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Abstract Given a binary quadratic polynomial f (x1, x2) = αx21 + βx1x2 + γ x22 ∈
Z[x1, x2], for every c ∈ Z and n ≥ 2, we study the number of solutions NJ ( f ; c, n) of
the congruence equation f (x1, x2) ≡ c mod n in (Z/nZ)2 such that xi ∈ (Z/nZ)×
for i ∈ J ⊆ {1, 2}.

Keywords Binary quadratic form · Counting solutions · Congruence equation
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1 Introduction and Main Result

For an integral polynomial f (x1, . . . , xt ) of t variables, following the notations in
[1], let �J ( f ; c, n) (or �(c, n) if f is clear from context) be the set of solutions
of f (x1, . . . , xt ) ≡ c mod n such that xi ∈ (Z/nZ)× for i ∈ J ⊆ {1, . . . , t} and
NJ ( f ; c, n) be the cardinality of �J ( f ; c, n). When t = 2, for simplicity, we write
x = x1 and y = x2, and write N , N1, N2 and N∗ for N∅, N{1}, N{2} and N{1,2}.

The problem to determine NJ ( f ; c, n) when f is a diagonal polynomial has drawn
extensive studies by many authors recently. Yang and Tang [5] determined NJ (x2 +
y2; c, n) in 2015, and Sun and Cheng [3] determined N∗(αx2 + γ y2; c, n) in 2016.
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Mollahajiaghaei [2] determined N∗(x21+· · ·+x2t ; c, n). Li andOuyang [1] completely
solved the counting problem of NJ ( f ; c, n) when f is a diagonal binary quadratic
form. Their results can be found in Theorem 4.4, Proposition 4.7 and the remark
after the proposition in [1]. Certainly, the results in [1] are far more beyond. They
actually determined the values of N∗( f ; c, n) for any diagonal quadratic forms of any
variables and gave methods to determine essentially NJ ( f ; c, n) for f of the form
λ1x

k1
1 + · · · + λt x

kt
t . See Toth [4] for more development.

In this note, we shall consider the case that f (x, y) = αx2 + βxy + γ y2 is a
non-diagonal binary quadratic form, i.e., β �= 0. Our main result is

Theorem 1.1 For an arbitrary non-diagonal binary quadratic form f (x, y) = αx2+
βxy + γ y2 ∈ Z[x, y], for any given J , c and n, NJ ( f ; c, n) can be determined
explicitly as given in Propositions 4.1–4.6.

2 Basic Reduction

First, by the Chinese Remainder Theorem, suppose n has the prime decomposition
n = ∏

p|n
pnp , then

NJ ( f ; c, n) =
∏

p|n
NJ ( f ; c, pnp ). (2.1)

Hence we only need to compute NJ ( f ; c, pa) for any prime number p and any integer
a ≥ 1. From now on, we let vp(x) be the p-adic valuation of x . In particular, for
0 �= c ∈ Z/paZ, cp = vp(c) < a is well defined.

Fix p. Write α = pe1α′, β = pe2β ′ and γ = pe3γ ′ with e1, e2, e3 ≥ 0 and
p � α′β ′γ ′. Then to compute NJ ( f ; c, pa),
• we may assume min{e1, e2, e3} = 0 by [1, Proposition 2.1(2)];
• we may assume e1 ≤ e3 by symmetry;
• themap�J ( f ; c, pa) → �J (pe1x2+ pe2xy+ pe3α′γ ′β ′−2y2;α′c, pa), (x, y) �→

(α′x, β ′y) is a bijection, so we may assume α′ = β ′ = 1.

From now on, if not stated otherwise, we assume

f (x, y) = pe1x2 + pe2xy + pe3λy2 (2.2)

satisfying the conditions

e1 ≤ e3, min{e1, e2} = 0, p � λ, and c ∈ Z/paZ. (2.3)

3 Two Useful Lemmas

Lemma 3.1 For f (x, y) = αx2 + βxy + γ y2, one has

N∗(c, pa) = (N1 + N2 − N )(c, pa) + N , (3.1)
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where N is p2N ( c
p2

, pa−2) if a > 2 and cp ≥ 2, is p2(a−1) if a ≤ 2 and c = 0, and
is 0 in other occasions.

Proof We see that �1 ∩ �2 = �∗, and the complement of �1 ∪ �2 in � is the
set {(px, py) ∈ (Z/pa)2 | f (px, py) ≡ c mod pa}. Thus (3.1) follows from the
Inclusion-Exclusion Principle immediately. ��
Lemma 3.2 Suppose f ′(x, y) = x2 + (2eλ − 1)y2 with e > 0 and 2 � λ.

(1) For c odd,

N ( f ′; c, 2a) =

⎧
⎪⎨

⎪⎩

2a, if a = 1 or e ≥ 2;
2a+1, if e = 1, a ≥ 2 and c ≡ 1 mod 4;
0, if e = 1, a ≥ 2 and c ≡ 3 mod 4.

(3.2)

(2) For general c,

N2( f
′; c, 2a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2a, if a ≥ 2, c ≡ 2eλ − 1 mod 4;
2a+1, if a ≥ 3, c ≡ 2eλ mod 8;
4, if a = 2, c ≡ 2eλ mod 4;
1, if a = 1;
0, if otherwise.

(3.3)

Proof By [1, Theorem C], we have N ( f ′; c, 2a) = 2a−3N ( f ′; c, 8) for a ≥ 3 if 2 � c.
By [1, Theorem B], we have N2( f ′; c, 2a) = 2a−3N2( f ′; c, 8) for a ≥ 3. Now we
just have to manually compute N ( f ′; c, 2a) and N ( f ′; c, 2a) for a ≤ 3. ��

4 Case by Case Study

We shall discuss the counting problem in six cases.

Proposition 4.1 If e1 > 0 and hence f (x, y) = pe1x2 + xy + pe3λy2, then

N ( f ; c, pa) =
{
pa−1(p − 1)(cp + 1), if c �= 0;
pa−1(pa + p − a), if c = 0,

(4.1)

N1( f ; c, pa) = N2( f ; c, pa) = pa−1(p − 1), (4.2)

N∗( f ; c, pa) =
{
pa−1(p − 1), if p � c;
0, if p | c. (4.3)

Proof Define dn recursively by d0 = 1 and dn+1 = 1 + pe1+e3λd2n . Since dn+2 −
dn+1 = pe1+e3λ(dn+1 + dn)(dn+1 − dn), the sequence {dn} is a Cauchy sequence and
converges to a p-adic unit d ∈ Zp. Note that d = 1+ pe1+e3λd2, then pe1x2 + xy +
pe3λy2 ≡ c mod pa if and only if d(pe1x2 + xy+ pe3λy2) = (x +dpe3λy)(dpe1x +
y) ≡ dc mod pa for any e1 and e3.
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Let (u, v) = (x + dpe3λy, dpe1x + y). Then (x, y) = (u − dpe3λv)/(1 −
pe1+e3λd2), (v − dpe1u)/(1 − pe1+e3λd2). If e1 > 0, then x ∈ (Z/paZ)× (resp.
y ∈ (Z/paZ)×) if and only if u ∈ (Z/paZ)× (resp. v ∈ (Z/paZ)×), we have a
well-defined bijective map ϕ : �J ( f ; c, pa) → �J (uv; dc, pa), (x, y) �→ (u, v) for
any J . Now it is not difficult to prove the following formulas:

N (uv; dc, pa) =
{
pa−1(p − 1)(cp + 1), if c �= 0;
pa−1(pa + p − a), if c = 0,

N1(uv; dc, pa) = N2(uv; dc, pa) = pa−1(p − 1),

N∗(uv; dc, pa) =
{
pa−1(p − 1), if p � c;
0, if p | c.

��
Remark We only need e3 > 0 to get the equivalence of x and u ∈ (Z/paZ)×, thus
for J = ∅ or {1}, NJ ( f ; c, pa) = NJ (uv; c, pa) if e3 > 0 (even if e1 = 0).

Proposition 4.2 If e2 > vp(2) and hence f (x, y) = x2 + pe2xy + pe3λy2, let

λ′ = pe3λ − p2e2
4 and f ′(x, y) = x2 + λ′y2, then

NJ ( f ; c, pa) = NJ ( f
′; c, pa). (4.4)

Proof This is because the mapψ : �J ( f ; c, pa) → �J ( f ′; c, pa)which sends (x, y)
to (x + pe2

2 y, y) is a bijection. ��
Remark For J = {1} or {1, 2}, the value NJ ( f ′; c, pa) = pa−1NJ ( f ′; c, p) is given
by a simple explicit formula in [1, Theorem 4.4]. For J = ∅ or {2}, one can find the
(more complicated) explicit formulas in [1, Proposition 4.7].

Proposition 4.3 Suppose p is odd, e1 = e2 = 0, i.e., f (x, y) = x2 + xy + pe3λy2.

(1) If e3 = 0, let f ′(x, y) = x2 + (4λ − 1)y2, then

N (c, pa) = N ( f ′; c, pa), N1(c, p
a)

= N2( f
′; λc, pa), N2(c, p

a) = N2( f
′; c, pa). (4.5)

(2) If e3 > 0, then

N (c, pa) =
{
pa−1(p − 1)(cp + 1), if c �= 0;
pa−1(pa + p − a), if c = 0,

(4.6)

N1(c, p
a) = pa−1(p − 1), (4.7)

N2(c, p
a) =

{
pa−1(p − 2 − ( c

p

)
), if p � c;

2pa−1(p − 1), if p | c. (4.8)
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(3) In both cases, N∗(c, pa) is obtained by the values N1, N2 and N through the
relation (3.1).

Proof If J = ∅ or {2}, the map �J ( f ; c, pa) → �J (x2 + (4pe3λ − 1)y2; c, pa),
(x, y) �→ (x + y

2 ,
y
2 ) is a bijection. If e3 = 0, the map �1(c, pa) → �2(λc, pa),

(x, y) �→ (λy, x) is also a bijection. We get (4.5).
If e3 > 0, then N2(c, pa) = pa−1N2(x2 − y2; c, p) by [1, Theorem B] and (4.8)

is easily obtained. The formulas for N (c, pa) and N1(c, pa) follow from the remark
after Proposition 4. ��
Remark The values of N ( f ′; c, pa) and N2( f ′; c, pa) (and N2( f ′; λc, pa)) in (4.5)
are given explicitly in [1, Proposition 4.7].

Proposition 4.4 Suppose p = 2, (e1, e2) = (0, 1), i.e., f (x, y) = x2+2xy+2e3λy2.
Set f ′(x, y) = x2 + (2e3λ − 1)y2.

(1) If e3 = 0, then

N (c, 2a) = N ( f ′; c, 2a), N1(c, 2
a)

= N2( f
′; λc, 2a), N2(c, 2

a) = N2( f
′; c, 2a). (4.9)

(2) If e3 > 0, then N (c, 2a) = N ( f ′; c, 2a); N1(c, 2a) = 0 if c is even and
N1(c, 2a) = N ( f ′; c, 2a) which is given by (3.2) in Lemma 3.2(1) if c is odd;
N2(c, 2a) = N2( f ′; c, 2a) which is given by (3.3) in Lemma 3.2(2).

(3) In both cases, N∗ is obtained by the values N1, N2 and N through the relation
(3.1).

Proof If J = ∅ or {2}, the map �J ( f ; c, 2a) → �J (x2 + (2e3λ − 1)y2; c, 2a),
(x, y) �→ (x + y, y) is a bijection. In particular, if e3 > 0, N2(c, 2a) = N2( f ′; c, 2a)
is given by Lemma 3.2(2).

For N1, if e3 = 0, themap�1(c, 2a) → �2(λc, 2a), (x, y) �→ (λy, x) is a bijection;
if e3 > 0, then x is odd if and only if x2 + 2xy + 2e3λy2 is odd, which means
N1(c, 2a) = N (c, 2a) = N ( f ′; c, 2a) which is given by Lemma 3.2(1) if c is odd or
0 if c is even. ��
Remark The remaining values of N ( f ′; c, 2a) and N2( f ′; c, 2a) in Proposition 4.4
are given in the remark after [1, Proposition 4.7].

Proposition 4.5 Suppose p = 2 and e1 = e2 = e3 = 0, i.e., f (x, y) = x2+xy+λy2.

(1) If c is odd, then

N∗(c, 2a) = 2a−1, N1(c, 2
a) = N2(c, 2

a) = 2a, N (c, 2a) = 3 · 2a−1. (4.10)

(2) If c is even, then

N∗(c, 2a) = N1(c, 2
a) = N2(c, 2

a) = 0, (4.11)

N (c, 2a) =

⎧
⎪⎨

⎪⎩

3 · 2a−1, if c �= 0 and 2 | c2;
0, if c �= 0 and 2 � c2;
4� a

2 �, if c = 0.

(4.12)
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Proof (1) Suppose c is odd. Let f ′(x, y) = x2 + (4λ − 1)y2, then N ( f ′; c, 2a) = 2a

by Lemma 3.2(1). Note that any element (u, v) ∈ �( f ′(u, v); λc, 2a) satisfies u − v

odd, thus

x = u − v

λ
+ 2v, y = 2v − x = v − u

λ

are both odd.We have amap from�( f ′(u, v); λc, 2a) to�∗(c, 2a) by sending (u, v) to
(x, y). This map is surjective and 2-to-1: only (w−λy, w)withw satisfying 2w = x+
y mod 2a maps to (x, y). In this way, we have N∗(c, 2a) = 1

2N ( f ′; λc, 2a) = 2a−1.
We know �1(c, 2a) is a disjoint union of �∗(c, 2a) and the set {(x, 2y) |

x odd, f (x, 2y) ≡ c mod 2a}. The latter is 1-to-2 correspondent to �1(x2 + 2xy +
4λy2; c, 2a), and �1(x2+2xy+4λy2; c, 2a) = �(x2+2xy+4λy2; c, 2a) if c is odd.
Now �(x2 + 2xy + 4λy2; c, 2a) → �( f ′; c, 2a), (x, y) �→ (x + y, y) is bijective, so
the result for �1 follows.

For �2, the map �2(c, 2a) → �1(λc, 2a), (x, y) �→ (λy, x) is a bijection. For
N (c, 2a), we just use (3.1).

(2) If c is even, since x2 + xy + λy2 is odd if one of x or y is odd, hence N1 =
N2 = N∗ = 0. Then N follows from (3.1). ��
Proposition 4.6 If p = 2, e1 = e2 = 0 and e3 > 0, i.e., f (x, y) = x2+ xy+2e3λy2,
then

N (c, 2a) =
{
2a−1(c2 + 1), if c �= 0;
2a−1(a + 2), if c = 0,

(4.13)

N1(c, 2
a) = 2a−1, (4.14)

N∗(c, 2a) =
{
0, if 2 � c;
2a−1, if 2 | c, (4.15)

N2(c, 2
a) =

{
0, if 2 � c;
2a, if 2 | c. (4.16)

Proof The first two equations are from the remark after Proposition 4.1.
As f (x, y) is even if y is odd, N∗(c, 2a) = N2(c, 2a) = 0 if c is odd. If c is even,

�∗(c, 2a) = �1(c, 2a) is obvious, hence N∗(c, 2a) = N1(c, 2a) = 2a−1.
Now for c even, �2(c, 2a) is a disjoint union of �∗ and X = {(2x, y) |

y odd, 4x2 + 2xy + 2e3 y2 ≡ c mod 2a . As usual we have |X | = 2N2(2x2 + xy +
2e3−1λy2; c

2 , 2
a−1) = 2N2(uv; c

2 , 2
a−1) = 2a−1. ��
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