and C∗

0 = N(xk
1 + λxk

2 ; 0, p) − 1 given by (38) and (39) respectively. 
Then

(1) For u ∈ {1, · · · , p − 1},

N{2}(upe, pe+1) =
{
p2e−[ ek ] ∑χ(u), if k � e;
p

(2k−1)e
k (C −

∑
χ(u)), if k | e.

(47)

For u = 0,
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N{2}(0, pe+1) =
{

0, if k � e;
p

(2k−1)e
k C∗

0 , if k | e.
(48)

(2) For u ∈ {1, · · · , p − 1} and a ≥ e,

N(upa, pa+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
2a(k−1)+e

k C + p
2a(k−1)+e

k −p
ak+e(k−1)

k

pk−2−1 C∗
0 , if k | e and k | a;

p
ak+e(k−1)

k · p(k−2)� a−e
k

�−1
pk−2−1 C∗

0 , if k | e and k � a;
p

(2k−1)a
k −[ a−e

k ] ∑χ(u), if k � e and k | a;
p

(2k−1)a+e
k −[ ak ] ∑χ(u), if k � e and k | a− e;

0, otherwise.

(49)

For e < a,

N(0, pa) =

⎧⎨
⎩p2a−� a−e

k �+� a
k � + pa+e−1− e

k · p(k−2)� a−e
k

�−1
pk−2−1 C∗

0 , if k | e;
p2a−� a−e

k �+� a
k �, if k � e.

(50)

Here the sum 
∑

is over all characters χ such that χk = 1, and [n] means the largest 
integer ≤ n.

Proof. The proof of part (1) is similar to the proof of Proposition 4.7. We just show how 
to get the formulas of part (2).

Take J1 = ∅ and J2 = {2}, then the decomposition formula for N(Q; upa, pa+1) is

N(Q;upa, pa+1) =
a∑

j=0
p−jN{2}(xk

1 + λpe+kjxk
2 ;upa, pa+1) + N(xk

1 ;upa, pa+1).

If e + kj > a, i.e. j ≥ [a−e
k ] + 1, then

N{2}(xk
1 + λpe+kj ;upa, pa+1) = pa(p− 1)N(xk

1 ;upa, pa+1),

and N(xk
1 ; upa, pa+1) = pa−

a
k

∑
χ(u) if k | a and 0 if k � a, so

a∑
j=[ a−e

k ]+1

p−jN{2}(xk
1 + λpe+kjxk

2 ;upa, pa+1) + N(xk
1 ;upa, pa+1)

=
{
p2a− a

k−[ a−e
k ] ∑χ(u), if k | a,

0, if k � a.

If e + kj < a, i.e. j ≤ �a−e� − 1, then
k
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N{2}(xk
1 + λpe+kjxk

2 ;upa, pa+1) = pa−e−kjN{2}(xk
1 + λpe+kjxk

2 ; 0, pe+kj+1).

By (48), we have

� a−e
k �−1∑
j=0

p−jN{2}(xk
1 + λpe+kjxk

2 ;upa, pa+1)

=

⎧⎨
⎩pa+e− e

k · p(k−2)� a−e
k

�−1
pk−2−1 C∗

0 , if k | e
0, if k � e.

If e + kj = a, i.e. j = a−e
k , then by (47) we have

p−jN{2}(xk
1 + λpaxk

2 ;upa, pa+1)

=
{
p2a− a−e

k − a
k (C −

∑
χ(u)), if k | a and k | a− e;

p2a− a−e
k −[ ak ] ∑χ(u), if k � a and k | a− e.

Thus we get the formula for N(Q; upa, pa+1).
The decomposition formula for N(Q; 0, pa) is

N(Q; 0, pa) =
a−1∑
j=0

p−jN{2}(xk
1 + λpe+kjxk

2 ; 0, pa) + N(xk
1 ; 0, pa).

If e + kj ≥ a, i.e. j ≥ �a−e
k � then

N{2}(xk
1 + λpe+kjxk

2 ; 0, pa) =pa−1(p− 1)N(xk
1 ; 0, pa)

=p2a−� a
k �−1(p− 1),

so

a−1∑
j=� a−e

k �

p−jN{2}(xk
1 + λpe+kjxk

2 ; 0, pa) + N(xk
1 ; 0, pa) = p2a−� a

k �−� a−e
k �

If e + kj < a, i.e. j ≤ �a−e
k � − 1, then

N{2}(xk
1 + λpe+kjxk

2 ; 0, pa) = pa−e−kj−1N{2}(xk
1 + λpe+kjxk

2 ; 0, pe+kj+1)

and
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Table 1
NJ (c, 27) for J nonempty.

c 0 1,
26

3,
24

9,
18

2,4,
23,25

8,10,
17,19

6,12,
15,21

else

N∗(c, 27) 0 0 0 0 0 0 0 36

N{1,2}(c, 27) 0 0 0 0 0 0 36 36

N{1,3}(c, 27) 0 0 0 0 0 36 0 36

N{2,3}(c, 27) 0 0 0 0 36 0 0 36

N{1}(c, 27) 0 0 0 36 0 36 36 36

N{2}(c, 27) 0 0 36 0 36 0 36 36

N{3}(c, 27) 0 36 0 0 36 36 0 36

� a−e
k �−1∑
j=0

p−jN{2}(xk
1 + λpe+kjxk

2 ; 0, pa)

=

⎧⎨
⎩pa+e− e

k−1 · p(k−2)� a−e
k

�−1
pk−2−1 C∗

0 , if k | e;
0, if k � e;

thus we get the formula for N(Q; 0, pa). �
Remark. The case t ≥ 3 can also be computed, but the discussion is a little bit tedious.

4.3. The example Q(x1, x2, x3) = 9x1 + 3x3
2 + x9

3 for p = 3

At last we consider the congruence equation

Q(x1, x2, x3) = 9x1 + 3x3
2 + x9

3 ≡ c mod 3a, (a ≥ 3),

which is not included in the algorithm.
Since for any J �= ∅, d3,J = 3, by Theorem B, we have

NJ(Q; c, 3a) = 32(a−3)NJ(Q; c, 27).

After simple calculation, we then get NJ(Q; c, 27) in Table 1.
For J = ∅, the map ϕ3 : (a1, a2, a3) 
→ Q(α1, α2, α3) mod 27 from (Z/3Z)3 to Z/27Z

is found to be one-to-one. Note that any solution (β1, β2, β3) ∈ Γ(Q; c, 27) is a lifting of 
some (a1, a2, a3) ∈ ϕ−1

3 (c), but we always have

Q(β1, β2, β3) = ϕ3(a1, a2, a3).

Thus for any c ∈ Z, we have N(Q; c, 27) = 36. In fact, we have N(Q; c, 3a) = 32a for 
a ≤ 3. For the case a > 3, we use the notation NJ1,J2 introduced in the remark of §3.1, 
then

N(c, 3a) = N∅,{2,3}(c, 3a) + N{2},{3}(c, 3a) + N{3},{2}(c, 3a) + N{2,3}(c, 3a).
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We compute the right hand side term by term:

• if c3 = v3(c) = 0, then N∅,{2,3} = N{2},{3} = 0, N{3},{2} = 32a for c ≡ 1, 8, 10, 17,
19, 26( mod27), and N{2,3} = 32a for c ≡ 2, 4, 5, 7, 11, 13, 14, 16, 20, 22, 23, 25( mod27)
from Table 1;

• if c3 = 1, then N∅,{2,3} = N{3},{2} = N{2,3} = 0, and N{2},{3} = 32a;
• if c3 ≥ 2, N{2},{3} = N{3},{2} = N{2,3} = 0, and N∅,{2,3} = 32a.

Thus we have

N(Q; c, 3a) = 32a

for any a > 0.
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