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1. Introduction

Let r be a positive integer, theniversal ordinary distributiorof rank 1 and
levelr is well known to be the free abelian group

B ([a] 1 a € 27/7)
"l =X ] p I ra € 2T

With a naturalG, = Gal(Q(u,)/Q) action onU,, U, becomes & ,-module
and plays a very important role in the study of cyclotomic fields, see for exam-
ple Lang [4] or Washington [10] for more information. In particular, the sign
cohomology ofU, gives key information about the indices of cyclotomic units
and Stickelberger ideals as illustrated by Sinnott’s original paper [9] and many
following papers on this subject by different authors. Thecohomology is
found to be related to the cyclotomic Euler system, as shown by Anderson-
Ouyang [1] about the Kolyvagin recursion in the universal ordinary distribu-
tion.

In the book [8], Rubin defined a generalization of the universal ordinary
distribution, which he called thaniversal Euler systenit then was used
to prove the Kolyvagin recursions satisfied by the Euler systems. However,
there are other universal objects satisfying similar distribution relations. In the
paper [6], we proposed a generalization of the universal ordinary distribution,
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288 Yi Ouyang

for which we called theuniversal norm distributionWe used it successfully
to study Sinnott's index formula.

We further generalize the idea of the universal norm distribution in this paper,
which treats the universal Euler systems as special cases. We study in detail
the structure of the universal norm distribution in this paper. We also study
in detail its group cohomology. In short, this paper generalizes the results of
Ouyang [5] and the appendix of it by Anderson. The goal is to set up necessary
tools to the study of the universal Kolyvagin recursion for the universal norm
distribution(thus includes the universal Euler system case), which is a question
raised in Anderson-Ouyang [1] and will be answered in a subsequent paper [7].
However, our study here is more than application to the universal Kolyvagin
recursion. The pure homological setup here should offer us more freedomto the
study of other arithmetic aspects of the universal norm distribution. Certainly
we expect more studies in this direction.

The structure of this paper is as follows. We first introduce the definition
of the universal norm distributiofx, in § 2 and give some examples in § 3.
Basic properties off, are studied in § 4. A general phenomenon of every
universal norm distributioty, is Anderson’s resolutioif, attached to it. We
constructC, in 8 5 and prove it is indeed a resolutionidf in Theorem 5.1,

a generalization of the results by Anderson in the appendix of [5]. Because
of the existence of Anderson’s resolutidn, we can thus apply the double
complex and spectral sequences method to study the group cohomology of the
universal norm distributiofy, . This is accomplished in § 7, in particular, in
Theorem 7.5 and Theorem 7.8. For the universal ordinary distribution case,
the two Theorems recover and generalize Theorem A in Ouyang [5].

The author got very first idea of this paper during his pleasant visit in IHES
in Spring 2001. Part of the results here was reported in the number theory
seminar in Penn State University in November 2001 and then in McMaster
University in February 2002, and in the summer meeting of CMS at Laval
University in June 2002. The author sincerely thanks the above organizations,
Professors Robert Vaughn and Winnie Li at PSU, Professor Manfred Kolster
at McMaster and Professors Kumar Murty and Pramath Sastry at Toronto for
inviting me to give these talks. Last but not least, thanks always go to Professor
Greg W. Anderson for his ideas and his influence.

2. Notations and Definitions
2.1 Basic Notations
Let X be a totally ordered set. Denote byx; the elements irX.

Let Y be the set of all squarefree formal products &f X, i.e., the element
y € Y has the formx;---x, --- forx; # x; € X. In particular, letl € Y
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denote the element of which noe X appears in the formal product. One can
identify Y with the collection of all subsets &f, thusl is corresponding to the
empty set. For every € Y, thedegreedegy of y is define to be the number
of elementst € X dividing y. Denote byy, y; the elements irY. If without
further statement, we’'ll assume thaits finite, i.e., deg < oco. Denote by¥,
the set of all finitey € Y.

Let Z be the set of all formal product af € X, i.e., the element € Z has
the formxf' - - - x - - - with i; € Z-o. For everyz = xi' - - x’» - - -, define the
degreeof z to be deg = 2?21 i;. Denote byz, z/, w the elements i and
in particular byz, ' the infinite elements(elements with infinite degree¥in
The subset of all finite elements ihwill be denoted byZs,.

Apparently we hav&X C Y C Z. One can always keep in mind the example
that X is the set of prime numbergjy, is the set of all squarefree positive
integers andZs, is the set of positive integers. We can thus imitate all the
terminologies from traditional sense, for example, prime factors, factors, the
greatest common divisors and etc.

For everyz € Z andx € X, thevaluationof z atx is the highest power of
x dividing z and is denoted by, (z). For everyz € Z, there exists a unique
Z € Y(z could be infinite) such that if | z thenx | z. We callz the support
of z. For every; € Z, if a factorz’ | z satisfies gct’, z/z') = 1,7 is called a
stalkof z and is denoted by |, z. Note that the set of stalks afhas a one-
to-one correspondence with the set of factors(and also stalks)of z, for
eachy | z, letz(y) be the stalk ot whose support is. In particular,z(x) is
justx®@,

For each paix € X andy € Y, we define the functiom : X x Y —
{1,0, —1} by

(_1)#{x’:x’<x}’ if x | y;
(x,y) —> .

0, if x1ty.
Let G be a profinite group. Let be a point set with discrete topology such that
G acts continuously. Suppose there is a surjechor> Zin, which induces
a bijection between the orbits of and elementg € Zs,. Let B, be the
corresponding orbit of. Let H, be the stabilizer of any € B,. We assume
{H, : z € Zsn} satisfies the following axioms:

e Foreveryz € Zs,, the commutator@, G| < H;

e Forevery?' | z € Zsn, H, < Hy;

e Forz andz’ in Zs, and relatively primeH,, = H, N H, andG = H,H,.
By the first axiom, therH, is a normal open subgroup 6f and the quotient
groupG, = G/H,_isfinite abelian. By the second axiom, forevery z € Zsp,
G, is a quotient group of;;; by the last axiom, one see that for evety; z,
the quotient majg;, — G is canonically splitas;, = G, x G/, we thus
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have the following canonical decomposition

G.=[]6G:w.

x|z

Let N, be the sum of all elemenig € G, in the group ringZ[G.]. For z
finite andz’ | z, Let g denote the image of € G; in G,. Let N be the
corresponding inflation map frofA[G ] to Z[G.,]. For every infinitez € Z,
let G, be the inverse limit of5, over all finitez |, z. ThenG; is actually the
direct product oG, for everyx | z.

Write B, = {[gz] : g € G}, then

A= ] B.={ls]: g € G..z € Zn),

2€Zfin

andG,» acts trivially in B, if x {1 z. ThusA and{G, : z € Zs,} are uniquely
determined by each other. L&t = |, . .., B foreveryz € Z.

For each paix € X andz € Z, the Frobenius element Fis a given element
in G whose restriction t@, is the identity for every: € N.

Let O be an integral domain and l€t be its fractional field. Le¥ be a
fixed OG-algebra which is torsion free and finitely generated a®anodule.
We suppose thafis a trivial G-module. For each € X, a polynomial

plx;t) € N[ t]

is chosen corresponding to

2.2 Definition of the universal norm distribution

Let A be the free7-module generated by, along with theG-action,
A becomes a torsion freE[G}module. LetB, be the7 [G}submodule ofA
generated by, as7 -module forz € Zsn. ThenB, is nothing but a free rank
171[G,}module with generatorz]. Let A, be the7 [G}submodule generated
by A, as7-module for every; € Z. Thus. A, has a natural [G,}module
structure for every |, z'.

Let A, be theT[G.}homomorphism of4. given by

he £ [£] — px; FrH[2] = Now[z(0)2], ?f xf Z:,
0, if x|z.

LetD, be the submodule ofl, generated by the imagesiof.)(A;,.) for
all x | z. Elements irD, are calledistribution relationsn A,. Theuniversal
norm distributionl{, according to the above assumptions is defined to be the
quotient7 [G,}module A, /D,, i.e., A, modulo all distribution relations.
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Note that for every € Z,

7 finite
sz
For anyz’ | z, the apparent inclusion of ., to A , induces an injection map
from U, to U,. In Proposition 4.2(2), we’ll see this injection actually is a
splitting G ;.-monomorphism.

3. Examples

We give a few examples about the universal norm distribution here.

3.1 The trivial case

The first case of the universal norm distribution is that; r) = 1 for every

x € X. In this case, one easily see tidatis generated by the images Bf.
Actually, i, is nothing but isomorphic to th&-module5, = 7[G,] (see the
remark after Proposition 4.2). We call this type of universal norm distribution
thetrivial universal norm distribution

3.2 The universal ordinary distribution

Recall that anordinary distributionof level r for a positive integer is a
function f from %Z/Z to an abelian groupg b satisfying

f(pa) = fla+ l;), Y primesp | r.

p

0

1

In the category of ordinary distributions, there exists a universal object, i.e., an
abelian grou@/, and a distribution relatiom : %Z/Z — U, suchthatfor every

f, there is a unique homomorphisfit : U, — Ab, such thatf = f“ o u.
Usually one can writd/, as

([a] 1 a € 2Z/7)
(lpal = X/ ola + 31: ¥p | 1)

and the map sends: to [a].

The universal ordinary distributioli, is actually a universal norm distribu-
tion according to our language. L&t be the set of all prime numbers. Then
Yiin is the set of all squarefree positive integers @pglis just the set of posi-
tive integers. LeG = Gg. Let G, = Gal(Q(¢-)/Q). The Frobenius element
Fr, is defined by the usual way. L€2 = Z = 7T and thus® = Q. Let the
polynomialp(p;t) =1—¢forall p € X. Then
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Proposition 3.1. The corresponding universal norm distributidf) is iso-
morphic to the universal ordinary distributioty, by the identification of
[2] € U, and[r] € U,.

Proof. This fact is just Proposition 3.1(iv) of Ouyang [6]. We reproduce the
proof here. LetAd, = ([a] : a € %Z/Z). Letw : A, — U, be theG,-
homomorphism by

[ﬂ s N = Y ol
(TEGf’
Ulcf:].

where for everyf | r, f is the unique stalk of with the same prime factors
of f. Now it is easy to verify thatr is surjective and factors throudh.. By
Proposition 4.1 which we’ll prove latet/, is a free abelian group with the
same ranlk (r) asU,, hencer induces an isomorphism frob. to4,. O

3.3 The universal ordinary predistribution

KeepX, Y, Z, G, Oand7 the same as in § 3.2. Now let(p; 1) = —¢ for
p # 2 and letp(2; 1) = —t, we call the resulting universal norm distribution
theuniversal ordinary predistribution

Proposition 3.2. The universal ordinary predistribution is isomorphic to the
integer ring of the cyclotomic number fieQ 1, ) for each squarefree integer

Proof. Definee, : A, — Og,,) by
, 2mi\°
[or] — exp(—/) ,
.

then immediately one has

(1) D, C kere,,
(2) e, is surjective.

By Proposition 4.1 which we’ll prove later, we know tléthasZ-ranke (r),
the same a€q,,), thuse, is an isomorphism. O

Remark 3.3. Whenr is not squarefree, then the above Proposition is actually
not true. Indeed, the mam is not surjective in this case. This fact is pointed
to the author by Prof. Anderson.
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3.4 The universal Euler system

Let K be a fixed number field. Let be a rational prime number. Ldt be a
finite extension ofQ, and letO be the ring of integer ofb. Let T be ap-
adic representation @ x with coefficients inO Assume thaf is unramified
outside a finite set of primes &f.

Fix an ideatt of K divisible by p and by all primes wher& is ramified.
Let X be the set of all primes of K which is prime td)t andK (x) # K (1),
whereK (x) is the maximalp-extension inside the class field & modulo
x and K (1) is the Hilbertp-class field ofK. By class field theoryK (x) #
K (1) is a cyclic extension totally ramified at primes abavand unramified
outsidex.

LetY andZ be defined followingX. For everyy = x;---x, € Y, let K (y)
be the composite

K(y) = K(x1) - K(x).

Fix aZ‘f,-extensionKoo/K which no finite prime splits completely. We write
K Cy F C K to indicate F/K a finite subextension oK../K. For
K C; F C Ko, We letF(y) = FK(y). Let G, = Gal(F(y)/F(1)) =
Gal(K (y)/K(1)). SinceG,, N G, = 1 for every pairx; # x, we see that for
anyy' |y, G, =Gy x G,,y.LetG = Gg).

Let Fr, denote a Frobenius afin Gk, and let

p(x; 1) = det(d — Fr.t¢|T*) e O[1].

Let7 = O[Gal(F(1)/K)]. With the aboveX, Y, O, ® andp(x; 1), the
corresponding universal norm distributiof) (related toF’) is called theuni-
versal Euler systeraf level (F, y). This definition is actually the same as the
one introduced by Rubin in Chapter 4 of his book Euler systems [8]. Indeed,
in Rubin’s definition, the universal Euler system of leyél, y) is the quo-
tientY r,/Zr; whereY r, is the freeD[Gal(F (y)/K)]-module by generators
xry fory’ |y, andZ g, are the relations

(1) gxry) = xr(y) for g € Gal(F (y)/F(y") = Gy,
(2) Nixpey) = p(x; Fryxeq forxy' |y,

One see our definition clearly is isomorphic to Rubin’s by identifying the
symbols p’'] andxg ).

3.5 Function field case: |

Let K = F,(T) andR = F,[T]. Forany f(T) € R, letK(f) = K(Ay) be
the cyclotomic function field oK related tof wherex is a division point
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of f with respect to the Carlitz module. The Galois grauip of K(f)/K is
known to be isomorphic toR/f)*. Thus we can identify every = o, € G
for some(a uniquey € (R/f)*. Theordinary distribution of levelf on the
function fieldK is defined to be a map

¢ : %R/R —> Ab = abelian group
satisfying

$) = 6. Vp| fox e ZR/R.
py=x !
One can then talk about theniversal ordinary distributioras the universal
object to the category of ordinary distributions. As in the number theory coun-
terpart, by abusing notation, we say the group

(lal:a € %R/R)
~(lal =X bl p | fra € ZR/R)

the universal ordinary distributiod/ s is naturally equipped with & ¢-action

by sendingr,[a] = [xa]. The distributionU, as shown to be a free abelian
group of ordef G ¢|, plays a similar role to the universal ordinary distribution
in the study of cyclotomic function field,

Now letG = Gx = Gal(K*??/K). Let X be the set of all monic irreducible
polynomials inK and thenZs, is nothing but the set of all monic polynomials
in R. Let A be the discrete s¢kg o f]: f € Zin, g € G¢}. ThenG acts onA
by settingg o [ f] = [f]if g € Gk(y). Let p(p,t) =1 —1t foreveryp € X.
For O = T = Z, we then can define the universal norm distribuignas the
G s-module

Uy

([of1: f'Is fio € Gp)
(A=Fr, Do f 1= Neplof(D f1: f()f' | foo €Gp)

Proposition 3.4. The module#/; andl{ are isomorphic a%; -modules by
identifying[1/f'] € Uy and[ f'] € Uj.

Uy =

Proof. The proof is similar to Proposition 3.1. One can easily check that: (1).
the map [¥f'] € Uy — [f'] € U, is well defined; (2). this map is & ;-
morphism; (3). surjective; (4). bothi, andl{; haveZ-rank |G /|(the latter
follows from Proposition 4.1). O

3.6 Function field case: I

We now work on more generality. L&t be a fixed function field. Pick a place
oo in K. Let R be the integer ring corresponding to the placeChoose a sign
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function sgn onkK*. Let ¢ be a sign-normalized Drinfeld module of rank 1.
The field H* is defined to be the extension &fby adding all the coefficients
of ¢, fora € R.

For any ideall of R, let K(I) be the cyclotomic function field extension
of K related to/ (and related to the sign-normalized Drinfeld modg)e Let
now X be the set of all prime ideals &, then Z;, can be considered as
the set of all integral ideals ak. Let G = Gal(K*®’/H™). Let G, be the
Galois group ofK(I)/H*. We know thatG; = (R/I)*. For the discrete
setA = {gol : I € Zsn, g € G}, G thus defines a natural continu-
ous action orA satisfying the axioms of the universal norm distribution for
H; = Gal(K*?/K(1)). For anyp € X, define the Frobenius elementfr
correspondingly. Le® = Z[Gal(H*/K)]. We can now define the universal
norm distribution by choosing a free fini@-module7 (with ring structure)
and a set of polynomialgp (o, 1)} for everyp € X.

In particular, if letk = F,(T) and letR = F,[T]. Let the sign normalized
Drinfeld module be the usual Carlitz module. In this cébe is actually just
K.letp(p,t) =1—1tforeveryp € X. Then we are back to the special case
in the previous section.

One notes that in our definitior?, and {p (g, 1)} are not specified. This
actually gives us an advantage for applications. The Euler systeminthe function
field case, due to Feng-Xu [2] and Xu-Zhao [11], has been used to prove
results about ideal class groups and Gras conjecture in the function field case.
By choosingZ and{p(g, 1)} (and sometimes evafl), we can formulate the
universal Euler system in the fuction field case just as Rubin did for the number
field case. However, more study is needed for applications.

4. Basic properties of the universal norm distributioni/,

Recall by our definition, for every € Z, A.is a free7 -module generated by
the set

A.= | Bo= | l[sz1: g €G.).
7' finite 7' finite
sz 7|52

If let B, be the set of all elements
{[gz] € A : the restrictiog,,, = 1 for exactlyn primesx | 7'}

ThenA, is the disjoint union

A.=J U B.nBy.

n>07 finite
Zlsz

We have the following key proposition.
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Proposition 4.1. The freeZ7-moduleA, for every; € Z, possesses&basis
(o821 2,22 |y z, 72" € Zgn, [g2] € Bo)
wherea . is defined to be the product &f,, for all x | z”.

Proof. Suppose thatdz'] € B, N A, forn > 1, then there exists a prime| z’
such thatg,,) = 1. One has

[6z1=— D> [8¢7]1 - hewlgd/z(0)] + plx; Froh[gz'/z(x)].
l?ég/EG:(x)

Thus

(Bi)r NA; S (By-1)r N A + Z Az Azjzo) T Z -AZ/Z(X)

x|z x|z

where(B, )+ denotes the fre&-module generated b, . Thus by induction, the
set given in the proposition generatés. We just need to show the cardinality
of this set agrees with tH&rank of A.. For finitez € Z, theZ-rank of A, is

Y16 =] ]Gl + D).

sz x|z

On the other hand, the cardinality of the set in the proposition is

Y > BN B =) > []UG.wl - D

sz 25 % sz 2| 5 x1Z

:Z 1_[ 1G]

sz x| %
z

=[]1G.wl+D.

x|z

This proved the case wheris finite. Taking the limit, then we have the proof
for infinite z € Z. a

Proposition 4.2.

(1) The modulé/, is a free7-module with basiBy N A..
(2) For everyz' |; z, the natural injection ofi/, to U, is a splitting G-
monomorphism.

Proof. Immediately from Proposition 4.1. O

Remark 4.3. From the above Proposition 4.2(1), one seethas a free7
-module of rank G, |. In particular, in the trivial universal norm distribution
case, one see that the imageBRfin U/, actually is a basis d¥(,, thusi/, is
isomorphic ta7 [G.,], which justifies the meaning dfivial .
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Remark 4.4. From the above Proposition 4.2(2), we'll henceforth identify
U, as a submodule o#/,. In particular, for every € Z, we have

u.= |J U
7' finite

/
Z|sz

This observation will be used to the study of the universal Kolyvagin recursion
in Ouyang [7].

Proposition 4.5. Letw | z be a pair of elements i@. Then the corestriction
homomorphisnCor,, , from A,, to A, by

[w] —> No[Z1w' |y w, 2 |5 z, @ =)

induces an embedding frond/,, to U,. In particular, whenw |, z, this
embedding is the natural injection as given in Proposition 4.2.

Proof. Write Vy(resp.W;) the freeZ7-submodule ofA4,, (resp.A,) generated
by Bo N A, (resp.Bo N A.). Write V,(resp.W,) the freeZ7-submodule of4,,
(resp.A,) generated by other elements in the basiglgf(resp.A,) given by
Proposition 4.1. Then it is easy to check that £omapsV; to W; injectively.
Hence it induces a well defined embedding frénto U, . a

5. Anderson’s resolution

5.1 Setup

Letz € Z be given. Let

L, = @ Azpzonly]

ylz
wherey is finite and ] is a symbol depending only on If we write
[¢'Z1ly] =[g'Z, ]
for elements in4.,.(,)[y], then L is the freeZ-module generated by the set
{la.y]:[a] € Az v 1 2}
We assign a grade i, by declaring
degl, y] = —degy.

Foranyg € G, and [g'z'] € A,/,(,), declare th&5,-action as

glg'z vyl =188, yl.
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then L, becomes a gradefi[G,]-module. L, is bounded above since all its
non-negative components are 0. Moreov&r,is bounded if and only it is
finite.

With abuse of notation, denote Ry,,), A, the homomorphisms &, inher-
iting from the homomorphisms i, bearing the same names. Now let

d . ‘CZ —> Ez, [as y] | — Zw(xv y))"Z(X)[a’ y/x]
x|y

wherew is as defined in 8 2.1. Cleardycommutes withG ,-actions. A straight-
forward calculation shows that* = 0 and thereforel is a differential of
degree 1. Define af[ G,]-homomorphisnu : £, — U, by

[a], ify=1
0, if y=£1

[a, y] —

RegardC. as acomplexC? by the differentialZ, and regard/, as a complex
concentrated on 0O-component. Then one can easily cheakithathomomor-
phism of complexes. Because of the following Theorem, we call the complex
(L2, d)(or simply £?) Anderson’s resolutioof the universal norm systedd,.

Theorem 5.1. The homomorphism is a quasi-isomorphism, i.e., the com-
plex(L:, d) is acyclic for degree # 0 and HO(E;, d) = U, induced byu.

Proof. For anya € Bg N B.,.(y), consider the grade@-submoduleC; of L2
generated by

Awla, ¥'1, w s z, wy' | y}.

One can see that} is d-stable. ThusC; is actually a subcomplex of?.
By Proposition 4.1,L?is the direct sum ofC; for a over Bo N A,. We
hence only have to study the compléX. Now the theorem follows from
Lemma 5.2. O

5.2 The Koszul complex’s
Let A be the polynomial ring
A=TZ]={) tz:t,eT.z€Z)

Let C‘; be the Koszul complex of with the regular sequenag < --- < x,
wherey = xp -+ - xp,. Thus@; is the graded exterior algebra

@ Aey

Yy
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with
ey =€y, A---Aey , and deg, = —degy’ = —k
where
y/ = Xip o X Xip < s < X
The corresponding differential is given by

de, = x.
5.3 Truncated Koszul subcompl€X

LetC; be the graded-submodule off; generated by all elements of the form
y"ey for all y'y” | y. This submodule is stable under the differential, thus is
a subcomplex of’;. Moreover, it is a direct summand 6f. By the general

theory of Koszul complexC; is acyclic in nonzero degree arﬁio(C;) is a
free7-module generated hyj.

Lemma 5.2. Foranya € BoN B./y(y), the complexC] is isomorphic toCy.
ThusC? is acyclic in nonzero degree arid®(C?) is a freeZ-module generated
by [a, 1].

Proof. Let C; act onC; by
x[a, y/] = )‘z(x)[a7 y/]
and

(=D <x¥Dlg, xyT if x 1y

edayl=14 if x | w.

By straightforward calculation
d(En) = (d&)n + (-D*FE(dn). & € Cy.n e CL.
ThusC; = Cj[a, 1]. a
5.4 Compatibility

From Proposition 4.5, the injective corestriction homomorphism,Cdrom
A, to A; induces a corestriction homomorphism Cor frdij to £, by

[a,y] — Corw/w(y),z/z(y)[a’ y].
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A straightforward calculation shows that Cor is compatible with the differential
d. Now if let Z, be the extended exact sequencéiofto L, ,i.e.,L, isthe
sequence

---ﬁz_"—>---—>ﬁgi>uz—>0

then the corestriction map Cor is actually an injective chain homomorphism
fromZ,, toZ, and is thus an embedding. When|, z, this embedding Cor
is again a natural injection.

5.5 Connecting map for different norm distributions

Now fix X and7, suppose that we have two sets of polynomi{als(x; ¢)}
and{p2(x; 1)} in O[¢] then we have two norm distributiod4 ,andit, ., and
two corresponding Anderson’s resolutiofig, and L, ;. Then there exists a
connecting homomorphism

$12: L1, Q0 P — Lo, ®p

by

B , F -1y , F —1 )
R e | e i LI

w2’ x|w

By straightforward calculation, one can check that is the inverse o, 2,
thus ¢, » is actually an isomorphism, which induces isomorphisms between
U, Q0 ® andli, ®o ©. In particular, if we letpy(x; 1) = 1 for every

x € X, thenld; ; ® o @ is nothing but the modul&[G.], thus we have

Proposition 5.3. The7 ®c ®[G,] module U, ®o @ is free of rankl for
every universal norm distribution.

5.6 Double complex structure df,

Set a bidegree i, by
ded?[z’, y] = (degz’, — degZ’ — degy).
We set

dii[Z, y] = —o(x, )N (v[Zz(x), y/x],
dr([Z, y] = w(x, y)p(x; Fro[z, y/x].
and let

dy=diy+dox, di=) diy. dp=) dy,.
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Lemma5.4. (1) Foranyx,x'|z,i =12,
d?, =dyydp v +da iy =0.

(2 dlz = d22 = didy + d1d>» = 0.
(3) d; . is G,-stable.

Proof. Straightforward. O

From the above lemma, we see tlatis equipped with a multiple complex
structure. In particulaL?*; d1, d>) is a double complex corresponding to the
above bigrading. We'll use this complex to study the group cohomologg of
in8§7.

6. Preparation from homological algebra

6.1 Complex of typeE

Let A be a freeO-module of finite rank. LetA, = A4(x1,---, x;) be the
exterior algebra oved, with the differentiald given byd(x) = Y, mix A x;
wherem; € O . For eachS C {1,---,t}, let mg be the greatest common
divisor of m; for alli € S. In particular, letn be the greatest common divisor
ofm; foralll <i <z.

LetS = {i1, - - ,is}suchthai; < --- <i,. Let{es = x;, A---Ax; } bethe
standard basis ok 4. By linear algebra, in thé&-vector space generated by
{x1, -+, x,}, there exists another basgis, - - - , y;} such thaty; = 711 D i mix;

and the transformation matrix is insidd.(z, Z), thus{es = yi, A -+ Ay}
is another basis fon 4. Hence one can easily show thét (A 4) is a free
gradedd /m A-module generated by cocycles represented,tbyr all S which
contains 1, thus is a fre€/m A-module of rank 2-%, with thei-th component
afreeA/mA-module of rank(lfj)(or 0ifi =0).

6.2 The tensor projective resolutidn,

This setup is from Ouyang [5]. Fix an elemen¢ Z. Assuming thatG ,,, is a
cyclic group for every | z. Leto,(,) be a generator af ... It is well known
that the sequence

Ny -0y

.. -Z[Gz(x)] —> Z[Gz(x)] —_— Z[Gz(x)] i)Z — 0

is exact, where is the augmentation map. L&{,,, be the resulting resolution
forthe trivialZ[ G () ]-moduleZ, we can thus writé. (., as the graded module

@ Z[Gz(x)][xn]

n>0
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with the symbol "] is of degree: and the differential given by

(L—o,)[x" Y, ifn>0o0dd
Nz(x)[xn_l], if n > 0even

az(x)[xn] = {

Now let P,, as the tensor product @, over allx | z. P, is the so called
tensor projective resolutioof the trivial Z[ G;]-moduleZ with respect to the

cyclic decomposition
G, = 1—[ Gz(x) = H(Gz(x)>-

x|z x|z

Let [w] be an indeterminate for evewy € Z. Then the tensor resolutiah,
is the projectiveZ[ G .]-resolution of the trivial modul&. by

P..= @ ZIG.]w]
desju‘)zzn

and the differentiab, is given by
8z[w] = Z(_l)zx/“ vx/waz(x)[w/x]
x|w

wheree,,, is equal too,, — 1 if v,w odd andN,, if v,w even. For any
7' |s z, one has a natural inclusion &f, to P,, by sending {v] to [w].

6.3 G,-cohomology of trivial moduled

Let A be a freeO-module with trivial G,-structure. To compute it& -
cohomology, it suffices to compute the cohomology

I3 = Homyie (P, 4) = @D Alul

w finite
wlz

with the differential

8. [w] = Z(—l)zm Y amlwx]

x|z
whereaq,,, is equal to 0 ifv,w even and tdG .| if v,w odd. The inclusion
of P, to P, for 7’ |; z thus induces a projection frof _ to 73 .. One see
that/} _ is a direct summand afy .
For any finitew with w | z, let

I = P Alw?/w,

w’|w



On the universal norm distribution 303

thenI3[w?] is a direct summand af} . and
Ii: =D un
]2

If w = 1, the subcomplex$[w?] is just a copy ofA with the differential
0, thus the cohomology of it id too. If w # 1, the subcomplex}[w?] is
of type E. Letm,, be the greatest common divisor |@f | for x | w, then
H*(I13[w?)) is then a free graded /m,, A-module of rank $97~1. One see
the (2degw — degw + i)-th cohomology is just a fred /m,, A-module of
rank (“°9”~1) for 1 < i < degw and 0 otherwise.

DenoteH*(13[w?]) by Hy ,,. Then with the above analysis, one has

Proposition 6.1. Fix a finitez € Z such that every ., is cyclic forx | z.
For a freeO-moduleA with trivial G, -action, then we have

(1) Foranyz’ |, z, the cohomology grouff*(G/, A) is a direct summand of
H*(G., A).

(2) The cohomology grougl*(G,, A) is the direct sum ofH, ,, for every
w | z where: (a). Forw = 1, Hy,, = A is with gradeQ; (b). For w # 1,
Hj , is a free gradedd /m,,, A-module with th&2 degw — degw + i)-th
component of rank®®®”, ) for 1 < i < degw andO for otherwise.

Remark 6.2.

Now for a finite fixedz € Z, suppose € Ca common divisor ofG ., | for
everyx | z. Then the case fat ,-cohomology ofA/M A is much simpler. In
this case,

H*(G,, A/MA) = H*(I:\,Z/MIIZ-,Z)’

and the differential in'y /M1y _is nothing but 0, thu$/*(G,, A/M A) as a
graded module is isomorphic 19 ./M 1} .. One has

Proposition 6.3. There exists a family
{[w] € H*(G,, A/MA) : w finite, w | z}
with the following properties:
(1) ForanyZ |, z, the restriction of the family
{[w]: w|Z,degw = n}

to H*(G,, A/M A) is an A/ M A-basis of the latter one.
(2) The restriction ofw] for w 1z’ to H*(G,, A/M A) is 0.
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7. G,-cohomology of the universal norm distribution,

In this section, we use tools developed in the previous sections to study the
G .-cohomology of the universal norm distributidfs and ofif,/ MU, . We
assume that,, cyclic for everyz € Z andM a common divisor ofG |

for everyx | z.

7.1 Setup of double comple?-*

With preparations from the above two sections, we let
K:*® =Homg (P., L?)

If we write [a, y, w] = ([w] — [a, y]), thenK?* is the free graded-module
with basis

{la,y,wl:ylz,a €A, w|Z)

and with the double grading given by
degl, y, w] = (— degy, degw).

The induced/ [G,]-module structure is given by

g[a’y’w] :[ngy’ U)]

foranyg € G.. Use the same notations for the operatons frt induced from
L2, 1.e., A ), A and so on. Now the two differentials &f** are given by

dla,y, w] = Zw(x, Y (pGx; FroBla, y/x, w] — Nowlz(x)a, y/x, w]),
x|y

8la, y, w] = (=)%Y (~1)Zr= g la, y, wx]

x|z

wherea, ) is equal to 1- o) if v, (w) even andv,,, if v,(w) odd. LetK?
be the single total complex &f?°. and letK ; be the underlying module.
LetK? = Homg_(P.., U). Thenitis the quotient of fre&module generated

by
{l[a,w],a e A,,w|Z}
modulo relations generated by
Awla,w], ae Awy, wlzZ,¥Vx |z,
with the differentials given by
8[a, w] = Z(—l)z“<x a0 [wx].

X€EZ
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We have the induced map

[a,w], ify=1;

0, if y#£1
Proposition 7.1. The homomorphism is a quasi-isomorphism. Thus

(1) H*(K: d+38) = H*(G,,Uy).
(2) H*(K:/MK?, d +68) = H* (G, U./MU,).

u:K;—>KZ’, [a,y, w] —

Proof. By Theorem 5.1, keu is d-acyclic, by spectral sequence argument, it
is hence(d + 8)-acyclic. Thuau is a quasi-isomorphism. (1) follows immedi-
ately from the quasi-isomorphism. Since béth andi/; are freeZ7-modules,
the induced homomorphism from K?/MK? to K?/MK? is also a quasi-
isomorphism and (2) follows immediately. O

7.2 Another double complex structurekof

KeepK as the same bigraded module as in the previous section. Let's equip
it with different differentials(d, §) as the following:

dla, y, w] =) o(x, y) (=1
x|y
(pGxs Frola, y/x, w] = Nylaz(x), y/x, w]),
Sla. y w] = Y (= HTes O (T W fa, y, wa).
x|z
One can easily check that
d?>=68*=ds+48d =0.

We define an involutivés ,-equivariant bigraded automorphisnof K, by the
rule

ela, y, w] = (=D Znraw= O (),

by a straightforward calculation, one finds that

ec?ezd, €ede=394.

Thuse induces an isomorphism between the cohomology(ofc?, S) and the
cohomology of(K; d, §), which is then isomorphic to thé ,-cohomology of
U..

In the sequel, we'll use the double complg; d, §) to study the cohomol-
ogy ofU,. However, the results obtained here is easy to adapt to the double
complex(K; d, §). The double compleK ; d, §) will be used to the study of
the universal Kolyvagin recursion in Ouyang [7].
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7.3 Multiple complex structure df ,

The underlying modul& , has abundant complex structures. kdrz, set

deg ([, y, w]) := v (2),
degb,x([z/’ Y, w]) = Ux(yZ/),
de%,x([z/’ Vs w]) = v (w).

We call deg, ([z', y, w]) fori = 1,2, 3 the(i, x)-degree of {', y, w]. Make
the degrees invariable witfi, action, therK, is equipped with a multi-graded
module structure. Let

diyla, y, w] = —w(x, y)N,mlaz(x), y/x, w]
dola, y, w] = w(x, y)px; Fribla, y/x, w]
dz.la,y, w] := (=1)%P (=1 Lv=""q,la, y, wx].

The mapd; , is of (i, x)-degree+1. It is easy to check that for every j =
1,2, 3and(, x) # (j, x"), one has

d%,x =d; d;, +d;d;, =0.

Thusd; . are differentials oK, observing the above multi-grading structure.
One see that is the sum of alld; , fori = 1,2 andx | z and$ is the sum
of d3 . The total degree ok, is just the sum of alli, x)-degrees. Thus we
can use this multi-complex structure to study the total cohomolodgy, @nd
hence the&s,-cohomology of/,.

Furthermore, note that any combinationdpf is still a differential inK .
In particular,d; = Zm d; ; fori = 1,2 is the differential induced by the
differentiald; in £, when viewingl, as a double complex. We have= d;+d>
and$ = }_ _ds,. Correspondingly, we can make, as a triple complex
K?** with differentialsds, d> ands. As a convention, we use, n, p = m+n
andg to denote the corresponding degrees for the differentialé,, d ands.
We shall use this triple complex structurekof to study the total cohomology
of K?.

7.4 Compatibility
For every?’ |, z, letK, be the submodule df , generated by
{la,y,wl:y |2, a € By, w7}
and letK, (z’) be the submodule generated by

{[Cl, Y, w] 2y | Z/,Cl € BZ’/Z()')’ w | Z}
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One can check th#t, andK ,(z) are compatible with differentials. ThHe +
8)-cohomology oK . isjustH*(G ./, U,) and thegd+3§)-cohomology oK . (z')

is H*(G,,U,). Moreover, if using the embedding Cor defined in § 5.4 for
Anderson'’s resolution, then for every| z, one has a well defined embedding
fromK, toK..

7.5 The study of spectral sequences

We now discuss thé& ,-cohomology off, andif,/ MU, We study the triple
complex (K$**; dq, d, §), or rather, fixn, we study the double complex
(K?$"™*; dq, 8). Consider the spectral sequence

Ey (K2 = HI HY (K2").

SinceHy (K"*)isjustH4 (G, L"), whichis the direct sum of subcomplexes
of the following form for ally | z, degy = —n:

1

d} d}
0— HYG,, [By,y]) = - —

, df (1)
P HYG..[By), y/yD - = HUG:, [Byy), 1) — 0
degﬁ”li*p

where
[B:,y1:={la,y]:a € Bs)r =B,.
Note that for any’ | vy | Z,

By = B:y) @1 NGzy/y)]-
One has a commutative diagram

—o(x,y)df,

Hq(GZ’ [Bz(y’)v y]) —_— Hq(sz [BZ(_V’/X)9 y/X])

| |
HY(Gjeyy, [Bry]) ——  HU(G.pziyms [Bu. y/x])
wheref is the isomorphism induced by Shapiro’s Lemma. Note tBat {]

is just one copy off indexed byy, we write it as 7[y] . Through9, the
complex (1) is then quasi-isomorphic to

0— HYG., Ty —
B HY Gy TMy/yD = H Gy, M) -~ 0 (2)

Yy
degy'=—p
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with the differential

d(c) == ) o, y/y)resc

xly/y'

for

c €eHY (G /.(y), Ty/¥']), res, is the restriction of in
Hq(Gz/z(xy’)v 7[)’/)1/)6]).

If replaceq in the complex (2) above by, then we have a complex

0— H*(G,, Ty --- —
@ H*(GZ/Z(}")’ 7[)7/)7/]) e > H*(Gz/z(y)v 7[1]) -0 (3)

Vly
degy'=—p

Lemma 7.2. The compleX3)is acyclic except at the first conomology while
the first cohomology is the direct sum of free gradéa:,, 7-modulesHr ,,
fory | w| z, wherem,, = gc|G )| : x | w} and the grading ofdr ,, is as
stated in Proposition 6.1.

Proof. Since7 is a trivial G,-module, we can apply the results of Proposi-
tion 6.1 here. The first cohnomology is just

(\ker(H*(G.. T) > H*(G_/.v). D),

x|y

which is nothing but the direct sum &fr ,, for y | w | z by Proposition 6.1.
Apply Proposition 6.1 again, we see the complex (3) satisfies the conditions
of Lemma 5.2 of Ouyang [5], Page 16. Following that lemma, we know other
cohomology groups vanish for the complex (3). a

Write H%w theg-th component o+ ,,, we thus have

Proposition 7.3.  For any fixeds, the £,/ term H}j! Hy (K$"*) of the double
complexK?"*; di, 8), is then the direct sum of fré§/ m,, FmodulesH , [y]
where

degy = —n, yliwlz

and theZ/m,, T-rank of HY , [y] is (**%", 1) if ¢ = 2 degw — degw + i.
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7.6 The case(x; 1) = 0foreveryx | z

In this subsection, we suppose thdt; 1) = 0 for everyx | z. In this case,
we can give a complete description of #fie-cohomology of/,. Consider the
7-submodules of K, generated by

{la,y,wl:a € By, ylz, wlz,a¢ Brify|w}.

Under the assumptiop(x; 1) = 0, one easily sees thdiS, d.S, §S C S,
thusS is really a subcomplex dk, with related double and triple complex
structures. We e, = K, /S, thusQ, is a freeZ-module generated by

{[Lywl:ylw]|z}
Note that the induced differentid) = 0in Q.. We write the quotient map as
Proposition 7.4. The quotient map is a quasi-isomorphism.

Proof. Consider the triple compleK?**; di, do, §) and the related triple
complex(Q2**; di, d, §). Fix d>-degreen, we consider the double complex
(K2$™*; dq, 8) and its quotient by. Thenp induces a map

pat Hip (HJ (K2™*) —> HJL(H Q™).

We claim thato, is an isomorphism.

Assuming the claim, therl, 4 (K™, di + 8) is isomorphic toH,
(Q2™*, dy + 6). Thus for the double compleX **; dz, d1 + §) and its quo-
tient (Q*; do, di + §), the E5 ™" ™-term Hm+"(H;1+8(K **)) is isomorphic to
Hﬂ*q(HdlM(Q; *)). p hence is a quasi-isomorphism. Noe that here we use the
following fact about spectral sequences: a complex homomorphism is a quasi-
isomorphism if in the corresponding weakly convergent spectral sequences,
the E,.-terms are isomorphic for some positive integer

Now we show the isomorphism @f. Consider the comple&Z}, §) gen-
erated by{[1, y, w] : w | z}. This complex is exactly HokP,,, [51, y]). Let
L? and L}* be the subcomplexes generated{pl, y, w] : y | w} and by
{[1 y, w] 1 y { w} respectively. Thug; is the direct sum o ” andL’*. Cor-
respondinglyH*(G., [1, y]) is the dlrect sum ot/ * (L7, 8) andH*(L”' 3).

Now the kernel of/} at H4 (G, [1, y]) in the complex (1), or equivalently, in
the complex (2), is justi (L}, §). We see tha?:"* is actually the direct sum
of L'?(Note thatd; = 0in Q_). This proves the isomorphism p$. O

Theorem 7.5. |If for everyx | z, p(x; 1) = 0. ThenH*(G,,U,), the G-
cohomology of the universal norm distributibfis the direct sum of 7 ,,[y]
whereHr ,, is as stated in Proposition 6.1 and

ylw]z.

Any element[y] € H*(G,,U,) forc e Hf}w is of degree; — degy.
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Remark 7.6. LetU, = U,, the universal ordinary distribution of leve|
if r is odd, thenG ,: is cyclic for everyp'|r. We also see thap(x; 1) =
1-1 = 0, hence the above theorem gives a complete descriptiBnh@ ,, U, )
and generalizes Theorem A in Ouyang [5], where we need the condit®n
squarefree.

7.7 TheG,-cohomology o4,/ MU,

We suppose now that is a common divisor ofG )| and p(x; 1) for every
x | z.LetS, bethe same asin 8§ 7.6. Th8ry M'S, is a submodule df ./ MK,
generated by

{[aay’w]:QEBz/z(y)’ viz, wl|z,a¢ Byif y | w}.

One easily sees th& /MS, is a subcomplex oK ,/MK, with respect to
the multi-complex structure df ./ MK . We letQ,/MQ, be the quotient of
K,/MK,t0S,/MS,, thusQ,/MQ), is a freeZ7/ M 7-module generated by

{[Ly wl:y|lw]z}

Note that the induced differentiad§ = d, =d =8 = 0in Q,/MQ,. Write
the quotient map fronK /MK, t0 Q,/MQ, aspy.

Proposition 7.7. The homomorphismy, is a quasi-isomorphism.
Proof. Similar to the proof of Proposition 7.4 a

Theorem 7.8. LetM € O be a common divisor di5,(,,| and p(x; 1) for
all x | z. Then the cohomology group*(G,, U,/ MU4,) is a direct sum of rank
one graded// M 7-modules(c(y, w)) where

y | w |z dege(y, w) = degw — degy.

Proof. By the quasi-isomorphism qf,, in Proposition 7.7, the cohomology
groupH*(G,, U,/ MU,) is then just the total cohomology group of the com-
plexQ,/MQ,. However, all induced differentials iQ,/MQ, are 0, thus its
cohomology is itself. Let(y, w) be the element iHH*(G,, U,/ MU,) rep-
resented by the cocycld [y, w] in Q,/MQ,, we hence get the proof of the
above theorem. O

Remark 7.9. With the automorphisma in § 7.2, we easily see that
pu (K /MK®5d, §) — (Q°/MQ:*; 0,0)

is a quasi-isomorphism, thus Theorem 7.8 can be stated in the form of the
double complexK?*; d, 4).
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We call the basi$c(y, w) : y | w | z} given in Theorem 7.8, theanonical
basisfor H* (G, U,/ MU;). In particular, we write:(y, y) asc,. By the above
theorem, we see that for everye Z,

HYG U /MU) = (cy: y | Dr/mr

is the union of allH%(G ., U,/ MU.) with 7’ | z and’ finite. We'll use this
fact in Ouyang [7] for the double compl&K $*; d, ).

Remark 7.10. One can expect parallel result to Theorem B in Ouyang [5]
holds here too. The answer is yes. However, we feel more appropriate to state it
in Ouyang [7], as a natural consequence of the universal Kolyvagin recursion,
just like the proof of the above Theorem B in Anderson and Ouyang [1].
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